[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2017056447A - Water treatment system and method - Google Patents

Water treatment system and method Download PDF

Info

Publication number
JP2017056447A
JP2017056447A JP2015185700A JP2015185700A JP2017056447A JP 2017056447 A JP2017056447 A JP 2017056447A JP 2015185700 A JP2015185700 A JP 2015185700A JP 2015185700 A JP2015185700 A JP 2015185700A JP 2017056447 A JP2017056447 A JP 2017056447A
Authority
JP
Japan
Prior art keywords
water
treatment
filtration
unit
processing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015185700A
Other languages
Japanese (ja)
Other versions
JP6582792B2 (en
Inventor
大輔 田坂
Daisuke Tasaka
大輔 田坂
高志 西田
Takashi Nishida
高志 西田
克行 門田
Katsuyuki Kadota
克行 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp filed Critical Oji Holdings Corp
Priority to JP2015185700A priority Critical patent/JP6582792B2/en
Publication of JP2017056447A publication Critical patent/JP2017056447A/en
Application granted granted Critical
Publication of JP6582792B2 publication Critical patent/JP6582792B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress a water circulatory system applied to fish breeding water tank or the like from becoming larger and a maintenance cost from increasing.SOLUTION: A water treatment system includes filtration treatment parts (3, 5) disposed in a water circulatory path (CM) and biological treatment parts (7, 9) for biologically treating cleaning waste water generated by cleaning of the filtration treatment part. According to this, the biological treatment is applied not to a total amount of water in a circulatory system containing a water storage part such as a water tank but to only a part thereof, that is, reverse washing waste water. Further, when constituting such that the cleaning waste water is anaerobically treated (7), followed by aerobically treating (9) and by returning a part of aerobically treated water to the anaerobically treating part, in the anaerobically treating part, by utilizing an organic substance contained in the introduced cleaning waste water, denitration of nitric acid generated by the aerobic treatment can be performed. Therefore, an addition of methanol or the like can be made unnecessary.SELECTED DRAWING: Figure 1

Description

本発明は、水処理システムおよび方法に関し、詳しくは生物の飼育に使用される水貯留部、例えば魚介類の陸上養殖を行うための水槽に貯留される水を、循環させつつ浄化する技術に関するものである。   The present invention relates to a water treatment system and method, and more particularly to a technology for purifying while circulating water stored in a water storage unit used for breeding organisms, for example, an aquarium for cultivating seafood on land. It is.

一般に、魚介類等を陸上養殖する際、養殖水槽という閉鎖環境では、排泄物に含まれているアンモニアの残留ないしは濃度の増大が問題となる。そこで、養殖水槽に対して水の循環系を構成するとともに、循環の過程で生物処理を行うことが考えられる。かかる生物処理の例としては、特許文献1あるいは特許文献2に開示されたような、水に好気性バクテリアによる処理(好気処理)を施すことでアンモニアを硝化し、次に嫌気性バクテリアによる処理(嫌気処理)を施すことで脱窒する技術がある。そして、特許文献1には、脱窒反応の有機炭素源となる有機物としてメタノールを投入することが開示され、また特許文献2には、脱窒反応に必要な水素供与体として同じくメタノールを嫌気処理の前に投入することが開示されている。   In general, when aquaculture and the like are cultivated on land, in a closed environment such as an aquaculture tank, residual ammonia or an increase in the concentration of excrement is a problem. Therefore, it is conceivable to construct a water circulation system for the aquaculture tank and to perform biological treatment in the course of circulation. As an example of such biological treatment, ammonia is nitrified by performing treatment with aerobic bacteria (aerobic treatment) on water as disclosed in Patent Document 1 or Patent Document 2, and then treatment with anaerobic bacteria. There is a technology to denitrify by applying (anaerobic treatment). Patent Document 1 discloses that methanol is introduced as an organic substance serving as an organic carbon source for the denitrification reaction, and Patent Document 2 similarly discloses an anaerobic treatment of methanol as a hydrogen donor necessary for the denitrification reaction. It is disclosed that it is put in before.

特開2001−137890号公報JP 2001-137890 A 特開2011−62653号公報JP 2011-62653 A

しかしながら、それら特許文献に開示されているような生物処理技術を単純に循環系に適用すると、次のような問題が生じることを本発明者は見出した。すなわち、循環水の全量に対して生物処理を行うことや、好気処理工程と嫌気処理工程との間にメタノールを投入する工程を介挿することは、水槽などの水貯留部を含む循環系を大型化させ、維持費用の増大をもたらすという問題である。   However, the present inventors have found that the following problems arise when the biological treatment techniques disclosed in these patent documents are simply applied to the circulatory system. That is, performing a biological treatment on the total amount of circulating water or interposing a step of adding methanol between an aerobic treatment step and an anaerobic treatment step is a circulation system including a water storage unit such as a water tank. It is a problem of increasing the size and bringing about an increase in maintenance costs.

よって本発明は、水槽などの水貯留部を含む循環系の大型化および維持費用の増大を抑制し得る水処理システムおよび方法を提供することを目的とする。   Therefore, an object of this invention is to provide the water treatment system and method which can suppress the enlargement of the circulation system containing water storage parts, such as a water tank, and the increase in maintenance cost.

そのために、本発明水処理システムは、水貯留部に対する水の循環経路に配設されたろ過処理部と、ろ過処理部の洗浄によって発生した洗浄排水を生物処理する生物処理部と、を備えたことを特徴とする。   For this purpose, the water treatment system of the present invention includes a filtration treatment unit disposed in a water circulation path with respect to the water storage unit, and a biological treatment unit that biologically treats washing wastewater generated by washing of the filtration treatment unit. It is characterized by that.

また、本発明水処理方法は、水貯留部に対する水の循環経路に配設されたろ過処理部によってろ過処理を行うろ過処理工程と、ろ過処理部の洗浄によって発生した洗浄排水を生物処理する生物処理工程と、を備えたことを特徴とする。   Further, the water treatment method of the present invention includes a filtration treatment step for performing filtration treatment by a filtration treatment portion disposed in a water circulation path with respect to a water storage portion, and a biological treatment for biological treatment of washing wastewater generated by washing of the filtration treatment portion. And a processing step.

本発明によれば、水槽などの水貯留部を含む循環系にある水の全量ではなく、その一部、すなわち逆洗排水に対してのみ生物処理が実施される。また、洗浄排水を嫌気処理し、その後に好気処理を行うとともに、好気処理された水の一部を嫌気処理部に戻すように構成すれば、嫌気処理部では、導入される洗浄排水に含まれる有機物を利用して、好気処理で生じた硝酸の脱窒を行うことができるため、メタノールなど電子供与体の投入を不要とすることができる。これらにより、循環系の大型化および維持費用の増大を抑制することが可能となる。   According to the present invention, biological treatment is performed not only on the total amount of water in the circulatory system including a water reservoir such as a water tank, but on only a part thereof, that is, backwash waste water. In addition, if anaerobic treatment is performed on the washing wastewater, and then aerobic treatment is performed, and a part of the aerobic treated water is returned to the anaerobic treatment unit, the anaerobic treatment unit may introduce the washing wastewater to be introduced. Since the nitric acid generated by the aerobic treatment can be denitrified using the organic matter contained, it is not necessary to input an electron donor such as methanol. By these, it becomes possible to suppress the enlargement of a circulation system and the increase in maintenance cost.

