JP2008179878A - High-strength thick steel plate superior in brittle crack propagation preventing characteristic, and its manufacturing method - Google Patents
High-strength thick steel plate superior in brittle crack propagation preventing characteristic, and its manufacturing method Download PDFInfo
- Publication number
- JP2008179878A JP2008179878A JP2007126331A JP2007126331A JP2008179878A JP 2008179878 A JP2008179878 A JP 2008179878A JP 2007126331 A JP2007126331 A JP 2007126331A JP 2007126331 A JP2007126331 A JP 2007126331A JP 2008179878 A JP2008179878 A JP 2008179878A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel plate
- rolling
- brittle crack
- crack propagation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、船舶、ラインパイプ、低温貯蔵タンク、建築物、土木構造物などの各種構造物に好適な、高張力厚鋼板およびその製造方法に係り、とくに、高張力厚鋼板の脆性亀裂伝播停止特性の向上、および優れた脆性亀裂伝播停止特性を有する高張力厚鋼板を、高い生産性を維持しつつ製造できる、高張力厚鋼板の製造方法に関する。なお、ここでいう「高張力厚鋼板」とは、降伏強さYP:325MPa以上、引張強さTS:490MPa以上を有する厚鋼板をいい、また、「厚鋼板」とは、板厚10mm以上、特に板厚20mmを超える鋼板を指す。また、ここでいう「優れた脆性亀裂伝播停止特性」とは、ASTM E208 に規定される落重試験のNDT温度が−50℃以下である場合をいうものとする。 The present invention relates to a high-tensile steel plate suitable for various structures such as ships, line pipes, low-temperature storage tanks, buildings, and civil engineering structures, and a method for producing the same, and in particular, to stop brittle crack propagation in high-tensile steel plates. The present invention relates to a method for producing a high-tensile thick steel plate that can produce a high-tensile thick steel plate having improved characteristics and excellent brittle crack propagation stopping properties while maintaining high productivity. As used herein, “high-tensile steel plate” means a steel plate having a yield strength YP: 325 MPa or more and a tensile strength TS: 490 MPa or more, and “thick steel plate” means a plate thickness of 10 mm or more. In particular, it refers to a steel sheet having a thickness exceeding 20 mm. Further, the “excellent brittle crack propagation stop property” here refers to a case where the NDT temperature in the drop weight test specified in ASTM E208 is −50 ° C. or lower.
船舶、ラインパイプ、低温貯蔵タンク、建築物、土木構造物などの各種構造物に使用される高張力鋼材には、構造物の安全性確保という観点から優れた靭性を具備することが,従来から要求されている。このような要求に対し、TMCP法(Thermo−Mechanical Control Process)に代表される制御圧延技術を利用して、靭性に優れた高張力鋼材が製造されてきた。 Conventionally, high-tensile steel materials used in various structures such as ships, line pipes, low-temperature storage tanks, buildings, and civil engineering structures have been provided with excellent toughness from the viewpoint of ensuring the safety of structures. It is requested. In response to such demands, high-tensile steel materials having excellent toughness have been manufactured using a controlled rolling technique represented by the TMCP method (Thermo-Mechanical Control Process).
しかしながら、実際の構造物においては、予想しない施工上の欠陥や、腐食、さらには地震、衝突等による変形などが生じる場合があり、これらを起点として脆性亀裂が発生する可能性を完全に払拭することができない。そのため、構造物に使用される鋼材には、発生した脆性亀裂の伝播を停止する能力に優れること、すなわち、優れた脆性亀裂伝播停止特性を保持することが要求される。さらに、実際の構造物においては、脆性亀裂は、ある程度の塑性変形の後に発生することが想定されることから、使用する鋼材には、予歪付与後にも、優れた脆性亀裂伝播停止特性を保持することが望まれている。 However, in actual structures, unexpected construction defects, corrosion, deformation due to earthquakes, collisions, etc. may occur, and completely eliminate the possibility of brittle cracks starting from these. I can't. Therefore, the steel material used for the structure is required to have excellent ability to stop the propagation of the generated brittle cracks, that is, to maintain excellent brittle crack propagation stop characteristics. Furthermore, in actual structures, brittle cracks are assumed to occur after a certain amount of plastic deformation, so the steel materials used retain excellent brittle crack propagation stop characteristics even after pre-straining. It is hoped to do.
このような要望に対し、例えば、特許文献1には、脆性破壊発生抵抗特性と脆性亀裂停止特性の優れた低温用鋼が提案されている。特許文献1に記載された低温用鋼は、C、Mn、P、S、Tiの適正量を含有し、Ceqが0.25〜0.35%となるように、Si、Ni、Cr、Cuの1種または2種以上含有する鋼を、950〜1200℃に加熱したのち、Ar3変態点と(Ar3変態点+100℃)の間で30〜60%の圧延を行い、ついでAr3変態点とAr1変態点の間で50〜80%の圧延を行って得られるものであり、脆性破壊発生抵抗特性と脆性亀裂停止特性とがともに優れた低温用鋼であるとされる。特許文献1に記載された技術では、(α+γ)の2相温度域で十分な圧延を行うことで、より大きな細粒化効果に加えて、既析出フェライトに対するある程度の加工硬化と集合組織の形成などを介し、セパレーション破面の生成を促進することが重要であるとしている。
In response to such a demand, for example,
また、特許文献2には、脆性破壊伝播停止特性の優れた溶接用構造用鋼板の製造方法が提案されている。特許文献2に記載された技術は、鋼片または鋼板を、最終製品板厚をt、圧延中途中急冷時の板厚をt0とした時、表層から少なくとも板厚方向に0.1×t0/t(mm)以上の表層部を急冷し、その後、表層部がAc3以下の温度から、圧延を開始または再開し、仕上圧延終了温度を(Ac3−150℃)〜Ac3の温度範囲とする脆性破壊伝播停止特性の優れた溶接用構造用鋼板の製造方法である。この技術は、板厚方向の温度分布が冷却中に不均一になることを利用して、鋼板表層部のみを改質する技術であり、これにより、表層から0.1mm以上の範囲で、平均円相当径で3μm以下のフェライト粒が形成され、脆性破壊伝播停止特性が向上するとしている。 Patent Document 2 proposes a method for manufacturing a structural steel sheet for welding having excellent brittle fracture propagation stopping characteristics. In the technique described in Patent Document 2, a steel slab or a steel plate has a final product thickness of t, and a thickness of the steel plate at the time of rapid cooling during rolling is t 0 , at least 0.1 × t 0 / The surface layer portion of t (mm) or more is rapidly cooled, and then rolling is started or resumed from a temperature at which the surface layer portion is A c3 or less, and the finish rolling end temperature is set to a temperature range of (A c3 −150 ° C.) to A c3 It is the manufacturing method of the structural steel plate for welding excellent in the brittle fracture propagation stop property to do. This technology uses the fact that the temperature distribution in the plate thickness direction becomes non-uniform during cooling, and this is a technology that modifies only the surface layer of the steel plate. Ferrite grains having an equivalent diameter of 3 μm or less are formed, and the brittle fracture propagation stop property is improved.
また、特許文献3には、C:0.005〜0.03%、Si:0.05〜0.5%、Mn:1.3〜3.0%、Al:0.01〜0.08%、Ti:0.005〜0.05%、Nb:0.005〜0.060%、B:0.0015〜0.0040%を含む鋼素材を、1000〜1300℃に加熱後、オーステナイト未再結晶域での累積圧下率:60%以上、圧延終了温度:700〜850℃の条件で熱間圧延したのち、冷却速度:10℃/s以上の速度で450℃以下まで冷却する、引張強さが700MPa以上の脆性亀裂伝播停止性能に優れた非調質高強度厚鋼板の製造方法が提案されている。 Patent Document 3 includes C: 0.005-0.03%, Si: 0.05-0.5%, Mn: 1.3-3.0%, Al: 0.01-0.08%, Ti: 0.005-0.05%, Nb: 0.005-0.060%, B: A steel material containing 0.0015 to 0.0040% was heated to 1000 to 1300 ° C, and then hot-rolled under conditions of a cumulative reduction ratio in the austenite non-recrystallized region: 60% or more and a rolling end temperature of 700 to 850 ° C. After that, a cooling method: a method of producing a non-tempered high-strength thick steel plate excellent in brittle crack propagation stopping performance with a tensile strength of 700 MPa or more, which is cooled to 450 ° C. or less at a rate of 10 ° C./s or more has been proposed. .
また、特許文献4には、C:0.001〜0.013%、Si:0.01〜0.6%、Mn:1.0〜2.0%、Al:0.005〜0.10%、Nb:0.004%以下、V:0.010%以下、Mo:0.20〜1.0%、B:0.0003〜0.0050%、Ti:0.005〜0.050%、N:0.0010〜0.060%を含む鋼素材を、950〜1250℃に加熱後、オーステナイト未再結晶域での累積圧下率:50%以上、圧延終了温度:600〜800℃の条件で熱間圧延したのち、冷却速度:7℃/s以上の速度で580℃以下まで冷却する、引張強さが590MPa以上で、脆性亀裂伝播停止性能および超大入熱溶接熱影響部靭性に優れた高張力厚鋼板の製造方法が提案されている。 In Patent Document 4, C: 0.001 to 0.013%, Si: 0.01 to 0.6%, Mn: 1.0 to 2.0%, Al: 0.005 to 0.10%, Nb: 0.004% or less, V: 0.010% or less, Mo: Cumulative rolling reduction in the austenite non-recrystallized region after heating a steel material containing 0.20 to 1.0%, B: 0.0003 to 0.0050%, Ti: 0.005 to 0.050%, N: 0.0010 to 0.060% to 950 to 1250 ° C: 50% or more, rolling end temperature: 600-800 ° C, hot rolling, then cooling rate: 7 ° C / s or more, cooling to 580 ° C or less, tensile strength of 590 MPa or more, brittle crack propagation A method for producing a high-tensile thick steel plate excellent in stopping performance and toughness of heat-affected zone by super-high heat input welding has been proposed.
また、特許文献5には、C:0.05〜0.20%、Si:0.05〜1.0%、Mn:0.5〜1.6%、Al:0.001〜0.20%、Ni:0.3〜1.9%、Nb:0.005〜0.030%、Ti:0.005〜0.030%含み、炭素当量が0.42%以下の鋼に、Ar3点以上の温度に加熱し、オーステナイト未再結晶域での圧下率:50%以上、二相域で引続き圧下率:50%以上の圧延を行い、650℃以上で圧延を終了し、その後加速冷却を施す、溶接継手部の脆性破壊伝播停止特性に優れた溶接構造用厚鋼板の製造方法が提案されている。
しかしながら、特許文献1に記載された技術では、2相温度域での圧延を充分に行うために、被圧延材の温度が2相温度域に低下するまで熱間圧延を中断して待機する必要があり、生産性が極めて低いという問題があった。また、特許文献2に記載された技術では、例えば鋼板間のばらつき等を抑え、安定した特性を確保するためには、高精度の温度制御を必要とするという問題があり、工業的な大量生産には不向きな技術であると考えられる。さらに、特許文献2に記載された技術のように、脆性亀裂伝播停止特性を向上させるうえでフェライト粒の微細化を利用する技術では、更なる高強度化が必要な場合には、自ずと限界が生じるという問題がある。また、特許文献3,特許文献4に記載された技術はいずれも、熱間圧延を、オーステナイト未再結晶域という低温での累積圧下率を大きく設定した圧延とすることを必要とし、さらに熱間圧延後加速冷却を行うため、特許文献1に記載された技術と同様に、生産性が極めて低いという問題があった。また、特許文献5に記載された技術では、熱間圧延を、オーステナイト未再結晶域および二相域という、低温度域での圧下率を大きく設定した圧延としており、またさらに、熱間圧延後加速冷却を行うため、特許文献1に記載された技術と同様に、生産性が極めて低いという問題があった。
However, in the technique described in
また、例えばコンテナ船やバルクキャリヤー船などの船舶においては、その構造上、船体外板に高強度の厚肉材を使用する場合が多い。一般に、鋼材の脆性亀裂伝播停止特性は、高強度あるいは厚肉となるほど劣化すると言われており、船舶の安全性確保の観点から使用する鋼材に対する脆性亀裂伝播停止特性への要求は一段と高度化する傾向となっている。また、上記した特許文献1〜5に記載された技術は、板厚50mm未満の比較的薄肉の高張力鋼材の脆性亀裂伝播停止特性の向上に対しては比較的有効であると考えられるが、特許文献1〜5に記載された技術によっても、厚肉の高張力鋼材の脆性亀裂伝播停止特性を工業的規模で安定して向上させることは、かなり難しいと考えられる。
In addition, in a ship such as a container ship or a bulk carrier ship, a high-strength thick material is often used for the hull outer plate because of its structure. In general, it is said that the brittle crack propagation stop property of steel materials deteriorates with increasing strength or thickness, and the demand for brittle crack propagation stop properties for steel materials used from the viewpoint of ensuring the safety of ships is further advanced. It has become a trend. In addition, the techniques described in
また、従来から、厚鋼板(鋼材)における脆性亀裂伝播停止特性は、ESSO試験等の標準的試験で評価されているが、図3に示すような厚鋼板の板厚を貫通する脆性亀裂の伝播停止を対象としている。しかし、例えば、コンテナ船やバルクキャリヤー船などの強力甲板部構造では、図4に示すように、ウェブ材にフランジ材がT字型に溶接されたT字継手構造となっている。このような構造では、溶接部で発生しウェブ材を進展してきた脆性亀裂は、T字継手部でフランジ材へ進展することになるが、フランジ材では脆性亀裂は、板厚方向への進展となる。しかし、特許文献1〜5に記載された技術においては、板厚方向の脆性亀裂伝播停止特性について、なんの言及もない。
Conventionally, the brittle crack propagation stop property in a thick steel plate (steel material) has been evaluated by a standard test such as an ESSO test, but the propagation of a brittle crack that penetrates the plate thickness of the thick steel plate as shown in FIG. Intended for stopping. However, for example, a strong deck structure such as a container ship or a bulk carrier ship has a T-shaped joint structure in which a flange material is welded to a web material in a T-shape as shown in FIG. In such a structure, the brittle crack that has occurred in the welded part and has progressed through the web material will progress to the flange material at the T-shaped joint part. However, in the flange material, the brittle crack will progress in the thickness direction. Become. However, in the techniques described in
本発明は、上記した従来技術の問題を有利に解決し、脆性亀裂伝播停止特性、とくに板厚方向の脆性亀裂伝播停止特性、に優れた高張力厚鋼板を提供すること、および脆性亀裂伝播停止特性に優れた高張力厚鋼板を、生産性の低下なく高能率に製造できる、高張力厚鋼板の製造方法を提供することを目的とする。 The present invention advantageously solves the above-mentioned problems of the prior art, provides a high-strength thick steel plate excellent in brittle crack propagation stop characteristics, particularly in the thickness direction, and further stops brittle crack propagation. It is an object of the present invention to provide a method for producing a high-tensile thick steel plate that can produce a high-tensile thick steel plate having excellent characteristics with high efficiency without a reduction in productivity.
本発明は、上記した目的を達成するために、厚鋼板の脆性亀裂伝播停止特性、とくに板厚方向の脆性亀裂伝播停止特性に影響する要因について鋭意検討した。その結果、脆性亀裂伝播停止特性を向上させるためには、板面(圧延面)と平行に(100)面の集積度を高めた、集合組織を形成することが重要であり、そのためには、(α+γ)二相温度領域において所定量以上の圧下を施す圧延を行うことが有効であることを知見した。 In order to achieve the above-described object, the present invention has intensively studied factors affecting the brittle crack propagation stopping characteristics of thick steel plates, particularly the brittle crack propagation stopping characteristics in the thickness direction. As a result, in order to improve the brittle crack propagation stop characteristics, it is important to form a texture that increases the degree of integration of the (100) plane parallel to the plate surface (rolled surface). It has been found that it is effective to perform rolling by applying a predetermined amount or more in the (α + γ) two-phase temperature region.
そして次に、本発明者らは、二相温度領域において所定量以上の圧下を施す圧延を、熱間圧延時の生産性を阻害することなく能率よく行う方策について、鋭意研究した。その結果、厚鋼板の二相温度領域を、圧延のための待機を必要としない、例えば、850℃以上の高温とすることに想到した。そして、厚鋼板の二相温度領域をこのような高温化するためには、Alおよび/またはSiの多量含有が有効であることに思い至った。しかし、本発明者らの検討によれば、単にAlおよび/またはSiの多量含有のみでは、脆性亀裂伝播停止特性の向上のための所望の集合組織の形成が達成できず、Alおよび/またはSiの多量含有に加えて、さらに適正量のNbを含有することが必要となることを新規に見出した。 Next, the present inventors have earnestly studied a method for efficiently performing rolling that reduces a predetermined amount or more in the two-phase temperature region without impairing the productivity during hot rolling. As a result, it has been conceived that the two-phase temperature region of the thick steel plate is set to a high temperature of, for example, 850 ° C. or higher, which does not require standby for rolling. And it came to the mind that a large amount of Al and / or Si is effective for increasing the temperature of the two-phase temperature range of the thick steel plate. However, according to the study by the present inventors, the formation of a desired texture for improving the brittle crack propagation stop property cannot be achieved by merely containing a large amount of Al and / or Si, and Al and / or Si. It was newly found that it is necessary to contain an appropriate amount of Nb in addition to a large amount of Nb.
というのは、本発明者らの検討によれば、単にAlおよび/またはSiのみを多量に含有した厚鋼板では、二相温度領域は高温となるが、そのような高温の二相温度域で圧延を施すと、加工αの回復再結晶が進行し、脆性亀裂伝播停止特性の向上のための所望の集合組織の形成が達成できないためであるという知見を得ている。また、本発明者らの検討によれば、このような加工αの回復再結晶を抑制するためには、Alおよび/またはSiのみの多量含有に加えて、適正量のNbの含有が有効である、という知見を得ている。 This is because, according to the study by the present inventors, in a thick steel plate containing only a large amount of Al and / or Si, the two-phase temperature range becomes high, but in such a high-temperature two-phase temperature range, It has been found that when rolling is performed, recovery recrystallization of the processing α proceeds, and formation of a desired texture for improving the brittle crack propagation stop property cannot be achieved. Further, according to the study by the present inventors, in order to suppress such recovery and recrystallization of processed α, it is effective to contain a proper amount of Nb in addition to a large amount of Al and / or Si alone. The knowledge that there is.
まず、本発明者らが行った、本発明の基礎となった実験結果について、説明する。
鋼No.A(質量%で、0.13%C−0.25%Si−1.57%Mn―0.013%P−0.003%S―0.032%Al−0.001%Nb)、鋼No.B(質量%、0.12%C−0.36%Si−1.49%Mn―0.014%P−0.004%S−1.21%Al−0.001%Nb)、鋼No.C(0.050%C−0.36%Si−1.46%Mn―0.013%P−0.003%S−1.00%Al−0.045%Nb)、の3種の鋼素材をそれぞれ1300℃に加熱した後、該各鋼素材に、圧延終了温度を690〜900℃の範囲の温度とする熱間圧延を施し、該熱間圧延を終了した後、空冷し、板厚13mmの厚鋼板とした。得られた厚鋼板の板厚中央部から板面に平行に試験片を採取し、X線回折を用いて、(100)面からのX線回折強度を測定し、ランダム試験片に対する回折強度の比、ランダム強度比(単に強度比ともいう)を算出し、その厚鋼板における、板面に平行な(100)面の集積度とした。得られた(100)面強度比を、圧延終了温度との関係で図1に示す。なお、強度比が高いほど、集合組織が発達していることを意味している。
First, the results of experiments conducted by the inventors and serving as the basis of the present invention will be described.
Steel No. A (mass%, 0.13% C-0.25% Si-1.57% Mn-0.013% P-0.003% S-0.032% Al-0.001% Nb), Steel No. B (mass%, 0.12% C- 0.36% Si-1.49% Mn-0.014% P-0.004% S-1.21% Al-0.001% Nb), Steel No. C (0.050% C-0.36% Si-1.46% Mn-0.013% P-0.003% S- 1.00% Al-0.045% Nb), each of the three steel materials was heated to 1300 ° C, and then each steel material was subjected to hot rolling at a rolling end temperature in the range of 690 to 900 ° C. After the hot rolling was finished, air cooling was performed to obtain a thick steel plate having a plate thickness of 13 mm. A test piece is taken in parallel to the plate surface from the center of the thickness of the obtained thick steel plate, and the X-ray diffraction intensity from the (100) plane is measured using X-ray diffraction. Ratio and random strength ratio (also simply referred to as strength ratio) were calculated as the degree of integration of the (100) plane parallel to the plate surface in the thick steel plate. The obtained (100) plane strength ratio is shown in FIG. 1 in relation to the rolling end temperature. In addition, it means that a texture is developed, so that intensity ratio is high.
図1から、鋼No.Aでは、(100)面強度比は、圧延終了温度が780℃以上の高温の場合には1.2程度であり、圧延終了温度が730℃以下と低温になってはじめて、1.7程度と高い値を示す。このことから、脆性亀裂伝播停止特性の向上のための所望の集合組織を形成するためには、鋼Aでは約750℃以下程度の低温で圧延を行う必要があることがわかる。したがって、鋼No.Aを素材とする厚鋼板では、約750℃以下の温度になるまで圧延を中断し、待機する必要があり、生産性が極めて低い。一方、鋼No.Cでは、圧延終了温度が約900℃という高温であっても、(100)面強度比が3.5程度と高い値を示しており、Alを多量に含有しNbを含む鋼No.Cを素材とする厚鋼板では、圧延終了温度が約900℃という高温でも、脆性亀裂伝播停止特性の向上のための所望の集合組織を形成することができ、圧延途中で待機することなく、操業ができ、生産性の阻害要因がないことがわかる。 From FIG. 1, in Steel No. A, the (100) plane strength ratio is about 1.2 when the rolling end temperature is a high temperature of 780 ° C. or higher, and only after the rolling end temperature becomes a low temperature of 730 ° C. or lower. A high value of about 1.7. This shows that in order to form a desired texture for improving the brittle crack propagation stop characteristic, it is necessary to perform rolling at a low temperature of about 750 ° C. or less in Steel A. Therefore, with a thick steel plate made of steel No. A, it is necessary to interrupt and wait until the temperature reaches about 750 ° C. or less, and the productivity is extremely low. On the other hand, in Steel No. C, even when the rolling end temperature is as high as about 900 ° C., the (100) plane strength ratio shows a high value of about 3.5, and steel No. containing a large amount of Al and containing Nb. In the thick steel plate made of .C, even when the rolling end temperature is about 900 ° C., a desired texture for improving the brittle crack propagation stop property can be formed without waiting during rolling, It can be operated and there are no obstruction factors for productivity.
しかし、Alを多量に含有しNbを含有しない鋼No.Bを素材とする厚鋼板では、鋼No.Aを素材とする厚鋼板と同様に、圧延終了温度を高温とする圧延を行った場合、(100)面強度比は約1.2程度である。鋼No.Bを素材とする場合、待機なしで、圧延終了温度が高温となる圧延では、鋼No.Aを素材とする厚鋼板と同様に、脆性亀裂伝播停止特性の向上のための所望の集合組織を形成することができない。これは、圧延終了温度が約900℃であっても、鋼No.Bを素材とする厚鋼板では、(α+γ)二相温度域での圧延となるが、Nb含有量が少ないために、加工αの回復、再結晶化が進行したためであると本発明者らは推察している。 However, in the case of a thick steel plate made of steel No. B containing a large amount of Al and not containing Nb, similarly to the thick steel plate made of steel No. A, the rolling end temperature is high. The (100) plane strength ratio is about 1.2. When steel No. B is used as a raw material, in rolling where the rolling end temperature is high without waiting, as with a thick steel plate using steel No. A as a raw material, a desired material for improving brittle crack propagation stop characteristics is desired. A texture cannot be formed. Even if the rolling finish temperature is about 900 ° C, the thick steel plate made of steel No. B is rolled in the (α + γ) two-phase temperature range, but because the Nb content is small, The present inventors speculate that the recovery and recrystallization of α have progressed.
このようなことから、熱間圧延時の生産性阻害の要因である圧延途中での待機を必要とすることなく、脆性亀裂伝播停止特性に優れた厚鋼板を製造するためには、Alの多量含有とNb含有とを同時に満足する組成の鋼素材を用いることが肝要であるという知見を得た。
さらに、本発明者らの検討によれば、板厚方向の各位置で異なる集合組織、すなわち、表層部における圧延面に平行な面での(100)面強度比が2.0以上、板厚1/4部における圧延面に平行な面での(110)面強度比が1.5以上、板厚中央部における圧延面に平行な面での(100)面強度比が2.0以上である集合組織、を発達させることにより、板厚方向の脆性亀裂伝播停止特性が顕著に向上することを知見した。なお、本発明者らの検討によれば、上記した組成の鋼素材に、(α+γ)二相温度域である850〜950℃の温度範囲の累積圧下率を50%以上、圧延終了温度を850〜950℃の温度範囲とし、あるいはさらに1パス当たりの圧下率を5%以上とする熱間圧延を施すことにより、上記した集合組織を形成できるという知見を得ている。
For this reason, in order to produce a thick steel plate with excellent brittle crack propagation stopping characteristics without requiring standby during rolling, which is a factor that hinders productivity during hot rolling, a large amount of Al It was found that it is important to use a steel material having a composition that satisfies both the Nb content and the Nb content.
Furthermore, according to the study by the present inventors, different textures at each position in the thickness direction, that is, the (100) plane strength ratio in the plane parallel to the rolling surface in the surface layer portion is 2.0 or more, the
本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)質量%で、C:0.001〜0.25%、Si:0.05〜2.0%、Mn:0.1〜2.0%、P:0.03%以下、S:0.03%以下、Al:0.08〜3.0%、Nb:0.005〜0.1%を含有し、残部Feおよび不可避的不純物からなる組成と、表層部における圧延面に平行な面での(100)面強度比が2.0以上、板厚1/4部における圧延面に平行な面での(110)面強度比が1.5以上、板厚中央部における圧延面に平行な面での(100)面強度比が2.0以上である集合組織を有することを特徴とする脆性亀裂伝播停止特性に優れた高張力厚鋼板。
(2)(1)において、前記組成に加えてさらに、質量%で、Cu:2.0%以下、Ni:2.0%以下、Cr:2.0%以下、Mo:2.0%以下、V:0.5%以下、Ti:0.05%以下、B:0.005%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする高張力厚鋼板。
(3)質量%で、C:0.001〜0.25%、Si:0.05〜2.0%、Mn:0.1〜2.0%、P:0.03%以下、S:0.03%以下、Al:0.08〜3.0%、Nb:0.005〜0.1%を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼素材に、加熱温度を1000〜1350℃とし、850〜950℃の温度範囲の累積圧下率を50%以上、圧延終了温度を850〜950℃の温度範囲とする熱間圧延を施し、該熱間圧延後、放冷することを特徴とする、優れた脆性亀裂伝播停止特性を有する高張力厚鋼板の製造方法。
(4)(3)において、前記熱間圧延が、850〜950℃の温度範囲における、1パス当たりの圧下率を5%以上とする圧延であることを特徴とする高張力厚鋼板の製造方法。
(5)(3)または(4)において、前記組成に加えてさらに、質量%で、Cu:2.0%以下、Ni:2.0%以下、Cr:2.0%以下、Mo:2.0%以下、V:0.5%以下、Ti:0.05%以下、B:0.005%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする高張力厚鋼板の製造方法。
(6)(3)ないし(5)のいずれかにおいて、前記熱間圧延後の放冷に代えて、前記熱間圧延後、1℃/s以上の平均冷却速度で700〜100℃の温度域まで加速冷却することを特徴とする高張力厚鋼板の製造方法。
(7)(3)ないし(6)のいずれかにおいて、前記放冷後または前記加速冷却後に、さらに焼戻処理を施すことを特徴とする高張力厚鋼板の製造方法。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.001 to 0.25%, Si: 0.05 to 2.0%, Mn: 0.1 to 2.0%, P: 0.03% or less, S: 0.03% or less, Al: 0.08 to 3.0%, Nb: 0.005 Containing ~ 0.1%, the composition consisting of the remainder Fe and inevitable impurities, the (100) plane strength ratio in the plane parallel to the rolling surface in the surface layer portion is 2.0 or more, parallel to the rolling surface in the 1/4 thickness portion Brittle crack propagation characterized by having a texture with a (110) plane strength ratio of 1.5 or more on the flat surface and a (100) plane strength ratio of 2.0 or more on the plane parallel to the rolling surface at the center of the plate thickness High tensile steel plate with excellent stopping characteristics.
(2) In (1), in addition to the above composition, in terms of mass%, Cu: 2.0% or less, Ni: 2.0% or less, Cr: 2.0% or less, Mo: 2.0% or less, V: 0.5% or less, Ti A high-tensile steel plate characterized by having a composition containing one or more selected from: 0.05% or less and B: 0.005% or less.
(3) By mass%, C: 0.001 to 0.25%, Si: 0.05 to 2.0%, Mn: 0.1 to 2.0%, P: 0.03% or less, S: 0.03% or less, Al: 0.08 to 3.0%, Nb: 0.005 Steel material with a composition of ~ 0.1%, balance Fe and inevitable impurities, heating temperature is 1000-1350 ° C, cumulative rolling reduction in the temperature range of 850-950 ° C is 50% or more, rolling finish temperature A method for producing a high-strength thick steel plate having excellent brittle crack propagation stopping characteristics, characterized in that hot rolling is performed at a temperature range of 850 to 950 ° C., and the hot rolling is allowed to cool.
(4) The method for producing a high-tensile thick steel plate according to (3), wherein the hot rolling is rolling with a reduction rate per pass of 5% or more in a temperature range of 850 to 950 ° C. .
(5) In (3) or (4), in addition to the above composition, in terms of mass%, Cu: 2.0% or less, Ni: 2.0% or less, Cr: 2.0% or less, Mo: 2.0% or less, V: 0.5 % Or less, Ti: 0.05% or less, and B: 0.005% or less.
(6) In any one of (3) to (5), instead of allowing to cool after the hot rolling, a temperature range of 700 to 100 ° C. at an average cooling rate of 1 ° C./s or more after the hot rolling A method for producing a high-strength thick steel sheet, characterized by accelerated cooling to a low temperature.
(7) In any one of (3) to (6), a tempering process is further performed after the cooling or after the accelerated cooling.
本発明によれば、熱間圧延時の生産性を損なうことなく、脆性亀裂伝播停止特性、とくに板厚方向の脆性亀裂伝播停止特性の向上に有効な集合組織を発達させることが可能となり、熱間圧延時の生産性を阻害することなく簡易なプロセスで容易にしかも安定して、脆性亀裂伝播停止特性に優れた高張力厚鋼板を製造することができ、産業上格段の効果を奏する。 According to the present invention, it is possible to develop a texture effective in improving brittle crack propagation stopping characteristics, in particular, in the thickness direction, without impairing productivity during hot rolling. A high-strength thick steel plate having excellent brittle crack propagation stopping characteristics can be manufactured easily and stably by a simple process without impairing the productivity during hot rolling, and has a remarkable industrial effect.
まず、本発明で使用する鋼素材の組成限定理由について説明する。以下、特に断らない限り質量%は単に%と記す。
C:0.001〜0.25%
Cは、強度を増加させる作用を有する元素であり、構造用鋼として必要な母材強度を確保するために有用な元素である。このような効果を得るためには、0.001%以上の含有を必要とする。一方、0.25%を超える含有は、母材および溶接部の靭性を低下させる。このため、Cは0.001〜0.25%の範囲に限定した。なお、好ましくは0.010〜0.18%である。
First, the reasons for limiting the composition of the steel material used in the present invention will be described. Hereinafter, unless otherwise specified, mass% is simply referred to as%.
C: 0.001 to 0.25%
C is an element having an effect of increasing the strength, and is a useful element for ensuring the base material strength necessary for the structural steel. In order to obtain such an effect, a content of 0.001% or more is required. On the other hand, if the content exceeds 0.25%, the toughness of the base metal and the welded portion is lowered. For this reason, C was limited to the range of 0.001 to 0.25%. In addition, Preferably it is 0.010 to 0.18%.
Si:0.05〜2.0%
Siは、脱酸剤として作用するとともに、固溶して鋼の強度を増加させる作用を有する元素であり、このような効果は、0.05%以上の含有で認められる。またさらに、Siは、Ar1変態点およびAr3変態点を上昇させる作用を有する元素で、本発明ではAlと同様に有効な元素の一つであり、このような効果は、0.05%以上の含有で顕著となる。なお、変態点を有効に上昇させるために、0.2%以上とすることが好ましい。一方、2.0%を超える含有は、母材靭性を低下させる。このため、Siは0.05〜2.0%の範囲に限定した。なお、好ましくは、0.2〜1.5%である。
Si: 0.05-2.0%
Si is an element that acts as a deoxidizer and has the effect of increasing the strength of the steel by solid solution, and such an effect is recognized with a content of 0.05% or more. Further, Si is an element having an action of increasing the Ar 1 transformation point and the Ar 3 transformation point, and is one of the effective elements as in the present invention in the present invention, and such an effect is 0.05% or more. Conspicuous with inclusion. In order to effectively raise the transformation point, it is preferable to be 0.2% or more. On the other hand, the content exceeding 2.0% lowers the base metal toughness. For this reason, Si was limited to the range of 0.05 to 2.0%. In addition, Preferably, it is 0.2 to 1.5%.
Mn:0.1〜2.0%
Mnは、鋼の強度を増加させる作用を有する元素であり、構造用鋼として所望の母材強度を確保するために有用な元素である。このような効果を得るためには、0.1%以上の含有を必要とする。一方、2.0%を超える含有は、Ar1変態点およびAr3変態点を低下させ、(α+γ)二相温度域を低温化する。このため、Mnは0.1〜2.0%の範囲に限定した。なお、好ましくは、0.5〜1.6%である。
Mn: 0.1-2.0%
Mn is an element having an action of increasing the strength of steel, and is an element useful for securing a desired base metal strength as structural steel. In order to obtain such an effect, the content of 0.1% or more is required. On the other hand, the content exceeding 2.0% lowers the Ar 1 transformation point and the Ar 3 transformation point, and lowers the (α + γ) two-phase temperature range. For this reason, Mn was limited to the range of 0.1 to 2.0%. In addition, Preferably, it is 0.5 to 1.6%.
P:0.03%以下
Pは、鋼中では不可避的不純物として存在する元素であり、0.03%を超えて多量に含有すると、板厚中心部の母材靭性および溶接部靭性、とりわけ脆性亀裂伝播停止特性を低下させるため、本発明ではPは0.03%以下に限定した。なお、好ましくは0.025%以下である。
P: 0.03% or less P is an element present as an inevitable impurity in steel, and when contained in a large amount exceeding 0.03%, the toughness of the base metal and the toughness of the welded portion, especially the brittle crack propagation stop property In the present invention, P is limited to 0.03% or less. In addition, Preferably it is 0.025% or less.
S:0.03%以下
Sは、鋼中では硫化物として存在する元素であり、0.03%を超えて多量に含有すると、板厚中心部の母材および溶接部の靭性、とりわけ脆性亀裂伝播停止特性を低下させるため,本発明ではSは0.03%以下に限定した。なお、好ましくは、0.025%以下である。
Al:0.08〜3.0%
Alは、変態点を上昇させ、(α+γ)二相温度領域を高温側へ拡大させる作用を有する元素で、本発明においては、生産性を阻害することなく高温で二相域圧延を行うために重要な元素の一つである。また、Alは、熱間での変形抵抗を低減する作用を有する元素であり、所望の1パス当たりの圧下率を確保することが容易となるとともに、生産性を飛躍的に向上させることが可能となる。このような効果を得るためには0.08%以上の含有を必要とする。一方、3.0%を超える多量の含有は、必要以上に(α+γ)二相温度領域を高温まで拡大させるうえ、母材の脆化を招く傾向が増大するとともに、材料コストが高騰し経済的にも不利となる。このようなことから、Alは0.08〜3.0%の範囲に限定した。なお、好ましくは、0.1〜1.8%、より好ましくは0.2超え1.8%以下、さらに好ましくは0.5〜1.5%である。
S: 0.03% or less S is an element that exists as a sulfide in steel, and if it exceeds 0.03%, it contains the toughness of the base metal at the center of the plate thickness and the welded part, especially brittle crack propagation stopping characteristics. In order to reduce this, in the present invention, S is limited to 0.03% or less. In addition, Preferably, it is 0.025% or less.
Al: 0.08-3.0%
Al is an element that has the effect of increasing the transformation point and expanding the (α + γ) two-phase temperature range to the high temperature side. In the present invention, two-phase rolling is performed at a high temperature without hindering productivity. It is one of the important elements. Al is an element that has the effect of reducing hot deformation resistance, making it easy to secure the desired rolling reduction per pass and dramatically improving productivity. It becomes. In order to obtain such an effect, a content of 0.08% or more is required. On the other hand, if it contains more than 3.0%, the (α + γ) two-phase temperature range will be expanded to a higher temperature than necessary, and the tendency to cause embrittlement of the base material will increase. Also disadvantageous. For these reasons, Al is limited to the range of 0.08 to 3.0%. In addition, Preferably it is 0.1 to 1.8%, More preferably, it exceeds 0.2 and 1.8% or less, More preferably, it is 0.5 to 1.5%.
図2に、A1変態点およびA3変態点とAl含有量の関係を示す。図2から、Alは、A1変態点およびA3変態点を大きく上昇させ、二相温度領域を大きく拡大させることがわかる。また、図2(c)に示すように、AlとSiを複合含有させることにより、二相温度領域がさらに拡大できる。
Nb:0.005〜0.1%
Nbは、二相温度領域で加工された加工αの回復、再結晶を抑制し、脆性亀裂伝播停止特性を向上させる集合組織の発達を促す作用を有する元素であり、本発明において、Al、Siと同様に重要な元素の一つである。このような効果を確保するためには、0.005%以上のNbを含有する必要がある。一方、0.1%を超える含有は、Nb化合物が多量に析出し、母材および溶接部が析出硬化し、靭性が低下する。このため、Nbは0.005〜0.1%の範囲に限定した。なお、好ましくは0.010〜0.070%である。
FIG. 2 shows the relationship between the A 1 transformation point and the A 3 transformation point and the Al content. From Figure 2, Al raises greatly the A 1 transformation point and A 3 transformation point, it is found possible to greatly expanded two-phase temperature region. Moreover, as shown in FIG.2 (c), a two-phase temperature range can further be expanded by compounding Al and Si.
Nb: 0.005-0.1%
Nb is an element that has the action of promoting the development of a texture that suppresses recovery and recrystallization of the processed α processed in the two-phase temperature region and improves the brittle crack propagation stopping characteristics.In the present invention, Al, Si It is one of the important elements as well. In order to ensure such an effect, it is necessary to contain 0.005% or more of Nb. On the other hand, if the content exceeds 0.1%, a large amount of Nb compound precipitates, the base metal and the welded portion precipitate and harden, and the toughness decreases. For this reason, Nb was limited to 0.005 to 0.1% of range. In addition, Preferably it is 0.010 to 0.070%.
上記した成分が基本の成分であるが、基本組成に加えてさらに、Cu:2.0%以下、Ni:2.0%以下、Cr:2.0%以下、Mo:2.0%以下、V:0.5%以下、Ti:0.05%以下、B:0.005%以下のうちから選ばれた1種または2種以上を、必要に応じて選択して含有することができる。
Cu、Ni、Cr、Mo、V、Ti、Bはいずれも、強度を増加させる元素であり、必要に応じて選択して含有できる。
The above components are basic components. In addition to the basic composition, Cu: 2.0% or less, Ni: 2.0% or less, Cr: 2.0% or less, Mo: 2.0% or less, V: 0.5% or less, Ti: One or more selected from 0.05% or less and B: 0.005% or less can be selected and contained as necessary.
Cu, Ni, Cr, Mo, V, Ti, and B are all elements that increase the strength, and can be selected and contained as necessary.
Cuは、固溶強化および析出強化により強度増加に寄与する元素であり、このような効果は、0.05%以上の含有で顕著となるが、2.0%を超える含有は、熱間加工性を低下させる。このため、Cuは2.0%以下に限定することが好ましい。
NiおよびCrは、焼入れ性を増加させる元素であり、冷却後の第2相の分率や硬さの増加を介して、強度を増加させる作用を有する元素であり、必要に応じて選択して含有できる。このような効果は、Ni:0.05%以上、Cr:0.05%以上の含有で顕著となるが、高価なNiを2.0%を超えて多量に含有すると、材料コストの高騰を招き、経済的に不利となる。また、Crを2.0%を超えて多量に含有すると、溶接部靭性が低下する。このため、Niは2.0%以下、Crは2.0%以下にそれぞれ限定することが好ましい。
Cu is an element that contributes to an increase in strength by solid solution strengthening and precipitation strengthening, and such an effect becomes remarkable when the content is 0.05% or more, but the content exceeding 2.0% decreases the hot workability. . For this reason, it is preferable to limit Cu to 2.0% or less.
Ni and Cr are elements that increase the hardenability, and are elements that have the effect of increasing the strength through an increase in the fraction and hardness of the second phase after cooling, and can be selected as necessary. Can be contained. Such an effect becomes remarkable when Ni: 0.05% or more and Cr: 0.05% or more are contained. However, if expensive Ni is contained in a large amount exceeding 2.0%, the material cost increases, which is economically disadvantageous. It becomes. Moreover, when Cr is contained in a large amount exceeding 2.0%, the weld zone toughness is lowered. For this reason, it is preferable to limit Ni to 2.0% or less and Cr to 2.0% or less, respectively.
Moは、NiやCrと同じく、焼入れ性を増加させ、さらに加えて、冷却後のフェライト中にMo炭化物として析出して、強度上昇に寄与する元素である。このような効果は、0.05%以上の含有で顕著となるが、2.0%を超える含有は、溶接部の靭性を低下させる。このため、Moは2.0%以下に限定することが好ましい。
Vは、フェライト中にV(C,N)として析出し、析出強化を介して強度増加に寄与する元素であり、このような効果は0.005%以上の含有で顕著となる。一方、0.5%を超える含有は、溶接部の靭性を低下させる。このため、Vは0.5%以下に限定することが好ましい。
Mo, like Ni and Cr, is an element that increases the hardenability and, in addition, precipitates as Mo carbides in the ferrite after cooling and contributes to an increase in strength. Such an effect becomes remarkable when the content is 0.05% or more. However, when the content exceeds 2.0%, the toughness of the welded portion is lowered. For this reason, it is preferable to limit Mo to 2.0% or less.
V is an element that precipitates as V (C, N) in the ferrite and contributes to an increase in strength through precipitation strengthening. Such an effect becomes remarkable when the content is 0.005% or more. On the other hand, the content exceeding 0.5% lowers the toughness of the weld. For this reason, it is preferable to limit V to 0.5% or less.
Tiは、固溶NをTiNとして固定し、固溶N量を減少させ、耐歪時効特性を向上させる作用を有するとともに、結晶粒を微細化する作用を有し、それにより強度増加に寄与する元素であり、このような効果は0.005%以上の含有で顕著となる。一方、0.05%を超える含有はTiCとして析出するため、靭性が低下する。このため、Tiは0.05%以下に限定することが好ましい。 Ti fixes solute N as TiN, reduces the amount of solute N, improves the anti-strain aging characteristics, and refines crystal grains, thereby contributing to an increase in strength. It is an element, and such an effect becomes remarkable when the content is 0.005% or more. On the other hand, since inclusion exceeding 0.05% precipitates as TiC, toughness decreases. For this reason, it is preferable to limit Ti to 0.05% or less.
Bは、焼入れ性を増加させる作用を有し、焼入れ性増加を介して強度増加に寄与する元素であり、このような効果は0.0003%以上の含有で顕著となる。一方、0.005%を超えル含有はボライドを形成して熱間加工性を低下させる。このため、Bは0.005%以下に限定することが好ましい。
上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としては、N:0.010%以下、O:0.005%以下が許容できる。
B has an effect of increasing the hardenability and contributes to an increase in strength through the increase of hardenability. Such an effect becomes remarkable when the content is 0.0003% or more. On the other hand, if the content exceeds 0.005%, boride is formed and hot workability is lowered. For this reason, it is preferable to limit B to 0.005% or less.
The balance other than the above components is Fe and inevitable impurities. Inevitable impurities include N: 0.010% or less and O: 0.005% or less.
本発明で出発素材として使用する鋼素材は、溶鋼を、転炉等の公知の溶製方法で溶製し、好ましくはRH等の公知の脱ガス処理を経て、上記した組成の溶鋼としたのち、連続鋳造法、造塊−分塊圧延法等の公知の鋳造方法でスラブ等の所望の寸法形状とすることが好ましい。しかし、本発明では、上記した方法に限定されることはなく、通常の鋼素材の製造方法がいずれも適用できる。 The steel material used as a starting material in the present invention is obtained by melting molten steel by a known melting method such as a converter, and preferably by performing a known degassing treatment such as RH to obtain molten steel having the above composition. It is preferable to use a known casting method such as a continuous casting method or an ingot-bundling rolling method to obtain a desired dimensional shape such as a slab. However, the present invention is not limited to the above-described method, and any ordinary steel material manufacturing method can be applied.
ついで、鋼素材は、熱間圧延のための加熱処理を施される。加熱温度は1000〜1350℃の範囲の温度とする。
加熱温度:1000〜1350℃
熱間圧延のための加熱処理では、鋼素材の中心まで十分に均熱し、変形抵抗を低くするため、加熱温度を、少なくとも1000℃以上とする。加熱温度が1000℃未満では、均熱が不十分で変形抵抗が高く、圧延負荷が過大となりやすい。一方、加熱温度を1350℃を超える高温とすると、組織が粗大化して厚鋼板の母材靭性が低下する。このため、鋼素材の加熱温度は1000〜1350℃の範囲の温度に限定した。なお、好ましくは1050〜1300℃である。
Next, the steel material is subjected to heat treatment for hot rolling. The heating temperature is in the range of 1000 to 1350 ° C.
Heating temperature: 1000-1350 ° C
In the heat treatment for hot rolling, the heating temperature is at least 1000 ° C. or higher in order to sufficiently soak the steel material to the center and reduce the deformation resistance. When the heating temperature is less than 1000 ° C., the soaking is insufficient, the deformation resistance is high, and the rolling load tends to be excessive. On the other hand, when the heating temperature is higher than 1350 ° C., the structure becomes coarse and the base metal toughness of the thick steel plate decreases. For this reason, the heating temperature of the steel material was limited to a temperature in the range of 1000 to 1350 ° C. In addition, Preferably it is 1050-1300 degreeC.
上記した加熱処理を施された鋼素材は、ついで熱間圧延を施される。熱間圧延は、850〜950℃の累積圧下率:50%以上、圧延終了温度:850〜950℃の条件で行う。
850〜950℃の累積圧下率:50%以上
本発明では、850〜950℃の累積圧下率が50%以上の圧延を施す。上記した組成の、本発明で使用する鋼素材であれば、850〜950℃の温度域は(α+γ)二相温度領域であり、この温度領域での累積圧下率が50%以上の圧延を施すことにより、脆性亀裂伝播停止特性を向上させる集合組織が発達する。この温度領域における累積圧下率が50%未満では、脆性亀裂伝播停止特性を向上させる集合組織の発達が不十分となり、脆性亀裂伝播停止特性の向上が得られないうえ、厚鋼板の母材靭性も低下する。この温度領域での累積圧下率の上限はとくに限定する必要はないが、累積圧下率が95%を超えると、加工αの再結晶が生じ易くなり、脆性亀裂伝播停止特性を向上させる集合組織が軽減される。このようなことから、850〜950℃の累積圧下率は95%以下とすることが好ましい。
The steel material subjected to the above heat treatment is then subjected to hot rolling. Hot rolling is performed under the conditions of a cumulative reduction ratio of 850 to 950 ° C .: 50% or more and a rolling end temperature of 850 to 950 ° C.
Cumulative rolling reduction of 850 to 950 ° C .: 50% or more In the present invention, rolling is performed such that the cumulative rolling reduction of 850 to 950 ° C. is 50% or more. In the case of the steel material used in the present invention having the composition described above, the temperature range of 850 to 950 ° C. is the (α + γ) two-phase temperature range, and rolling is performed such that the cumulative reduction ratio in this temperature range is 50% or more. As a result, a texture that improves the brittle crack propagation stop property develops. If the cumulative rolling reduction in this temperature range is less than 50%, the texture that improves the brittle crack propagation stop characteristics will not be sufficiently developed, and the brittle crack propagation stop characteristics will not be improved. descend. The upper limit of the cumulative rolling reduction in this temperature range is not particularly limited. However, if the cumulative rolling reduction exceeds 95%, recrystallization of the processed α is likely to occur, and the texture that improves the brittle crack propagation stopping property is increased. It is reduced. Therefore, the cumulative rolling reduction at 850 to 950 ° C. is preferably 95% or less.
なお、上記した850〜950℃の温度域での熱間圧延では、1パス当たりの圧下率を、5%以上とすることが好ましい。1パス当たりの圧下率を5%以上とすることにより、脆性亀裂伝播停止特性を向上させる集合組織の形成が安定的に容易となる。一方、5%未満では、板厚1/4部、板厚中央部における集合組織の形成が不十分となり、脆性亀裂の進展抑制効果が低減するとともに、靭性も低下する。なお、好ましくは7%以上である。脆性亀裂伝播停止特性の向上の観点からは、少なくとも3パス以上で、1パス当たりの圧下率が7%以上のパスを確保することが望ましい。 In the above-described hot rolling in the temperature range of 850 to 950 ° C., the rolling reduction per pass is preferably 5% or more. By setting the rolling reduction per pass to 5% or more, formation of a texture that improves the brittle crack propagation stop property is stably facilitated. On the other hand, if it is less than 5%, the formation of the texture at the 1/4 thickness portion and the central thickness portion becomes insufficient, the effect of suppressing the progress of brittle cracks is reduced, and the toughness is also reduced. In addition, Preferably it is 7% or more. From the viewpoint of improving the brittle crack propagation stop characteristic, it is desirable to secure at least 3 passes or more and a pass with a rolling reduction rate of 7% or more per pass.
圧延終了温度:850〜950℃
圧延終了温度が、850℃未満では、圧延途中で待機する必要があり、熱間圧延時の生産性が阻害される。また、圧延終了温度が950℃を超える高温では、加工αの回復再結晶が促進され、所望の集合組織の発達が抑制されるため、優れた脆性亀裂伝播停止特性を確保することができなくなる。このようなことから、熱間圧延の圧延終了温度は850〜950℃の範囲に限定した。
Rolling end temperature: 850 ~ 950 ℃
When the rolling end temperature is less than 850 ° C., it is necessary to wait in the middle of rolling, and the productivity during hot rolling is hindered. Further, when the rolling end temperature is higher than 950 ° C., recovery recrystallization of the processing α is promoted, and development of a desired texture is suppressed, so that it is impossible to ensure excellent brittle crack propagation stop characteristics. For this reason, the rolling end temperature of hot rolling is limited to the range of 850 to 950 ° C.
なお、熱間圧延終了後は、そのまま放冷(空冷)する。
放冷に代えて、1℃/s以上の平均冷却速度で700〜100℃の温度域まで加速冷却してもよい。熱間圧延終了後に、上記した条件で加速冷却を施すことにより、所望の強度増加を図ることが容易となる。加速冷却の冷却速度が、1℃/s未満では、第一相であるフェライト相に加えて、硬質な第二相の生成量が不十分となり、所望の強度増加が図れなくなる。また、加速冷却を700℃を超える温度で停止すると、硬質な第二相の生成量が不十分となり、所望の強度増加が図れなくなる。また、加速冷却を100℃未満まで行っても、母材材質への影響は少ない。このようなことから、熱間圧延終了後の加速冷却条件は、1℃/s以上の平均冷却速度で、700〜100℃の温度域まで冷却する条件とすることが好ましい。なお、冷却速度は、厚鋼板表面における速度とし、冷却開始温度から冷却停止温度までの平均とする。
In addition, after completion | finish of hot rolling, it cools as it is (air cooling).
Instead of standing to cool, accelerated cooling to a temperature range of 700 to 100 ° C. may be performed at an average cooling rate of 1 ° C./s or more. After the hot rolling is completed, it is easy to increase the desired strength by performing accelerated cooling under the above-described conditions. When the cooling rate of accelerated cooling is less than 1 ° C./s, the amount of hard second phase generated in addition to the ferrite phase that is the first phase becomes insufficient, and the desired strength cannot be increased. Further, if accelerated cooling is stopped at a temperature exceeding 700 ° C., the amount of hard second phase produced becomes insufficient, and the desired strength cannot be increased. Moreover, even if accelerated cooling is performed to less than 100 ° C, the influence on the base material is small. For this reason, it is preferable that the accelerated cooling condition after the end of hot rolling is a condition of cooling to a temperature range of 700 to 100 ° C. at an average cooling rate of 1 ° C./s or more. The cooling rate is the rate at the surface of the thick steel plate, and is the average from the cooling start temperature to the cooling stop temperature.
なお、放冷あるいは加速冷却後、歪取りの観点から、さらに焼戻処理をしても構わない。焼戻処理では、フェライト(加工α)の回復を極力抑制するために、加熱温度は700℃以下、保持も短時間とすることが望ましい。このような処理としては、放冷後あるいは加速冷却直後に、オンラインで急速加熱が可能な加熱法、例えば誘導加熱等による処理とすることが望ましい。また、オフラインで焼戻しを行う場合には、フェライト(加工α)の回復が促進されるため、焼戻の加熱温度は650℃以下とすることが好ましい。 In addition, after standing_to_cool or accelerated cooling, you may temper further from a viewpoint of distortion removal. In the tempering treatment, it is desirable that the heating temperature is 700 ° C. or less and the holding time is short in order to suppress recovery of ferrite (process α) as much as possible. As such treatment, it is desirable to use a heating method capable of rapid heating online, for example, induction heating or the like, after standing to cool or immediately after accelerated cooling. Further, when tempering off-line, recovery of ferrite (processed α) is promoted, so that the heating temperature for tempering is preferably 650 ° C. or less.
かくして得られる高張力厚鋼板は、上記した組成を有し、脆性亀裂伝播停止特性を向上させる集合組織を有する厚鋼板となる。ここでいう「脆性亀裂伝播停止特性を向上させる集合組織」とは、表層部における圧延面に平行な面での(100)面強度比が2.0以上、板厚1/4部における圧延面に平行な面での(110)面強度比が1.5以上、板厚中央部における圧延面に平行な面での(100)面強度比が2.0以上である集合組織をいうものとする。なお、ここでいう面強度比は、X線回折を用いて、所定の面からの回折強度と、ランダム試験片における所定の面からの回折強度との比、ランダム強度比を意味する。 The high-tensile thick steel plate thus obtained has a composition as described above, and becomes a thick steel plate having a texture that improves brittle crack propagation stopping characteristics. The term “texture that improves brittle crack propagation stop characteristics” here means that the (100) plane strength ratio in the plane parallel to the rolling surface in the surface layer portion is 2.0 or more and parallel to the rolling surface in the 1/4 thickness portion. A texture having a (110) plane strength ratio of 1.5 or more on the flat surface and a (100) plane strength ratio of 2.0 or more on the plane parallel to the rolling surface in the center of the plate thickness is referred to. In addition, the surface intensity ratio here means a ratio of a diffraction intensity from a predetermined surface to a diffraction intensity from a predetermined surface in a random test piece by using X-ray diffraction, and a random intensity ratio.
脆性亀裂が板厚方向に進展してきた場合、まず表層部に脆性亀裂の進展方向に垂直に劈開面((100)面)が集積しているため、亀裂の進展とともに、亀裂の進展方向と垂直に、微細クラックが発生して、微細セパレーションによる応力緩和効果により脆性亀裂の伝播エネルギーが吸収されて亀裂の進展が抑制される。また、板厚1/4部で、圧延面に平行に(110)面が発達しているため、詳細は不明であるが、脆性亀裂が板厚方向に鋼板内部に進展しようとすると、亀裂伝播エネルギーを吸収され、さらに脆性亀裂の進展が抑制される。また、板厚1/2部でも表層部と同様に、脆性亀裂の進展方向に垂直に劈開面((100)面)が集積しているため、亀裂の進展とともに、亀裂の進展方向と垂直に、微細クラックが発生して、脆性亀裂の伝播エネルギーが吸収されて厚鋼板内部への脆性亀裂の進展が抑制される。
When a brittle crack has progressed in the thickness direction, the cleavage plane ((100) plane) is first accumulated perpendicularly to the direction of the brittle crack in the surface layer. In addition, fine cracks are generated, and the propagation energy of the brittle cracks is absorbed by the stress relaxation effect by the fine separation, and the progress of the cracks is suppressed. Moreover, because the (110) plane is developed parallel to the rolling surface at 1 / 4th of the plate thickness, details are unknown, but if a brittle crack tries to propagate inside the steel plate in the thickness direction, crack propagation Energy is absorbed and further the development of brittle cracks is suppressed. In addition, as with the surface layer part, the cleaved surface ((100) plane) is accumulated perpendicular to the direction of brittle crack growth in the
脆性亀裂先端にクラックが発生すると、脆性亀裂の進展には抵抗となる。さらに脆性亀裂がクラックに合体する過程では、脆性破壊の駆動エネルギー(エネルギー開放率)は大きくなるが、合体後に駆動エネルギーが急激に低下するため、脆性亀裂は停止することになる。このようなことにより、上記した集合組織を有する厚鋼板は、脆性亀裂伝播停止特性に優れた厚鋼板となる。なお、厚鋼板に進入した脆性亀裂が、厚鋼板の表層部で停止するか、さらに厚鋼板の内部まで進展し、板厚方向のある位置で停止するかは、溶接継手部の構造や応力状態に依存して決まる。 When a crack occurs at the tip of a brittle crack, it becomes a resistance to the progress of the brittle crack. Furthermore, in the process where the brittle cracks merge with the cracks, the driving energy (energy release rate) for brittle fracture increases, but since the driving energy rapidly decreases after the coalescence, the brittle cracks stop. By such a thing, the thick steel plate which has an above described texture turns into a thick steel plate excellent in the brittle crack propagation stop characteristic. Whether the brittle crack that has entered the thick steel plate stops at the surface layer of the thick steel plate or further propagates into the thick steel plate and stops at a certain position in the plate thickness direction depends on the structure and stress state of the welded joint. Depends on.
溶接部で脆性亀裂の発生を防止できない場合においても、本発明におけるように、厚鋼板が優れた板厚方向の脆性亀裂伝播停止特性を有し、厚鋼板に進入した脆性亀裂を表層部で停止できれば、板厚方向の大部分は健全な状態で残存するため負荷応力の伝達を行うことが可能であり、構造物の安全性を著しく向上させることができる。 Even when it is not possible to prevent the occurrence of brittle cracks in the weld zone, as in the present invention, the thick steel plate has excellent brittle crack propagation stopping characteristics in the thickness direction, and stops brittle cracks entering the thick steel plate at the surface layer portion. If possible, most of the thickness direction remains in a healthy state, so that it is possible to transmit the load stress, and the safety of the structure can be remarkably improved.
表1に示す組成の溶鋼を真空溶解炉で溶製して、小型鋼塊(100kg)に鋳造したのち圧延により肉厚:100mmの鋼素材とした。これら鋼素材に、表2に示す条件で加熱、熱間圧延、および冷却放冷(空冷)または加速冷却(ACC)を施し、表2に示す板厚の厚鋼板とした。なお、一部の厚鋼板には、冷却後、熱処理(焼戻処理)を施した。
得られた厚鋼板から、試験片を採取し、集合組織、引張特性、靭性、脆性亀裂伝播停止特性について調査した。調査方法は次のとおりとした。
(1)集合組織
得られた厚鋼板の板厚中央部、板厚1/4部、表層部から板面(圧延面)に平行に試験片を採取し、X線回折を用いて、板厚中央部および表層部については、(100)面からの回折強度を、板厚1/4部については(110)面からの回折強度をそれぞれ測定し、ランダム試験片に対する回折強度の比、ランダム強度比(単に強度比ともいう)を算出し、その厚鋼板の板厚中央部、表層部における、板面(圧延面)に平行な(100)面の集積度、または板厚1/4部における、板面(圧延面)に平行な(110)面の集積度とした。なお、表層部とは、厚鋼板の外表面から板厚方向に0.5mm内側の位置をいう。
(2)引張特性
得られた厚鋼板の板厚中央部から、圧延時の幅方向が引張方向となるようにJIS 4号試験片(平行部:14mmφ)を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、降伏強さYS、引張強さTSを求めた。
(3)靭性
得られた厚鋼板の板厚中央部から、圧延幅方向(C方向)に、Vノッチ試験片を採取し、JIS Z 2242の規定に準拠してシャルピー衝撃試験を実施し、破面遷移温度vTrs(℃)を求めた。
(4)脆性亀裂伝播停止特性
脆性亀裂伝播停止特性は、NRL落重試験を実施して求めた。NRL落重試験は、得られた厚鋼板からNRL落重試験片(試験片:厚さ19mm×幅50mm×長さ130mm)を、試験片長手方向が厚鋼板の圧延方向に一致するように採取し、ASTM E208の規定に準拠して行い、NDT温度を求めた。
Molten steel having the composition shown in Table 1 was melted in a vacuum melting furnace, cast into a small steel ingot (100 kg), and rolled into a steel material having a thickness of 100 mm. These steel materials were subjected to heating, hot rolling, cooling and cooling (air cooling) or accelerated cooling (ACC) under the conditions shown in Table 2 to obtain thick steel plates having the thicknesses shown in Table 2. Some thick steel plates were subjected to heat treatment (tempering treatment) after cooling.
Test pieces were collected from the resulting thick steel plates and investigated for texture, tensile properties, toughness, and brittle crack propagation stopping properties. The survey method was as follows.
(1) Texture The specimen is taken in parallel to the plate surface (rolled surface) from the plate thickness center portion,
(2) Tensile properties JIS No. 4 test piece (parallel part: 14mmφ) was sampled from the center of the thickness of the obtained thick steel plate so that the width direction during rolling was the tensile direction. A tensile test was carried out in accordance with this, and yield strength YS and tensile strength TS were determined.
(3) Toughness V-notch test specimens were collected in the rolling width direction (C direction) from the center of the thickness of the obtained thick steel plate, and Charpy impact test was performed in accordance with the provisions of JIS Z 2242. The surface transition temperature vTrs (° C.) was determined.
(4) Brittle crack propagation stop property The brittle crack propagation stop property was obtained by performing an NRL drop weight test. In the NRL drop test, an NRL drop test piece (test piece: thickness 19 mm x width 50 mm x length 130 mm) is taken from the obtained thick steel plate so that the longitudinal direction of the test piece matches the rolling direction of the thick steel plate. The NDT temperature was determined in accordance with ASTM E208.
また、熱間圧延時の生産性は、各厚鋼板の熱間圧延の開始から圧延終了までの所要時間を測定し、熱間圧延を中断して待機を行うことなく圧延を行った従来例(厚鋼板No.1)を基準(100)として、それに対する比率で評価した。この比率が高いほど、生産性が低いことを意味する。
得られた結果を表3に示す。
In addition, the productivity at the time of hot rolling is the conventional example in which the time required from the start of hot rolling to the end of rolling of each thick steel plate is measured, and the hot rolling is interrupted and the rolling is performed without waiting ( Thick steel plate No. 1) was evaluated as a standard (100) with a ratio to that. Higher ratios mean lower productivity.
The obtained results are shown in Table 3.
本発明例はいずれも、降伏強さ:325MPa以上、引張強さ:490MPa以上の高強度と、vTrsが−63℃以下の高靭性と、表層部および板厚中央部で板面に平行な面における(100)面強度比が2.0以上、板厚1/4部で板面に平行な面における(110)面強度比が1.5以上を示す集合組織を有しNDT温度が−40℃以下の優れた脆性亀裂伝播停止特性を有している。また、本発明例はいずれも、生産性も、基準である従来例(厚鋼板No.1)とほぼ同等で、生産性の阻害のない効率のよい圧延で製造できている。 In all of the examples of the present invention, the yield strength: 325 MPa or more, the tensile strength: 490 MPa or more, the high toughness of vTrs of −63 ° C. or less, and the surface layer and the plate thickness parallel to the plate surface The (100) plane strength ratio is 2.0 or more, and the (110) plane strength ratio in the plane parallel to the plate surface at 1/4 thickness is 1.5 or more, and the NDT temperature is -40 ° C or less. It has a brittle crack propagation stopping property. In addition, in all of the examples of the present invention, the productivity is almost the same as that of the conventional example (thick steel plate No. 1) which is a standard, and can be manufactured by efficient rolling without impeding the productivity.
本発明範囲を外れた比較例では、脆性亀裂伝播停止特性が低下しているか、生産性が低下している。圧延終了温度を低温(680℃)とした比較例(厚鋼板No.2)では、従来例(厚鋼板No.1)に比べて、望ましい集合組織が形成され、NDT温度:−50℃と低温となり、脆性亀裂伝播停止特性が向上しているが、圧延途中での待機を必要とし、生産性が低下している。また、Al含有量が本発明範囲を外れる比較例(厚鋼板No.3、No.23)では、変態温度が低く、圧延終了温度が890℃である圧延では、(α+γ)二相温度域での圧延が実施できないため、望ましい集合組織の形成が少なく、脆性亀裂伝播停止特性の向上が得られていない。また、Nb含有量が本発明範囲を外れる比較例(厚鋼板No.4)では、加工αが回復再結晶し、望ましい集合組織の形成が少なく、NDT温度:−7℃と高く、脆性亀裂伝播停止特性の向上が得られていない。 In the comparative example outside the scope of the present invention, the brittle crack propagation stop characteristic is lowered or the productivity is lowered. Compared to the conventional example (thick steel plate No. 1) in the comparative example (thick steel plate No. 2) in which the rolling end temperature is low (680 ° C.), a desirable texture is formed, and the NDT temperature is as low as −50 ° C. Thus, although the brittle crack propagation stop characteristic is improved, it is necessary to wait in the middle of rolling, and the productivity is lowered. Moreover, in the comparative examples (thick steel plates No. 3 and No. 23) in which the Al content is outside the scope of the present invention, in the rolling where the transformation temperature is low and the rolling end temperature is 890 ° C., the (α + γ) two-phase temperature range. Therefore, the formation of desirable texture is small, and the improvement of brittle crack propagation stopping characteristics is not obtained. Further, in the comparative example (thick steel plate No. 4) in which the Nb content is outside the scope of the present invention, the processing α is recovered and recrystallized, the formation of the desired texture is small, the NDT temperature is high as −7 ° C., and brittle crack propagation The improvement of the stop characteristic has not been obtained.
また、850〜950℃における累積圧下率、1パス当たりの圧下率が本発明範囲を外れる比較例(厚鋼板No.10)、圧延終了温度が本発明範囲を外れる比較例(厚鋼板No.11)では、靭性、脆性亀裂伝播停止特性のいずれも低下している。 Further, a comparative example (thick steel plate No. 10) in which the cumulative reduction ratio at 850 to 950 ° C. and the reduction rate per pass deviate from the scope of the present invention (thick steel plate No. 10), and a comparative example in which the rolling end temperature deviates from the present invention range (thick steel plate No. 11) ), Both toughness and brittle crack propagation stopping properties are degraded.
Claims (7)
C:0.001〜0.25%、 Si:0.05〜2.0%、
Mn:0.1〜2.0%、 P:0.03%以下、
S:0.03%以下、 Al:0.08〜3.0%、
Nb:0.005〜0.1%
を含有し、残部Feおよび不可避的不純物からなる組成と、表層部における圧延面に平行な面での(100)面強度比が2.0以上、板厚1/4部における圧延面に平行な面での(110)面強度比が1.5以上、板厚中央部における圧延面に平行な面での(100)面強度比が2.0以上である集合組織を有することを特徴とする脆性亀裂伝播停止特性に優れた高張力厚鋼板。 % By mass
C: 0.001 to 0.25%, Si: 0.05 to 2.0%,
Mn: 0.1 to 2.0%, P: 0.03% or less,
S: 0.03% or less, Al: 0.08 to 3.0%,
Nb: 0.005-0.1%
A composition comprising the balance Fe and inevitable impurities, and a (100) plane strength ratio in the plane parallel to the rolling surface in the surface layer portion is 2.0 or more, and in a plane parallel to the rolling surface in the 1/4 thickness portion The brittle crack propagation stop characteristic is characterized by having a texture with a (110) plane strength ratio of 1.5 or more and a (100) plane strength ratio in a plane parallel to the rolling surface at the center of the plate thickness of 2.0 or more. Excellent high tensile steel plate.
C:0.001〜0.25%、 Si:0.05〜2.0%、
Mn:0.1〜2.0%、 P:0.03%以下、
S:0.03%以下、 Al:0.08〜3.0%、
Nb:0.005〜0.1%
を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼素材に、加熱温度を1000〜1350℃とし、850〜950℃の温度範囲の累積圧下率を50%以上、圧延終了温度を850〜950℃の温度範囲とする熱間圧延を施し、該熱間圧延後、放冷することを特徴とする、優れた脆性亀裂伝播停止特性を有する高張力厚鋼板の製造方法。 % By mass
C: 0.001 to 0.25%, Si: 0.05 to 2.0%,
Mn: 0.1 to 2.0%, P: 0.03% or less,
S: 0.03% or less, Al: 0.08 to 3.0%,
Nb: 0.005-0.1%
Steel material having a composition comprising the balance Fe and inevitable impurities, the heating temperature is 1000 to 1350 ° C., the cumulative rolling reduction in the temperature range of 850 to 950 ° C. is 50% or more, and the rolling end temperature is 850 to A method for producing a high-tensile thick steel plate having excellent brittle crack propagation stopping characteristics, characterized by performing hot rolling at a temperature range of 950 ° C., and allowing to cool after the hot rolling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007126331A JP4985086B2 (en) | 2006-12-28 | 2007-05-11 | High tensile thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006355493 | 2006-12-28 | ||
JP2006355493 | 2006-12-28 | ||
JP2007126331A JP4985086B2 (en) | 2006-12-28 | 2007-05-11 | High tensile thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008179878A true JP2008179878A (en) | 2008-08-07 |
JP4985086B2 JP4985086B2 (en) | 2012-07-25 |
Family
ID=39723990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007126331A Active JP4985086B2 (en) | 2006-12-28 | 2007-05-11 | High tensile thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4985086B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010050394A1 (en) * | 2008-10-27 | 2010-05-06 | 新日本製鐵株式会社 | Fire-resistant steel material with excellent resistance to reheat embrittlement and with low-temperature toughness at welded heat-affected parts, and manufacturing method thereof |
WO2012108543A1 (en) * | 2011-02-08 | 2012-08-16 | Jfeスチール株式会社 | Thick steel plate of at least 50mm in thickness with superior long brittle fracture propagation stopping properties, manufacturing method for same, and method for evaluating long brittle fracture propagation stopping performance and test apparatus for same |
CN103695763A (en) * | 2013-12-26 | 2014-04-02 | 秦皇岛首秦金属材料有限公司 | Method for improving steel plate surface quality by adopting low-temperature rolling |
WO2020111856A3 (en) * | 2018-11-29 | 2020-08-13 | 주식회사 포스코 | High-strength steel sheet having excellent ductility and low-temperature toughness and method for manufacturing thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH059651A (en) * | 1991-07-05 | 1993-01-19 | Kobe Steel Ltd | Steel plate having excellent property of stopping propagation of brittle fracture and its production |
JPH05202444A (en) * | 1991-11-26 | 1993-08-10 | Nippon Steel Corp | Steel plate excellent in toughness at low temperature and its production |
JPH05271860A (en) * | 1992-03-25 | 1993-10-19 | Nippon Steel Corp | Structural steel excellent in brittle fracture resistance and its production |
JPH09104948A (en) * | 1996-08-26 | 1997-04-22 | Nippon Steel Corp | Steel sheet for structure purpose good in brittle fracture resistance |
JPH1088280A (en) * | 1996-09-18 | 1998-04-07 | Nippon Steel Corp | Steel sheet for structural purpose excellent in brittle fracture resistance after plastic deformation and its production |
JP2000256794A (en) * | 1999-03-08 | 2000-09-19 | Nippon Steel Corp | High toughness high damping alloy and its production |
JP2002020835A (en) * | 2000-05-02 | 2002-01-23 | Nippon Steel Corp | Steel excellent in brittle crack propagation stopping characteristics and rupture characteristics in sheet thickness and its production method |
-
2007
- 2007-05-11 JP JP2007126331A patent/JP4985086B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH059651A (en) * | 1991-07-05 | 1993-01-19 | Kobe Steel Ltd | Steel plate having excellent property of stopping propagation of brittle fracture and its production |
JPH05202444A (en) * | 1991-11-26 | 1993-08-10 | Nippon Steel Corp | Steel plate excellent in toughness at low temperature and its production |
JPH05271860A (en) * | 1992-03-25 | 1993-10-19 | Nippon Steel Corp | Structural steel excellent in brittle fracture resistance and its production |
JPH09104948A (en) * | 1996-08-26 | 1997-04-22 | Nippon Steel Corp | Steel sheet for structure purpose good in brittle fracture resistance |
JPH1088280A (en) * | 1996-09-18 | 1998-04-07 | Nippon Steel Corp | Steel sheet for structural purpose excellent in brittle fracture resistance after plastic deformation and its production |
JP2000256794A (en) * | 1999-03-08 | 2000-09-19 | Nippon Steel Corp | High toughness high damping alloy and its production |
JP2002020835A (en) * | 2000-05-02 | 2002-01-23 | Nippon Steel Corp | Steel excellent in brittle crack propagation stopping characteristics and rupture characteristics in sheet thickness and its production method |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010050394A1 (en) * | 2008-10-27 | 2010-05-06 | 新日本製鐵株式会社 | Fire-resistant steel material with excellent resistance to reheat embrittlement and with low-temperature toughness at welded heat-affected parts, and manufacturing method thereof |
JP4547041B2 (en) * | 2008-10-27 | 2010-09-22 | 新日本製鐵株式会社 | Refractory steel material excellent in reheat embrittlement resistance and low temperature toughness of weld heat affected zone and method for producing the same |
JPWO2010050394A1 (en) * | 2008-10-27 | 2012-03-29 | 新日本製鐵株式会社 | Refractory steel material excellent in reheat embrittlement resistance and low temperature toughness of weld heat affected zone and method for producing the same |
WO2012108543A1 (en) * | 2011-02-08 | 2012-08-16 | Jfeスチール株式会社 | Thick steel plate of at least 50mm in thickness with superior long brittle fracture propagation stopping properties, manufacturing method for same, and method for evaluating long brittle fracture propagation stopping performance and test apparatus for same |
JP2012180590A (en) * | 2011-02-08 | 2012-09-20 | Jfe Steel Corp | Thick steel sheet of at least 50 mm in thickness with excellent long brittle fracture propagation stopping property, method for production thereof, method for evaluating long brittle fracture propagation stopping performance, and test apparatus |
JP2014145131A (en) * | 2011-02-08 | 2014-08-14 | Jfe Steel Corp | Not less than 50 mm-thick thick steel plate excellent in long brittle crack propagation stop property, and method of producing the same |
CN108130479A (en) * | 2011-02-08 | 2018-06-08 | 杰富意钢铁株式会社 | The excellent plate thickness of long brittle-cracking propagation stopping characteristics is the steel plate and its manufacturing method of more than 50mm |
CN103695763A (en) * | 2013-12-26 | 2014-04-02 | 秦皇岛首秦金属材料有限公司 | Method for improving steel plate surface quality by adopting low-temperature rolling |
WO2020111856A3 (en) * | 2018-11-29 | 2020-08-13 | 주식회사 포스코 | High-strength steel sheet having excellent ductility and low-temperature toughness and method for manufacturing thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4985086B2 (en) | 2012-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5445720B1 (en) | High strength steel plate with excellent arrestability | |
WO2012036312A1 (en) | High-strength hot-rolled steel sheet having superior fatigue resistance properties and method for producing same | |
JP5151090B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP4848966B2 (en) | Thick-wall high-tensile steel plate and manufacturing method thereof | |
JP5418251B2 (en) | Manufacturing method of thick-walled high-tensile hot-rolled steel sheet with excellent HIC resistance | |
JP5499731B2 (en) | Thick high-tensile hot-rolled steel sheet with excellent HIC resistance and method for producing the same | |
JP6572963B2 (en) | Hot-rolled steel sheet and manufacturing method thereof | |
JP2010202931A (en) | High-strength thick steel plate for structure excellent in brittle crack propagation arrest property, and method for producing the same | |
JP5194522B2 (en) | High-strength, high-workability hot-rolled steel sheet excellent in workability of the friction stir welding method and its production | |
WO2016157863A1 (en) | High strength/high toughness steel sheet and method for producing same | |
WO2014175122A1 (en) | H-shaped steel and method for producing same | |
JP5181496B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP2010222680A (en) | Method for manufacturing high strength high toughness steel excellent in workability | |
JP5181460B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5477089B2 (en) | Manufacturing method of high strength and high toughness steel | |
JP2007204781A (en) | Method for producing steel material excellent in fatigue crack propagating characteristic | |
JP5064149B2 (en) | High strength thick steel plate with excellent brittle crack propagation stopping performance and method for producing the same | |
JP5821929B2 (en) | High-strength hot-rolled steel sheet with excellent material stability and weldability and method for producing the same | |
JP4985086B2 (en) | High tensile thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5034392B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5439889B2 (en) | Thick steel plate for thick and high toughness steel pipe material and method for producing the same | |
JP4506985B2 (en) | Extra heavy steel material and method for manufacturing the same | |
CN115989327A (en) | Thick steel plate and method for producing same | |
JP4959402B2 (en) | High strength welded structural steel with excellent surface cracking resistance and its manufacturing method | |
JP2008013812A (en) | High toughness and high tensile strength thick steel plate and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100422 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120326 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120403 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120416 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4985086 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150511 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |