JP2005022903A - Ceramic porous body - Google Patents
Ceramic porous body Download PDFInfo
- Publication number
- JP2005022903A JP2005022903A JP2003188647A JP2003188647A JP2005022903A JP 2005022903 A JP2005022903 A JP 2005022903A JP 2003188647 A JP2003188647 A JP 2003188647A JP 2003188647 A JP2003188647 A JP 2003188647A JP 2005022903 A JP2005022903 A JP 2005022903A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- porous body
- porous
- polystyrene foam
- ceramic porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Physical Water Treatments (AREA)
- Water Treatment By Sorption (AREA)
- Press-Shaping Or Shaping Using Conveyers (AREA)
- Farming Of Fish And Shellfish (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、水の浄化と曝気に好適に利用でき、特に、養魚池用水質浄化材に利用して有用なセラミック多孔体に関するものである。
【0002】
【従来の技術】
本発明の技術分野の先行技術としては、特許文献1「スポンジ状セラミック体の製法」、特許文献2「廃水処理用の微生物固定化担体」、特許文献3「連通気孔を有する多孔質焼結体の製造方法」、及び特許文献4「セラミックス多孔体の製造方法」などがある。上記各先行技術に対し、魚が生息する水の浄化を主たる目的とした先行技術として、特許文献5「生魚容器内の水質浄化の為の水質浄化体及びそれを使用した水質浄化器」や特許文献6「水の曝気装置」がある。
【0003】
【特許文献1】
特開昭50−075608号公報(第3頁左上欄及び右上欄)
【特許文献2】
特開昭63−077596号公報(請求項1、第2頁右上欄)
【特許文献3】
特開昭63−265880号公報(請求項1、第2頁左下欄)
【特許文献4】
特開平06−227873号公報([0008]、[0010])
【特許文献5】
特開平05−111338号公報(請求項1、[0006]、[0007]、図1)
【特許文献6】
特開2002−346590号公報(第2頁、図2)
【0004】
特許文献1は、ポリスチロール球を互いに結合した球骨格の中空空間にセラミック材料を充填し、前記ポリスチロール球を除去して残ったセラミック骨格を1000〜1500℃で焼成するスポンジ状セラミック体である。具体的には、ポリスチロール球として発泡性ポリスチロールを、セラミック材料として酸化アルミニウムを挙げている。
【0005】
特許文献2は、高炉水砕に粘土及び気孔形成材料を配合し、成型、焼成して得る微生物固定化担体である。これは、微生物との親和性を高める作用を有する高炉水砕を用いている。
【0006】
特許文献3は、樹脂粒子を結着し形成された樹脂粒子成型体の空隙に無機物粉体のスラリーを充填して多孔質焼結体を製造する方法について、特に無機粉体のスラリー中に硬化型樹脂を含有する技術を開示している。ここで、樹脂粒子成型体を構成する樹脂として、発泡スチロールを用いるとある。
【0007】
特許文献4は、(A)セラミックス原料と水とを含むスラリーを予め注入した型枠に合成樹脂発泡体を充填する工程、(B)型枠を圧縮して固定し、合成樹脂発泡体の間隙にスラリーを充分に充填せしめる工程、(C)スラリー状のセラミックスを硬化せしめる工程、(D)合成樹脂発泡体を除去する工程、(E)硬化成形体を焼成する工程を順次施す工程からなるセラミックス多孔体の製造方法について開示している。ここには、使用する合成樹脂発泡体として「ポリスチロール発泡体」を例示し、合成樹脂発泡体を合成樹脂の熱分解点以上の温度に加熱し除去することが記載されている。
【0008】
特許文献5には、生魚容器内の水質浄化の為の水質浄化体及びそれを使用した水質浄化器が記載され、具体的には、生魚容器内の水質を浄化する浄化体を珪石及び粘土を含む素地を焼成して形成するものである。この浄化体は、多数の気孔を有しており、これらの気孔を珪石及び粘土を含む素地と、上記珪石及び粘土の焼成温度よりも低い温度で焼去する気孔形成材料を混ぜ合わせた後、該気孔形成材料を含む上記素地を焼成して気孔形成材料を焼去させて形成するとある。ここで、気孔形成材料として発泡性ビーズ(ポリスチレン)を例示している。
【0009】
また、特許文献6の「水の曝気装置」記載の浄化装置においても、大型のものは、曝気ユニットの孔あき板の上に濾材を載設した曝気装置である。
【0010】
【発明が解決しようとする課題】
以上のように、これらの従来技術には、非常に多種多様なセラミック原料及び樹脂材料の記載があり、特に、本発明で使用する珪石を使用することや、気孔形成材料としての熱可塑性樹脂粒子として発泡性ビーズ、特に、ポリスチロールビーズを用いることの記載もみられる。しかし、これら従来の方法では、発泡の方法が煩雑で、発泡率を高めることができず、かつ、発泡時に成型物に亀裂が生じるなど問題点が多く、その結果、経済的に高多孔セラミックス体を得ることに難点があった。
【0011】
また、これらの従来技術に見られる養魚池水質浄化用セラミック多孔体は、大規模なものではなく、室内鑑賞用の小型水槽の水質浄化用であったり、性能的に不十分なものである。更に、極めて神経質な水質管理が要求される。特に、超高級な錦鯉や、ヒラメなどの養魚池に対して提供できる性能、すなわち、有機質のバクテリア分解能や、空気連行性あるいは曝気性に優れた性質を有する高多孔セラミックス体としては不十分なものであった。
【0012】
【課題を解決するための手段】
本発明は、このような課題を解決した新規なセラミック多孔体で、耐火骨材に気孔形成材を添加した素地を押出成形又はプレス成形し、乾燥、焼成して形成した多孔質成形体であって、前記耐火骨材が珪石を主体としたものであり、前記多孔質成形体がポリスチロール発泡体の破砕物であることを特徴とする。
【0013】
ここで、ポリスチロール発泡体の破砕物は、種々なものが利用できるが、例えば、断熱、緩衝材として多く利用されている梱包資材、容器類など、鮮魚運搬用トロ箱として使用済みの発泡ポリスチロールブロック廃棄物の破砕粒子が廃棄物再利用の点でも好ましいものである。
【0014】
ポリスチロール発泡体は、用途により広範囲な粒子径のものが利用できるが、通常は粒子径を10mm以下、好ましくは5〜3mm以下に粉砕して用いる。粒度は特に揃っている必要はなく、破砕に際して発生する微粉まで含まれていても差し支えない。このように、発泡しているものの破砕物粒子を用いるのが特徴である。
【0015】
耐火骨材は、シリカ系、アルミナ系、シリカ−アルミナ系、マグネシア系等通常の汎用耐火物の粉粒体から自由に選択できるが、バクテリアの生殖床として好ましいのは、シリカ系の珪石粉末である。実際の使用に際しては、これに、シリカ−アルミナ系の長石粉のほか、カオリン系粘土、ハロイサイト系粘土、ムライト系粘土、雲母系粘土などを適宜混合して用いる。配合比率は、例えば珪石40〜85重量部、長石粉5〜20部、粘土分10〜40部の範囲で成型物の形状用途に応じて、選定する。
【0016】
耐火骨材に対するポリスチロール発泡体の添加量は容積にして、100〜800%、好ましくは300〜700%、更に好ましくは400〜550%である。100容量%以下では、多孔率が低すぎるし、800容量%以上になると強度的に脆くなる。気孔率は15〜80%の範囲で調節できるのである。
【0017】
成形に際しては、耐火骨材、ポリスチロール発泡体に加えて、メチルセルロース、ヒドロキシメチルセルロースなどの澱粉質やポリビニルアルコールなどの水溶性高分子からなるバインダーを適量と水を加えて、プレス成形や押出成形に適した粘度に調製しこれを所望の形状、例えば板状、円柱状、角柱状などに成形する。得られた成形体は自然乾燥、強制乾燥で水分を除去した後、約1300度付近の高温で焼成して、ポリスチロール発泡体を焼却除去し多孔質の焼成体を得る。
【0018】
得られた焼成体は、気孔形成材にポリスチロール発泡体を用いることで、焼成中の昇温過程でポリスチロール発泡体が急激に収縮し、形成された連通孔を通じてポリスチロール発泡体の燃焼ガスが速やかに外部に拡散する。これにより、高い気孔率の多孔体であっても、形状の崩れが生じ難く、比較的強固なセラミック多孔体が得られるのである。気孔形成材としてポリスチロール発泡体の代わりに他の有機物質である、未発泡の樹脂やオガクズ、炭素などを大量に使用した場合、有機物質が収縮しないため、発生するガスにより成形体が膨張して亀裂が入り型くずれを生ずることになる。特に、耐火骨材の2〜4倍もの有機物質を入れた場合は顕著に崩壊する。そのため従来、焼成は緩やかに昇温する長時間焼成をしなければならず、作業効率が悪かった。この点がポリスチロール発泡体の粉粒体を用いることで、解決している。
【0019】
多孔質成形体がポリスチロール発泡体以外の合成有機化合物や木チップのような硬質粉粒体の場合、特に3mm以上にもなると押出成形が困難な場合がある。また、ポリスチロール発泡体のように800℃以下での速やかな収縮、ガス化が起こりにくいので、より高温で急激な大量のガス化で成形体の型くずれや炭化したまま内部に気孔を形成しないことになって、本発明の目的を達成することができないのである。ポリスチロール発泡体は使用済みのトレイやトロ箱などの廃棄物再生品でも間に合うし粒度も粉砕過程で簡単に調製できるので、原料としては極めて低コストである。このように、ポリスチロール発泡体の使用によって、成形や焼成が容易となるので、例えば、300×300×100mmなどの大型ブロックの製造も可能である。
【0020】
ポリスチロール発泡体の使用は、作業能率の向上や経済性だけでなく、ポリスチロール発泡体の急激な収縮により、3mm以上の大きい空隙が均一にきれいに生成する。そのため、焼成体内部に多量の水を取り込み、また、取り込んだ水が移動しやすくなることで、内部に死に水がなくなり、浄水化効果が上がるなど、顕著な作用効果をもたらす。また、セラミックの高温焼成品であるので、豊富な遠赤外線を放射するので、水のクラスターが小さくなり溶存酸素の取り込みが上昇する。
【0021】
以上のようにして製造した本発明の多孔質成形体からなるセラミック多孔体に対し、炭素を担持させて更なる水質浄化性能を高めることができる。ここで用いる炭素は、カーボンブラック、ケッチェンブラック、グラファイトカーボン、木炭や竹炭粉末、活性炭粉末など、各種のカーボンが利用できるが、カーボンコロイド溶液のように、ミクロンオーダーの超微粒子溶液を利用して、含浸担持させるのがよい。
【0022】
担持の条件としては、多孔質成形体の気孔率が10〜80%であり、このようにすると、炭素の担持量範囲は1〜50重量%、好ましくは10〜20重量%の範囲で安定したものとなる。このように、大量の炭素を担持させても、ほとんど気孔率の低下がなく、気孔の内部まで均一に担持されて吸着表面積の大な製品が得られる。これは、気孔形成材にポリスチロール発泡体の破砕物を用いた効果であって、通常の有機物からなる気孔形成材では得られない。
【0023】
【発明の実施の形態】
以下、本発明のセラミック多孔体の実施の形態について、具体的実施例に基づいて説明するが、本発明のセラミック多孔体はこれら実施例に限定されるものではない。
【0024】
実施例1
魚類運搬用の発泡スチロール製トロ箱の廃品を洗浄乾燥したものを粉砕機にかけて、粒度3mm以下の粉粒体とした。一方、耐火材料として、平均粒径1mmの硅石70重量部、平均粒径0.5mmの長石10重量部、カオリン粒土(180メッシュパス)10重量部及びマイカ系粒土(180メッシュパス)10重量部の混合物を使用し、これら耐火材料の容積の5倍の上記発泡スチロール粉粒体を所定量の澱粉質バインダー及び水と共に混合し、押出成形に適した塑性限界に近い粘性を有するスラリー状の押出ベースとした。この押出ベースを大型のミンチくり機の直径40mmφの多数の孔径から押出成形しながら長さほぼ10cmに切断して、円形棒状の基材とした。
【0025】
この成形体を自然乾燥した後、100℃の熱風乾燥機中で、強制乾燥した後、1300℃程度で焼成し、発泡スチロール粉粒体を焼却除去し、気孔率60%、吸水率150%程度の焼結体を得た。この焼結体は吸水率が大で、多孔表面のみならず間部にも連結、独立多孔が水の連通状態で存在し、後述する水の浄化効率の高い製品であった。得られた製品の一般的物理性状は表1に、化学成分等は表2に示す。
【0026】
【表1】
【0027】
【表2】
【0028】
実施例2
実施例1で得られた押出ベースを用いて製品の種類を増すために、ミンチクリ機の孔径を10〜40mmφ、押出物の切断長を3〜200mmに変更して押出成形をし、種々の製品を作成した。製品の種類について、製品番号1〜7として表3に示す。いずれも充填密度0.3〜0.4付近のものが得られた。製品3は実施例1で作られたものである。平均的な充填嵩密度は0.26〜0.37の範囲であった。
【0029】
これらの製品は用途に応じて適宜の比率で混合使用することができる。例えば、鯉の養魚池の浄化に対しては、孔径40mm、長さ200mm程度が好ましく、家庭用水槽に対しては、孔径10mm、長さ30mm程度が利用できる。
【0030】
【表3】
【0031】
実施例3
耐火材料として、硅石、カオリン、ムライトの混合物を用いた以外は実施例1と同様に処理した。プレス成形用基材を調整した。このプレス成形用基材を300トン大型プレス成形機により300×300×100mmの板状ブロックに成形し、実施例1と同様に自然乾燥、強制乾燥後、1300℃で焼成し、多孔ブロックの製品8とした。得られた多孔ブロックの嵩比重は0.4であった。
【0032】
実施例4
表3に示す製品番号1と3の1:1混合物100kg及び製品番号4と5の1:1混合物100kgをそれぞれ濃度約15%のカーボンブラックと約2%のポリビニルアルコール混合水溶液200kg中に浸漬、液切りして150℃で熱風乾燥してカーボン約17 ̄19kgを担持させた製品9,10とした。これらの物理的性状を表4に示す。
【0033】
【表4】
【0034】
上記製品番号9の炭素担持のセラミック多孔体1につき、遠赤外線の放射強度を試料表面温度40.5℃の測定条件で調べた。波長と強度の関係は図1のとおりである。対象に麦飯石2を用いたが、麦飯石よりも遙かに優れる遠赤外線放射能を示した。
【0035】
比較例
多孔質成形体に本発明のポリスチロール発泡体破砕物と対比するため、粒子径0.6 ̄1.0mm未発泡の熱発泡性ポリスチロールビーズ及び平均粒子径3mm以下の木チップを用いて実施例1と同様の耐火材組成と方法によってセラミック多孔体を作成した。これらの発泡材を耐火材料の容積の5倍と所定量の澱粉質バインダー及び水と共に混合し、押出成形に適した塑性限界に近い粘性を有するスラリー状の押出ベースとした。この押出ベースを大型のミンチくり機の直径40mmφの多数の孔径から押出成形しながら長さほぼ10cmに切断して、円形棒状の基材とした。
【0036】
この成形体を実施例1と同様に乾燥後焼成して表5に示す焼結体を得た。この焼結体は、本発明のポリスチロール発泡体破砕物のように800℃以下での速やかな収縮、ガス化が起こり難く、より高温で急激な大量のガス化によって焼結体の型くずれや木チップの場合はその一部が炭化したまま内部に気孔を形成しないことになって、気孔率は低く、充填嵩密度は高くなっている。
【0037】
【表5】
【0038】
使用例
本発明のセラミック多孔体を鯉の養魚場の水質浄化に応用した実施例につき述べる。養魚場の大きさは約500m2、水量約1500トンであり、これに大型鯉が40匹収容されている。これに対して、容積0.6×2.0×0.3のパンチングメタル底の容器に2000kgの製品番号9のセラミック多孔体を収容した浄化器を5段重ねにしたユニットを3ユニット配置して、養魚池からの水を流下循環した。
セラミック多孔体は、硅石を主体とした基材であることに加えて、混合した発泡スチロール粒子の焼却粒が微細かつ多孔な形状の連続気孔があって有益なバクテリアの固着が良好であるうえ曝気効果も抜群で極めて優れた高い水の浄化作用が得られた。
【0039】
【発明の効果】
本発明のセラミック多孔体は、硅石を主体とした基材であることに加えて、混合した発泡スチロール粒子の焼却粒が微細かつ多孔な形状の連続気孔があって有益なバクテリアの固着が良好で極めて優れた高い水の浄化作用が得られる。
【0040】
得られた製品は純白高焼成品で、無菌無害製品で、有富溶出成分も皆無に近く、人体・動植物に無害であり、変質することもなく、雨焼成により活性化して繰返し使用できる。
【0041】
また、この焼成品にカーボンを付着させると、基材の多孔質の効果によって、カーボン粒子単独よりも目詰まりがなく、基材の遮光外線放射作用と、バクテリアによる有機物分解作用と相俟って水の浄化作用が一段と増大する。
【0042】
したがって、前述の飲料水の浄化から土壌廃水の浄化に至る広範囲な水の浄化のほか、酒、醤油の製造工程におけるバイオリアクターとしての利用、触媒の担体や水耕栽培用植物担体等広範囲な用途において有効に活用できる。
【図面の簡単な説明】
【図1】遠赤外線放射強度を示す、波長と放射強度の関係グラフである。
【符号の説明】
1 炭素担持のセラミック多孔体
2 麦飯石[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a porous ceramic body that can be suitably used for water purification and aeration, and is particularly useful for use as a water purification material for fish ponds.
[0002]
[Prior art]
As prior arts in the technical field of the present invention, Patent Document 1 “Process for producing sponge-like ceramic body”, Patent Document 2 “Microorganism immobilization support for wastewater treatment”, Patent Document 3 “Porous sintered body having continuous air holes” Manufacturing method ”, and Patent Document 4“ Manufacturing method of ceramic porous body ”. As a prior art mainly for purifying the water inhabiting the fish in relation to each of the above prior arts, Patent Document 5 “Water purification body for purifying water in a raw fish container and a water quality purifier using the same” and Patent Reference 6 “Water Aeration Device” is available.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 50-075608 (page 3, upper left column and upper right column)
[Patent Document 2]
JP-A-63-077756 (Claim 1, page 2, upper right column)
[Patent Document 3]
JP 63-265880 A (Claim 1, page 2, lower left column)
[Patent Document 4]
JP-A-06-227873 ([0008], [0010])
[Patent Document 5]
Japanese Patent Laid-Open No. 05-111338 (Claim 1, [0006], [0007], FIG. 1)
[Patent Document 6]
JP 2002-346590 A (2nd page, FIG. 2)
[0004]
Patent Document 1 is a sponge-like ceramic body in which a ceramic material is filled in a hollow space of a spherical skeleton obtained by bonding polystyrene spheres to each other, and the remaining ceramic skeleton is removed at 1000 to 1500 ° C. by removing the polystyrene sphere. . Specifically, foamable polystyrene is mentioned as the polystyrene sphere, and aluminum oxide is mentioned as the ceramic material.
[0005]
Patent Document 2 is a microorganism-immobilized carrier obtained by blending clay and pore forming material into blast furnace water granulation, molding and firing. This uses blast furnace water granulation which has the effect of increasing the affinity with microorganisms.
[0006]
Patent Document 3 describes a method for producing a porous sintered body by filling a void of a resin particle molded body formed by binding resin particles with a slurry of an inorganic powder, and in particular, curing in a slurry of an inorganic powder. A technique containing a mold resin is disclosed. Here, there is a case where a polystyrene foam is used as the resin constituting the resin particle molded body.
[0007]
In Patent Document 4, (A) a step of filling a mold containing a ceramic raw material and water pre-filled with a synthetic resin foam, (B) compressing and fixing the mold, and a gap between the synthetic resin foam Ceramics comprising a step of sufficiently filling the slurry with a slurry, (C) a step of curing the slurry-like ceramic, (D) a step of removing the synthetic resin foam, and (E) a step of firing the cured molded body. A method for producing a porous body is disclosed. Here, “polystyrene foam” is exemplified as the synthetic resin foam used, and it is described that the synthetic resin foam is removed by heating to a temperature equal to or higher than the thermal decomposition point of the synthetic resin.
[0008]
Patent Document 5 describes a water purification unit for purifying water in a raw fish container and a water purification unit using the water purification unit. Specifically, a purification unit for purifying water in a raw fish container is made of silica and clay. It is formed by firing the substrate. This purifier has a large number of pores, and after mixing these pores with a base material containing silica and clay and a pore-forming material burned out at a temperature lower than the firing temperature of the silica and clay, In some cases, the substrate containing the pore forming material is fired to burn out the pore forming material. Here, foamable beads (polystyrene) are exemplified as the pore forming material.
[0009]
Also, in the purification device described in “Water Aeration Device” of Patent Document 6, a large one is an aeration device in which a filter medium is placed on a perforated plate of an aeration unit.
[0010]
[Problems to be solved by the invention]
As described above, in these conventional techniques, there are descriptions of a very wide variety of ceramic raw materials and resin materials. In particular, the use of silica used in the present invention, and thermoplastic resin particles as pore forming materials. There is also a description of using expandable beads, in particular polystyrene beads. However, in these conventional methods, the foaming method is complicated, the foaming rate cannot be increased, and there are many problems such as cracks in the molded product at the time of foaming. There was a difficulty in getting.
[0011]
Moreover, the ceramic porous body for fish pond water quality purification seen in these prior arts is not large-scale, but is used for water quality purification of a small aquarium for indoor appreciation, or is insufficient in performance. Furthermore, extremely nervous water quality management is required. In particular, it is insufficient as a high-porosity ceramic body with performance that can be provided for fish ponds such as ultra-high-grade Nishikigoi and Japanese flounder, that is, organic bacteria resolution, air entrainment or aeration Met.
[0012]
[Means for Solving the Problems]
The present invention is a novel ceramic porous body that solves such problems, and is a porous molded body formed by extruding or press-molding a base obtained by adding a pore-forming material to a refractory aggregate, drying and firing. The fireproof aggregate is mainly composed of silica stone, and the porous molded body is a crushed material of a polystyrene foam.
[0013]
Here, various types of crushed polystyrene foam can be used. For example, foamed plastic used as a fresh fish transportation toro box, such as packaging materials and containers that are often used as heat insulation and cushioning materials. The crushed particles of the styrene block waste are also preferable from the viewpoint of waste reuse.
[0014]
Polystyrene foams having a wide range of particle diameters can be used depending on applications, but usually the particle diameter is pulverized to 10 mm or less, preferably 5 to 3 mm or less. The particle size need not be particularly uniform, and even fine particles generated during crushing may be included. Thus, it is the feature to use the crushing thing particle | grains of what is foamed.
[0015]
The refractory aggregate can be freely selected from powders of ordinary general-purpose refractories such as silica-based, alumina-based, silica-alumina-based, magnesia-based, etc., but silica-based silica powder is preferred as a germ bed for bacteria. is there. In actual use, in addition to silica-alumina feldspar powder, kaolin clay, halloysite clay, mullite clay, mica clay and the like are appropriately mixed and used. The blending ratio is selected, for example, in the range of 40 to 85 parts by weight of quartzite, 5 to 20 parts of feldspar powder, and 10 to 40 parts of clay, depending on the shape of the molded product.
[0016]
The amount of the polystyrene foam added to the refractory aggregate is 100 to 800%, preferably 300 to 700%, more preferably 400 to 550% in volume. If it is 100 volume% or less, the porosity is too low, and if it is 800 volume% or more, it becomes brittle in strength. The porosity can be adjusted in the range of 15 to 80%.
[0017]
For molding, in addition to refractory aggregate and polystyrene foam, add a suitable amount of water and a water-soluble polymer binder such as methylcellulose, hydroxymethylcellulose, and polyvinyl alcohol for press molding and extrusion molding. A suitable viscosity is prepared and formed into a desired shape, for example, a plate shape, a columnar shape, a prismatic shape, or the like. The obtained molded body is moisture-dried by natural drying and forced drying, and then fired at a high temperature of about 1300 degrees to incinerate and remove the polystyrene foam to obtain a porous fired body.
[0018]
The obtained fired body uses a polystyrene foam as a pore-forming material, so that the polystyrene foam rapidly contracts during the heating process during firing, and the combustion gas of the polystyrene foam is formed through the formed communication holes. Quickly diffuses to the outside. As a result, even if the porous body has a high porosity, the shape does not easily collapse, and a relatively strong ceramic porous body can be obtained. If a large amount of unfoamed resin, sawdust, carbon, etc., which is another organic substance instead of polystyrene foam, is used as the pore forming material, the organic substance will not shrink and the molded body will expand due to the generated gas. As a result, cracks will occur and the mold will be deformed. In particular, when 2 to 4 times as much organic material as the refractory aggregate is added, it collapses remarkably. For this reason, conventionally, firing has to be performed for a long time in which the temperature is gradually raised, and the working efficiency is poor. This problem is solved by using a polystyrene foam granular material.
[0019]
When the porous molded body is a synthetic organic compound other than a polystyrene foam or a hard granular material such as a wood chip, extrusion molding may be difficult particularly when the porous molded body is 3 mm or more. In addition, rapid shrinkage and gasification at 800 ° C. or less are unlikely to occur like polystyrene foam, so that no pores are formed inside the molded body while it is deformed or carbonized due to a large amount of gasification at a higher temperature. Thus, the object of the present invention cannot be achieved. Polystyrene foam can be used for recycled waste such as used trays and trolley boxes, and the particle size can be easily prepared in the pulverization process, so it is extremely low cost as a raw material. As described above, since the use of the polystyrene foam facilitates molding and baking, for example, a large block of 300 × 300 × 100 mm or the like can be manufactured.
[0020]
The use of the polystyrene foam not only improves work efficiency and economy, but also causes a large gap of 3 mm or more to be uniformly and neatly generated due to the rapid shrinkage of the polystyrene foam. For this reason, a large amount of water is taken into the fired body, and the taken-in water is easy to move, so that there is no water in the interior and the water purifying effect is improved. In addition, since it is a ceramic high-temperature fired product, it emits abundant far-infrared rays, so that the water cluster becomes smaller and the uptake of dissolved oxygen increases.
[0021]
Carbon can be supported on the ceramic porous body made of the porous molded body of the present invention produced as described above, and further water purification performance can be enhanced. The carbon used here can be various types of carbon such as carbon black, ketjen black, graphite carbon, charcoal and bamboo charcoal powder, activated carbon powder, etc., but using a micron-order ultrafine particle solution such as a carbon colloid solution. It is better to impregnate.
[0022]
As for the loading conditions, the porosity of the porous molded body is 10 to 80%, and in this way, the carbon loading range was 1 to 50% by weight, preferably 10 to 20% by weight. It will be a thing. As described above, even when a large amount of carbon is supported, the porosity is hardly lowered, and a product having a large adsorption surface area can be obtained by uniformly supporting the inside of the pores. This is an effect of using a crushed polystyrene foam as the pore forming material, and cannot be obtained with a pore forming material made of a normal organic material.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the ceramic porous body of the present invention will be described based on specific examples, but the ceramic porous body of the present invention is not limited to these examples.
[0024]
Example 1
What was washed and dried from the waste product of the Styrofoam made of styrene foam for transporting fish was put into a pulverizer to obtain powder particles having a particle size of 3 mm or less. On the other hand, as a refractory material, 70 parts by weight of meteorite having an average particle diameter of 1 mm, 10 parts by weight of feldspar with an average particle diameter of 0.5 mm, 10 parts by weight of kaolin grain soil (180 mesh pass), and 10 mica type grain soil (180 mesh path). Using a mixture of parts by weight, the above expanded polystyrene granules of 5 times the volume of the refractory material are mixed with a predetermined amount of starchy binder and water, and a slurry-like viscosity having a viscosity close to the plastic limit suitable for extrusion molding is used. An extrusion base was used. This extrusion base was cut into a length of approximately 10 cm while being extruded from a large number of holes having a diameter of 40 mmφ of a large mincing machine to obtain a circular rod-like base material.
[0025]
After air-drying this molded body, it is forcedly dried in a hot air dryer at 100 ° C., and then fired at about 1300 ° C., and the styrene foam granules are incinerated and removed. The porosity is about 60% and the water absorption is about 150%. A sintered body was obtained. This sintered body has a high water absorption rate and is connected not only to the porous surface but also to the middle part, and independent pores exist in a state of water communication, and is a product with high water purification efficiency described later. Table 1 shows the general physical properties of the obtained product, and Table 2 shows the chemical components and the like.
[0026]
[Table 1]
[0027]
[Table 2]
[0028]
Example 2
In order to increase the types of products using the extrusion base obtained in Example 1, extrusion molding was performed by changing the hole diameter of the mincing machine to 10 to 40 mmφ and the cut length of the extrudate to 3 to 200 mm. It was created. The product types are shown in Table 3 as product numbers 1-7. In each case, a packing density of about 0.3 to 0.4 was obtained. Product 3 was made in Example 1. The average filling bulk density was in the range of 0.26 to 0.37.
[0029]
These products can be mixed and used at an appropriate ratio depending on the application. For example, a hole diameter of about 40 mm and a length of about 200 mm are preferable for purifying a salmon fish pond, and a hole diameter of about 10 mm and a length of about 30 mm can be used for a domestic water tank.
[0030]
[Table 3]
[0031]
Example 3
The same treatment as in Example 1 was conducted except that a mixture of meteorite, kaolin and mullite was used as the refractory material. A base material for press molding was prepared. This press-molding substrate was formed into a 300 × 300 × 100 mm plate-like block by a 300-ton large-size press molding machine, naturally dried and forced-dried in the same manner as in Example 1, and then fired at 1300 ° C. It was set to 8. The bulk specific gravity of the obtained porous block was 0.4.
[0032]
Example 4
100 kg of a 1: 1 mixture of product numbers 1 and 3 and 100 kg of a 1: 1 mixture of product numbers 4 and 5 shown in Table 3 were immersed in 200 kg of a mixed solution of about 15% carbon black and about 2% polyvinyl alcohol, respectively. The product was drained and dried with hot air at 150 ° C. to obtain products 9 and 10 carrying about 17 to 19 kg of carbon. These physical properties are shown in Table 4.
[0033]
[Table 4]
[0034]
With respect to the carbon-supported ceramic porous body 1 having the product number 9, the far-infrared radiation intensity was examined under the measurement condition of the sample surface temperature of 40.5 ° C. The relationship between wavelength and intensity is as shown in FIG. Although barley stone 2 was used for the object, it showed far-infrared radioactivity far superior to barley stone.
[0035]
In order to contrast with the crushed polystyrene foam of the present invention in the comparative example porous molded body, the particle diameter of 0.6 to 1.0 mm unfoamed thermally foamable polystyrene beads and wood chips with an average particle diameter of 3 mm or less were used. A ceramic porous body was prepared by the same refractory material composition and method as in Example 1. These foamed materials were mixed with 5 times the volume of the refractory material and a predetermined amount of starchy binder and water to obtain a slurry-like extrusion base having a viscosity close to the plastic limit suitable for extrusion molding. This extrusion base was cut into a length of approximately 10 cm while being extruded from a large number of holes having a diameter of 40 mmφ of a large mincing machine to obtain a circular rod-like base material.
[0036]
This molded body was dried and fired in the same manner as in Example 1 to obtain sintered bodies shown in Table 5. This sintered body is unlikely to rapidly shrink and gasify at a temperature of 800 ° C. or lower like the crushed polystyrene foam of the present invention. In the case of the chip, pores are not formed inside while a part thereof is carbonized, so that the porosity is low and the filling bulk density is high.
[0037]
[Table 5]
[0038]
Example of Use An example in which the ceramic porous body of the present invention is applied to the purification of water in a salmon fish farm will be described. The size of the fish farm is about 500 m 2 and the amount of water is about 1500 tons, which contains 40 large sharks. On the other hand, three units of a purifier containing a ceramic porous body of 2000 kg of product number 9 in a container of punched metal bottom with a volume of 0.6 × 2.0 × 0.3 are arranged in three units. The water from the fish pond was circulated down.
In addition to the base material mainly composed of meteorite, the ceramic porous body has fine pores and continuous pores with a fine and porous shape, and has good adhesion of beneficial bacteria and aeration effect The water purification action was excellent and excellent.
[0039]
【The invention's effect】
The ceramic porous body of the present invention is not only a base material mainly composed of meteorite, but also the incinerated grains of the mixed expanded polystyrene particles have continuous pores with a fine and porous shape, and the adhesion of beneficial bacteria is extremely good. Excellent high water purification effect is obtained.
[0040]
The obtained product is a pure white high-baked product, is a sterile and harmless product, has almost no elution-rich components, is harmless to humans, animals and plants, and does not deteriorate, and can be activated by rain firing and used repeatedly.
[0041]
In addition, when carbon is attached to this fired product, due to the porous effect of the base material, there is less clogging than the carbon particles alone, combined with the light shielding external radiation action of the base material and the organic matter decomposition action by bacteria. Water purification action is further increased.
[0042]
Therefore, in addition to the purification of a wide range of water from the purification of drinking water to the purification of soil wastewater as described above, it can be used as a bioreactor in the production process of liquor and soy sauce, and in a wide range of applications such as catalyst carriers and plant carriers for hydroponics Can be used effectively.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between wavelength and radiation intensity, showing far-infrared radiation intensity.
[Explanation of symbols]
1 Carbon-supporting ceramic porous body 2 Barleystone
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003188647A JP2005022903A (en) | 2003-06-30 | 2003-06-30 | Ceramic porous body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003188647A JP2005022903A (en) | 2003-06-30 | 2003-06-30 | Ceramic porous body |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005022903A true JP2005022903A (en) | 2005-01-27 |
Family
ID=34187132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003188647A Pending JP2005022903A (en) | 2003-06-30 | 2003-06-30 | Ceramic porous body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005022903A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011130685A (en) * | 2009-12-22 | 2011-07-07 | Sea Plus Corp | Closed circulation type culture method for fishes or shellfishes |
JP2011218322A (en) * | 2010-04-13 | 2011-11-04 | Kenichi Tsuru | Method for production of mineral active water |
CN109824142A (en) * | 2019-03-18 | 2019-05-31 | 苏州高新北控中科成环保产业有限公司 | A kind of preparation method of the novel magnetic filtrate for biological aerated filter |
JP2020025530A (en) * | 2018-08-18 | 2020-02-20 | Isf合同会社 | Aquaculture method of marine life, aquaculture kit, aquaculture system, and marine life farmed by its aquaculture method |
-
2003
- 2003-06-30 JP JP2003188647A patent/JP2005022903A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011130685A (en) * | 2009-12-22 | 2011-07-07 | Sea Plus Corp | Closed circulation type culture method for fishes or shellfishes |
JP2011218322A (en) * | 2010-04-13 | 2011-11-04 | Kenichi Tsuru | Method for production of mineral active water |
JP2020025530A (en) * | 2018-08-18 | 2020-02-20 | Isf合同会社 | Aquaculture method of marine life, aquaculture kit, aquaculture system, and marine life farmed by its aquaculture method |
JP7156674B2 (en) | 2018-08-18 | 2022-10-19 | Isf合同会社 | Aquaculture methods for marine organisms, aquaculture kits, aquaculture systems, and marine organisms cultured by such aquaculture methods |
CN109824142A (en) * | 2019-03-18 | 2019-05-31 | 苏州高新北控中科成环保产业有限公司 | A kind of preparation method of the novel magnetic filtrate for biological aerated filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101885620A (en) | Ceramic material with multi-level pore structure and its manufacturing method | |
JP5658136B2 (en) | Porous ceramic sintered body and method for producing the same | |
CN102285816A (en) | Tourmaline integral honeycomb ceramic and preparation method thereof | |
JP2005022903A (en) | Ceramic porous body | |
JP2012096963A (en) | Porous glass sintered compact and method of producing the same | |
KR20030073555A (en) | Multi-porous ceramic carrier for fixing microorganism on inner/outer surface thereof | |
JP2005270048A (en) | Carrier for microorganism and method for producing the same | |
CN1321918C (en) | Fixed microbial suspension ceramic carrier and production thereof | |
CN100339317C (en) | Aerating biological filter pool filler and production thereof | |
KR100331511B1 (en) | Extrusion method of preparing a carrier useful for treating contaminants | |
JPH08141589A (en) | Ceramics porous element and treatment of waste water using the same | |
JP2007297259A (en) | Porous charcoal-like ceramic and its manufacturing method | |
JP2002028682A (en) | Water treating material based on coal ash, its manufacturing method and water treating method | |
KR100735029B1 (en) | Artificial soil composition for greening and its manufacturing method | |
KR100918587B1 (en) | A method for preparing a porous biofilm microbial carrier containing ocher and a carrier prepared therefrom | |
KR100431542B1 (en) | Apparatus and method manufacturing a media for pollution control and the media made by them | |
KR20110084706A (en) | Microbial immobilized porous carrier and its manufacturing method | |
JP2005021831A (en) | Carrier for microorganism proliferation, and its using method | |
JP2000335984A (en) | Lightweight pearlite and its production | |
KR101435118B1 (en) | Alkaline supporting material for advanced wastewater treatment and manufacturing method thereof | |
CN1898303A (en) | Bacteria support material | |
CN103274759A (en) | Preparation method of biological filler | |
KR20040068824A (en) | Micro Bio-carrier for fluidizing reactor by using waste slag and fly ash | |
JP3971542B2 (en) | Microorganism carrier | |
JP2005000122A (en) | Organism-supporting material and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090203 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090609 |