本発明を適用した水処理システムの一実施形態を模式的に示すブロック図である。It is a block diagram showing typically one embodiment of a water treatment system to which the present invention is applied. 図1の水処理システムを作動させるための制御系の概略を示すブロック図である。It is a block diagram which shows the outline of the control system for operating the water treatment system of FIG. 図2の制御系による水処理システムの作動手順の一例を示すフローチャートである。It is a flowchart which shows an example of the operation | movement procedure of the water treatment system by the control system of FIG. 本発明を適用した水処理システムの他の実施形態を模式的に示すブロック図である。It is a block diagram which shows typically other embodiment of the water treatment system to which this invention is applied.

以下、図面を参照して本発明を詳細に説明する。
なお、本発明の適用対象となる水貯留部には、陸上養殖用の水槽(養殖水槽)や生簀のほか、水族館・動物園の展示水槽や人工池、あるいは家庭で金魚や熱帯魚などの観賞用に使用される小型水槽などが含まれる。また、飼育対象となる生物には、魚類、貝類、甲殻類、鯨類等の海洋常在種、藻類など、海中にいることが常態である海棲生物だけでなく、海辺に棲息する生物、すなわちアシカ、オットセイ、ラッコ、ホッキョクグマ等の海獣類、あるいはペンギン、カメなども含まれ得る。
Hereinafter, the present invention will be described in detail with reference to the drawings.
In addition to the aquaculture tank (culture tank), ginger, aquarium / zoo display tank, artificial pond, or goldfish or tropical fish at home, Includes small aquarium used. In addition, not only marine organisms that normally stay in the sea, such as fish, shellfish, crustaceans, and whales, but also marine organisms that normally live in the sea, That is, sea animals such as sea lions, fur seals, sea otters, polar bears, penguins, turtles and the like can also be included.

(水処理システムの概要)
図1に示す水処理システムの第1の実施形態は、例えば魚類の養殖用の水槽に適用されるものであり、主として2つの循環経路を含んでいる。一方は、実線の矢印で示すように、水貯留部すなわち水槽1から、第1ろ過処理部3および第2ろ過処理部5を経て水槽1に還流する通常循環経路CMである。他方は、破線の矢印で示すように、水槽1から第1ろ過処理部3を介して、またはさらに第2ろ過処理部5を介して嫌気処理部7に至り、さらに好気処理部9を経て水槽1に還流する生物処理循環経路CBである。すなわち、通常循環経路CMは、水槽1から流出させた水をろ過し、水棲生物の排泄物、残餌、細菌類およびウィルス類など(以下、これらを総称する場合「異物」ともいう)を物理的に除去した上で水槽1に還流させる循環経路である。これに対し、生物処理循環経路CBは、当該異物とともにろ過処理部3および5の洗浄排水を導入して生物処理を施し、それによって生じた余剰汚泥を分離した処理水を得た上で、第1ろ過処理部3よりも前、すなわち水槽1に還流させる循環経路である。このように、水槽1を含む循環系の全水量ではなく一部に対して生物処理を施すことが本実施形態の特徴の1つである。また、本実施形態は、生物処理循環経路CBにおいて、嫌気処理部7の下流側に好気処理部9を配し、さらにそれらの間でも循環経路CLを介した局所的な循環を生じさせることを別の特徴として含んでいる。
(Outline of water treatment system)
The first embodiment of the water treatment system shown in FIG. 1 is applied to, for example, a fish tank for aquaculture, and mainly includes two circulation paths. One is a normal circulation path CM that recirculates from the water reservoir, that is, the water tank 1 to the water tank 1 through the first filtration processing unit 3 and the second filtration processing unit 5, as indicated by solid arrows. The other reaches the anaerobic treatment unit 7 from the water tank 1 through the first filtration processing unit 3 or further through the second filtration processing unit 5, and further through the aerobic processing unit 9, as indicated by the dashed arrow. This is a biological treatment circulation path CB that returns to the water tank 1. That is, the normal circulation path CM filters the water discharged from the aquarium 1, and physically removes excrement, residual food, bacteria, viruses, and the like of aquatic organisms (hereinafter also collectively referred to as “foreign substances”). This is a circulation path that is recirculated to the water tank 1 after being removed. On the other hand, the biological treatment circulation path CB performs the biological treatment by introducing the washing waste water of the filtration treatment units 3 and 5 together with the foreign matter, and obtains treated water from which excess sludge generated thereby is obtained. 1 is a circulation path that is refluxed to the water tank 1 before the filtration processing unit 3. Thus, it is one of the features of the present embodiment that biological treatment is performed on a part of the circulation system including the water tank 1 instead of the total amount of water. Moreover, this embodiment arrange | positions the aerobic process part 9 in the downstream of the anaerobic process part 7 in the biological treatment circulation path | route CB, and also produces the local circulation via the circulation path CL also among them. Is included as another feature.

さらに、図1において、符号B1は、第1ろ過処理部3に気泡を導入し、ろ材の洗浄(逆洗)を行うブロワ、符号B2は、第2ろ過処理部5に気泡を導入し、膜の逆洗を行うブロワを示す。また、符号P1は、第1ろ過処理部3から第2ろ過処理部5に水を導入し、主として水槽1に還流させるためのポンプ、符号P2は、逆洗によって生じた水(逆洗排水)を第1および第2ろ過処理部から嫌気処理部7に導入するためのポンプ、符号P3は、好気処理部9で余剰汚泥から分離された処理水を水槽1に還流させるためのポンプ、符号P4は、上流側の嫌気処理部7と下流側の好気処理部9との間で局所的な循環を生じさせるためのポンプである。さらに、符号V1は、第2ろ過処理部5と水槽1との間の流路を必要に応じて開閉するための開閉バルブである。これらの各部は、図2について後述する制御系において、図3に示す処理手順を実施する際に制御される。   Further, in FIG. 1, reference numeral B <b> 1 is a blower that introduces bubbles into the first filtration processing unit 3 and performs cleaning (back washing) of the filter medium, and reference numeral B <b> 2 introduces bubbles into the second filtration processing unit 5, A blower for backwashing is shown. Moreover, the code | symbol P1 introduce | transduces water into the 2nd filtration process part 5 from the 1st filtration process part 3, and is mainly made to recirculate | reflux to the water tank 1, The code | symbol P2 is the water (backwash drainage) produced by backwashing. The pump for introducing the water from the first and second filtration processing units to the anaerobic processing unit 7, the code P3 is a pump for returning the treated water separated from the excess sludge in the aerobic processing unit 9 to the water tank 1, P4 is a pump for causing local circulation between the anaerobic processing unit 7 on the upstream side and the aerobic processing unit 9 on the downstream side. Furthermore, the code | symbol V1 is an opening / closing valve for opening and closing the flow path between the 2nd filtration process part 5 and the water tank 1 as needed. These units are controlled when the processing procedure shown in FIG. 3 is performed in the control system described later with reference to FIG.

(通常循環経路)
本実施形態では、第1ろ過処理部3と第2ろ過処理部5との2つのろ過処理部を配設している。微細な孔径のフィルタを有するろ過処理部を用いれば、細菌類およびウィルス類などを効果的に除去することが可能である。しかし水槽1から導入する水には水棲生物の排泄物や残餌なども含まれるため、微細な孔径のフィルタを単独で用いた場合には孔の目詰まりが生じやすく、フィルタの頻繁な洗浄が必要となる。そのために、本実施形態では、前処理として排泄物や残餌などを除去する第1ろ過処理部3と、細菌類およびウィルス類などを除去する第2ろ過処理部5とを配設し、2段のろ過工程を行うものとしている。
(Normal circulation route)
In the present embodiment, two filtration processing units, a first filtration processing unit 3 and a second filtration processing unit 5 are arranged. If a filtration treatment unit having a fine pore size filter is used, bacteria and viruses can be effectively removed. However, since the water introduced from the aquarium 1 includes excrement and residual food of aquatic organisms, when a filter with a fine pore size is used alone, the pores are likely to be clogged, and the filter is frequently washed. Necessary. Therefore, in the present embodiment, a first filtration processing unit 3 that removes excrement and residual bait and a second filtration processing unit 5 that removes bacteria, viruses, and the like are disposed as a pretreatment. It is assumed that a stage filtration step is performed.

第1ろ過処理部3としては、砂ろ過、泡沫分離、凝集沈澱、MF(精密ろ過)膜処理および繊維ろ過などを行うものが挙げられる。砂ろ過や繊維ろ過を使用した場合、ろ材に微生物が繁殖することで、ろ過工程でもある程度生物処理を行うことができるので好ましい。また、繊維ろ過を使用することは、ろ材の空隙率が大きく、損失水頭が小さいために、砂ろ過と比較して通水速度を大きくすることができることからさらに好ましい。繊維ろ材としては、沈降性のろ材や浮上性のろ材、長繊維ろ材等が挙げられるが、ろ過性能が高い沈降性のろ材を用いることが好ましい。   Examples of the first filtration unit 3 include those that perform sand filtration, foam separation, coagulation precipitation, MF (microfiltration) membrane treatment, fiber filtration, and the like. When sand filtration or fiber filtration is used, it is preferable that microorganisms propagate on the filter medium so that biological treatment can be performed to some extent even in the filtration step. Further, it is more preferable to use fiber filtration because the water passage rate can be increased compared to sand filtration because the porosity of the filter medium is large and the loss head is small. Examples of the fiber filter medium include a sedimentation filter medium, a floatable filter medium, and a long fiber filter medium. It is preferable to use a sedimentation filter medium having high filtration performance.

第2ろ過処理部5には、孔径0.02μm程度のUF(限外ろ過)膜を使用することで細菌類や多くのウィルス類を除去できる。また、孔径0.02μmよりも孔が小さいNF(ナノフィルタ)膜を使用すれば、ウィルスを完全に除去し、さらに蛋白質や着色成分もある程度の除去できることからより好ましい。第2ろ過処理部5でこのような膜処理が行われることによって、水槽1に細菌類等が混入することなく、水棲生物を病気から守り、安定して飼育することができる。   Bacteria and many viruses can be removed by using a UF (ultrafiltration) membrane having a pore size of about 0.02 μm for the second filtration processing unit 5. Further, it is more preferable to use an NF (nanofilter) film having a pore size smaller than 0.02 μm because the virus can be completely removed, and protein and coloring components can be removed to some extent. By performing such a membrane treatment in the second filtration processing unit 5, aquatic organisms can be protected from diseases and stably bred without contamination of bacteria in the aquarium 1.

(生物処理循環経路)
本実施形態の生物処理では、嫌気処理部7を上流側に、好気処理部9を下流側に配設し、さらにそれらの間で水を一部循環させている。これにより、嫌気処理部7では脱窒が行われ、好気処理部9では嫌気処理部7で処理されなかった残餌や排泄物の分解およびアンモニアの硝化が行われる。これを詳述するに、生物処理を開始すると、ろ過処理部3,5からはアンモニアを含んだ逆洗排水とともに残餌および排泄物が嫌気処理部7に導入されるが、アンモニアは嫌気処理部7を通過し、好気処理部9で硝化される。従って、生物処理を開始した直後には、硝酸を含んだ処理水が好気処理部9から流出することになるが、これが飼育生物に影響を及ぼさない程度に微量であれば問題は生じないと考えられる。また、硝酸を含んだ処理水の一部を嫌気処理部7に還流することで脱窒が行われるため、次段の好気処理部9から流出する処理水に含まれる硝酸の含有量は問題とならないレベルにまで低下させることができる。
(Biological treatment circulation route)
In the biological treatment of the present embodiment, the anaerobic treatment unit 7 is disposed on the upstream side, the aerobic treatment unit 9 is disposed on the downstream side, and water is partially circulated between them. Thereby, denitrification is performed in the anaerobic treatment unit 7, and residual food and excrement that have not been treated in the anaerobic treatment unit 7 are decomposed and nitrification of ammonia is performed in the aerobic treatment unit 9. In detail, when the biological treatment is started, residual filtration and wastes are introduced into the anaerobic treatment unit 7 together with the backwash waste water containing ammonia from the filtration treatment units 3 and 5, but the ammonia is anaerobic treatment unit. 7 is passed through and is nitrified in the aerobic treatment unit 9. Therefore, immediately after the biological treatment is started, treated water containing nitric acid flows out from the aerobic treatment unit 9, but there is no problem as long as this does not affect the breeding organisms. Conceivable. Moreover, since denitrification is performed by returning a part of the treated water containing nitric acid to the anaerobic treatment unit 7, the content of nitric acid contained in the treated water flowing out from the aerobic treatment unit 9 in the next stage is a problem. It can be reduced to a level that does not become.

また、電子供与体となる有機物を含んだ残餌および排泄物が嫌気処理部7に導入されるため、メタノールなどを別途投入しなくても、良好な脱窒反応を生じさせることができる。   In addition, since the residual feed and excreta containing the organic substance serving as the electron donor are introduced into the anaerobic treatment unit 7, a good denitrification reaction can be caused without separately adding methanol or the like.

さらに、特許文献2に開示された構成が適用される場合であると、生物処理後の水は溶存酸素量が低くなるため、水槽1に還流させる際に酸素を溶解させるための再曝気が必要となる。これに対し、本実施形態では、好気処理後の溶存酸素濃度は嫌気処理後の溶存酸素と比較して十分高く、また大流量で循環している通常循環経路CMと比較して、生物処理循環経路CBの循環水量は少量のため、再曝気せずに好気処理水を水槽に流入させても水槽内の溶存酸素は大きく低下しない。そのため再曝気用の水槽やブロワの設置は不要である。   Furthermore, when the configuration disclosed in Patent Document 2 is applied, the amount of dissolved oxygen is low in the water after biological treatment, so re-aeration is required to dissolve oxygen when refluxed to the water tank 1. It becomes. On the other hand, in this embodiment, the dissolved oxygen concentration after the aerobic treatment is sufficiently higher than the dissolved oxygen after the anaerobic treatment, and the biological treatment compared with the normal circulation path CM circulating at a large flow rate. Since the amount of circulating water in the circulation path CB is small, even if aerobic treated water is allowed to flow into the water tank without re-aeration, the dissolved oxygen in the water tank does not drop significantly. Therefore, it is not necessary to install a water tank or blower for re-aeration.

本実施形態では、処理水は好気処理部9から水槽1に還流する。還流するべき処理水は、一般に、生物処理の後の固液分離工程を経て、余剰生物(余剰汚泥)と分離されることが必要である。固液分離工程を行う手段としては、凝集沈澱、加圧浮上、砂ろ過、膜分離などが挙げられるが、水槽1へ還流させる水質の点からは、膜分離が好ましい。使用される膜としては、細菌類と大部分のウィルスを除去できるUF膜が好ましい。特に、生物処理工程と固液分離工程とを同時に行える膜分離活性汚泥法(MBR)を採用した構成とすると、省スペースで安定した処理水を得られるためさらに好ましく、本実施形態では好気処理部9として当該方式を採用したものとしている。しかし、UF膜以外の固液分離手段の使用を排除するものではなくその場合にはUV殺菌、オゾンまたは過酸化水素の導入による殺菌工程を付加すればよい。   In this embodiment, the treated water returns from the aerobic treatment unit 9 to the water tank 1. The treated water to be recirculated generally needs to be separated from surplus organisms (surplus sludge) through a solid-liquid separation step after biological treatment. Examples of means for performing the solid-liquid separation step include coagulation sedimentation, pressurized flotation, sand filtration, membrane separation, and the like. From the viewpoint of water quality to be refluxed to the water tank 1, membrane separation is preferable. The membrane used is preferably a UF membrane that can remove bacteria and most viruses. In particular, it is more preferable to use a membrane separation activated sludge method (MBR) that can perform a biological treatment step and a solid-liquid separation step at the same time, because a stable treated water can be obtained in a small space. It is assumed that the method is adopted as the unit 9. However, the use of solid-liquid separation means other than the UF membrane is not excluded, and in that case, a sterilization step by introducing UV sterilization or ozone or hydrogen peroxide may be added.

(水処理システムの制御)
図2は図1の水処理システムに対して適用可能な制御系を簡略化して示すブロック図である。図示の制御系は、図3について後述する制御手順を実行するコントローラCNTを中心に構成されている。コントローラCNTの制御対象はポンプP1〜P4、ブロワB1,B2およびバルブV1であり、これらはそれぞれ駆動部PD1〜PD4、BD1,BD2およびVD1を介して駆動される。コントローラCNTに対しては、通常循環を行うかまたは生物処理循環を行うかを決定するための情報が入力され、当該決定に基づいて各制御対象の発停を制御する。
(Control of water treatment system)
FIG. 2 is a block diagram showing a simplified control system applicable to the water treatment system of FIG. The illustrated control system is mainly configured by a controller CNT that executes a control procedure described later with reference to FIG. Control targets of the controller CNT are pumps P1 to P4, blowers B1 and B2, and a valve V1, which are driven via driving units PD1 to PD4, BD1, BD2, and VD1, respectively. Information for determining whether to perform normal circulation or biological treatment circulation is input to the controller CNT, and on / off of each control target is controlled based on the determination.

生物処理循環は、時間に基づいて実施することができ、また、その際に第1ろ過処理部3および第2ろ過処理部5の同時の逆洗を伴うものであってもよい。しかし本実施形態においては、水槽1、第1ろ過処理部3および第2ろ過処理部5の条件に基づいて異なる態様の生物処理循環が実施されるものとする。水槽1の条件は、水槽1に貯留されている水の水質に関するものであり、そのために水槽内状態センサTS1が使用され、その検出情報がコントローラCNTに通知されるようにしている。水槽内状態センサTS1としては、例えば水中のアンモニア濃度を検出するセンサとすることができるが、これに限られるものではない。また、第1、第2ろ過処理部3、5の条件は、これらで使用されているろ材または膜の目詰まりなどによるろ過性能低下に関するものであり、そのために第1ろ過処理部状態センサFS3および第2ろ過処理部状態センサFS5が使用され、それらの検出情報がコントローラCNTに通知されるようにしている。これらのセンサFS3、FS5としては、例えば圧力センサや流量センサなどを用いることができるが、それらに限られるものではない。   The biological treatment circulation can be performed based on time, and at that time, the first filtration processing unit 3 and the second filtration processing unit 5 may be accompanied by backwashing simultaneously. However, in this embodiment, the biological treatment circulation of a different aspect shall be implemented based on the conditions of the water tank 1, the 1st filtration process part 3, and the 2nd filtration process part 5. FIG. The conditions of the water tank 1 are related to the quality of the water stored in the water tank 1, and for this purpose, the in-water tank state sensor TS1 is used, and the detection information is notified to the controller CNT. The water tank state sensor TS1 may be, for example, a sensor that detects the ammonia concentration in water, but is not limited thereto. The conditions of the first and second filtration processing units 3 and 5 relate to a decrease in filtration performance due to clogging of the filter medium or the membrane used in these, and for that purpose, the first filtration processing unit state sensor FS3 and The second filtration processing unit state sensor FS5 is used, and the detection information thereof is notified to the controller CNT. As these sensors FS3 and FS5, for example, a pressure sensor or a flow rate sensor can be used, but is not limited thereto.

図3は、図2の制御系による水処理システムの作動手順の一例を示すフローチャートである。
本手順が起動された初期には、まずステップS1にて、バルブV1が開、ポンプP1がオン、ポンプP2〜P4がオフ、およびブロワB1,B2がオフに設定される。すると、水は、水槽1から第1ろ過処理部3および第2ろ過処理部5を経て水槽1に還流する。つまり、図1における通常循環経路CMに沿った流れが生じる。
FIG. 3 is a flowchart showing an example of an operation procedure of the water treatment system by the control system of FIG.
In the initial stage when this procedure is started, first, in step S1, the valve V1 is opened, the pump P1 is turned on, the pumps P2 to P4 are turned off, and the blowers B1 and B2 are turned off. Then, water returns to the water tank 1 from the water tank 1 through the first filtration processing unit 3 and the second filtration processing unit 5. That is, a flow along the normal circulation path CM in FIG. 1 occurs.

この状態は、ステップS3にて、生物処理循環が必要であることが判定されるまで維持される。当該判定は、水槽内状態センサTS1、第1ろ過処理部状態センサFS3および第2ろ過処理部状態センサFS5から通知される情報に基づいて水質の低下(アンモニア濃度の上昇)、ろ材または膜の性能低下が認識されたときに行われる。これに応じ、ステップS5では、バルブV1が閉に、ポンプP1がオフに、ポンプP3およびP4がオンに設定される。すると、通常循環経路CMが遮断され、局所循環を含む生物処理循環が可能となる。   This state is maintained until it is determined in step S3 that biological treatment circulation is necessary. The determination is based on the information notified from the in-water tank state sensor TS1, the first filtration processing unit state sensor FS3, and the second filtration processing unit state sensor FS5. This is done when a decline is recognized. Accordingly, in step S5, the valve V1 is closed, the pump P1 is turned off, and the pumps P3 and P4 are turned on. Then, the normal circulation path CM is interrupted, and biological treatment circulation including local circulation becomes possible.

次に、ステップS7では、水槽1、第1ろ過処理部3および第2ろ過処理部5のいずれの条件に基づく生物処理循環を行うかを決定する。ここで、水質の低下に基づくものと判定された場合にはステップS9に進み、ブロワB1およびB2を起動して第1ろ過処理部3および第2ろ過処理部5の逆洗を行うとともに、ポンプP2をオンとする。すると、これらのろ過処理部からの逆洗排水がともに嫌気処理部7に導入される。また、ステップS7において、第1ろ過処理部3の性能低下に基づくものと判定された場合にはステップS13に進み、ブロワB1のみを起動して第1ろ過処理部3の逆洗を行うとともに、ポンプP2をオンとする。すると、これらの第1ろ過処理部3からの逆洗排水のみが嫌気処理部7に導入される。また、ステップS7において、第2ろ過処理部5の性能低下に基づくものと判定された場合にはステップS17に進み、ポンプP2をオンとするとともに、ブロワB2のみを起動して第2ろ過処理部5の逆洗を行う。すると、これらの第2ろ過処理部5からの逆洗排水のみが嫌気処理部7に導入される。いずれにしても、逆洗排水のみが嫌気処理部7に導入された以降は、上述したような生物処理が行われ、処理された水は水槽1に還流することになる。   Next, in step S <b> 7, it is determined which of the conditions of the water tank 1, the first filtration processing unit 3, and the second filtration processing unit 5 is to perform the biological treatment circulation. If it is determined that the water quality is deteriorated, the process proceeds to step S9, the blowers B1 and B2 are activated, and the first filtration unit 3 and the second filtration unit 5 are backwashed. P2 is turned on. Then, the backwash waste water from these filtration processing units is introduced into the anaerobic processing unit 7. In step S7, when it is determined that the first filtration processing unit 3 is based on the performance degradation, the process proceeds to step S13, and only the blower B1 is activated to perform the back washing of the first filtration processing unit 3, The pump P2 is turned on. Then, only the backwash waste water from the first filtration processing unit 3 is introduced into the anaerobic processing unit 7. In Step S7, when it is determined that the second filtration processing unit 5 is based on the performance degradation, the process proceeds to Step S17, where the pump P2 is turned on and only the blower B2 is activated to start the second filtration processing unit. Perform 5 backwash. Then, only the backwash waste water from the second filtration processing unit 5 is introduced into the anaerobic processing unit 7. In any case, after only the backwash wastewater is introduced into the anaerobic treatment unit 7, the biological treatment as described above is performed, and the treated water is returned to the water tank 1.

ステップS9、S13またはS17の設定は、それぞれ、ステップS11にて水質の状態が良好となったこと、ステップS15にて第1ろ過処理部3の性能が回復したこと、またはステップS19にて第2ろ過処理部5の性能が回復したことが判定されるまで維持され、当該判定がなされた場合にはステップS1に復帰する。すなわち、水処理システムにおける水の流れは通常循環経路CMに沿ったものに戻ることになる。   Steps S9, S13, or S17 are set at step S11, when the water quality is good, at step S15, the performance of the first filtration unit 3 is restored, or at step S19, the second setting. It is maintained until it is determined that the performance of the filtration processing unit 5 has been recovered, and when the determination is made, the process returns to step S1. That is, the water flow in the water treatment system returns to the normal one along the circulation path CM.

なお、水槽1、第1ろ過処理部3および第2ろ過処理部5にセンサを配設し、条件に基づいて図3のステップS7からステップS9、S13およびS17の設定に分岐する代わりに、水質の低下やろ過処理部の性能低下の傾向が統計的または実験的に予測可能なものであれば、時間に基づいて分岐が行われるようにしてもよい。   Instead of branching from step S7 to step S9, S13, and S17 in FIG. 3 based on conditions, the water tank 1, the first filtration processing unit 3, and the second filtration processing unit 5 are provided with sensors. If the tendency of the decrease in performance and the decrease in performance of the filtration processing unit can be predicted statistically or experimentally, branching may be performed based on time.

また、図1に示した水処理システムでは、生物処理を開始した直後には、硝酸を含んだ処理水が好気処理部9から流出する。これが飼育生物に影響を及ぼさない程度に微量であれば問題は生じないと考えられるが、例えば好気処理部9および嫌気処理部7間の局所循環をある程度行ってからポンプP3を起動するようにすれば、水槽1に還流する水の硝酸濃度を実質的に問題のないレベルまで低下させることが可能となる。また、これに関連して、処理水に含まれる硝酸濃度を検出する手段を設けてもよい。   In the water treatment system shown in FIG. 1, treated water containing nitric acid flows out from the aerobic treatment unit 9 immediately after the biological treatment is started. If this is so small that it does not affect the breeding organisms, it is considered that there will be no problem. For example, the pump P3 is activated after a certain amount of local circulation between the aerobic processing unit 9 and the anaerobic processing unit 7 is performed. If it does so, it will become possible to reduce the nitric acid concentration of the water recirculated to the water tank 1 to a level with no problem. In relation to this, a means for detecting the concentration of nitric acid contained in the treated water may be provided.

(第2の実施形態)
図4は、本発明を適用した水処理システムの第2の実施形態を模式的に示すブロック図である。この第2の実施形態では、水槽1と第1ろ過処理部3とをつなぐ流路にポンプP11およびバルブV11が配設され、第1ろ過処理部3および第2ろ過処理部5は、それぞれバルブV14およびV20を介して嫌気処理部7に接続されている。第1ろ過処理部3の後段には、ろ過処理された水を貯留する第1ろ過処理水槽33が配置され、これらはバルブV13を介して接続されている。第2ろ過処理部5の後段にも第2ろ過処理水槽53が配置され、これらはバルブV15を介して接続されている。
(Second Embodiment)
FIG. 4 is a block diagram schematically showing a second embodiment of the water treatment system to which the present invention is applied. In the second embodiment, a pump P11 and a valve V11 are disposed in a flow path connecting the water tank 1 and the first filtration processing unit 3, and the first filtration processing unit 3 and the second filtration processing unit 5 are each a valve. It is connected to the anaerobic processing unit 7 via V14 and V20. A first filtration water tank 33 for storing the filtered water is disposed at the subsequent stage of the first filtration processing unit 3, and these are connected via a valve V13. A second filtration water tank 53 is also arranged at the subsequent stage of the second filtration processing unit 5, and these are connected via a valve V15.

第1ろ過処理水槽33の後段にはポンプP12が配設され、その出口側はバルブV15を介して第2ろ過処理部5に接続されるとともに、バルブV12を介して第1ろ過処理部3に接続されている。従って、第1ろ過処理水槽33に貯留された水は、バルブV15を開、バルブV12を閉とした状態でポンプP12を運転すれば第2ろ過処理部5に供給され、バルブV15を閉、バルブV12を開、バルブV14を開とした状態でポンプP12を運転すれば第1ろ過処理部3に供給され、第1ろ過処理部を洗浄した後に嫌気処理部7へ洗浄排水が移送される。第2ろ過処理水槽53の後段にもポンプP13が配設され、その出口側はバルブV19を介して水槽1に接続されるとともに、バルブV18を介して第2ろ過処理部5に接続されている。従って、第2ろ過処理水槽53に貯留された水は、バルブV19を開、バルブV18を閉とした状態でポンプP13を運転すれば水槽1に供給され、バルブV19を閉、バルブV18を開、バルブV20を開とした状態でポンプP13を運転すれば第2ろ過処理部5に供給され、第2ろ過処理部を洗浄した後に嫌気処理部7へ洗浄排水が移送される。   A pump P12 is disposed downstream of the first filtration water tank 33, and an outlet side of the pump P12 is connected to the second filtration processing unit 5 through the valve V15 and to the first filtration processing unit 3 through the valve V12. It is connected. Accordingly, the water stored in the first filtration water tank 33 is supplied to the second filtration unit 5 when the pump P12 is operated with the valve V15 opened and the valve V12 closed, and the valve V15 is closed and the valve V15 is closed. If the pump P12 is operated with the valve V14 opened and the valve V14 opened, the pump P12 is supplied to the first filtration processing unit 3, and the cleaning wastewater is transferred to the anaerobic processing unit 7 after washing the first filtration processing unit. A pump P13 is also disposed downstream of the second filtration water tank 53, and the outlet side thereof is connected to the water tank 1 via a valve V19 and is connected to the second filtration part 5 via a valve V18. . Accordingly, the water stored in the second filtered water tank 53 is supplied to the water tank 1 when the pump P13 is operated with the valve V19 opened and the valve V18 closed, and the valve V19 is closed and the valve V18 is opened. If the pump P13 is operated with the valve V20 open, the pump P13 is supplied to the second filtration processing unit 5, and the cleaning wastewater is transferred to the anaerobic processing unit 7 after washing the second filtration processing unit.

なお、この第2の実施形態では、先の第1の実施形態とは異なり、単一のブロワB11が設けられており、これはバルブV16およびV22を介して、それぞれ第1ろ過処理部3および第2ろ過処理部5に接続されている。従って、バルブV16およびV22の開閉を適切に設定した状態でブロワB11の駆動を行うことで、第1ろ過処理部3および第2ろ過処理部5に選択的に気泡を導入することができる。ポンプP14およびP15については、第1の実施形態のポンプP3およびP5とそれぞれ同様のものである。すなわち、ポンプP14は好気処理部9から処理水を水槽1に還流させる一方、ポンプP15は処理水の一部を嫌気処理部7に還流させることで好気処理部9との間で局所的な循環を生じさせる。   In the second embodiment, unlike the first embodiment, a single blower B11 is provided, which is connected to the first filtration unit 3 and the valves V16 and V22, respectively. The second filtration processing unit 5 is connected. Therefore, air bubbles can be selectively introduced into the first filtration processing unit 3 and the second filtration processing unit 5 by driving the blower B11 with the valves V16 and V22 opened and closed appropriately. The pumps P14 and P15 are the same as the pumps P3 and P5 of the first embodiment, respectively. That is, the pump P14 recirculates treated water from the aerobic treatment unit 9 to the water tank 1, while the pump P15 recirculates a part of the treated water to the anaerobic treatment unit 7 so as to be locally between the aerobic treatment unit 9. A good cycle.

以上の各部は、第1の実施形態と同様、コントローラCNTの制御対象として位置づけることができるが、本実施形態で行われる水処理の概要は次のとおりである。   Each of the above units can be positioned as a control target of the controller CNT, as in the first embodiment, but the outline of the water treatment performed in the present embodiment is as follows.

通常循環時
バルブV11、V13、V15、V17およびV19を開、バルブV12、V14、V16、V18、V20およびV22を閉、ポンプP11、P12およびP13をオン、ブロワB11をオフとする。すると水は、水槽1から第1ろ過処理部3、第1ろ過処理水槽33、第2ろ過処理部5および第2ろ過処理水槽53を経て水槽1に還流する。
During normal circulation, the valves V11, V13, V15, V17 and V19 are opened, the valves V12, V14, V16, V18, V20 and V22 are closed, the pumps P11, P12 and P13 are turned on, and the blower B11 is turned off. Then, water flows back from the water tank 1 to the water tank 1 through the first filtration processing unit 3, the first filtration processing water tank 33, the second filtration processing unit 5, and the second filtration processing water tank 53.

第1ろ過処理部逆洗時
第1ろ過処理部3の条件、例えば第1ろ過処理部3に配置されるろ材の前後の圧力差が設定値以上に達した場合に実施され、バルブV12、V14およびV16を開、その他のバルブを閉、ポンプP12をオン、ポンプP11およびP13をオフ、ブロワB11をオンとする。すると、水槽1から第1ろ過処理部3への水の供給および第1ろ過処理水槽33から第2ろ過処理部5への水の移送が停止される。一方、第1ろ過処理部3への第1ろ過処理水槽33からの水の供給、およびブロワB11からの気泡の導入に伴って、第1ろ過処理部3が逆洗され、さらに逆洗排水は嫌気処理部7に移送される。
It is carried out when the conditions of the first filtration processing unit 3 at the time of the first filtration processing unit backwashing , for example, when the pressure difference before and after the filter medium arranged in the first filtration processing unit 3 reaches a set value or more, the valves V12, V14. And V16 are opened, the other valves are closed, the pump P12 is turned on, the pumps P11 and P13 are turned off, and the blower B11 is turned on. Then, the supply of water from the water tank 1 to the first filtration treatment unit 3 and the transfer of water from the first filtration treatment water tank 33 to the second filtration treatment unit 5 are stopped. On the other hand, with the supply of water from the first filtration water tank 33 to the first filtration treatment unit 3 and the introduction of bubbles from the blower B11, the first filtration treatment unit 3 is backwashed, and the backwash drainage is It is transferred to the anaerobic processing unit 7.

第2ろ過処理部逆洗時
第2ろ過処理部3の条件、例えば第2ろ過処理部5に配置されるろ材の前後の圧力差が設定値以上に達した場合に実施され、バルブV18、V20およびV22を開、その他のバルブを閉、ポンプP13をオン、ポンプP11およびP12をオフ、ブロワB11をオンとする。すると、第1ろ過処理水槽33から第2ろ過処理部5への水の移送および第2ろ過処理水槽53から水槽1への水の還流が停止される。一方、第2ろ過処理部5への第2ろ過処理水槽53からの水の供給およびブロワB11からの気泡の導入に伴って、第2ろ過処理部5が逆洗され、さらに逆洗排水は嫌気処理部7に移送される。
When the second filtration processing unit backwashing condition of the second filtration processing unit 3, for example, the pressure difference before and after the filter medium arranged in the second filtration processing unit 5 reaches a set value or more, valves V18 and V20 And V22 are opened, the other valves are closed, the pump P13 is turned on, the pumps P11 and P12 are turned off, and the blower B11 is turned on. Then, the transfer of water from the first filtration water tank 33 to the second filtration part 5 and the reflux of water from the second filtration water tank 53 to the water tank 1 are stopped. On the other hand, with the supply of water from the second filtration treatment water tank 53 to the second filtration treatment unit 5 and the introduction of bubbles from the blower B11, the second filtration treatment unit 5 is backwashed, and the backwash wastewater is anaerobic. It is transferred to the processing unit 7.

なお、第1、第2ろ過処理部3、5が定期的に逆洗され、逆洗排水が嫌気処理部7に供給および生物処理されてから少しずつ水槽に返送されることを考慮し、ポンプP14およびP15については、基本的に常時オンとされる。   In consideration of the fact that the first and second filtration treatment units 3 and 5 are regularly backwashed, and the backwash wastewater is supplied to the anaerobic treatment unit 7 and biologically treated, it is gradually returned to the water tank. P14 and P15 are basically always on.

(その他)
本発明は、以上説明した第1、第2の実施形態および随所に述べた変形例に限られることなく、水槽ないし水処理システムの規模や水量、あるいは飼育する生物の種類や飼育密度などに応じて、種々の変更、置換、構成要素の削除または追加などを行うことが可能であり、それに合わせた制御を行うことができる。
(Other)
The present invention is not limited to the first and second embodiments described above and the modifications described in various places, but according to the scale and amount of water tank or water treatment system, or the kind and breeding density of breeding organisms. Various changes, replacements, deletions or additions of components, and the like can be performed, and control according to the changes can be performed.

例えば、図1および図4に示した水処理システムにおいては、2段のろ過工程が行われるようにしているが、異物の量が問題とならない程度であれば、前処理を行う第1ろ過処理部3の配設を省略することができる。   For example, in the water treatment system shown in FIG. 1 and FIG. 4, a two-stage filtration process is performed. If the amount of foreign matter is not a problem, the first filtration process is performed. The arrangement of the part 3 can be omitted.

また、ポンプは適宜の位置に配設されればよく、オーバーフローによって前段の処理部から後段の処理部に水が円滑に移送されるのであれば、それらの間における配設は必ずしも要しない。また、バルブについても、流路の遮断が必要な位置に配置されればよい。逆に、図1に示した水処理システムにおいて生物処理循環を行う際に通常循環経路を遮断する必要がなければ、バルブV1の配設は不要である。また、逆洗を行う手段としてもブロワに限られることはない。例えば逆転が可能なポンプが用いられ、当該逆転によっても十分な逆洗が行われるのであれば、ブロワを省略することもできる。例えば、図1に示した水処理システムにおいて、ポンプ4がそのようなものであれば、ブロワB1を省略できる。   Further, the pump may be disposed at an appropriate position. If water is smoothly transferred from the upstream processing unit to the downstream processing unit due to overflow, the pump is not necessarily disposed between them. Further, the valve may be arranged at a position where the flow path needs to be blocked. Conversely, when the biological treatment circulation is performed in the water treatment system shown in FIG. 1, the valve V <b> 1 is not necessary if it is not necessary to block the normal circulation path. Further, the means for backwashing is not limited to the blower. For example, if a pump capable of reverse rotation is used and sufficient backwashing is performed by the reverse rotation, the blower can be omitted. For example, in the water treatment system shown in FIG. 1, if the pump 4 is such, the blower B1 can be omitted.

さらに、好気処理部9から嫌気処理部7に還流させる水量は、飼育する生物や飼育密度に依存するろ過処理部の逆洗回数ないしは逆洗排水の量などの条件に応じて定め得るが、好気処理部9から水槽1に還流させる水量の最大5%とすることができる。   Furthermore, the amount of water to be refluxed from the aerobic processing unit 9 to the anaerobic processing unit 7 can be determined according to conditions such as the number of backwashing times or the amount of backwash drainage of the filtration processing unit depending on the organism to be reared and the rearing density, The maximum amount of water to be refluxed from the aerobic treatment unit 9 to the water tank 1 can be 5%.

また、水槽1の条件を検出するセンサとして、アンモニウムイオン(NH4 -)や硝酸イオンNO3 -)の濃度を検出するものが用いられるのであれば、当該検出値が異常値に達した場合に新しい飼育水を自動的に補充する、または管理者にそれを促す構成を付加することができる。 In addition, if a sensor that detects the concentration of ammonium ions (NH 4 ) or nitrate ions NO 3 ) is used as a sensor that detects the conditions of the water tank 1, the detected value reaches an abnormal value. A configuration can be added to automatically replenish new breeding water or prompt the administrator.

さらに加えて、水処理方法は、図2に示したような制御系を用いて自動的に実施するものとするほか、少なくとも一部を手動にて実施するものであってもよい。   In addition, the water treatment method may be automatically performed using a control system as shown in FIG. 2 or may be manually performed at least partially.

1 水槽
3 第1ろ過処理部
5 第2ろ過処理部
7 嫌気処理部
9 好気処理部
33 第1ろ過処理水槽
53 第2ろ過処理水槽
P1〜P3、P11〜P15 ポンプ
B1、B2、B11 ブロワ
V1、V11〜V22 開閉バルブ
CM 主循環経路
CB 生物処理循環経路
CL 局所循環経路
DESCRIPTION OF SYMBOLS 1 Water tank 3 1st filtration process part 5 2nd filtration process part 7 Anaerobic process part 9 Aerobic process part 33 1st filtration process water tank 53 2nd filtration process water tank P1-P3, P11-P15 Pump B1, B2, B11 Blower V1 , V11 to V22 Open / close valve CM Main circulation route CB Biological treatment circulation route CL Local circulation route

Claims (6)

水貯留部に対する水の循環経路に配設されたろ過処理部と、
該ろ過処理部の洗浄によって発生した洗浄排水を生物処理する生物処理部と、
を備えたことを特徴とする水処理システム。
A filtration processing unit disposed in a water circulation path with respect to the water storage unit;
A biological treatment unit that biologically treats washing wastewater generated by washing the filtration unit;
A water treatment system comprising:
前記生物処理部は、前記洗浄排水を嫌気処理する嫌気処理部と、
当該嫌気処理の後に好気処理を行う好気処理部と、
を有することを特徴とする請求項1記載の水処理システム。
The biological treatment unit is an anaerobic treatment unit for anaerobically treating the washing waste water;
An aerobic treatment unit that performs an aerobic treatment after the anaerobic treatment;
The water treatment system according to claim 1, comprising:
前記好気処理部によって処理された水の一部を前記嫌気処理部に戻す経路を有することを特徴とする請求項2記載の水処理システム。   The water treatment system according to claim 2, further comprising a path for returning a part of the water treated by the aerobic treatment unit to the anaerobic treatment unit. 前記生物処理された水の一部を前記水貯留部に戻す経路を有することを特徴とする請求項1ないし3のいずれか一項に記載の水処理システム。   The water treatment system according to any one of claims 1 to 3, further comprising a path for returning a part of the biologically treated water to the water storage unit. 前記好気処理部は、膜分離活性汚泥法によって、好気処理および固液分離を同時に行うことを特徴とする請求項2ないし4のいずれか一項に記載の水処理システム。   The water treatment system according to any one of claims 2 to 4, wherein the aerobic treatment unit performs aerobic treatment and solid-liquid separation simultaneously by a membrane separation activated sludge method. 水貯留部に対する水の循環経路に配設されたろ過処理部によってろ過処理を行うろ過処理工程と、
前記ろ過処理部の洗浄によって発生した洗浄排水を生物処理する生物処理工程と、
を備えたことを特徴とする水処理方法。
A filtration treatment step of performing filtration by a filtration treatment unit disposed in a water circulation path with respect to the water storage unit;
A biological treatment process for biologically treating washing wastewater generated by washing of the filtration unit;
A water treatment method comprising:
JP2015185700A 2015-09-18 2015-09-18 Water treatment system and method Expired - Fee Related JP6582792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015185700A JP6582792B2 (en) 2015-09-18 2015-09-18 Water treatment system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015185700A JP6582792B2 (en) 2015-09-18 2015-09-18 Water treatment system and method

Publications (2)

Publication Number Publication Date
JP2017056447A true JP2017056447A (en) 2017-03-23
JP6582792B2 JP6582792B2 (en) 2019-10-02

Family

ID=58388826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015185700A Expired - Fee Related JP6582792B2 (en) 2015-09-18 2015-09-18 Water treatment system and method

Country Status (1)

Country Link
JP (1) JP6582792B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019084505A (en) * 2017-11-08 2019-06-06 オルガノ株式会社 Water treatment apparatus and water treatment method
CN110301393A (en) * 2019-08-05 2019-10-08 上海海洋大学 A kind of feeding shrimp system of the recirculated water of SBR water process
CN116282538A (en) * 2023-03-07 2023-06-23 山东钢铁股份有限公司 Rapid recovery method for abnormal operation of biochemical section of coking wastewater treatment A2O process

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03213128A (en) * 1990-01-18 1991-09-18 Kubota Corp Wastewater treatment equipment
JPH0596291A (en) * 1991-10-02 1993-04-20 Ebara Infilco Co Ltd Water filtering method and apparatus therefor
JP2003094085A (en) * 2001-09-21 2003-04-02 Hitachi Plant Eng & Constr Co Ltd Membrane separation wastewater treatment equipment
JP2004243248A (en) * 2003-02-14 2004-09-02 Hitachi Plant Eng & Constr Co Ltd Nitrogen removal equipment
JP2006075736A (en) * 2004-09-09 2006-03-23 Toyota Auto Body Co Ltd Biological purifying and circulating system tray
US20070163952A1 (en) * 2004-01-30 2007-07-19 Scheier Etal Dissimilatory sulfate reduction as a process to promote denitrification in marine recirculating aquaculture systems
JP2011130686A (en) * 2009-12-22 2011-07-07 Sea Plus Corp Circulation type culture apparatus and culture method for fishes or shellfishes
JP2011130685A (en) * 2009-12-22 2011-07-07 Sea Plus Corp Closed circulation type culture method for fishes or shellfishes
JP2011177619A (en) * 2010-02-26 2011-09-15 Taisei Corp Water treatment apparatus and water treatment method
JP2013078732A (en) * 2011-10-04 2013-05-02 Kubota Kankyo Service Kk Operation method, operation control device, and control method for sewage plant

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03213128A (en) * 1990-01-18 1991-09-18 Kubota Corp Wastewater treatment equipment
JPH0596291A (en) * 1991-10-02 1993-04-20 Ebara Infilco Co Ltd Water filtering method and apparatus therefor
JP2003094085A (en) * 2001-09-21 2003-04-02 Hitachi Plant Eng & Constr Co Ltd Membrane separation wastewater treatment equipment
JP2004243248A (en) * 2003-02-14 2004-09-02 Hitachi Plant Eng & Constr Co Ltd Nitrogen removal equipment
US20070163952A1 (en) * 2004-01-30 2007-07-19 Scheier Etal Dissimilatory sulfate reduction as a process to promote denitrification in marine recirculating aquaculture systems
JP2006075736A (en) * 2004-09-09 2006-03-23 Toyota Auto Body Co Ltd Biological purifying and circulating system tray
JP2011130686A (en) * 2009-12-22 2011-07-07 Sea Plus Corp Circulation type culture apparatus and culture method for fishes or shellfishes
JP2011130685A (en) * 2009-12-22 2011-07-07 Sea Plus Corp Closed circulation type culture method for fishes or shellfishes
JP2011177619A (en) * 2010-02-26 2011-09-15 Taisei Corp Water treatment apparatus and water treatment method
JP2013078732A (en) * 2011-10-04 2013-05-02 Kubota Kankyo Service Kk Operation method, operation control device, and control method for sewage plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019084505A (en) * 2017-11-08 2019-06-06 オルガノ株式会社 Water treatment apparatus and water treatment method
JP7089859B2 (en) 2017-11-08 2022-06-23 オルガノ株式会社 Water treatment equipment and water treatment method
CN110301393A (en) * 2019-08-05 2019-10-08 上海海洋大学 A kind of feeding shrimp system of the recirculated water of SBR water process
CN116282538A (en) * 2023-03-07 2023-06-23 山东钢铁股份有限公司 Rapid recovery method for abnormal operation of biochemical section of coking wastewater treatment A2O process

Also Published As

Publication number Publication date
JP6582792B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
US7910001B2 (en) Arrangement of denitrification reactors in a recirculating aquaculture system
JP6129709B2 (en) Water purification system for aquarium
JP7437139B2 (en) Water treatment equipment and water treatment method
KR20150022312A (en) Recirculating Aquaculture System
JP2017202467A (en) Membrane filtration system and membrane filtration method
JP5935076B2 (en) Water treatment equipment
JP6582792B2 (en) Water treatment system and method
JP6742128B2 (en) Closed circulation type land aquaculture system coexisting with ozone treatment and biological filtration treatment and its control method
KR20220075694A (en) Water treatment system of circulation filtration system that can save energy
JP2010088307A (en) System for automatic denitrification of closed water area
KR102728556B1 (en) Recirculation Aquaculture System Of Variable Type Depending On Fish Density
JP3887329B2 (en) Seafood farming equipment
WO2014197085A1 (en) Desalting salty sludge system and method
KR102663413B1 (en) Method and system for supplying and filtering aquaculture water
JP7015117B2 (en) Organic wastewater treatment method and organic wastewater treatment system
JP5414056B2 (en) Water treatment apparatus and water treatment method
CN205346948U (en) Sewage treatment plant that membrane bioreactor and biofilm reactor combined together
JP7224819B2 (en) Filtration method of seawater for refilling water and seawater filtration device for refilling water
JP6786787B2 (en) Water treatment system and method
JP2002223667A (en) Rearing equipment for fish and shell fish
JP2003092953A (en) Circulation filtration type aquaculture equipment
CN112960864A (en) Ultrafiltration membrane component, ultrafiltration system and method for removing soluble pollutants by ultrafiltration membrane component
JP2002336614A (en) Freshwater / seawater backwash filtration system for seawater filters in water treatment facilities such as aquariums
JP2005224217A (en) Water circulation and filtration type fish and shellfish-culturing apparatus
JP2015116554A (en) Automatic denitrification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190819

R150 Certificate of patent or registration of utility model

Ref document number: 6582792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees