[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000256794A - High toughness high damping alloy and its production - Google Patents

High toughness high damping alloy and its production

Info

Publication number
JP2000256794A
JP2000256794A JP6061999A JP6061999A JP2000256794A JP 2000256794 A JP2000256794 A JP 2000256794A JP 6061999 A JP6061999 A JP 6061999A JP 6061999 A JP6061999 A JP 6061999A JP 2000256794 A JP2000256794 A JP 2000256794A
Authority
JP
Japan
Prior art keywords
vibration damping
toughness
rolling
less
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6061999A
Other languages
Japanese (ja)
Inventor
Toshinaga Hasegawa
俊永 長谷川
Yukio Tomita
幸男 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6061999A priority Critical patent/JP2000256794A/en
Publication of JP2000256794A publication Critical patent/JP2000256794A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high damping alloy for a low Cr structural material in which damping properties and strength-toughness are reconciled. SOLUTION: In steel having a compsn. contg., by weight, <=0.03% C, 0.01 to 3.5% Si, 0.3 to 3.0% Mn, <=0.02% P, <=0.010% S, 0.01 to 5.0% Cr, 0.002 to 3.5% Al and <=0.01% N, if required, added with one or >= two kinds among Cu, Ni, Mo, W, Nb, Ta, V, Ti, Zr, B, Ca, Mg and rare earth metals in suitable ranges, and consisting of the balance Fe with inevitable impurities, as to the surface and back faces of the steel sheet, respectively, the average ferrite grain size to 1/6 sheet thickness in the sheet thickness from the surface is controlled to 70 to <150 μm, the average ferrite grain size at the inside of the steel sheet other than the regions is controlled to 20 to <50 μm, also, the (200) plane intensity ratio of the ferrite phase by X-ray diffraction measured at the part of 1/8 sheet thickness in the sheet thickness direction from the surface is controlled to >=1.5, and the (200) plane intensity ratio by X-ray diffraction measured at the center part of the sheet thickness is controlled to >=3.0, by which its damping properties and toughness are reconciled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、船舶、橋梁、産業
機械、建築用等の構造材料として使用できる強度と靭性
を兼ね備えた制振合金とその製造方法に関わるものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration damping alloy having both strength and toughness which can be used as a structural material for ships, bridges, industrial machines, buildings, and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】最近、船舶、橋梁、産業機械、建築物に
対しても静粛性や振動抑制の要求が高まりつつあり、そ
の対策の一つとして、その構造材料に高い制振性が要求
される場合が増えている。すなわち、例えば、橋梁上の
高速鉄道走行時や大規模土木、建築作業時の騒音、振動
を構造材料そのものの制振効果で抑えようとするもの
で、このような目的のための構造材料は、強度、靭性、
加工性さらには溶接性等の構造材料として必要な基本特
性と制振性とを兼ね備える必要がある。
2. Description of the Related Art Recently, there has been an increasing demand for quietness and vibration suppression for ships, bridges, industrial machines, and buildings. As one of the measures, high damping properties are required for structural materials. Are increasing. That is, for example, noise and vibration during high-speed railway running on a bridge or large-scale civil engineering, construction work is to be suppressed by the vibration damping effect of the structural material itself, and the structural material for this purpose is, Strength, toughness,
It is necessary to have both basic properties necessary for a structural material such as workability and weldability and vibration damping properties.

【0003】上記特性を満足するためには、従来一般的
に用いられてきている樹脂サンドイッチ型の制振鋼板で
は不十分である。すなわち、樹脂サンドイッチ型の制振
鋼板の溶接性や曲げ加工性は一般の鋼材に比べて劣って
おり、その使用には制限が生じる。
In order to satisfy the above characteristics, a resin sandwich type vibration damping steel plate which has been generally used in the past is insufficient. That is, the weldability and bending workability of the resin sandwich type vibration damping steel sheet are inferior to those of general steel materials, and their use is limited.

【0004】樹脂サンドイッチ型制振鋼板に代わる金属
材料、特に溶接性やコストの点で構造材料として有利な
鉄系材料としては、振動による交番応力作用下での磁壁
移動の非可逆運動によるヒステリシスに起因して制振性
を発現する機構を利用した強磁性型制振合金が代表的で
ある。そのためには、フェライト単相組織とすることが
有利となるため、フェライト安定化元素を添加する。具
体的にはAl,Siを添加した材料と、Crを添加した
材料の例が開示されている。前者の例としては、特開平
4−99148号公報に示されるように、Alを最高
7.05%及びSiを最高4.5%まで添加した強磁性
型制振合金があり、後者の例としては、特開昭52−7
3118号公報に示されるように、Crを8〜30%添
加した強磁性型制振合金や、特開平6−22058号公
報で開示されているようなCr量が1〜5%と比較的少
ない強磁性型制振合金がある。
[0004] As a metal material which can replace the resin sandwich type vibration damping steel sheet, particularly an iron-based material which is advantageous as a structural material in terms of weldability and cost, hysteresis due to irreversible motion of domain wall movement under the action of alternating stress due to vibration. A typical example is a ferromagnetic damping alloy using a mechanism that exhibits damping properties. For this purpose, a ferrite single phase structure is advantageous, and therefore, a ferrite stabilizing element is added. Specifically, examples of materials to which Al and Si are added and materials to which Cr is added are disclosed. An example of the former is a ferromagnetic damping alloy containing up to 7.05% of Al and up to 4.5% of Si, as shown in JP-A-4-99148. Is described in JP-A-52-7
As shown in Japanese Patent No. 3118, a ferromagnetic damping alloy containing 8 to 30% of Cr or a relatively small amount of Cr of 1 to 5% as disclosed in Japanese Patent Application Laid-Open No. 6-22058. There is a ferromagnetic damping alloy.

【0005】しかし、これらの強磁性型制振合金はフェ
ライト安定化元素であるAl,Si,Cr等を多量に添
加している上、フェライト単相で変態を生じないために
粗粒であったり、また、変態を生じる場合でも制振性を
確保するために結晶粒径を粗大にする必要性があるため
に、構造材料として必要な靭性を達成することが困難で
あった。
However, these ferromagnetic damping alloys contain a large amount of ferrite stabilizing elements such as Al, Si, and Cr, and have a coarse phase because they do not undergo transformation in a ferrite single phase. Also, even when transformation occurs, it is difficult to achieve the toughness required as a structural material because it is necessary to increase the crystal grain size in order to secure damping properties.

【0006】靭性を損なわずに制振性を改善する方法と
して、焼戻しまたは焼きなまし条件を工夫して集合組織
を最適化する技術が、例えば、特開平10−72643
号公報で開示されているが、焼戻し条件や焼きなまし条
件の調整だけでは、組み合わせできる集合組織と結晶粒
径との範囲に自由度が少なく、さらなる靭性及び制振性
の向上は容易ではない。
As a method of improving the vibration damping property without impairing the toughness, a technique of optimizing the texture by devising tempering or annealing conditions is disclosed in, for example, Japanese Patent Application Laid-Open No. 10-72643.
However, it is difficult to further improve the toughness and the vibration damping property by only adjusting the tempering conditions and the annealing conditions.

【0007】[0007]

【発明が解決しようとする課題】本発明は、Cr量が5
%程度以下の、オーステナイト/フェライト変態を示す
低合金系強磁性型制振合金において、靭性と制振性とを
ともに良好とする合金と該合金の製造方法を提供するも
のである。
SUMMARY OF THE INVENTION In the present invention, the amount of Cr is 5
It is an object of the present invention to provide a low-alloy ferromagnetic type damping alloy exhibiting austenite / ferrite transformation of about% or less and having both good toughness and good damping property, and a method for producing the alloy.

【0008】[0008]

【課題を解決するための手段】強磁性型制振合金におけ
る制振性に対して、結晶粒径、転位密度、固溶C、N、
析出物以外に、集合組織が大きな影響を及ぼすことは、
特開平10−72643号公報でも示されているが、本
発明者らは、転位密度は焼戻しあるいは焼きなまし条件
で、固溶C、N、析出物量は化学組成と焼戻し、焼きな
まし条件で、各々ほぼ一義的に決定されることから、結
晶粒径と集合組織の制御をすることがさらなる靭性と制
振性の向上に対しては重要であるとの認識に基づき、靭
性、制振性に及ぼす結晶粒径と集合組織の影響を詳細に
検討した。
Means for Solving the Problems The crystal grain size, dislocation density, solute C, N,
In addition to precipitates, texture has a significant effect
As disclosed in Japanese Patent Application Laid-Open No. H10-72643, the present inventors have found that dislocation density is almost identical under tempering or annealing conditions, solid solution C and N, and precipitate amount are almost identical under chemical composition, tempering and annealing conditions. Is determined, it is important to control the crystal grain size and texture to further improve the toughness and damping properties. The effects of diameter and texture were studied in detail.

【0009】その結果、制振性に対する結晶粒径と集合
組織の影響は、材料の表面と内部とではその寄与率が異
なり、表裏面の表層部の一定厚みにわたって、粗粒と
(100)集合組織を発達させておけば、内部の粒径が
比較的細粒でも制振性が良好に保たれることを見出し
た。また、靭性については、表層部が粗粒であっても、
内部の応力3軸度の高い部分が細粒であれば材料全体と
しての靭性を損なうことがないため、上記のように表層
と内部とで結晶粒径と集合組織とを作り分けた材料であ
れば、従来以上の優れた靭性と制振性とを両立させるこ
とが可能である。
As a result, the influence of the crystal grain size and the texture on the vibration damping properties is different between the surface and the inside of the material, and the coarse grains and the (100) aggregate have a certain thickness in the surface layer on the front and back surfaces. It has been found that, if the structure is developed, the vibration damping property can be maintained well even if the internal particle size is relatively fine. Regarding toughness, even if the surface layer is coarse,
Since the toughness of the material as a whole is not impaired if the portion where the internal stress is high in the triaxiality is fine grains, any material having a different crystal grain size and texture between the surface layer and the inside as described above can be used. If this is the case, it is possible to achieve both excellent toughness and vibration damping properties more than before.

【0010】また、本発明者らは、該表層と内部とで各
々異なった結晶粒径と集合組織とを作り分けるための手
段も提案した。すなわち、熱間圧延を工夫することによ
り、表層部のみに適正な加工歪を導入することで、圧延
後に適切な熱処理後を施すと、表層と内部とで各々異な
った結晶粒径と集合組織とを作り分けることが可能とな
る。
[0010] The present inventors have also proposed means for separately producing different crystal grain sizes and textures in the surface layer and the inside. That is, by devising the hot rolling, by introducing an appropriate processing strain only to the surface layer portion, when subjected to an appropriate heat treatment after rolling, the crystal grain and texture different from each other in the surface layer and inside. Can be made separately.

【0011】発明者らは、上記の新たな知見に基づいて
本発明に至ったものであり、その要旨は以下の通りであ
る。
The inventors have reached the present invention based on the above-mentioned new findings, and the gist is as follows.

【0012】(1) 鋼板表裏面のそれぞれ、表面から
板厚方向に板厚の1/6までの平均フェライト粒径が7
0μm以上、150μm未満で、該領域以外の鋼板内部
の平均フェライト粒径が20μm以上、50μm未満で
あり、かつ、表面から板厚方向に板厚1/8の部位で測
定したX線回折によるフェライト相の(200)面強度
比が1.5以上で、板厚中心部で測定したX線回折によ
るフェライト相の(200)面強度比が3.0以上であ
ることを特徴とする高靭性制振合金。
(1) Each of the front and rear surfaces of the steel sheet has an average ferrite grain size of 7 from the front surface to 1/6 of the sheet thickness in the thickness direction.
0 μm or more and less than 150 μm, the average ferrite grain size inside the steel sheet other than the above area is 20 μm or more and less than 50 μm, and ferrite by X-ray diffraction measured at a portion of 1/8 of the thickness in the thickness direction from the surface. The high toughness control wherein the (200) plane intensity ratio of the phase is 1.5 or more, and the (200) plane intensity ratio of the ferrite phase measured by X-ray diffraction at the center of the plate thickness is 3.0 or more. Vibration alloy.

【0013】(2) 重量%で、C :0.03%以
下、Si:0.01〜3.5%、Mn:0.3〜3.0
%、P :0.020%以下、S :0.010%以
下、Cr:0.01〜5.0%、Al:0.002〜
3.5%、N :0.01%以下を含有し、残部がFe
及び不可避不純物からなることを特徴とする前記(1)
に記載の高靭性制振合金。
(2) C: 0.03% or less, Si: 0.01 to 3.5%, Mn: 0.3 to 3.0% by weight.
%, P: 0.020% or less, S: 0.010% or less, Cr: 0.01 to 5.0%, Al: 0.002 to
3.5%, N: 0.01% or less, the balance being Fe
And (1) characterized by comprising unavoidable impurities.
High toughness vibration damping alloy described in 1.

【0014】(3) 重量%で、Cu:0.05〜1.
5%、Ni:0.05〜2.0%、Mo:0.05〜
2.0%、W :0.05〜2.0%、Nb:0.00
5〜0.2%、Ta:0.005〜0.5%、V :
0.005〜0.5%、Ti:0.002〜0.02
%、Zr:0.002〜0.10%、B :0.000
3〜0.003%の1種または2種以上をさらに含有す
ることを特徴とする前記(2)に記載の高靭性制振合
金。
(3) Cu: 0.05-1.
5%, Ni: 0.05 to 2.0%, Mo: 0.05 to
2.0%, W: 0.05 to 2.0%, Nb: 0.00
5 to 0.2%, Ta: 0.005 to 0.5%, V:
0.005 to 0.5%, Ti: 0.002 to 0.02
%, Zr: 0.002 to 0.10%, B: 0.000
The high toughness damping alloy according to the above (2), further comprising one to two or more of 3 to 0.003%.

【0015】(4) 重量%で、Ca:0.001〜
0.05%、Mg:0.0002〜0.01%、RE
M:0.001〜0.05%の1種または2種以上をさ
らに含有することを特徴とする前記(2)または(3)
に記載の高靭性制振合金。
(4) Ca: 0.001% by weight
0.05%, Mg: 0.0002-0.01%, RE
M: one or more of 0.001 to 0.05% of the above (2) or (3).
High toughness vibration damping alloy described in 1.

【0016】(5) 鋼片を1000℃以上、1300
℃以下に加熱後すぐに、もしくは950℃以上のオース
テナイト域での累積圧下率が80%以下の粗圧延を行っ
た後に、以下の工程を開始する直前の鋼片厚みの10%
〜35%に対応する表層部領域をAr3変態点以上の温度
から2〜40℃/sの冷却速度で冷却を開始し、A r3
態点未満で冷却を停止して復熱させることを1回以上経
由させる過程で、最後の冷却後の復熱が終了するまでの
間に累積圧下率が10〜80%の仕上げ圧延を完了させ
た後、さらに加熱温度が650℃〜AC1変態点の焼戻し
または焼きなまし処理を施すことを特徴とする前記
(1)〜(4)のいずれかに記載の高靭性制振合金の製
造方法。
(5) The steel slab is heated to 1000 ° C. or higher and 1300
Immediately after heating to below ℃ or above 950 ℃
Rough rolling with a cumulative draft of 80% or less in the tenite range
10% of the billet thickness just before starting the following steps
The surface area corresponding to ~ 35% is Ar3Temperature above the transformation point
Starting cooling at a cooling rate of 2 to 40 ° C./s from r3Strange
Stop cooling at less than the state and return to heat at least once
In the process of reheating after the last cooling
In the meantime, finish rolling with cumulative reduction of 10 to 80% is completed.
After that, the heating temperature is further increased from 650 ° C. to AC1Tempering of transformation point
Or performing an annealing treatment.
(1) Production of the high toughness vibration damping alloy according to any one of (1) to (4)
Construction method.

【0017】(6) 鋼片を1000℃以上、1300
℃以下に加熱し、900℃以上で圧延を終了する累積圧
下率が10%〜80%の粗圧延を行った後に、開始温度
がAr3変態点以下で終了温度が600℃以上で、1パス
あたりの圧下率が20%以下で、かつ累積圧下率が30
〜80%の仕上げ圧延を行い、さらにその後、加熱温度
が650℃〜AC1変態点の焼戻しまたは焼きなまし処理
を施すことを特徴とする前記(1)〜(4)のいずれか
に記載の高靭性制振合金の製造方法。
(6) The steel slab is heated at a temperature of 1000 ° C. or more to 1300
After the rough rolling at a cumulative rolling reduction of 10% to 80% to complete the rolling at 900 ° C or lower, the starting temperature is lower than the Ar3 transformation point, the ending temperature is 600 ° C or higher, and one pass is performed. The rolling reduction per unit is 20% or less and the cumulative rolling reduction is 30
High-toughness according to any one of the above (1) to (4), wherein a finish rolling of up to 80% is carried out, and thereafter, a tempering or annealing treatment at a heating temperature of 650 ° C. to A C1 transformation point is performed. Manufacturing method of damping alloy.

【0018】[0018]

【発明の実施の形態】強磁性型制振合金の制振性は、外
力が付加されたときの磁壁移動の際のエネルギー損失に
よって発現されるため、磁壁移動がある程度容易である
ことが制振性向上の必要条件となっている。従って、従
来の強磁性型制振合金は結晶粒径を粗大化させるため
に、フェライト安定化元素を多量に添加してオーステナ
イト/フェライト変態を消滅させて変態のないフェライ
ト単相とするか、高温焼戻し等の製造方法の工夫によっ
て結晶粒の粗大化を図ることが一般的であった。
BEST MODE FOR CARRYING OUT THE INVENTION The damping property of a ferromagnetic type damping alloy is expressed by energy loss at the time of moving a domain wall when an external force is applied. This is a necessary condition for improving the performance. Therefore, in order to increase the crystal grain size of the conventional ferromagnetic damping alloy, a large amount of a ferrite stabilizing element is added to eliminate the austenite / ferrite transformation to form a ferrite single phase without transformation or a high temperature ferrite. It has been common practice to make the crystal grains coarse by devising a manufacturing method such as tempering.

【0019】しかし、結晶粒径を粗大化させることは一
方では靭性の劣化につながるため、変態のないフェライ
ト単相合金ではその極端に粗大な結晶粒径のために靭性
確保が本質的に困難であった。一方、低Cr系の強磁性
型制振合金のようにオーステナイト/フェライト変態を
有する場合は、熱処理によって結晶粒径の制御はある程
度可能であるものの、フェライト単相合金とは逆に、粗
粒にする方が困難で、粗粒化のためにはAC1変態点近傍
の高温で焼戻しあるいは焼きなましを施す必要があっ
た。
However, since increasing the crystal grain size leads to deterioration of toughness on the other hand, it is inherently difficult to secure toughness in a ferrite single-phase alloy without transformation because of its extremely large crystal grain size. there were. On the other hand, in the case of having an austenite / ferrite transformation such as a low Cr ferromagnetic type vibration damping alloy, the crystal grain size can be controlled to some extent by heat treatment, but, contrary to the ferrite single phase alloy, the grain size is reduced. It was more difficult to perform tempering or annealing at a high temperature near the A C1 transformation point for coarsening.

【0020】低Cr系制振合金において、高温焼戻しに
より結晶粒径を制御する場合、制振性を高めた上で、靭
性を構造材料として必要な程度確保することは必ずしも
容易でない。すなわち、焼戻し温度が低すぎれば十分に
粗粒化されずに制振性が劣り、逆に高すぎて、わずかに
二相域温度となると、逆変態オーステナイトが形成され
て最終的にマルテンサイト〜ベイナイトあるいは炭化物
の凝集体に変態し、該組織が靭性を劣化させ、かつ、オ
ーステナイトから該組織への変態時に歪が導入されるた
めに制振性も同時に劣化する。また、焼戻し温度が適当
でも、焼戻し前の製造履歴によっては混粒組織を呈した
りすることもある。
In the case of controlling the crystal grain size by high-temperature tempering in a low Cr-based damping alloy, it is not always easy to secure a necessary degree of toughness as a structural material while improving the damping property. That is, if the tempering temperature is too low, the particles are not sufficiently coarsened and the vibration damping properties are inferior.On the contrary, if the tempering temperature is too high and the temperature of the two-phase region is slightly increased, reverse transformed austenite is formed and finally martensite to Transformation into agglomerates of bainite or carbides, the structure deteriorates toughness, and at the same time, strain is introduced during transformation from austenite to the structure, so that the vibration damping property also deteriorates. Even if the tempering temperature is appropriate, a mixed grain structure may be exhibited depending on the manufacturing history before tempering.

【0021】細粒でかつ制振性を高める手段としては、
特開平10−72643号公報で示されているように、
フェライトの容易磁化方位である<100>方位を発達
させるために(100)集合組織を鋼板表面に平行に発
達させる方法がある。
As means for improving the vibration-damping properties of fine grains,
As shown in JP-A-10-72643,
In order to develop the <100> orientation, which is the easy magnetization orientation of ferrite, there is a method of developing a (100) texture parallel to the steel sheet surface.

【0022】本発明者らは、制振性と靭性とに及ぼす結
晶粒径と(100)集合組織の影響を詳細に調査し、
「鋼板表裏面のそれぞれ、表面から板厚方向に板厚の1
/6までの平均フェライト粒径が70μm以上、150
μm未満で、該領域以外の鋼板内部の平均フェライト粒
径が20μm以上、50μm未満であり、かつ、表面か
ら板厚方向に板厚1/8の部位で測定したX線回折によ
るフェライト相の(200)面強度比が1.5以上で、
板厚中心部で測定したX線回折によるフェライト相の
(200)面強度比が3.0以上である」ようにするこ
とで、従来以上に優れた靭性と制振性との両立が図られ
ることを見出した。
The present inventors have investigated in detail the effects of the crystal grain size and the (100) texture on the vibration damping property and toughness,
"Each of the front and back sides of the steel sheet has a thickness of 1
The average ferrite grain size up to / 6 is 70 μm or more and 150
The average ferrite grain size inside the steel sheet other than the above-mentioned region is 20 μm or more and less than 50 μm, and the ferrite phase by X-ray diffraction measured at a portion having a thickness of 1/8 in the thickness direction from the surface ( 200) When the surface strength ratio is 1.5 or more,
By ensuring that the (200) plane intensity ratio of the ferrite phase measured by X-ray diffraction at the center of the sheet thickness is 3.0 or more, it is possible to achieve both toughness and vibration damping properties that are superior to those of the related art. I found that.

【0023】制振性発現機構から、制振性に対する鋼板
組織因子の寄与度は鋼板部位で一様ではなく、鋼板表面
に近い部位の寄与度が大きい。一方、靭性については、
応力3軸度の高い内部の方が問題となる場合が多い。す
なわち、表層側は制振性を、内部は靭性を考慮した組
織、材質の制御が可能であれば、通常は両立が難しい制
振性と靭性とを両立させることが可能となる。
From the mechanism of the vibration damping property, the contribution of the steel sheet structure factor to the vibration damping property is not uniform at the steel sheet part, and the contribution near the steel sheet surface is large. On the other hand, regarding toughness,
In many cases, the inner part having a higher stress triaxiality is more problematic. That is, if it is possible to control the structure and the material in consideration of the damping property on the surface layer and the toughness inside, it is possible to achieve both the damping property and the toughness, which are usually difficult to achieve.

【0024】制振性の確保のためには、フェライト粒径
と面強度比で規定した集合組織を限定する必要があり、
靭性確保のためには、特に板厚中心部近傍のフェライト
粒径を一定以下に微細化する必要がある。すなわち、鋼
板表裏面のそれぞれ、表面から板厚方向に板厚の1/6
までの平均フェライト粒径が70μm以上、150μm
未満で、該領域以外の鋼板内部の平均フェライト粒径が
20μm以上、50μm未満である必要があるが、これ
は、鋼板表裏面のそれぞれ、表面から板厚方向に板厚の
1/6までの表層部の組織が制振性に主要な寄与を果た
しており、該領域の粒径を制振性について最適化するに
は、平均フェライト粒径で70μm以上、150μm未
満の範囲とする必要があるためである。制振性は一般的
にはフェライト粒径が粗大になるほど良好になると思わ
れているが、本発明者らの実験結果によれば、最適なフ
ェライト粒径が存在し、それ以上粗大化させても制振性
は飽和するか、むしろ劣化する。すなわち、表面から板
厚方向に板厚の1/6までの表層部について、下限のフ
ェライト粒径は70μm以上必要であるのは、該粒径未
満では、細粒のために鋼板の制振性が十分でないためで
あり、150μm未満とする必要があるのは、150μ
m以上の粗大粒では制振性向上効果が飽和するかむしろ
劣化するためと、表層部とはいえ、靭性に悪影響を及ぼ
すようになるためである。
In order to secure vibration damping properties, it is necessary to limit the texture defined by the ferrite grain size and the surface strength ratio.
In order to ensure toughness, it is necessary to reduce the ferrite grain size particularly near the center of the thickness to a certain value or less. In other words, each of the front and rear surfaces of the steel sheet is 1/6 of the thickness in the thickness direction from the front surface
Average ferrite particle size up to 70μm, 150μm
It is necessary that the average ferrite grain size inside the steel sheet other than the above region is not less than 20 μm and less than 50 μm. The structure of the surface layer plays a major contribution to the damping properties, and in order to optimize the grain size in this region with respect to the damping properties, the average ferrite grain size needs to be in the range of 70 μm or more and less than 150 μm. It is. Generally, it is thought that the larger the ferrite grain size becomes, the better the vibration damping property becomes.However, according to the experimental results of the present inventors, there is an optimum ferrite grain size, However, the damping properties are saturated or rather deteriorate. In other words, the lower limit of the ferrite grain size is required to be 70 μm or more in the surface layer portion from the surface to the thickness in the thickness direction up to 1/6 of the thickness. Is not sufficient, and it is necessary that the thickness be less than 150 μm.
This is because the effect of improving the vibration damping property is saturated or rather deteriorated with coarse grains of m or more, and the toughness is adversely affected even in the surface layer.

【0025】一方、表面から板厚方向に板厚の1/6ま
での表層部以外の領域は鋼板の制振性に及ぼす影響の度
合は小さいが、影響が完全に無いわけではないので、や
はりフェライト粒径を規定する必要がある。すなわち、
表面から板厚方向に板厚の1/6までの表層部以外の鋼
板内部の平均フェライト粒径を20μm以上、50μm
未満に限定する必要がある。これは、制振性への影響が
小さい、該鋼板内部領域においてもフェライト粒径を2
0μm以上にしないと表層領域の組織因子が本発明を満
足していても、鋼板の制振性が十分向上しないためであ
り、一方、上限を50μm未満に限定するのは、靭性確
保が目的であり、50μm未満に細粒化しておかないと
構造用材料として十分な靭性を確保できないためであ
る。
On the other hand, the area other than the surface layer from the surface up to 1/6 of the sheet thickness in the sheet thickness direction has a small degree of influence on the vibration damping properties of the steel sheet, but is not necessarily completely free of the influence. It is necessary to define the ferrite grain size. That is,
The average ferrite grain size inside the steel sheet other than the surface layer up to 1/6 of the thickness in the thickness direction from the surface is 20 μm or more and 50 μm
Must be limited to less than This means that the ferrite grain size is reduced by 2 even in the steel sheet inner region, which has a small effect on the vibration damping property.
If the thickness is not more than 0 μm, even if the structural factor in the surface layer region satisfies the present invention, the damping property of the steel sheet is not sufficiently improved. On the other hand, the upper limit is limited to less than 50 μm for the purpose of securing toughness. This is because sufficient toughness as a structural material cannot be ensured unless the grain size is reduced to less than 50 μm.

【0026】以上が、本発明の組織要件の内、結晶粒径
に関する限定理由であるが、制振性と靭性とを両立させ
るためには、さらに集合組織も制御する必要がある。す
なわち、靭性確保のためには比較的細粒とすることが必
要であるが、その上で制振性も併せて向上させるために
は、鋼板表面に平行な方向にフェライト相の容易磁化方
位である(100)方位を集積させることが好ましい。
この集合組織についても、制振性に対する影響は表層部
の方が強く、鋼板内部にいくに従って弱くなる。従っ
て、鋼板表面の集合組織を発達させることが好ましい
が、通常の圧延や圧延+熱処理で集合組織を発達させた
場合には、表層部の集合組織の発達度合いは小さいもの
に止まる。
The above is the reason why the grain size is limited among the structural requirements of the present invention. In order to achieve both vibration damping property and toughness, it is necessary to further control the texture. In other words, to ensure toughness, it is necessary to make the grains relatively fine. On top of that, in order to improve the damping properties, the easy magnetization orientation of the ferrite phase is parallel to the steel sheet surface. It is preferable to integrate certain (100) orientations.
Also in this texture, the influence on the vibration damping property is stronger in the surface layer portion and becomes weaker as it goes inside the steel sheet. Therefore, it is preferable to develop the texture on the surface of the steel sheet. However, when the texture is developed by ordinary rolling or rolling and heat treatment, the degree of development of the texture in the surface layer is small.

【0027】本発明者らは、本発明の請求項5または6
に示した方法や様々な手段により、通常の熱間圧延で得
られる集合組織分布を含めて、様々な集合組織分布を有
する鋼板を製作し、制振性や材質に及ぼす集合組織の影
響を検討した結果、結晶粒径を本発明の限定範囲とした
上で、「鋼板表面から板厚方向に板厚1/8の部位で測
定したX線回折によるフェライト相の(200)面強度
比が1.5以上で、板厚中心部で測定したX線回折によ
るフェライト相の(200)面強度比が3.0以上」、
とすることで、強度・靭性に悪影響を及ぼさずに、制振
性をさらに高められることを見出した。
The present inventors set forth in claim 5 or 6 of the present invention.
The steel plates with various texture distributions, including the texture distribution obtained by normal hot rolling, are manufactured by the methods and various methods described in (1), and the effect of texture on the damping properties and material properties is examined. As a result, with the crystal grain size being within the limited range of the present invention, "the (200) plane intensity ratio of the ferrite phase by X-ray diffraction measured at a site of 1/8 in the thickness direction from the steel sheet surface was 1%. 0.5 or more, and the (200) plane intensity ratio of the ferrite phase determined by X-ray diffraction measured at the center of the sheet thickness is 3.0 or more ”,
By doing so, it has been found that the vibration damping property can be further improved without adversely affecting the strength and toughness.

【0028】鋼板表面に近い部位ほど(100)集合組
織を高めることが理想的ではあるが、実際には困難であ
る。実際に鋼板の制振性向上に効果がある条件として
は、代表値として板厚1/8の部位で測定したX線回折
による(200)面強度比が1.5以上とすることであ
る。該部位での(200)面強度比が1.5以上であれ
ば、表層直下から板厚の1/6程度までの表層部におけ
る集合組織が制振性向上に好ましい分布となり、(20
0)面強度比が1.5未満の場合に比べて明確な制振性
の向上が望める。
It is ideal to increase the (100) texture at a portion closer to the steel sheet surface, but it is actually difficult. A condition that is actually effective in improving the vibration damping properties of the steel sheet is that the (200) plane intensity ratio by X-ray diffraction measured at a portion having a thickness of 1/8 as a representative value is 1.5 or more. If the (200) plane strength ratio at the site is 1.5 or more, the texture in the surface layer portion from immediately below the surface layer to about 1/6 of the plate thickness has a favorable distribution for improving vibration damping properties.
0) Clear improvement in vibration damping can be expected as compared with the case where the surface strength ratio is less than 1.5.

【0029】一方、内部の集合組織の制振性に対する寄
与は表面に比べて小さいため、制振性向上に効果を発揮
するためには、さらに強い集合組織を発達させる必要が
あり、実験結果に基づけば、板厚中心部で測定した(2
00)面強度比を3.0以上とする必要がある。該部位
での(200)面強度比が3.0未満であると、集合組
織を発達させない場合との優位差が明確でない。
On the other hand, since the contribution of the internal texture to the vibration damping property is smaller than that of the surface, it is necessary to develop a stronger texture in order to exhibit the effect of improving the vibration damping property. Based on this, it was measured at the center of the thickness (2
00) The surface intensity ratio needs to be 3.0 or more. When the (200) plane intensity ratio at the site is less than 3.0, the superior difference from the case where the texture is not developed is not clear.

【0030】以上が、制振性と靭性とをともに確保する
ための、本発明の組織要件である。
The above is the organizational requirement of the present invention for ensuring both vibration damping and toughness.

【0031】上述した本発明の組織要件を満足していれ
ば、達成手段によらず、良好な制振性と材質とを両立さ
せることが可能であるが、本発明者らはその安定的な達
成手段も併せて発明した。以下に本発明の組織要件を達
成するための製造方法について詳細に説明する。
If the above-mentioned organizational requirements of the present invention are satisfied, it is possible to achieve both good vibration damping properties and good materials regardless of the achievement means. Means for achieving the invention have also been invented. Hereinafter, a manufacturing method for achieving the organizational requirements of the present invention will be described in detail.

【0032】本発明の組織要件を満足させるための本発
明の製造手段の要点は、圧延の工夫によって表層と内部
における残留転位密度を変化させ、その後の熱処理にお
ける再結晶挙動を変化させて、表層部と内部とで異なる
集合組織と結晶粒径とを形成させることにある。具体的
には下記の2つの方法に大別される。
The essential point of the production means of the present invention for satisfying the structural requirements of the present invention is to change the residual dislocation density in the surface layer and the inside by modifying the rolling, and to change the recrystallization behavior in the subsequent heat treatment to obtain the surface layer. The purpose is to form different textures and crystal grain sizes between the part and the inside. Specifically, it is roughly classified into the following two methods.

【0033】すなわち、第1の方法は、「鋼片を100
0℃以上、1300℃以下に加熱し、鋼片厚みあるいは
粗圧延を行う場合は950℃以上のオーステナイト域で
の累積圧下率が80%以下の粗圧延を行った後の鋼片厚
みの10%〜35%に対応する表層部領域をAr3変態点
以上の温度から2〜40℃/sの冷却速度で冷却を開始
し、Ar3変態点未満で冷却を停止して復熱させることを
1回以上経由させる過程で、最後の冷却後の復熱が終了
するまでの間に累積圧下率が10〜80%の仕上げ圧延
を完了させた後、さらに加熱温度が650℃〜AC1変態
点の焼戻しまたは焼きなまし処理を施す」方法であり、
第2の方法は、「鋼片を1000℃以上、1300℃以
下に加熱し、先ず、900℃以上で圧延を終了する累積
圧下率が10%〜80%の粗圧延を行い、引き続き、開
始温度がAr3変態点以下で終了温度が600℃以上で、
1パスあたりの圧下率が20%以下で、かつ累積圧下率
が30〜80%の仕上げ圧延を行った後、さらに加熱温
度が650℃〜AC1変態点の焼戻しまたは焼きなまし処
理を施す」方法である。以下に、各々の方法ごとに、限
定理由を述べる。
That is, the first method is as follows.
When heating to 0 ° C or more and 1300 ° C or less, and when performing billet thickness or rough rolling, the cumulative rolling reduction in the austenite region of 950 ° C or more is 80% or less, and 10% of the billet thickness after performing rough rolling. It is necessary to start cooling at a cooling rate of 2 to 40 ° C./s from a temperature higher than the Ar 3 transformation point to a surface layer region corresponding to 3535%, stop cooling below the Ar 3 transformation point, and recover heat. In the process of passing more than once, after the finish rolling with a cumulative rolling reduction of 10 to 80% is completed until the reheating after the last cooling is completed, the heating temperature is further increased to 650 ° C. to the A C1 transformation point. Tempering or annealing process "
The second method is as follows: "The slab is heated to 1000 ° C. or more and 1300 ° C. or less, and firstly, rolling is completed at 900 ° C. or more, and rough rolling is performed at a cumulative rolling reduction of 10% to 80%. Is below the Ar3 transformation point and the end temperature is above 600 ° C,
After performing finish rolling with a rolling reduction of 20% or less per pass and a cumulative rolling reduction of 30% to 80%, a heating temperature of 650 ° C. to a tempering or annealing treatment at the A C1 transformation point is applied. is there. The reasons for the limitations are described below for each method.

【0034】先ず、第1の方法について説明する。第1
の方法は、表層と内部とに異なる圧延効果を付与するた
めに、一旦、水冷により表層部を低温まで冷却した後、
内部の顕熱により復熱する過程のフェライト域〜二相域
組織にさらに圧延を施すことにより、表層部により多く
の転位を導入するもので、具体的には、「鋼片を100
0℃以上、1300℃以下に加熱し、鋼片厚みあるいは
粗圧延を行う場合は950℃以上のオーステナイト域で
の累積圧下率が80%以下の粗圧延を行った後の鋼片厚
みの10%〜35%に対応する表層部領域をAr3変態点
以上の温度から2〜40℃/sの冷却速度で冷却を開始
し、Ar3変態点未満で冷却を停止して復熱させることを
1回以上経由させる過程で、最後の冷却後の復熱が終了
するまでの間に累積圧下率が10〜80%の仕上げ圧延
を完了させた後、さらに加熱温度が650℃〜AC1変態
点の焼戻しまたは焼きなまし処理を施す」ことにより本
発明の組織要件を達成する。
First, the first method will be described. First
The method of, in order to impart a different rolling effect to the surface layer and the inside, once cooled the surface layer to a low temperature by water cooling,
By further rolling the ferrite region to the two-phase region structure in the process of recuperating by internal sensible heat, more dislocations are introduced into the surface layer portion.
When heating to 0 ° C or more and 1300 ° C or less, and when performing billet thickness or rough rolling, the cumulative rolling reduction in the austenite region of 950 ° C or more is 80% or less, and 10% of the billet thickness after performing rough rolling. It is necessary to start cooling at a cooling rate of 2 to 40 ° C./s from a temperature higher than the Ar 3 transformation point to a surface layer region corresponding to 3535%, stop cooling below the Ar 3 transformation point, and recover heat. In the process of passing more than once, after the finish rolling with a cumulative rolling reduction of 10 to 80% is completed until the reheating after the last cooling is completed, the heating temperature is further increased to 650 ° C. to the A C1 transformation point. Perform the tempering or annealing treatment "to achieve the structural requirements of the present invention.

【0035】先ず、鋼片をオーステナイト域に再加熱す
るが、この場合の温度としては1000℃以上、130
0℃以下が好ましい。すなわち、1000℃未満では圧
延中の温度降下のために、表層だけでなく内部も二相域
加工されるため、表層と内部とで異なった組織、集合組
織を形成することが困難となる。また、鋼材の異方性が
増大する問題も生じる。一方、1300℃超では加熱オ
ーステナイト粒径が極端に粗大となるため、後の圧延に
よっても粒径の微細化ができず、表層〜板厚中心部にわ
たって靭性に悪影響を及ぼさない程度に細粒化できない
場合が生じるため、靭性確保ができない。従って、本発
明では鋼片の加熱温度を1000℃以上〜1300℃に
限定する。
First, the steel slab is reheated to the austenite region.
0 ° C. or lower is preferred. That is, if the temperature is less than 1000 ° C., not only the surface layer but also the inside is subjected to two-phase region processing due to the temperature drop during rolling, so that it is difficult to form different structures and textures between the surface layer and the inside. In addition, there is a problem that the anisotropy of the steel material increases. On the other hand, when the temperature exceeds 1300 ° C., the grain size of the heated austenite becomes extremely coarse, so that the grain size cannot be reduced by subsequent rolling, and the grain size is reduced to such an extent that the toughness is not adversely affected from the surface layer to the center of the sheet thickness. In some cases, it is impossible to ensure toughness. Therefore, in the present invention, the heating temperature of the steel slab is limited to 1000 ° C. or higher to 1300 ° C.

【0036】上記条件で鋼片をオーステナイト域に再加
熱した後、直接あるいは必要に応じてオーステナイト域
での圧延を行った後に、その段階における鋼片厚みの1
0%〜35%に対応する表層部領域をAr3変態点以上の
温度から2〜40℃/sの冷却速度で冷却を開始し、A
r3変態点未満で冷却を停止して復熱させることを1回以
上経由させる過程で、最後の冷却後の復熱が終了するま
での間に累積圧下率が10〜80%の仕上げ圧延を行
う。
After the slab is reheated to the austenite region under the above conditions, and directly or if necessary, rolled in the austenite region, the thickness of the slab at that stage is reduced to 1%.
The surface region corresponding to 0% to 35% starts to be cooled at a cooling rate of 2 to 40 ° C./s from a temperature not lower than the Ar3 transformation point.
In the process of stopping cooling at less than the r3 transformation point and reheating at least once, finish rolling with a cumulative reduction ratio of 10 to 80% is performed until reheating after the last cooling is completed. .

【0037】表層部のみをフェライト域〜フェライト/
オーステナイト二相域で復熱中に加工するために、表層
部を水冷等の手段により急冷し、該鋼材の急冷前の熱間
圧延時点での鋼片厚みまたは鋼材厚みの10〜35%に
対応する各表層部の領域をA r3変態点未満まで冷却する
とともに、表層部と内部に温度差をつけるが、その際、
該鋼材の水冷前の時点での板厚の10〜35%に対応す
る各表層部の領域の冷却速度は2℃/s以上にする必要
がある。これは、冷却速度が2℃/s未満では表層部と
内部との間に大きな温度差がつけられず、表層部を復熱
工程で加工することが困難なためである。冷却速度は大
きい方が好ましいが、40℃/sを超えて急冷しても効
果が飽和する上に、不必要に急冷することは鋼板の形状
維持のためには好ましくないため、上限を40℃/sと
する。
Only the surface layer has a ferrite region to ferrite /
A surface layer for processing during recuperation in the austenitic two-phase region
Part is quenched by means such as water cooling.
10% to 35% of slab thickness or steel thickness at the time of rolling
The corresponding surface layer area is A r3Cool below the transformation point
At the same time, a temperature difference is created between the surface layer and the inside,
This corresponds to 10 to 35% of the thickness of the steel material before water cooling.
The cooling rate of each surface layer area must be 2 ° C / s or more.
There is. This means that if the cooling rate is less than 2 ° C / s,
No remarkable temperature difference between the inside and the surface layer
This is because it is difficult to process in the process. High cooling rate
Although it is preferable to have a rapid cooling,
In addition to saturating the fruits, unnecessary quenching is the shape of the steel plate.
Because it is not preferable for maintenance, the upper limit is 40 ° C / s.
I do.

【0038】また、上記の冷却はAr3変態点以上から開
始する。これは、冷却開始温度がA r3変態点より低いと
内部も必然的に二相域圧延されることになり、後の熱処
理で表層と内部との組織、集合組織の差が大きくならな
いためと、単相オーステナイトから冷却することで表層
組織を均一化するためである。
The above cooling is performed by Ar3Open from above the transformation point
Start. This is because the cooling start temperature is A r3Lower than the transformation point
The interior is inevitably subjected to two-phase rolling,
The difference between the organization and texture of the surface layer and the interior
The surface layer is cooled by cooling from single-phase austenite.
This is to make the tissue uniform.

【0039】後述するように、上記復熱過程の加工は1
回もしくは2回以上繰り返してもよいが、最後の冷却後
の復熱が終了するまでの間に累積圧下率が10〜80%
の仕上げ圧延を施す。該圧延により、冷却−復熱過程で
形成されたフェライト組織に加工を加えフェライトマト
リクス中の転位密度を増加させるが、累積圧下率が10
%未満であると、最終的に残存する転位密度が十分でな
く、熱処理での組織制御ができない。一方、該仕上げ圧
延の累積圧下率が80%超であると、熱処理段階で細粒
組織に再結晶してしまい、表層部を制振性向上に適当な
粒径を有するフェライト組織とすることが困難となる。
As will be described later, the processing in the recuperation process is 1
May be repeated twice or more times, but the cumulative draft is 10 to 80% until the reheating after the last cooling is completed.
Finish rolling. By the rolling, the ferrite structure formed in the cooling-reheating process is processed to increase the dislocation density in the ferrite matrix.
%, The dislocation density finally remaining is not sufficient, and the structure cannot be controlled by heat treatment. On the other hand, if the cumulative rolling reduction of the finish rolling is more than 80%, it recrystallizes into a fine-grained structure in the heat treatment stage, and the surface layer may have a ferrite structure having a particle size appropriate for improving the vibration damping property. It will be difficult.

【0040】以上のAr3変態点未満への冷却と復熱中の
加工工程は1回でも良いが、複数回繰り返すことにより
効果が重畳するため、2回以上繰り返しても所望の組織
を得ることが可能である。その場合、各復熱段階の最高
温度あるいは最低温度は任意であっても本発明の温度条
件に従えば、超細粒化する。ただし、途中の復熱温度の
上限をAC3変態点以下とする方が加工の効果を確実にす
るためには好ましい。
The above-described processing steps during cooling to less than the Ar 3 transformation point and reheating may be performed once, but the effect is superimposed by repeating a plurality of times, so that a desired structure can be obtained even if the processing is repeated twice or more. It is possible. In this case, even if the maximum temperature or the minimum temperature in each recuperation stage is arbitrary, ultrafine granulation is performed according to the temperature conditions of the present invention. However, it is preferable to set the upper limit of the recuperation temperature in the middle to be equal to or lower than the A C3 transformation point in order to ensure the processing effect.

【0041】なお、鋼片厚みと仕上げ板厚との差が大き
い場合には、必要に応じてオーステナイト単相域で粗圧
延を行っても良いが、その場合は、オーステナイトの加
工集合組織を全厚にわたって顕著に形成させることは後
で表層と内部とに集合組織と結晶粒径の差をつけるため
には好ましくないため、オーステナイト再結晶域で圧延
を完了させるか、あるいは未再結晶域圧延を行ったとし
てもその加工量が大きくならないように配慮する必要が
あり、そのために、本発明においては、粗圧延を行う場
合の条件を、「950℃以上のオーステナイト域での累
積圧下率が80%以下」に限定する。
When the difference between the thickness of the slab and the thickness of the finished plate is large, rough rolling may be performed in the austenite single-phase region if necessary. Since it is not preferable to make the difference in texture and crystal grain size between the surface layer and the inside afterwards, the rolling is completed in the austenite recrystallization region or the unrecrystallized region is rolled. It is necessary to take care that the amount of processing does not increase even if it is performed. For this reason, in the present invention, the conditions for performing the rough rolling are as follows: "The cumulative rolling reduction in the austenite region of 950 ° C. or more is 80%. Below.

【0042】また、熱間圧延を完了した後の冷却条件
は、本制振合金の組成では冷却条件によらず圧延後の組
織はフェライト主体組織となり、熱処理後の組織形成に
特に大きな効果は有しないため、放冷しても、加速冷却
しても構わないが、圧延後の冷却中で表層部の組織が再
結晶・粒成長することは好ましくないので、極端な徐冷
は好ましくない。具体的には、圧延終了後〜200℃ま
での平均冷却速度が5℃/分未満の徐冷は避けるべきで
ある。
Regarding the cooling conditions after the completion of hot rolling, the structure after rolling becomes a ferrite-based structure regardless of the cooling conditions in the composition of the present damping alloy, and has a particularly great effect on the formation of the structure after heat treatment. Therefore, it may be allowed to cool or accelerate cooling. However, it is not preferable that the structure of the surface layer recrystallizes and grows during cooling after rolling, and thus extreme slow cooling is not preferable. Specifically, slow cooling in which the average cooling rate from the end of rolling to 200 ° C. is less than 5 ° C./min should be avoided.

【0043】上記圧延を施した後、最終的に本発明の組
織要件を形成させるために加熱温度が650℃〜AC1
態点の焼戻しまたは焼きなまし処理を施す。加熱温度が
650℃未満であると、転位密度の高い表層部において
も再結晶の進行が不十分で、所望のフェライト粒径と集
合組織が得られない。一方、AC1変態点を超えると、オ
ーステナイト化が始まり、このオーステナイト相が焼戻
しや焼きなましの冷却時に制振性、靭性に悪影響を及ぼ
すマルテンサイトあるいは炭化物の凝集体を形成するた
め好ましくない。従って、焼戻しあるいは焼きなましの
加熱温度は650℃〜AC1変態点に限定する必要があ
る。
After the above rolling, a tempering or annealing treatment at a heating temperature of 650 ° C. to the A C1 transformation point is finally performed to form the structural requirements of the present invention. If the heating temperature is lower than 650 ° C., the progress of recrystallization is insufficient even in the surface portion having a high dislocation density, and the desired ferrite grain size and texture cannot be obtained. On the other hand, when the temperature exceeds the A C1 transformation point, austenitization starts, and this austenite phase is not preferable because it forms agglomerates of martensite or carbide that adversely affect vibration damping properties and toughness during tempering or annealing. Therefore, the heating temperature for tempering or annealing needs to be limited to 650 ° C. to the AC 1 transformation point.

【0044】なお、熱処理の保持時間は温度のような大
きな効果を有しないため、所望の特性に応じて、選択す
れば良いが、保持が1分未満では温度分布の均一化が不
十分となりやすいため、また48時間を超えるような長
時間では表面の化学組成の変化や肌荒れが懸念されるよ
うになるため、1分〜48時間の範囲内を選択すること
が好ましい。冷却条件については、加熱・保持の間に組
織及び集合組織の形成は完了しているため、極端な急冷
以外であれば特に大きな影響を及ぼさない。水冷のよう
な急冷は、冷却不均一に起因した歪を生じて制振性の劣
化を招くため、避けるべきである。
The holding time of the heat treatment does not have such a large effect as the temperature, so it may be selected according to the desired characteristics. However, if the holding time is less than 1 minute, the uniformity of the temperature distribution tends to be insufficient. Therefore, when the time is longer than 48 hours, a change in the chemical composition of the surface or rough skin may be concerned. Therefore, it is preferable to select a time within the range of 1 minute to 48 hours. Regarding the cooling condition, since the formation of the structure and the texture during the heating and holding is completed, there is no particularly significant effect except for extreme quenching. Rapid cooling such as water cooling should be avoided because it causes distortion due to non-uniform cooling and causes deterioration of damping performance.

【0045】次に、「鋼片を1000℃以上、1300
℃以下に加熱し、先ず、900℃以上で圧延を終了する
累積圧下率が10%〜80%の粗圧延を行い、引き続
き、開始温度がAr3変態点以下で終了温度が600℃以
上で、1パスあたりの圧下率が20%以下で、かつ累積
圧下率が30〜80%の仕上げ圧延を行った後、さらに
加熱温度が650℃〜AC1変態点の焼戻しまたは焼きな
まし処理を施す」ことを特徴とする第2の方法について
述べる。
Next, "The slab was heated to 1000 ° C. or higher,
C. or lower, and first perform rough rolling at a cumulative rolling reduction of 10% to 80% at which rolling is completed at 900 ° C. or higher, and subsequently, when the starting temperature is lower than the Ar 3 transformation point and the ending temperature is 600 ° C. or higher, at a reduction ratio per one pass is 20% or less, and after the cumulative rolling reduction was 30% to 80% of the finish rolling, further heating temperature subjected to tempering or annealing treatment of 650 ° C. to a C1 transformation point "that A characteristic second method will be described.

【0046】鋼片の加熱温度を1000℃以上、130
0℃以下に限定する理由は第1の方法における理由と全
く同じである。
When the heating temperature of the billet is 1000 ° C. or more,
The reason for limiting the temperature to 0 ° C. or lower is exactly the same as the reason in the first method.

【0047】該温度域で鋼片を加熱した後、板厚調整と
オーステナイト粒径の一定の微細化のために、二相域圧
延を施す前に、累積圧下率が10%〜80%の粗圧延を
900℃以上の温度で終了させる。これは、該圧延によ
ってオーステナイトの加工集合組織を全厚にわたって顕
著に形成させることはフェライト組織の組織制御に好ま
しくないため、オーステナイト再結晶域で圧延を完了さ
せるか、あるいは未再結晶域圧延を行ったとしてもその
加工量が大きくならないように配慮する必要があるため
である。すなわち、圧延終了温度が900℃未満になる
と、必然的に未再結晶域での圧下率が必然的に大きくな
るために好ましくない。また、該圧延の累積圧下率が1
0%未満であると、オーステナイト粒径の細粒化に効果
がなく、逆に80%超であるとオーステナイトの集合組
織の発達が無視できなくなるため、好ましくない。従っ
て、900℃以上で終了するオーステナイト域での圧延
の累積圧下率は10%〜80%に限定する。
After the steel slab is heated in the temperature range, before the rolling in the two-phase zone, in order to adjust the sheet thickness and to make the austenite grain size constant, the cumulative reduction ratio is 10% to 80%. Rolling is completed at a temperature of 900 ° C. or more. This is because it is not preferable to control the structure of the ferrite structure by forming the austenite work texture remarkably over the entire thickness by the rolling, so that the rolling is completed in the austenite recrystallization region or the unrecrystallized region is rolled. This is because it is necessary to take care not to increase the processing amount. That is, if the rolling end temperature is lower than 900 ° C., the rolling reduction in the non-recrystallized region necessarily increases, which is not preferable. The rolling reduction of the rolling is 1
If it is less than 0%, there is no effect in reducing the austenite grain size, and if it is more than 80%, the development of the austenite texture cannot be ignored, which is not preferable. Therefore, the rolling reduction in the austenitic region where the rolling is completed at 900 ° C. or more is limited to 10% to 80%.

【0048】上記オーステナイト域圧延に引き続き、開
始温度がAr3変態点以下で終了温度が600℃以上で、
1パスあたりの圧下率が20%以下で、かつ累積圧下率
が30〜80%の仕上げ圧延を行う。すなわち、該条件
で圧延を施すことにより、後の熱処理で再結晶・粒成長
する際に、請求項1に示すような表層と内部とで異なっ
たフェライト粒径と集合組織とを形成させることが可能
となる。熱処理での再結晶・粒成長のためにはフェライ
トに加工歪を導入する必要があり、そのため、圧延の開
始温度はAr3変態点以下とする必要がある。ただし、終
了温度が600℃未満では、圧延反力が過大となり鋼板
形状の悪化も懸念されるため、終了温度は600℃以上
とする。累積圧下率は、加工の効果が確実でかつ、熱処
理で極端な細粒化をしない範囲として30〜80%の範
囲とするが、表層部の粗粒化を促進するためには、各パ
スの圧下率も20%以下に限定する必要がある。
Following the austenitic rolling, the starting temperature is lower than the Ar 3 transformation point and the ending temperature is higher than 600 ° C.
Finish rolling is performed in which the rolling reduction per pass is 20% or less and the cumulative rolling reduction is 30 to 80%. That is, by performing rolling under the above conditions, it is possible to form a different ferrite grain size and texture between the surface layer and the inside as shown in claim 1 during recrystallization and grain growth in the subsequent heat treatment. It becomes possible. For recrystallization and grain growth by heat treatment, it is necessary to introduce processing strain into the ferrite, and therefore, the rolling start temperature must be equal to or lower than the Ar3 transformation point. However, if the ending temperature is lower than 600 ° C., the rolling reaction force becomes excessively large and the steel sheet shape may be deteriorated. The cumulative rolling reduction is set to a range of 30 to 80% as long as the effect of the processing is secure and the grain size is not extremely reduced by the heat treatment. The rolling reduction also needs to be limited to 20% or less.

【0049】第2の方法における圧延後の冷却や焼戻
し、焼きなましの組織、材質に及ぼす影響は第1の方法
におけるそれらと全く同様であるので、その限定内容も
全く同一とする。
The effects of the cooling, tempering and annealing after rolling in the second method on the structure and the material are exactly the same as those in the first method, so that the limiting contents are exactly the same.

【0050】以上が、本発明における組織及び製造法に
関わる要件の説明であるが、本発明の組織要件を満足し
ても、良好な制振性、強度・靭性を達成するためには個
々の化学成分についても下記に述べる理由により、各々
限定する必要がある。
The above is a description of the requirements relating to the structure and the manufacturing method in the present invention. Even if the requirements for the structure of the present invention are satisfied, individual requirements for achieving good vibration damping properties, strength and toughness are obtained. The chemical components also need to be limited for the following reasons.

【0051】Cは、固溶状態であるか、析出物となって
いるかによって靭性、制振性への悪影響の度合いは異な
るが、いずれの状態でも制振性を大きく劣化させるた
め、その悪影響が許容できる量として上限を0.03%
とする。
C has a different degree of adverse effect on toughness and damping properties depending on whether it is in a solid solution state or a precipitate, but in any state, the damping property is greatly deteriorated. 0.03% upper limit as acceptable amount
And

【0052】Siは、脱酸剤として必要な元素で、脱酸
不足のための欠陥を生じさせないために0.01%以上
添加する必要がある。Siは脱酸剤としての効果以外
に、強度上昇や、フェライト安定化元素として粗粒化に
も有効であるが、3.5%を超えて添加しても、上記の
効果が飽和する一方で、粗大な酸化物のために制振性が
劣化するようになり、靭性の劣化も著しくなるため、上
限を3.5%とする。
Si is an element required as a deoxidizing agent, and must be added in an amount of 0.01% or more in order not to cause defects due to insufficient deoxidation. In addition to the effect as a deoxidizing agent, Si is also effective for increasing the strength and coarsening as a ferrite stabilizing element. However, even if added in excess of 3.5%, the above effect is saturated. The upper limit is set to 3.5% since the vibration damping property is deteriorated due to the coarse oxide and the toughness is significantly deteriorated.

【0053】Mnは強度確保のために0.3%以上添加
するが、過剰に添加すると、変態点の低下のために、粗
粒化が困難となって制振性を劣化させるため、また、溶
接性の低下も招くため、許容できる範囲を実験から求め
て上限を3.0%と定める。P,Sは不純物元素とし
て、偏析や介在物となって制振性、靭性への悪影響が著
しく大きいため、極力低減することが好ましいが、許容
できる範囲として、Pは0.020%以下、Sは0.0
10%以下とする。
Mn is added in an amount of 0.3% or more in order to secure strength. However, if added in excess, the transformation point is lowered, so that coarsening becomes difficult and the vibration damping property is deteriorated. Since the weldability is also reduced, an allowable range is determined from an experiment, and the upper limit is set to 3.0%. P and S, as impurity elements, segregate and become inclusions, which have a remarkable adverse effect on vibration damping properties and toughness. Therefore, it is preferable to reduce P and S as much as possible. Is 0.0
10% or less.

【0054】Crは、フェライト安定化元素であり、結
晶粒粗大化を通して、また固溶Crにより制振性を高め
る元素であり、強磁性型の制振合金において重要な元素
である。効果を発揮するためには0.01%以上の添加
が必要である。Cr量を高めるほど制振性は向上する
が、5.0%を超える添加では制振性向上効果が飽和す
る一方で、靭性の劣化が生じるため、本発明においては
上限を5.0%とする。
Cr is a ferrite stabilizing element, an element that enhances the vibration damping properties through coarsening of crystal grains and by solid solution Cr, and is an important element in a ferromagnetic damping alloy. In order to exert the effect, it is necessary to add 0.01% or more. As the Cr content is increased, the vibration damping property is improved. However, if the addition exceeds 5.0%, the vibration damping property improving effect is saturated, but the toughness is deteriorated. Therefore, in the present invention, the upper limit is 5.0%. I do.

【0055】Alは脱酸剤としても重要であるが、制振
性を向上させるために重要な元素でもある。効果を発揮
させるためには0.002%以上必要であるが、過剰に
添加するとAl23,AlN等の介在物、析出物が粗大
化して靭性の低下を招くため、上限を3.5%に限定す
る。
Although Al is important as a deoxidizing agent, it is also an important element for improving vibration damping. In order to exert the effect, 0.002% or more is necessary. However, if added excessively, inclusions such as Al 2 O 3 and AlN and precipitates become coarse and the toughness is reduced, so the upper limit is 3.5. %.

【0056】Nは、Cと同様、固溶状態でも析出状態で
も制振性に対して悪影響を与える元素であるため、極力
その低減が好ましいが、Alが本発明の範囲で添加され
ていれば、制振性や靭性にあまり悪影響を及ぼさないた
め、0.01%までの添加は許容する。
N, like C, is an element that has an adverse effect on the vibration damping properties both in a solid solution state and in a precipitated state. Therefore, it is preferable to reduce N as much as possible, but if Al is added within the scope of the present invention, Addition of up to 0.01% is permissible because it does not adversely affect the damping properties and toughness.

【0057】以上が本発明の鋼材の基本成分の限定理由
であるが、本発明においては、強度・靭性の調整のため
に、必要に応じて、Cu,Ni,Mo,W,Nb,T
a,V,Ti,Zr,Bの1種または2種以上を含有す
ることができる。
The reasons for limiting the basic components of the steel material according to the present invention have been described above. In the present invention, Cu, Ni, Mo, W, Nb, T
One, two or more of a, V, Ti, Zr, and B can be contained.

【0058】Cuは、母材の強度と靭性を同時に向上で
きる元素であるが、効果を発揮するためには0.05%
以上必要であり、逆に、1.5%超では熱間加工性に問
題を生じるため、0.05〜1.5%の範囲に限定す
る。
Cu is an element capable of simultaneously improving the strength and toughness of the base material.
The above is necessary. Conversely, if the content exceeds 1.5%, there is a problem in hot workability, so the content is limited to the range of 0.05 to 1.5%.

【0059】Niは、Cuと同様に母材の強度と靭性を
同時に向上できる元素であり、特に靭性向上に有効な元
素であるが、効果を発揮させるためには0.05%以上
含有させる必要がある。含有量が多くなると強度、靭性
は向上するが2.0%を超えて添加しても効果が飽和す
る一方で、制振性や溶接性が劣化するため、上限を2.
0%とする。
Ni is an element that can simultaneously improve the strength and toughness of the base material, like Cu, and is an element particularly effective in improving the toughness. However, it is necessary to contain 0.05% or more in order to exert the effect. There is. When the content is increased, the strength and toughness are improved. However, if the content exceeds 2.0%, the effect is saturated, but the vibration damping property and the weldability are deteriorated.
0%.

【0060】Moは、母材の強度向上に有効な元素であ
るが、明瞭な効果を生じるためには0.05%以上必要
であり、一方、2.0%を超えて添加すると、制振性と
ともに靭性及び溶接性が劣化する傾向を有するため、各
々0.05〜2.0%の範囲とする。
Mo is an element effective for improving the strength of the base material, but is required to be 0.05% or more in order to produce a clear effect. Since the toughness and the weldability tend to be deteriorated together with the properties, they are respectively set in the range of 0.05 to 2.0%.

【0061】WもMoと同様、固溶強化及び析出強化に
より母材強度の上昇に有効であるが、効果を発揮するた
めには0.05%以上必要である。一方、2.0%を超
えて過剰に含有すると、制振性と靭性の劣化が顕著とな
るため、上限を2.0%とする。
Similarly to Mo, W is effective in increasing the strength of the base material by solid solution strengthening and precipitation strengthening, but is required to be 0.05% or more in order to exhibit the effect. On the other hand, if the content exceeds 2.0%, the damping property and the toughness deteriorate significantly, so the upper limit is made 2.0%.

【0062】Nbは、Nb(C,N)を形成することで
強度・靭性の向上に有効な元素であるが、過剰の含有で
は析出物により制振性と靭性がともに劣化する。従っ
て、制振性、靭性の劣化を招かずに、効果を発揮できる
範囲として、0.005〜0.20%の範囲に限定す
る。
Nb is an element effective for improving strength and toughness by forming Nb (C, N). However, when Nb is excessively contained, both vibration damping property and toughness are deteriorated due to precipitates. Therefore, the range in which the effect can be exhibited without deteriorating the vibration damping property and toughness is limited to the range of 0.005 to 0.20%.

【0063】Taも強度・靭性の向上に有効な元素であ
るが、効果を発揮するためには0.005%以上の含有
が必要である。一方、0.50%を超えると、析出脆化
や粗大な析出物、介在物による制振性と靭性の劣化を生
じるため、上限を0.50%とする。
Ta is also an element effective for improving the strength and toughness, but it is necessary to contain 0.005% or more in order to exhibit the effect. On the other hand, if it exceeds 0.50%, precipitation embrittlement, coarse precipitates, and inclusions cause deterioration of damping properties and toughness, so the upper limit is made 0.50%.

【0064】VもVNを形成して強度向上に有効な元素
であるが、過剰の含有では析出物により制振性、靭性が
劣化する。従って、靭性の大きな劣化を招かずに、効果
を発揮できる範囲として、0.005〜0.50%の範
囲に限定する。
V is also an element effective for improving the strength by forming VN. However, if it is contained excessively, the precipitates deteriorate the vibration damping property and toughness. Therefore, the range in which the effect can be exerted without causing significant deterioration in toughness is limited to the range of 0.005 to 0.50%.

【0065】Tiは析出強化により母材強度向上に寄与
するとともに、TiNの形成により加熱オーステナイト
粒径微細化にも有効な元素であり、靭性向上にも有効な
元素であるが、効果を発揮するためには0.002%以
上の含有が必要である。一方、0.02%を超えると、
粗大な析出物、介在物を形成して制振性と靭性、さらに
延性を劣化させるため、上限を0.02%とする。
Ti contributes to the improvement of the base metal strength by precipitation strengthening, and is also an element effective in reducing the austenite grain size by formation of TiN, and is also effective in improving the toughness. For this purpose, a content of 0.002% or more is required. On the other hand, if it exceeds 0.02%,
The upper limit is made 0.02% because coarse precipitates and inclusions are formed to deteriorate the vibration damping property, toughness and ductility.

【0066】Zrも窒化物を形成する元素であり、Ti
と同様の効果を有するが、その効果を発揮するためには
0.002%以上の含有が必要である。一方、0.10
%を超えると、Tiと同様、粗大な析出物、介在物を形
成して制振性や靭性を劣化させるため、0.002〜
0.10%の範囲に限定する。
Zr is also an element forming nitride, and Ti
Has the same effect as described above, but in order to exhibit the effect, the content of 0.002% or more is necessary. On the other hand, 0.10
%, Coarse precipitates and inclusions are formed similarly to Ti to deteriorate the vibration damping property and toughness.
It is limited to the range of 0.10%.

【0067】Bは微量で確実にNと結びつくため、固溶
N固定による靭性、制振性向上や、焼入性向上による強
度・靭性向上に有効な元素であるが、効果を発揮するた
めには0.0003%以上必要である。一方、0.00
30%を超えて過剰に含有するとBNが粗大となり、制
振性や靭性に悪影響を及ぼす。また溶接性も劣化させる
ため、上限を0.0030%とする。
B is an element that is effective for improving toughness and damping property by solid solution N fixation, and for improving strength and toughness by improving hardenability because B is surely linked to N in a trace amount. Is required to be 0.0003% or more. On the other hand, 0.00
If it is contained in excess of more than 30%, BN becomes coarse, adversely affecting vibration damping and toughness. Further, since the weldability is also deteriorated, the upper limit is made 0.0030%.

【0068】さらに、延性の向上、継手靭性の向上のた
めに、必要に応じて、Ca,Mg,REMの1種または
2種以上を含有することができる。
Further, in order to improve ductility and joint toughness, one or more of Ca, Mg, and REM can be contained as necessary.

【0069】Ca,Mg,REMはいずれも硫化物の熱
間圧延中の展伸を抑制して延性特性向上に有効である。
酸化物を微細化させて継手靭性の向上にも有効に働く。
その効果を発揮するための下限の含有量は、各々、Ca
は0.001 %、Mgは0.0002%、REMは
0.001%である。一方、過剰に含有すると、硫化物
や酸化物の粗大化を生じ、制振性や延性の劣化を招くた
め、上限を各々、Caは0.05%、Mgは0.01
%、REMは0.05%とする。
Each of Ca, Mg, and REM is effective in suppressing the elongation of sulfide during hot rolling and improving ductility.
It also works effectively to improve the joint toughness by making the oxide finer.
The lower limit contents for exhibiting the effect are respectively Ca
Is 0.001%, Mg is 0.0002%, and REM is 0.001%. On the other hand, if it is contained excessively, sulfides and oxides are coarsened to cause deterioration of damping property and ductility. Therefore, the upper limits are 0.05% for Ca and 0.01% for Mg.
% And REM are 0.05%.

【0070】[0070]

【実施例】以上が、本発明の要件についての説明である
が、さらに、実施例に基づいて本発明の効果を示す。
The above has been a description of the requirements of the present invention. The effects of the present invention will be further shown based on examples.

【0071】表1に示す化学組成の供試鋼を用いて、表
2及び表3に示す製造条件で鋼板を製造した。製造した
鋼板の、本発明に関わる組織要件と機械的性質(引張特
性、2mmVノッチシャルピー衝撃特性、制振性)の測
定結果も合わせて表2、表3に示す。表2は請求項5に
示す本発明の製造方法により製造した本発明例とその比
較例とを示した結果であり、表3は請求項6に示す本発
明の製造方法により製造した本発明例とその比較例とを
示した結果である。
Using test steels having the chemical compositions shown in Table 1, steel sheets were manufactured under the manufacturing conditions shown in Tables 2 and 3. Tables 2 and 3 also show the structural requirements and mechanical properties (tensile properties, 2 mmV notch Charpy impact properties, vibration damping properties) of the manufactured steel sheet related to the present invention. Table 2 shows the results of the present invention manufactured by the manufacturing method of the present invention described in claim 5 and comparative examples, and Table 3 shows the examples of the present invention manufactured by the manufacturing method of the present invention described in claim 6. It is the result which showed and the comparative example.

【0072】引張特性は圧延方向に平行な方向(L方
向)の板厚中心部から丸棒引張試験片を採取して実施し
た。靱性評価は2mmVノッチシャルピー衝撃試験にお
ける破面遷移温度(vTrs)で評価したが、試験片は
引張特性と同様、L方向板厚中心部から採取した。制振
性は、試験片長手方向が圧延方向と平行になるようにし
て採取した、元厚×40mm幅×400mm長さの形状
の試験片を用いて、機械インピーダンス法により損失係
数(η)を求めた。
The tensile properties were measured by taking a round bar tensile test piece from the center of the sheet thickness in the direction (L direction) parallel to the rolling direction. The toughness was evaluated by the fracture surface transition temperature (vTrs) in the 2 mm V notch Charpy impact test, and the test piece was taken from the center in the L-direction thickness as in the case of the tensile properties. The damping property was determined by measuring the loss coefficient (η) by a mechanical impedance method using a test piece having an original thickness × 40 mm width × 400 mm length, which was sampled so that the longitudinal direction of the test piece was parallel to the rolling direction. I asked.

【0073】なお、本発明において制振性に大きな影響
を与える(100)集合組織の指標・測定方法は以下の
通りである。
In the present invention, the index and measuring method of the (100) texture which greatly affects the vibration damping properties are as follows.

【0074】通常、集合組織はX線回折によって測定さ
れ、例えば、(100)集合組織の詳細な測定にはポー
ルフィギュア装置により試料を2軸回転させ、あらゆる
方向から(200)反射(フェライトは結晶構造に起因
する消滅則の故に(100)反射がないため)の強度を
測定して集合組織を決定する。この場合、解析解析の結
果作成された(100)極点図の中心部付近における強
度のピーク値が本発明で指標としている回折強度比を与
える。しかし、極点図作成にはデータ収集や計算に長時
間を要するために、簡便な方法として、通常の広角X線
回折装置により測定した(200)反射強度が、特定の
結晶方位を強化や制御していない全くランダムな結晶方
位を持つ材料に対して何倍になるかの回折強度比を用い
ても良い。
Usually, the texture is measured by X-ray diffraction. For example, for a detailed measurement of the (100) texture, the sample is biaxially rotated by a pole figure apparatus, and the (200) reflection (ferrite is crystal The texture is determined by measuring the intensity (because there is no (100) reflection due to the extinction law due to the structure). In this case, the peak value of the intensity near the center of the (100) pole figure created as a result of the analysis gives the diffraction intensity ratio used as an index in the present invention. However, since pole figure creation requires a long time for data collection and calculation, as a simple method, the (200) reflection intensity measured by a normal wide-angle X-ray diffractometer is used to strengthen or control a specific crystal orientation. It is also possible to use a diffraction intensity ratio of several times that of a material having a completely random crystal orientation.

【0075】また、フェライト粒径の測定はJIS G
0552「鋼のフェライト結晶粒度試験方法」に準拠
して、50倍〜500倍の適当な光学顕微鏡組織写真に
ついて切断法により行った。
Further, the measurement of the ferrite particle size is based on JIS G
In accordance with No. 0552 "Testing method of ferrite crystal grain size of steel", an appropriate optical microstructure photograph of 50 to 500 times was performed by a cutting method.

【0076】表2、表3のうちの試験No.A1〜A1
6は、本発明の化学組成を有する鋼番1〜12を用い
て、本発明の製造方法により製造した鋼板であり、本発
明の組織要件を満足しており、いずれも良好な制振性と
強度、靱性とが同時に達成されていることが明らかであ
る。
Test Nos. In Tables 2 and 3 A1 to A1
6 is a steel sheet manufactured by the manufacturing method of the present invention using steel numbers 1 to 12 having the chemical composition of the present invention, which satisfies the structural requirements of the present invention, and all have good vibration damping properties and It is clear that strength and toughness are achieved at the same time.

【0077】一方、同様に表2、表3の結果から、本発
明の範囲を逸脱している試験No.B1〜B13の鋼板
は本発明により製造された試験No.A1〜A16の鋼
板に比べて、制振性と靱性のいずれか一方あるいは両方
が大幅に劣っていることが明らかである。
On the other hand, from the results of Tables 2 and 3, test Nos. The steel sheets of Nos. B1 to B13 are the test Nos. Manufactured by the present invention. It is clear that one or both of the damping property and the toughness are significantly inferior to the steel sheets of A1 to A16.

【0078】試験No.B1〜B5は、本発明の方法に
より製造しているが、化学組成が本発明を満足していな
いために制振性と靱性のいずれか一方あるいは両方が劣
っている比較例である。
Test No. B1 to B5 are comparative examples in which one or both of the vibration damping property and the toughness are inferior because the chemical composition does not satisfy the present invention, although they are produced by the method of the present invention.

【0079】すなわち、試験No.B1は、制振性に最
も悪影響を及ぼすCが過剰なため、本発明の組織要件は
満足しているにもかかわらず制振性、靭性ともに大幅に
劣る。
That is, the test No. In B1, since C, which has the most adverse effect on the damping property, is excessive, both the damping property and the toughness are significantly inferior even though the organizational requirements of the present invention are satisfied.

【0080】試験No.B2は、Siが過剰なために靱
性の劣化が著しく、制振性の向上も図られていない。
Test No. In B2, since Si is excessive, the deterioration of toughness is remarkable, and no improvement in damping properties is achieved.

【0081】試験No.B3は、Cと同様に制振性を劣
化させるNが過剰なため、制振性が大きく劣化してい
る。靱性も劣る。
Test No. B3, like C, has excessive N, which deteriorates the vibration damping property, so that the vibration damping property is greatly deteriorated. Poor toughness.

【0082】試験No.B4は、Niが過剰に添加され
ているため、靱性は比較的良好であるものの、制振性が
劣る。
Test No. B4 has relatively good toughness due to excessive addition of Ni, but has poor vibration damping properties.

【0083】試験No.B5は、Moが過剰なため、靱
性、制振性ともに劣る。
Test No. B5 is inferior in both toughness and vibration damping properties due to excessive Mo.

【0084】試験No.B6〜B8は、化学組成は本発
明を満足しているが、請求項1の製造法に関して本発明
の要件を満足していない例である。
Test No. B6 to B8 are examples in which the chemical composition satisfies the present invention but do not satisfy the requirements of the present invention with respect to the production method of claim 1.

【0085】すなわち、試験No.B6は、仕上げ圧延
の前の表層部の冷却−復熱工程を含まないため、本発明
の特徴である表層部と内部との間の組織、集合組織差が
生じていないため、同じ化学組成で本発明の組織要件を
満足している本発明例に比べて制振性、靭性が若干劣
る。
That is, the test No. B6 does not include a cooling / reheating step of the surface layer before the finish rolling, so that there is no difference in texture and texture between the surface layer and the inside, which is a feature of the present invention. Vibration damping properties and toughness are slightly inferior to those of the examples of the present invention satisfying the structural requirements of the present invention.

【0086】試験No.B7は、冷却−復熱工程後の最
終の仕上げ圧延の累積圧下率が過大であるため、表層、
内部ともに必要なフェライト粒径よりも微細であり、そ
の結果、靭性は良好ではあるが、制振性が劣る。
Test No. B7 has an excessively large rolling reduction in the final finish rolling after the cooling and reheating step, so that the surface layer,
The inside is finer than the required ferrite grain size, resulting in good toughness but poor vibration damping.

【0087】試験No.B8は、圧延後に施す焼戻し温
度が高すぎて、二相域温度になっているため、島状マル
テンサイトが生成して靭性、制振性がともに大幅に劣化
する。
Test No. In B8, since the tempering temperature applied after rolling is too high and the temperature is in the two-phase region, island-like martensite is generated, and both toughness and vibration damping properties are significantly deteriorated.

【0088】試験No.B9,B10は、請求項2の方
法により製造しているが、化学組成が本発明を満足して
いないために制振性と靱性のいずれか一方あるいは両方
が劣っている比較例である。
Test No. B9 and B10 are comparative examples in which one or both of the vibration damping property and the toughness are inferior because the chemical composition does not satisfy the present invention.

【0089】すなわち、試験No.B9は、試験No.
B1と同様、Cが過剰なため、本発明の組織要件は満足
しているにもかかわらず制振性、靭性ともに大幅に劣
る。
That is, the test No. B9 is the test No.
As in B1, because C is excessive, the structural requirements of the present invention are satisfied, but the vibration damping properties and toughness are significantly poor.

【0090】試験No.B10も、試験No.B2と同
様、Siが過剰なために靱性の劣化が著しく、制振性も
劣る。
Test No. Test No. B10 was also tested. As in B2, the excess of Si causes significant deterioration in toughness and poor vibration damping.

【0091】試験No.B11〜B13は、化学組成は
本発明を満足しているが、請求項2の製造法に関して本
発明の要件を満足していない例である。
Test No. B11 to B13 are examples in which the chemical composition satisfies the present invention but do not satisfy the requirements of the present invention with respect to the production method of claim 2.

【0092】すなわち、試験No.B11は、仕上げ圧
延の累積圧下率が過大であるため、各パスの圧下率が2
0%以下との本発明の要件を満足していても、最終的に
得られたフェライト粒径が表層、内部とも過度に微細で
あるために、制振性の向上が十分でない。
That is, the test No. In B11, since the cumulative rolling reduction of the finish rolling is excessive, the rolling reduction of each pass is 2%.
Even if the requirement of the present invention of 0% or less is satisfied, since the finally obtained ferrite particle size is excessively fine in both the surface layer and the inside, the improvement in vibration damping properties is not sufficient.

【0093】試験No.B12は、試験No.B11と
反対に、累積圧下率は本発明の要件を満足しているが、
1パスあたりの圧下率が20%を超える圧延パスを含む
ために、表層部のフェライト粒径と集合組織が本発明を
満足しておらず、制振性の向上が十分でない。
Test No. B12 is the test No. Contrary to B11, the cumulative rolling reduction satisfies the requirements of the present invention,
Since a rolling reduction in which the rolling reduction per pass exceeds 20% is included, the ferrite grain size and texture of the surface layer portion do not satisfy the present invention, and the improvement of the vibration damping property is not sufficient.

【0094】試験No.B13は、焼戻し温度が低すぎ
るために、加工組織の再結晶が十分進行しないために、
やはり表層部のフェライト粒径と集合組織が本発明を満
足しておらず、制振性が劣る。
Test No. B13 is because the recrystallization of the processed structure does not sufficiently proceed because the tempering temperature is too low.
Again, the ferrite grain size and texture of the surface layer do not satisfy the present invention, and the vibration damping properties are poor.

【0095】以上の実施例からも、本発明によれば、一
層の制振性の向上を、靭性の劣化を生じることなく図る
ことができ、その結果制振性と強度・靱性とが両立した
構造用材料として好ましい特性を有する制振合金を製造
することが可能であることが明白である。
From the above examples, according to the present invention, it is possible to further improve the vibration damping property without deteriorating the toughness, and as a result, the vibration damping property and the strength / toughness are compatible. It is clear that it is possible to produce damping alloys with favorable properties as structural materials.

【0096】[0096]

【表1】 [Table 1]

【0097】[0097]

【表2】 [Table 2]

【0098】[0098]

【表3】 [Table 3]

【0099】[0099]

【発明の効果】本発明により、制振性だけでなく、構造
材料として必要な、強度、靭性等の確保が可能となり、
その結果、船舶、橋梁、産業機械、建設、等へ構造材料
として使用可能な制振合金の提供が可能となり、産業上
の効果は極めて大きい。
According to the present invention, it becomes possible to secure not only the vibration damping property but also the strength, toughness, etc. necessary for the structural material.
As a result, it is possible to provide a damping alloy that can be used as a structural material for ships, bridges, industrial machines, construction, and the like, and the industrial effect is extremely large.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K032 AA01 AA04 AA08 AA11 AA12 AA14 AA15 AA16 AA17 AA19 AA20 AA21 AA22 AA23 AA24 AA27 AA29 AA31 AA32 AA33 AA35 AA36 AA37 AA39 AA40 CA02 CA03 CB01 CB02 CD03 CF02 CF03  ────────────────────────────────────────────────── ─── Continuing on the front page F term (reference) 4K032 AA01 AA04 AA08 AA11 AA12 AA14 AA15 AA16 AA17 AA19 AA20 AA21 AA22 AA23 AA24 AA27 AA29 AA31 AA32 AA33 AA35 AA36 AA37 AA39 AA01 CA02 CA03 CF03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 鋼板表裏面のそれぞれ、表面から板厚方
向に板厚の1/6までの平均フェライト粒径が70μm
以上、150μm未満で、該領域以外の鋼板内部の平均
フェライト粒径が20μm以上、50μm未満であり、
かつ、表面から板厚方向に板厚1/8の部位で測定した
X線回折によるフェライト相の(200)面強度比が
1.5以上で、板厚中心部で測定したX線回折によるフ
ェライト相の(200)面強度比が3.0以上であるこ
とを特徴とする高靭性制振合金。
An average ferrite grain size from the front surface to the back surface of each of the steel plates in the thickness direction from the surface to 1/6 of the thickness is 70 μm.
Above, less than 150 μm, the average ferrite grain size inside the steel plate other than the region is 20 μm or more, less than 50 μm,
The ferrite phase has a (200) plane intensity ratio of 1.5 or more measured by X-ray diffraction measured at a thickness of 1/8 from the surface in the thickness direction, and the ferrite measured by X-ray diffraction measured at the center of the thickness. A high toughness vibration damping alloy, wherein the (200) plane strength ratio of the phase is 3.0 or more.
【請求項2】 重量%で、 C :0.03%以下、 Si:0.01〜3.5%、 Mn:0.3〜3.0%、 P :0.020%以下、 S :0.010%以下、 Cr:0.01〜5.0%、 Al:0.002〜3.5%、 N :0.01%以下を含有し、残部がFe及び不可避
不純物からなることを特徴とする請求項1に記載の高靭
性制振合金。
2. In% by weight, C: 0.03% or less, Si: 0.01 to 3.5%, Mn: 0.3 to 3.0%, P: 0.020% or less, S: 0 0.010% or less, Cr: 0.01 to 5.0%, Al: 0.002 to 3.5%, N: 0.01% or less, with the balance being Fe and unavoidable impurities. The high toughness damping alloy according to claim 1.
【請求項3】 重量%で、 Cu:0.05〜1.5%、 Ni:0.05〜2.0%、 Mo:0.05〜2.0%、 W :0.05〜2.0%、 Nb:0.005〜0.2%、 Ta:0.005〜0.5%、 V :0.005〜0.5%、 Ti:0.002〜0.02%、 Zr:0.002〜0.10%、 B :0.0003〜0.003%の1種または2種以
上を、さらに含有することを特徴とする請求項2に記載
の高靭性制振合金。
3. Cu: 0.05-1.5%, Ni: 0.05-2.0%, Mo: 0.05-2.0%, W: 0.05-2. 0%, Nb: 0.005 to 0.2%, Ta: 0.005 to 0.5%, V: 0.005 to 0.5%, Ti: 0.002 to 0.02%, Zr: 0 The high toughness vibration damping alloy according to claim 2, further comprising one or more of 0.002 to 0.10% and B: 0.0003 to 0.003%.
【請求項4】 重量%で、 Ca:0.001〜0.05%、 Mg:0.0002〜0.01%、 REM:0.001〜0.05%の1種または2種以上
をさらに含有することを特徴とする請求項2または3に
記載の高靭性制振合金。
4. One or more of Ca: 0.001 to 0.05%, Mg: 0.0002 to 0.01%, and REM: 0.001 to 0.05% by weight. The high toughness vibration damping alloy according to claim 2, wherein the alloy is contained.
【請求項5】 鋼片を1000℃以上、1300℃以下
に加熱後すぐに、もしくは950℃以上のオーステナイ
ト域での累積圧下率が80%以下の粗圧延を行った後
に、以下の工程を開始する直前の鋼片厚みの10%〜3
5%に対応する表層部領域をAr3変態点以上の温度から
2〜40℃/sの冷却速度で冷却を開始し、Ar3変態点
未満で冷却を停止して復熱させることを1回以上経由さ
せる過程で、最後の冷却後の復熱が終了するまでの間に
累積圧下率が10〜80%の仕上げ圧延を完了させた
後、さらに加熱温度が650℃〜AC1変態点の焼戻しま
たは焼きなまし処理を施すことを特徴とする請求項1〜
4のいずれかに記載の高靭性制振合金の製造方法。
5. The following steps are started immediately after heating the steel slab to 1000 ° C. or higher and 1300 ° C. or lower, or after performing rough rolling with a cumulative rolling reduction of 80% or lower in an austenite region of 950 ° C. or higher. 10% to 3% of the thickness of the slab immediately before
It is necessary to start cooling at a cooling rate of 2 to 40 ° C./s from the temperature above the Ar3 transformation point to the surface layer region corresponding to 5%, and stop the cooling below the Ar3 transformation point to regain heat. In the process of passing, after the finish rolling with an accumulated draft of 10 to 80% is completed until the reheating after the last cooling is completed, the heating temperature is further increased to 650 ° C. to temper the A C1 transformation point. Or performing an annealing treatment.
5. The method for producing a high toughness vibration damping alloy according to any one of 4.
【請求項6】 鋼片を1000℃以上、1300℃以下
に加熱し、900℃以上で圧延を終了する累積圧下率が
10%〜80%の粗圧延を行った後に、開始温度がAr3
変態点以下で終了温度が600℃以上で、1パスあたり
の圧下率が20%以下で、かつ累積圧下率が30〜80
%の仕上げ圧延を行い、さらにその後、加熱温度が65
0℃〜AC1変態点の焼戻しまたは焼きなまし処理を施す
ことを特徴とする請求項1〜4のいずれかに記載の高靭
性制振合金の製造方法。
6. The steel slab is heated to 1000 ° C. or higher and 1300 ° C. or lower, and after rolling at 900 ° C. or higher, rough rolling is performed with a cumulative rolling reduction of 10% to 80%, and the starting temperature is Ar 3.
At the transformation point or lower, the end temperature is 600 ° C. or higher, the rolling reduction per pass is 20% or less, and the cumulative rolling reduction is 30 to 80.
% Finish rolling, and thereafter, a heating temperature of 65%
The method for producing a high toughness vibration damping alloy according to any one of claims 1 to 4, wherein a tempering or annealing treatment at 0 ° C to A C1 transformation point is performed.
JP6061999A 1999-03-08 1999-03-08 High toughness high damping alloy and its production Withdrawn JP2000256794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6061999A JP2000256794A (en) 1999-03-08 1999-03-08 High toughness high damping alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6061999A JP2000256794A (en) 1999-03-08 1999-03-08 High toughness high damping alloy and its production

Publications (1)

Publication Number Publication Date
JP2000256794A true JP2000256794A (en) 2000-09-19

Family

ID=13147489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6061999A Withdrawn JP2000256794A (en) 1999-03-08 1999-03-08 High toughness high damping alloy and its production

Country Status (1)

Country Link
JP (1) JP2000256794A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179878A (en) * 2006-12-28 2008-08-07 Jfe Steel Kk High-strength thick steel plate superior in brittle crack propagation preventing characteristic, and its manufacturing method
JP2008214653A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk High strength thick steel plate for structural purpose having excellent brittle crack arrest property, and method for producing the same
CN105401097A (en) * 2015-11-28 2016-03-16 四川大学 High-toughness casting Fe-Cr-Mo-based high-damping alloy and preparation method thereof
CN105861948A (en) * 2016-06-13 2016-08-17 苏州双金实业有限公司 Steel capable of resisting fire effectively
RU2623947C1 (en) * 2016-05-04 2017-06-29 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Damping steel and item made from it
RU2685452C1 (en) * 2018-08-09 2019-04-18 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") High damping steel with a specified level of damping properties and an article made from it
RU2754623C1 (en) * 2020-10-28 2021-09-06 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Method for heat treatment of high damping steel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179878A (en) * 2006-12-28 2008-08-07 Jfe Steel Kk High-strength thick steel plate superior in brittle crack propagation preventing characteristic, and its manufacturing method
JP2008214653A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk High strength thick steel plate for structural purpose having excellent brittle crack arrest property, and method for producing the same
CN105401097A (en) * 2015-11-28 2016-03-16 四川大学 High-toughness casting Fe-Cr-Mo-based high-damping alloy and preparation method thereof
RU2623947C1 (en) * 2016-05-04 2017-06-29 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Damping steel and item made from it
CN105861948A (en) * 2016-06-13 2016-08-17 苏州双金实业有限公司 Steel capable of resisting fire effectively
RU2685452C1 (en) * 2018-08-09 2019-04-18 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") High damping steel with a specified level of damping properties and an article made from it
RU2754623C1 (en) * 2020-10-28 2021-09-06 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Method for heat treatment of high damping steel

Similar Documents

Publication Publication Date Title
KR101222724B1 (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
TWI605133B (en) Steel plate and its manufacturing method
WO2010114131A1 (en) Cold-rolled steel sheet and process for producing same
JP2003138345A (en) High strength and high ductility steel and steel sheet having excellent local ductility, and method of producing the steel sheet
JP3292671B2 (en) Hot-rolled steel strip for cold-rolled steel sheet with good deep drawability and aging resistance
JPH08188847A (en) Steel plate with composite structure, excellent in fatigue characteristic, and its production
JPS5896818A (en) Production of hot-rolled steel material having high strength and excellent low temperature toughness
JP6972153B2 (en) Hot-rolled bainite steel products with a tensile strength of at least 1100 MPa and a total elongation of 18% or more.
JP2017179596A (en) High carbon steel sheet and manufacturing method therefor
KR20220073804A (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
JP2002129281A (en) High tensile strength steel for welding structure excellent in fatigue resistance in weld zone and its production method
JP2003147482A (en) Non-heatteated high strength and high toughness forging, and production method therefor
JP7442645B2 (en) High-strength steel plate with excellent workability and its manufacturing method
JP2000256794A (en) High toughness high damping alloy and its production
JP2000008123A (en) Production of high tensile strength steel excellent in low temperature toughness
JP2002047532A (en) High tensile strength steel sheet excellent in weldability and its production method
JP2768807B2 (en) Manufacturing method of thin steel sheet
JP2002003985A (en) High tensile steel excellent in strength at high temperature, and its manufacturing method
JP2023071938A (en) High strength steel sheet having excellent ductility and workability, and method for manufacturing the same
JP2002146480A (en) Wire rod/steel bar having excellent cold workability, and manufacturing method
JP4205892B2 (en) High-strength hot-rolled steel sheet excellent in press formability and punching workability and manufacturing method thereof
JP4314962B2 (en) Composite steel sheet with excellent fatigue characteristics and method for producing the same
JPS60106952A (en) Process hardenable stainless steel of substantially austenite and manufacture
JP6673320B2 (en) Thick steel plate and method for manufacturing thick steel plate
JP2001107135A (en) Method for producing high toughness high damping alloy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509