JP2010202931A - High-strength thick steel plate for structure excellent in brittle crack propagation arrest property, and method for producing the same - Google Patents
High-strength thick steel plate for structure excellent in brittle crack propagation arrest property, and method for producing the same Download PDFInfo
- Publication number
- JP2010202931A JP2010202931A JP2009050165A JP2009050165A JP2010202931A JP 2010202931 A JP2010202931 A JP 2010202931A JP 2009050165 A JP2009050165 A JP 2009050165A JP 2009050165 A JP2009050165 A JP 2009050165A JP 2010202931 A JP2010202931 A JP 2010202931A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- thickness
- plate thickness
- crack propagation
- brittle crack
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 84
- 239000010959 steel Substances 0.000 title claims abstract description 84
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 238000005096 rolling process Methods 0.000 claims abstract description 73
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 230000007704 transition Effects 0.000 claims abstract description 10
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 7
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 6
- 229910052802 copper Inorganic materials 0.000 claims abstract description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 5
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 5
- 229910052796 boron Inorganic materials 0.000 claims abstract description 4
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 4
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 4
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 4
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 4
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 4
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 3
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 3
- 239000000463 material Substances 0.000 claims description 34
- 238000001816 cooling Methods 0.000 claims description 18
- 230000009467 reduction Effects 0.000 claims description 15
- 229910001566 austenite Inorganic materials 0.000 claims description 12
- 230000001186 cumulative effect Effects 0.000 claims description 12
- 238000004220 aggregation Methods 0.000 claims description 2
- 230000002776 aggregation Effects 0.000 claims description 2
- 238000003860 storage Methods 0.000 abstract description 5
- 229910052761 rare earth metal Inorganic materials 0.000 abstract description 2
- 150000002910 rare earth metals Chemical class 0.000 abstract 1
- 229910000859 α-Fe Inorganic materials 0.000 description 13
- 230000000694 effects Effects 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 239000013078 crystal Substances 0.000 description 9
- 239000002344 surface layer Substances 0.000 description 9
- 238000005098 hot rolling Methods 0.000 description 7
- 230000009466 transformation Effects 0.000 description 5
- 239000000969 carrier Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910000746 Structural steel Inorganic materials 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- RMLPZKRPSQVRAB-UHFFFAOYSA-N tris(3-methylphenyl) phosphate Chemical compound CC1=CC=CC(OP(=O)(OC=2C=C(C)C=CC=2)OC=2C=C(C)C=CC=2)=C1 RMLPZKRPSQVRAB-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Images
Landscapes
- Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、脆性亀裂伝播停止特性に優れた高強度厚鋼板およびその製造方法に関し、特に、板厚50mm以上の鋼板を用いる船舶、海洋構造物、低温貯蔵タンク、建築・土木構造物等の大型構造物に好適なものに関する。 The present invention relates to a high-strength steel plate excellent in brittle crack propagation stopping characteristics and a method for producing the same, and in particular, large-sized vessels such as ships, offshore structures, low-temperature storage tanks, construction / civil engineering structures using steel plates having a thickness of 50 mm or more. The present invention relates to a structure suitable for a structure.
船舶、海洋構造物、低温貯蔵タンク、建築・土木構造物等の大型構造物においては、脆性破壊に伴う事故が経済や環境に及ぼす影響が大きいため、安全性の向上が常に求められ、使用される鋼材に対しては、使用温度における靭性や、脆性亀裂伝播停止特性が要求されている。 For large structures such as ships, offshore structures, low-temperature storage tanks, and construction / civil engineering structures, accidents associated with brittle fractures have a significant impact on the economy and the environment. Steel materials are required to have toughness at operating temperatures and brittle crack propagation stopping characteristics.
コンテナ船やバルクキャリアーなどの船舶はその構造上、船体外板に高強度の厚肉材を使用するが、最近は船体の大型化に伴い一層の高強度厚肉化が進展し、一般に、鋼板の脆性亀裂伝播停止特性は高強度あるいは厚肉材ほど劣化する傾向があるため、脆性亀裂伝播停止特性への要求も一段と高度化している。 Ships such as container ships and bulk carriers use high-strength thick materials for the hull outer plates because of their structures. Since the brittle crack propagation stop property of steel tends to deteriorate with higher strength or thicker material, the demand for the brittle crack propagation stop property is further advanced.
鋼材の脆性亀裂伝播停止特性を向上させる手段として、従来からNi含有量を増加させる方法が知られており、液化天然ガス(LNG)の貯槽タンクにおいては、9%Ni鋼が商業規模で使用されている。 As a means of improving the brittle crack propagation stopping characteristics of steel materials, a method of increasing the Ni content has been conventionally known. In a LNG storage tank, 9% Ni steel is used on a commercial scale. ing.
しかし、Ni量の増加はコストの大幅な上昇を余儀なくさせるため、LNG貯槽タンク以外の用途には適用が難しい。 However, since the increase in the amount of Ni necessitates a significant increase in cost, it is difficult to apply to applications other than the LNG storage tank.
一方、LNGのような極低温にまで至らない、船舶やラインパイプに使用される、板厚が50mm未満の比較的薄手の鋼材に対しては、TMCP法により細粒化を図り、低温靭性を向上させて、優れた脆性亀裂伝播停止特性を付与することができる。 On the other hand, for thin steel materials with a plate thickness of less than 50 mm used for ships and line pipes that do not reach extremely low temperatures such as LNG, fine graining is attempted by the TMCP method to achieve low temperature toughness. It can be improved to give excellent brittle crack propagation stopping properties.
また、合金コストを上昇させることなく、脆性亀裂伝播停止特性を向上させるため表層部の組織を超微細化した鋼材が特許文献1で提案されている。 Further, Patent Document 1 proposes a steel material in which the structure of the surface layer portion is made ultrafine in order to improve the brittle crack propagation stop characteristic without increasing the alloy cost.
特許文献1記載の脆性亀裂伝播停止特性に優れた鋼材は、脆性亀裂が伝播する際、鋼材表層部に発生するシアリップ(塑性変形領域)が脆性亀裂伝播停止特性の向上に効果があることに着目し、シアリップ部分の結晶粒を微細化させて、伝播する脆性亀裂が有する伝播エネルギーを吸収させることを特徴とする。 The steel material having excellent brittle crack propagation stopping characteristics described in Patent Document 1 pays attention to the fact that shear lip (plastic deformation region) generated in the steel surface layer is effective in improving the brittle crack propagation stopping characteristics when the brittle crack propagates. In addition, the crystal grain of the shear lip portion is refined to absorb the propagation energy of the propagating brittle crack.
製造方法として、熱間圧延後の制御冷却により表層部分をAr3変態点以下に冷却し、その後制御冷却を停止して表層部分を変態点以上に復熱させる工程を1回以上繰り返して行い、この間に鋼材に圧下を加えることにより、繰り返し変態させ又は加工再結晶させて、表層部分に超微細なフェライト組織又はベイナイト組織を生成させることが記載されている。 As a production method, the process of cooling the surface layer part to the Ar 3 transformation point or less by controlled cooling after hot rolling, and then repeating the process of stopping the control cooling and returning the surface layer part to the transformation point or more is repeated once or more, During this time, it is described that by rolling down the steel material, it is repeatedly transformed or processed and recrystallized to form an ultrafine ferrite structure or bainite structure in the surface layer portion.
さらに、特許文献2では、フェライト−パーライトを主体のミクロ組織とする鋼材において脆性亀裂伝播停止特性を向上させるためには、鋼材の両表面部は円相当粒径:5μm以下、アスペクト比:2以上のフェライト粒を有するフェライト組織を50%以上有する層で構成し、フェライト粒径のバラツキを抑えることが重要で、バラツキを抑える方法として仕上げ圧延中の1パス当りの最大圧下率を12%以下とし局所的な再結晶現象を抑制することが記載されている。 Further, in Patent Document 2, in order to improve the brittle crack propagation stop property in a steel material mainly composed of ferrite-pearlite, both surface portions of the steel material have a circle-equivalent particle diameter of 5 μm or less and an aspect ratio of 2 or more. It is important to suppress the variation in the ferrite grain size with a layer having a ferrite structure with 50% or more of ferrite grains, and the maximum reduction rate per pass during finish rolling is 12% or less as a method to suppress the variation. It is described that local recrystallization phenomenon is suppressed.
しかし、特許文献1、2に記載の脆性亀裂伝播停止特性に優れた鋼材は、鋼材表層部のみを一旦冷却した後に復熱させ、かつ復熱中に加工を加えることによって、特定の組織を得るもので、実生産規模では制御が容易でなく、特に板厚が50mmを超える厚肉材では圧延、冷却設備への負荷が大きいプロセスである。 However, the steel materials excellent in brittle crack propagation stopping characteristics described in Patent Documents 1 and 2 are obtained by recooling only the steel surface layer part and then recovering the heat, and by applying processing during the recuperation, a specific structure is obtained. On the actual production scale, control is not easy, and in particular, a thick material with a plate thickness exceeding 50 mm is a process with a heavy load on the rolling and cooling equipment.
一方、特許文献3には、フェライト結晶粒の微細化のみならずフェライト結晶粒内に形成されるサブグレインに着目し、脆性亀裂伝播停止特性を向上させる、TMCPの延長上にある技術が記載されている。 On the other hand, Patent Document 3 describes a technique on the extension of TMCP that focuses on subgrains formed in ferrite crystal grains as well as refinement of ferrite crystal grains and improves brittle crack propagation stopping characteristics. ing.
具体的には、板厚30〜40mmにおいて、鋼板表層の冷却および復熱などの複雑な温度制御を必要とせずに、(a)微細なフェライト結晶粒を確保する圧延条件、(b)鋼材板厚の5%以上の部分に微細フェライト組織を生成する圧延条件、(c)微細フェライトに集合組織を発達させるとともに加工(圧延)により導入した転位を熱的エネルギーにより再配置しサブグレインを形成させる圧延条件、(d)形成した微細なフェライト結晶粒と微細なサブグレイン粒の粗大化を抑制する冷却条件、によって脆性亀裂伝播停止特性を向上させる。 Specifically, in a plate thickness of 30 to 40 mm, without requiring complicated temperature control such as cooling and recuperation of the steel sheet surface layer, (a) rolling conditions for securing fine ferrite crystal grains, (b) steel plate Rolling conditions for generating a fine ferrite structure in a portion of 5% or more of the thickness, (c) A texture is developed in the fine ferrite, and dislocations introduced by processing (rolling) are rearranged by thermal energy to form subgrains. The brittle crack propagation stop property is improved by rolling conditions and (d) cooling conditions that suppress coarsening of the formed fine ferrite crystal grains and fine subgrain grains.
また、制御圧延において、変態したフェライトに圧下を加えて集合組織を発達させることにより、脆性亀裂伝播停止特性を向上させる方法も知られている。鋼材の破壊面上にセパレーションを板面と平行な方向に生ぜしめ、脆性亀裂先端の応力を緩和させることにより、脆性破壊に対する抵抗を高める。 In addition, in controlled rolling, a method of improving the brittle crack propagation stop property by applying a reduction to a transformed ferrite to develop a texture is also known. Separation occurs on the fracture surface of the steel material in a direction parallel to the plate surface, thereby reducing the stress at the tip of the brittle crack, thereby increasing resistance to brittle fracture.
例えば、特許文献4には、制御圧延により(110)面X線強度比を2以上とし、かつ円相当径20μm以上の粗大粒を10%以下とすることにより、耐脆性破壊特性を向上させることが記載されている。 For example, in Patent Document 4, the resistance to brittle fracture is improved by controlling the (110) plane X-ray intensity ratio to 2 or more and controlling coarse grains having an equivalent circle diameter of 20 μm or more to 10% or less by controlled rolling. Is described.
特許文献5には継手部の脆性亀裂伝播停止性能の優れた溶接構造用鋼として、板厚内部の圧延面における(100)面のX線面強度比が1.5以上を有することを特徴とする鋼板が開示され、当該集合組織発達による応力負荷方向と亀裂伝播方向の角度のずれにより
脆性き裂伝播停止特性に優れることが記載されている。
Patent Document 5 is characterized in that, as a welded structural steel having excellent brittle crack propagation stopping performance in a joint part, the (100) plane X-ray plane strength ratio in the rolled surface inside the plate thickness is 1.5 or more. Steel sheet is disclosed, and it is described that it has excellent brittle crack propagation stoppage characteristics due to the deviation of the angle between the stress load direction and the crack propagation direction due to the texture development.
ところで、最近の6,000TEUを越える大型コンテナ船では板厚50mmを超える厚鋼板が使用されるが、井上ら:厚手造船用鋼における長大脆性き裂伝播挙動,日本船舶海洋工学会講演会論文集 第3号,2006,pp359−362は、板厚65mmの鋼板の脆性亀裂伝播停止性能を評価し、母材の大型脆性亀裂伝播停止試験で脆性亀裂が停止しない結果を報告している。 By the way, in recent large container ships exceeding 6,000 TEU, thick steel plates exceeding 50 mm are used. Inoue et al .: Propagation of long brittle cracks in thick shipbuilding steels No. 3, 2006, pp 359-362 evaluated the brittle crack propagation stopping performance of a steel sheet with a thickness of 65 mm, and reported the result that the brittle crack does not stop in the large brittle crack propagation stopping test of the base material.
また、供試材のESSO試験では使用温度―10℃におけるKcaの値が3000N/mm3/2に満たない結果が示され、50mmを超える板厚の鋼板を適用した船体構造の場合、安全性確保が課題となることが示唆されている。 In addition, in the ESSO test of the specimen, the Kca value at the use temperature of -10 ° C is less than 3000 N / mm 3/2, and in the case of a hull structure using a steel plate with a thickness exceeding 50 mm, safety It has been suggested that securing is an issue.
上述した特許文献1〜5に記載の脆性亀裂伝播停止特性に優れる鋼板は、製造条件や開示されている実験データから板厚50mm程度が主な対象で、50mmを超える厚肉材へ適用した場合、所定の特性が得られるか不明で、船体構造で必要な板厚方向の亀裂伝播に対しての特性については全く検証されていない。 When the steel plate excellent in the brittle crack propagation stop characteristics described in Patent Documents 1 to 5 described above is applied to a thick material exceeding 50 mm, the main object is a plate thickness of about 50 mm from manufacturing conditions and disclosed experimental data. It is unclear whether a predetermined characteristic can be obtained, and the characteristics against crack propagation in the thickness direction necessary for the hull structure have not been verified at all.
そこで本発明は、圧延条件を最適化し、板厚方向での集合組織を制御する工業的に極めて簡易なプロセスで安定して製造し得る脆性亀裂伝播停止特性に優れる高強度厚鋼板およびその製造方法を提供することを目的とする。 Accordingly, the present invention provides a high-strength thick steel plate having excellent brittle crack propagation stopping characteristics that can be stably produced by an industrially simple process that optimizes rolling conditions and controls the texture in the thickness direction, and a method for producing the same The purpose is to provide.
本発明者らは、上記課題の達成に向けて、厚肉材で脆性亀裂伝播停止性能が劣化する原因について鋭意検討し、以下の知見を得た。
1.脆性亀裂伝播停止特性の向上に有効な{100}<011>方位は圧延時にロールと圧延材間で発生するせん断歪の影響を受けて{110}<001>方位へ変化する。
2.せん断歪は、板厚が小さい場合には表層付近に発生するが、板厚が大きい場合には板厚1/4付近が最も高い値を示す。
3.その結果、厚肉材に未再結晶オーステナイト域における制御圧延を施した場合、板厚1/4部{100}<011>方位強度が低下し、{100}<011>方位の発達は板厚中央部付近だけに限られ、脆性亀裂伝播停止性能が低下する。
4.未再結晶オーステナイト域における圧延温度を特定し、累積圧下率、各パス毎の接触弧長(l)と圧延の入側板厚(h)の比(l/h)を特定することにより、厚肉材においても板厚1/4部{100}<011>方位強度を高めることが可能で、更に母材靭性を向上させることで優れた脆性亀裂伝播停止性能が達成される。
In order to achieve the above-mentioned problems, the present inventors diligently studied the cause of deterioration of brittle crack propagation stopping performance with thick materials, and obtained the following knowledge.
1. The {100} <011> orientation effective for improving the brittle crack propagation stop property changes to the {110} <001> orientation due to the influence of shear strain generated between the roll and the rolled material during rolling.
2. The shear strain occurs near the surface layer when the plate thickness is small, but shows the highest value near the plate thickness ¼ when the plate thickness is large.
3. As a result, when the thick material is subjected to controlled rolling in the non-recrystallized austenite region, the {100} <011> azimuth strength decreases by ¼ part of the plate thickness, and the development of the {100} <011> azimuth is The brittle crack propagation stopping performance is limited only in the vicinity of the central portion.
4). By specifying the rolling temperature in the non-recrystallized austenite region, and specifying the cumulative reduction ratio, the ratio of contact arc length (l) for each pass to the thickness (h) of the inlet side of the rolling (l / h) Also in the material, it is possible to increase the ¼ part thickness {100} <011> orientation strength, and further to improve the base metal toughness, an excellent brittle crack propagation stopping performance is achieved.
本発明は得られた知見を基に更に検討を加えてなされたもので、すなわち、本発明は、
1.未再結晶オーステナイト域における制御圧延による集合組織を備えた構造用高強度厚鋼板であって、前記集合組織で板厚中央部における圧延面での{100}<011>方位強度と、板厚1/4部における圧延面での{100}<011>方位強度と、更に、板厚1/4部におけるシャルピー破面遷移温度を、所望する脆性亀裂伝播停止特性に応じて特定したことを特徴とする脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板。
2.板厚中央部における圧延面での{100}<011>方位強度が1.7以上、かつ板厚1/4部における圧延面での{100}<011>方位強度が0.3以上の集合組織を有し、圧延方向に平行な断面の板厚中央部におけるミクロ組織のアスペクト比が4.0以下であり、板厚1/4部におけるシャルピー破面遷移温度が―40℃以下であることを特徴とする脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板。
3.鋼組成が、質量%で、C:0.03〜0.20%、Si:0.03〜0.5%、Mn:0.5〜2.0%、Al:0.005〜0.08%、P:0.03%以下、S:0.01%以下、N:0.0050%以下を含有し、残部がFeおよび不可避的不純物からなることを特徴とする2記載の脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板。
4.鋼組成が、更に、質量%で、Ti:0.005〜0.03%、Nb:0.005〜0.05%、Cu:0.01〜0.5%、Ni:0.01〜1.0%、Cr:0.01〜0.5%、Mo:0.01〜0.5%、V:0.001〜0.1%、B:0.003%以下、Ca:0.005%以下、REM:0.01%以下のいずれか1種、または2種以上を含有することを特徴とする3に記載の脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板。
5.板厚が50mm超えであることを特徴とする1乃至4のいずれか一つに記載の脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板。
6.3または4に記載の組成を有する鋼素材を、900〜1200℃の温度に加熱し、板厚中央部の温度が(Ar3点+100)℃以上の温度で累積圧下率30%以上、板厚中央部の温度が(Ar3点+60)℃以下、Ar3点以上の温度域において累積圧下率50%以上かつ、各パス毎の接触弧長(l)と圧延の入側板厚(h)の比(l/h)の平均値が0.6以上の圧延を行った後、2℃/s以上の冷却速度にて600℃以下まで冷却することを特徴とする脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板の製造方法。
7.板厚が50mm超えであることを特徴とする6記載の脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板の製造方法。
The present invention was made by further study based on the obtained knowledge, that is, the present invention is
1. A structural high-strength thick steel plate having a texture by controlled rolling in a non-recrystallized austenite region, wherein the {100} <011> orientation strength at the rolling surface in the central portion of the thickness and the thickness 1 {100} <011> orientation strength at the rolling surface at / 4 part, and further, Charpy fracture surface transition temperature at ¼ part of the plate thickness is specified according to the desired brittle crack propagation stop characteristics. Structural high-strength thick steel plate with excellent brittle crack propagation stopping properties.
2. Aggregation in which {100} <011> azimuth strength at the rolling surface at the center of the plate thickness is 1.7 or more and {100} <011> azimuth strength at the rolling surface at ¼ part of the plate thickness is 0.3 or more. The aspect ratio of the microstructure in the central part of the plate thickness of the cross section parallel to the rolling direction is 4.0 or less, and the Charpy fracture surface transition temperature at ¼ part of the plate thickness is −40 ° C. or less. Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics.
3. Steel composition is mass%, C: 0.03-0.20%, Si: 0.03-0.5%, Mn: 0.5-2.0%, Al: 0.005-0.08 %, P: 0.03% or less, S: 0.01% or less, N: 0.0050% or less, with the balance being Fe and inevitable impurities, Structural high strength thick steel plate with excellent properties.
4). Steel composition is further mass%, Ti: 0.005-0.03%, Nb: 0.005-0.05%, Cu: 0.01-0.5%, Ni: 0.01-1 0.0%, Cr: 0.01 to 0.5%, Mo: 0.01 to 0.5%, V: 0.001 to 0.1%, B: 0.003% or less, Ca: 0.005 The structural high-strength thick steel plate having excellent brittle crack propagation stop properties according to 3, characterized by containing at least 1% or less, REM: 0.01% or less.
5). The structural high-strength thick steel plate having excellent brittle crack propagation stopping characteristics according to any one of 1 to 4, wherein the plate thickness exceeds 50 mm.
The steel material having the composition described in 6.3 or 4 is heated to a temperature of 900 to 1200 ° C., and the temperature of the central portion of the plate thickness is (Ar 3 points + 100) ° C. or more, and the cumulative reduction ratio is 30% or more. The temperature at the center of the plate thickness is (Ar 3 points + 60) ° C. or less, the cumulative rolling reduction is 50% or more in the temperature range of Ar 3 points or more, the contact arc length (l) for each pass, and the inlet side plate thickness (h ) Ratio (l / h) after rolling at an average value of 0.6 or higher, cooling to 600 ° C. or lower at a cooling rate of 2 ° C./s or higher is achieved. A method for producing excellent structural high-strength thick steel plates.
7). 6. The method for producing a structural high-strength thick steel plate having excellent brittle crack propagation stopping characteristics according to 6, wherein the plate thickness exceeds 50 mm.
本発明によれば、板厚方向に集合組織が適切に制御され、脆性亀裂伝播停止特性に優れる、板厚50mmを超える高強度厚肉鋼板が得られ、例えば、造船分野では大型のコンテナ船、バルクキャリアーの強力甲板部構造においてハッチサイドコーミングや甲板部材へ適用することにより船舶の安全性向上に寄与するなど、産業上極めて有用である。 According to the present invention, it is possible to obtain a high-strength thick steel plate having a thickness exceeding 50 mm, in which the texture is appropriately controlled in the thickness direction and excellent in brittle crack propagation stopping characteristics. It is extremely useful in the industry, for example, it contributes to improving the safety of ships by applying it to hatch side combing and deck members in the strong deck structure of bulk carriers.
本発明では、1.鋼板内部(板厚の中央部および1/4部)の集合組織、2.板厚中央部のミクロ組織のアスペクト比、3.靭性を規定する。
1.鋼板内部の集合組織
本発明は板厚方向の広い領域で、亀裂伝播停止特性の向上に有効な{100}<011>方位を発達させた集合組織を得ることを主眼とし、板厚中央部における圧延面での{100}<011>方位強度と、かつ板厚1/4部における圧延面での{100}<011>方位強度を所望する脆性亀裂伝播停止特性に応じて適宜規定する。
In the present invention, 1. Texture inside the steel plate (central part and 1/4 part of the plate thickness); 2. Aspect ratio of microstructure in the center of the plate thickness Define toughness.
1. BACKGROUND OF THE INVENTION The present invention mainly aims at obtaining a texture with a developed {100} <011> orientation effective in improving crack propagation stopping characteristics in a wide region in the sheet thickness direction. The {100} <011> orientation strength at the rolling surface and the {100} <011> orientation strength at the rolling surface at a thickness of 1/4 are appropriately defined according to the desired brittle crack propagation stop characteristics.
{100}<011>方位を発達させると、亀裂の屈曲すなわち応力付加方向から亀裂が逸れることによる亀裂先端の応力拡大係数が低下する効果や、微細なセパレーションの発生により脆性亀裂先端の応力緩和の効果により脆性亀裂伝播停止性能が向上する。 When the {100} <011> orientation is developed, the stress intensity factor at the crack tip decreases due to crack bending, that is, the crack deviates from the stress application direction, and the stress relaxation at the brittle crack tip occurs due to the occurrence of fine separation. The effect improves brittle crack propagation stopping performance.
最近のコンテナ船やバルクキャリアーなど船体外板に用いられるようになった板厚50mmを超える厚肉材で、構造安全性を確保する上で目標とされるKca(―50℃)≧5000N/mm3/2の脆性亀裂伝播停止性能を得る場合、板厚中央部における圧延面での{100}<011>方位強度を1.7以上、かつ板厚1/4部における圧延面での{100}<011>方位強度を0.3以上とする。 Kca (-50 ° C) ≧ 5000 N / mm, which is a target for securing structural safety, with a thick material exceeding 50 mm thick that has been used for hull outer plates such as recent container ships and bulk carriers. In order to obtain a brittle crack propagation stopping performance of 3/2 , the {100} <011> orientation strength at the rolled surface at the center of the plate thickness is 1.7 or more and {100} at the rolled surface at the 1/4 thickness of the plate. } <011> The orientation strength is 0.3 or more.
ここで、方位強度は、X線回折装置(理学電機株式会社製)を使用し、Mo線源を用いて(200)、(110)および(211)正極点図を求め、得られた正極点図から3次元結晶方位密度関数を計算することにより求めた。
2.アスペクト比
上述の板厚中央部における好適な集合組織を得るため、圧延方向に平行な断面の板厚中央部におけるミクロ組織のアスペクト比を、4.0以下とする。
Here, the azimuth intensity is obtained by using an X-ray diffractometer (manufactured by Rigaku Corporation) and obtaining (200), (110) and (211) positive electrode dot diagrams using a Mo ray source. The three-dimensional crystal orientation density function was calculated from the figure.
2. Aspect ratio In order to obtain a suitable texture in the central portion of the plate thickness, the aspect ratio of the microstructure in the central portion of the plate thickness having a cross section parallel to the rolling direction is set to 4.0 or less.
これは、未再結晶オーステナイト域での圧延で形成された集合組織を保持するため、板厚中央部の温度がAr3点以上の温度域にて圧延を終了することが好ましく、その場合、圧延方向に平行な断面の板厚中央部におけるミクロ組織のアスペクト比が4.0以下となるからである。
3.母材靭性
母材靭性が、良好な特性を有することが亀裂の進展を抑制するための前提となるので、本発明に係る鋼板では板厚1/4部におけるシャルピー破面遷移温度も所望する脆性亀裂伝播停止特性に応じて適宜規定する。
In order to maintain the texture formed by rolling in the non-recrystallized austenite region, it is preferable to end the rolling in a temperature region where the temperature at the central portion of the plate thickness is Ar 3 points or higher. This is because the aspect ratio of the microstructure in the central portion of the thickness of the cross section parallel to the direction is 4.0 or less.
3. Base material toughness Since the base material toughness is a premise for suppressing the progress of cracks, having good characteristics, the steel sheet according to the present invention also has the desired brittleness of the Charpy fracture surface transition temperature at 1/4 thickness. It is specified as appropriate according to the crack propagation stop characteristics.
板厚50mmを超える厚肉材で、構造安全性を確保する上で目標とされるKca(―50℃)≧5000N/mm3/2の脆性亀裂伝播停止性能を得る場合、板厚1/4部におけるシャルピー破面遷移温度は―40℃以下と規定する。 In thick material exceeding thickness 50 mm, the case of obtaining the brittle crack propagation stopping performance of Kca (-50 ℃) ≧ 5000N / mm 3/2 the targeted for ensuring the structural safety, the sheet thickness 1/4 The Charpy fracture surface transition temperature in the part is specified to be -40 ° C or lower.
上述した特徴を備えた集合組織は、鋼の化学成分と製造条件を適切に選択した場合に得られる。以下、本発明における好ましい、鋼の化学成分と製造条件について説明する。
4.化学成分
説明において%は質量%とする。
The texture having the above-described features can be obtained when the chemical components and production conditions of steel are appropriately selected. Hereinafter, preferable chemical components and production conditions of steel in the present invention will be described.
4). In the description of chemical components,% is mass%.
C:0.03〜0.20%
Cは鋼の強度を向上する元素であり、本発明では、所望の強度を確保するためには0.03%以上の含有を必要とするが、0.20%を超えると、溶接性が劣化するばかりか靭性にも悪影響がある。このため、Cは、0.03〜0.20%の範囲に規定した。なお、好ましくは0.05〜0.15%である。
C: 0.03-0.20%
C is an element that improves the strength of steel. In the present invention, it is necessary to contain 0.03% or more in order to ensure a desired strength, but if it exceeds 0.20%, the weldability deteriorates. As well as adversely affecting toughness. For this reason, C was specified in the range of 0.03 to 0.20%. In addition, Preferably it is 0.05 to 0.15%.
Si:0.03〜0.5%
Siは脱酸元素として、また、鋼の強化元素として有効であるが、0.03%未満の含有量ではその効果がない。一方、0.5%を越えると鋼の表面性状を損なうばかりか靭性が極端に劣化する。従ってその添加量を0.03%以上、0.5%以下とする。
Si: 0.03-0.5%
Si is effective as a deoxidizing element and as a strengthening element for steel, but if its content is less than 0.03%, it has no effect. On the other hand, if it exceeds 0.5%, not only the surface properties of the steel are impaired, but also the toughness is extremely deteriorated. Therefore, the addition amount is set to 0.03% or more and 0.5% or less.
Mn:0.5〜2.0%
Mnは、強化元素として添加する。0.5%より少ないとその効果が十分でなく、2.0%を超えると溶接性が劣化し、鋼材コストも上昇するため、0.5%以上、2.0%以下とする。
Mn: 0.5 to 2.0%
Mn is added as a strengthening element. If the content is less than 0.5%, the effect is not sufficient. If the content exceeds 2.0%, the weldability deteriorates and the steel material cost increases, so the content is made 0.5% to 2.0%.
Al:0.005〜0.08%
Alは、脱酸剤として作用し、このためには0.005%以上の含有を必要とするが、0.08%を超えて含有すると、靭性を低下させるとともに、溶接した場合に、溶接金属部の靭性を低下させる。このため、Alは、0.005〜0.08%の範囲に規定した。なお、好ましくは、0.02〜0.04%である。
Al: 0.005 to 0.08%
Al acts as a deoxidizer, and for this purpose, it needs to contain 0.005% or more. However, if it contains more than 0.08%, it reduces the toughness and, when welded, weld metal Reduce the toughness of the part. For this reason, Al was specified in the range of 0.005 to 0.08%. In addition, Preferably, it is 0.02 to 0.04%.
N:0.0050%以下
Nは、鋼中のAlと結合し、圧延加工時の結晶粒径を調整し、鋼を強化するが、0.0050%を超えると靭性が劣化するため、0.0050%以下とする。
N: 0.0050% or less N combines with Al in the steel, adjusts the crystal grain size at the time of rolling, and strengthens the steel. However, if it exceeds 0.0050%, the toughness deteriorates. 0050% or less.
P,S
P,Sは、鋼中の不可避不純物であるが、Pは0.03%を超え、Sは0.01%を超えると靭性が劣化するため、それぞれ、0.03%以下、0.01%以下が望ましく、それぞれ、0.02%以下、0.005%以下がさらに望ましい。
P, S
P and S are inevitable impurities in the steel, but P exceeds 0.03%, and if S exceeds 0.01%, the toughness deteriorates. The following are desirable, and more preferably 0.02% or less and 0.005% or less, respectively.
以上が本発明の基本成分組成であるが、更に特性を向上させるため、Nb,Ti,Cu,Ni,Cr,Mo,V,B,Ca,REMの一種または二種以上を含有することが可能である。 The above is the basic component composition of the present invention. In order to further improve the characteristics, it is possible to contain one or more of Nb, Ti, Cu, Ni, Cr, Mo, V, B, Ca, and REM. It is.
Nb:0.005〜0.05%
Nbは、NbCとしてフェライト変態時あるいは再加熱時に析出し、高強度化に寄与する。また、オーステナイト域の圧延において未再結晶域を拡大させる効果をもち、フェライトの細粒化に寄与するので、靭性の改善にも有効である。その効果を得るためには0.005%以上の添加が必要であるが0.05%を超えて添加すると、粗大なNbCが析出し逆に、靭性の低下を招くのでその上限は0.05%とするのが好ましい。
Nb: 0.005 to 0.05%
Nb precipitates as NbC during ferrite transformation or reheating, and contributes to increasing the strength. In addition, it has the effect of expanding the non-recrystallized region in rolling in the austenite region, and contributes to the refinement of ferrite, so it is also effective in improving toughness. In order to obtain the effect, addition of 0.005% or more is necessary, but if added over 0.05%, coarse NbC precipitates and conversely causes a decrease in toughness, so the upper limit is 0.05. % Is preferable.
Ti:0.005〜0.03%、
Tiは微量の添加により、窒化物、炭化物、あるいは炭窒化物を形成し、結晶粒を微細化して母材靭性を向上させる効果を有する。その効果は0.005%以上の添加によって得られるが、0.03%を超える含有は、母材および溶接熱影響部の靭性を低下させるので、Tiは、0.005〜0.03%の範囲にするのが好ましい。
Ti: 0.005 to 0.03%,
Ti has the effect of forming nitrides, carbides, or carbonitrides by adding a small amount, and refining crystal grains to improve the base material toughness. The effect is obtained by addition of 0.005% or more, but the content exceeding 0.03% lowers the toughness of the base metal and the weld heat affected zone, so Ti is 0.005 to 0.03%. The range is preferable.
Cu,Ni、Cr、Mo
Cu,Ni、Cr、Moはいずれも鋼の焼入れ性を高める元素である。圧延後の強度アップに直接寄与するとともに、靭性、高温強度、あるいは耐候性などの機能向上のために添加するが、過度の添加は靭性や溶接性を劣化させるため、それぞれ上限を0.5%、1.0%、0.5%、0.5%とする。逆に添加量が0.01%未満であるとその効果が現れないため、0.01%以上の添加とする。
Cu, Ni, Cr, Mo
Cu, Ni, Cr, and Mo are all elements that enhance the hardenability of steel. It contributes directly to strength improvement after rolling, and is added to improve functions such as toughness, high-temperature strength, or weather resistance, but excessive addition degrades toughness and weldability, so the upper limit is 0.5% respectively. 1.0%, 0.5%, 0.5%. On the contrary, if the addition amount is less than 0.01%, the effect does not appear, so 0.01% or more is added.
V:0.001〜0.1%
Vは、V(CN)として析出強化により、鋼の強度を向上する元素であり、0.001%以上含有してもよいが、0.10%を超えて含有すると、靭性を低下させる。このため、Vは、0.001〜0.10%の範囲の添加とする。
V: 0.001 to 0.1%
V is an element that improves the strength of the steel by precipitation strengthening as V (CN), and may be contained in an amount of 0.001% or more, but if it exceeds 0.10%, the toughness is lowered. Therefore, V is added in the range of 0.001 to 0.10%.
B:0.003%以下
Bは微量で鋼の焼き入れ性を高める元素として添加してもよい。しかし、0.003%を超えて含有すると溶接部の靭性を低下させるので、Bは0.003%以下の添加とする。
B: 0.003% or less B may be added as an element that enhances the hardenability of steel in a small amount. However, if contained over 0.003%, the toughness of the welded portion is lowered, so B is added at 0.003% or less.
Ca:0.005%以下、REM:0.01%以下
Ca,REMは溶接熱影響部の組織を微細化し靭性を向上させ、添加しても本発明の効果が損なわれることはないので必要に応じて添加してもよい。しかし、過度に添加すると、粗大な介在物を形成し母材の靭性を劣化させるので、添加量の上限をそれぞれ0.005%、0.01%とするのが好ましい。
Ca: 0.005% or less, REM: 0.01% or less Ca, REM is necessary because it refines the structure of the heat affected zone and improves toughness, and even if added, the effect of the present invention is not impaired. It may be added accordingly. However, if added excessively, coarse inclusions are formed and the toughness of the base material is deteriorated. Therefore, it is preferable to set the upper limit of the addition amount to 0.005% and 0.01%, respectively.
なお、構造用鋼としての溶接性を確保するため、次式で示される炭素当量(Ceq)が0.45%以下であることが好ましい。
Ceq=C+Mn/6+Cu/15+Ni/15+Cr/5+Mo/5+V/5
(右辺の各元素記号は、その元素の含有量(質量%)を示すものとする。)
3.製造条件
製造条件はスラブ加熱温度、熱間圧延における(Ar3点+100)℃以上での累積圧下率、(Ar3点+60)℃以下、Ar3点以上の累積圧下率、および(Ar3点+60)℃以下、Ar3点以上における各パス毎の接触弧長(l)と圧延の入側板厚(h)の比(l/h)の平均値を、板厚中央部における圧延面での{100}<011>方位強度と板厚1/4部における圧延面での{100}<011>方位強度が所望の脆性亀裂伝播停止特性を得るために必要な値となるように適宜設定する。
In order to secure weldability as structural steel, the carbon equivalent (Ceq) represented by the following formula is preferably 0.45% or less.
Ceq = C + Mn / 6 + Cu / 15 + Ni / 15 + Cr / 5 + Mo / 5 + V / 5
(Each element symbol on the right side indicates the content (mass%) of the element.)
3. Production conditions production conditions slab heating temperature, the cumulative rolling reduction in the hot rolling (Ar 3 point +100) ° C. or higher, (Ar 3 point +60) ° C. or less, Ar 3 point or more cumulative rolling reduction, and (Ar 3 point The average value of the ratio (l / h) of the contact arc length (l) for each pass at +60) ° C. or lower and 3 or more points of Ar and the inlet side plate thickness (h) of rolling is calculated on the rolling surface in the central portion of the plate thickness. {100} <011> Orientation strength and {100} <011> orientation strength at the rolling surface at a thickness of ¼ part are appropriately set so as to have values necessary for obtaining desired brittle crack propagation stop characteristics. .
最近のコンテナ船やバルクキャリアーなど船体外板に用いられるようになった板厚50mmを超える厚肉材で、構造安全性を確保する上で目標とされるKca(―50℃)≧5000N/mm3/2の脆性亀裂伝播停止性能を得る場合は、まず、上記した組成の溶鋼を、転炉等で溶製し、連続鋳造等で鋼素材(スラブ)とする。ついで、鋼素材を、900〜1200℃の温度に加熱してから熱間圧延を行う。 Kca (-50 ° C) ≧ 5000N / mm, which is a target for ensuring structural safety, with thick material exceeding 50mm thickness, which has been used for hull outer plates such as recent container ships and bulk carriers. In order to obtain 3/2 brittle crack propagation stopping performance, first, the molten steel having the above composition is melted in a converter or the like, and is made into a steel material (slab) by continuous casting or the like. Next, hot rolling is performed after the steel material is heated to a temperature of 900 to 1200 ° C.
加熱温度が900℃未満では、圧延能率が低下し、1200℃超えではオーステナイト粒が粗大化し、靭性の低下を招くばかりか、酸化ロスが顕著となり、歩留が低下するので、加熱温度は900〜1200℃とする。靭性の観点から好ましい加熱温度の範囲は1000〜1150℃であり、より好ましくは1000〜1050℃である。 When the heating temperature is less than 900 ° C., the rolling efficiency is lowered. When the heating temperature is more than 1200 ° C., the austenite grains are coarsened and the toughness is lowered. In addition, the oxidation loss becomes remarkable and the yield is lowered. 1200 ° C. The range of preferable heating temperature from a viewpoint of toughness is 1000-1150 degreeC, More preferably, it is 1000-1050 degreeC.
熱間圧延はまず、板厚中央部の温度が(Ar3点+100)℃以上で累積圧下率を30%以上の圧延を行う。累積圧下率が30%未満であると、オーステナイトの細粒化が不十分で靭性が向上しない。 In the hot rolling, first, rolling is performed at a central thickness of (Ar 3 points + 100) ° C. or more and a cumulative reduction ratio of 30% or more. If the cumulative rolling reduction is less than 30%, the austenite is not sufficiently refined and the toughness is not improved.
本発明ではAr3変態点(℃)を求める式は特に規定しないが、例えばAr3=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo、とする。式において各元素は鋼中含有量(mass%)とする。 Although equation for Ar 3 transformation point in the present invention (℃) is not particularly specified, for example, Ar 3 = 910-310C-80Mn-20Cu -15Cr-55Ni-80Mo, to. In the formula, each element has a steel content (mass%).
次に、板厚中央部の温度が(Ar3点+60)℃以下、Ar3点以上の温度域において累積圧下率50%以上の圧延を行う。(Ar3点+60)℃以下、Ar3点以上の温度域は未再結晶オーステナイト域であり、この温度域での累積圧下率が50%以上でないと1/2部の{100}<011>方位強度が1.7以上とならない。 Next, rolling is performed at a cumulative reduction of 50% or more in a temperature range where the temperature at the center of the plate thickness is (Ar 3 points + 60) ° C. or lower and Ar 3 points or higher. The temperature range of (Ar 3 points + 60) ° C. or lower and Ar 3 points or higher is an unrecrystallized austenite region. If the cumulative rolling reduction in this temperature range is not 50% or more, {1/2} parts {100} <011> Azimuth strength does not exceed 1.7.
圧延は各パス毎の接触弧長(l)と圧延の入側板厚(h)の比(l/h)の平均値を、規定する。各パス毎の接触弧長(l)と圧延の入側板厚(h)の比(l/h)は本発明における重要な因子である。厚肉材の仕上圧延では通常、小圧下多パス圧延となるが、このことは板厚1/4部の{100}<011>方位の発達を妨げる。 Rolling defines the average value of the ratio (l / h) of the contact arc length (l) and the entry side thickness (h) of rolling for each pass. The ratio (l / h) of the contact arc length (l) for each pass and the entry side plate thickness (h) of rolling is an important factor in the present invention. In the finish rolling of thick materials, multipass rolling is usually performed under small reduction, but this hinders the development of {100} <011> orientation with a thickness of 1/4 part.
一般に、接触弧長(l)と圧延される前の板厚(h)の比(l/h)が大きい場合に、せん断歪は小さい値を示すと言われている。小圧下の場合にはl/hが小さく、せん断歪は大きくなり、その結果得られる{100}<011>方位の強度も低くなるため、この温度域での圧延の接触弧長(l)と圧延の入側板厚(h)の比(l/h)の平均値が高い方が好ましい。 Generally, when the ratio (l / h) between the contact arc length (l) and the plate thickness (h) before rolling is large, the shear strain is said to show a small value. In the case of a small pressure, l / h is small, the shear strain is large, and the strength of the {100} <011> orientation obtained as a result is also low. Therefore, the contact arc length (l) of rolling in this temperature range is It is preferable that the average value of the ratio (l / h) of the entry side plate thickness (h) of rolling is higher.
図1に板厚中央部の温度が(Ar3点+60)℃以下、Ar3点以上の温度域の圧延において、板厚1/4部の{100}<011>方位強度に及ぼす(l/h)平均値の影響を示す。板厚1/4部の{100}<011>方位の強度を0.3以上とするため、(l/h)平均値は0.6以上とする。 FIG. 1 shows the effect on the {100} <011> azimuth strength at a thickness of 1/4 part in rolling in a temperature range where the temperature at the center of the sheet thickness is (Ar 3 points + 60) ° C. or lower and Ar 3 points or higher. h) Indicates the influence of the average value. In order to set the strength of the {100} <011> orientation of the 1/4 thickness part to 0.3 or more, the (l / h) average value is set to 0.6 or more.
なお、熱間圧延では規定した温度域外での圧延を制限するものではない。上記規定する温度域で規定の累積圧下がおこなわれていれば規定する組織が得られる。ここで、未再結晶オーステナイト域での圧延で形成された集合組織を保持するため、板厚中央部の温度がAr3点以上の温度域にて圧延を終了することが好ましい。この場合、圧延方向に平行な断面の板厚中央部におけるミクロ組織のアスペクト比が4.0以下となる。圧延終了温度がAr3点を下回っても、前記アスペクト比が4.0以下であれば、形成される集合組織は実質的に未再結晶オーステナイト域における制御圧延による集合組織となるので差し支えない。 In hot rolling, rolling outside the specified temperature range is not limited. If the specified cumulative reduction is performed in the specified temperature range, the specified structure can be obtained. Here, in order to maintain the texture formed by rolling in the non-recrystallized austenite region, it is preferable to end the rolling in a temperature region where the temperature at the central portion of the plate thickness is Ar 3 points or higher. In this case, the aspect ratio of the microstructure in the central portion of the thickness of the cross section parallel to the rolling direction is 4.0 or less. Even if the rolling end temperature is lower than the Ar 3 point, if the aspect ratio is 4.0 or less, the formed texture is substantially a texture by controlled rolling in the non-recrystallized austenite region.
圧延が終了した鋼板は2℃/s以上の冷却速度にて600℃以下まで冷却する。未再結晶オーステナイト域圧延において導入された加工集合組織が再結晶するのを防ぐためであり、圧延後には鋼板を低温まで冷却する必要がある。 The rolled steel sheet is cooled to 600 ° C. or lower at a cooling rate of 2 ° C./s or higher. This is to prevent reworking of the work texture introduced in the non-recrystallized austenite region rolling, and it is necessary to cool the steel sheet to a low temperature after rolling.
冷却速度が2℃/s未満では所望の集合組織が得られないばかりか、鋼板の強度も低下するので、冷却速度は2℃/s以上とする。冷却停止温度は600℃より高いと冷却停止後にも再結晶が進行して所望の集合組織が得られないので冷却停止温度は600℃以下とすることが好ましい。 When the cooling rate is less than 2 ° C./s, not only the desired texture is not obtained, but also the strength of the steel sheet is lowered. Therefore, the cooling rate is 2 ° C./s or more. If the cooling stop temperature is higher than 600 ° C., recrystallization proceeds even after the cooling stop and a desired texture cannot be obtained. Therefore, the cooling stop temperature is preferably 600 ° C. or lower.
以上の説明は、板厚が50mmを超える厚肉材について行ったが、せん断歪は、板厚が小さい場合には表層付近に発生するようになるので、板厚中央部における圧延面での{100}<011>方位強度が1.7以上、板厚1/4部における圧延面での{100}<011>方位強度が0.3以上で板厚1/4部におけるシャルピー破面遷移温度が―40℃以下の特性を備える鋼板は、板厚50mm以下の場合も優れた脆性亀裂伝播特性を備えることは明らかである。 The above explanation was made for a thick material having a plate thickness exceeding 50 mm. However, since the shear strain is generated near the surface layer when the plate thickness is small, { 100} <011> Azimuth strength of 1.7 or more, {100} <011> Azimuth strength of 0.3 or more at a thickness of 1/4 part and Charpy fracture surface transition temperature at a thickness of 1/4 part However, it is clear that a steel sheet having a characteristic of −40 ° C. or less has excellent brittle crack propagation characteristics even when the thickness is 50 mm or less.
表1に示す各組成の溶鋼(鋼記号A〜N)を、転炉で溶製し、連続鋳造法で鋼素材(スラブ280mm厚)とし、板厚35〜75mmに熱間圧延後、冷却を行いNo.1〜28の供試鋼を得た。表2に熱間圧延条件と冷却条件を示す。Ar3変態点(℃)は、次式により計算した。
Ar3=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo
ただし、各元素は鋼中含有量(mass%)とする。
Molten steel (steel symbols A to N) of each composition shown in Table 1 is melted in a converter, made into a steel material (slab 280 mm thick) by a continuous casting method, and after hot rolling to a plate thickness of 35 to 75 mm, cooling is performed. No. 1-28 test steels were obtained. Table 2 shows hot rolling conditions and cooling conditions. The Ar 3 transformation point (° C.) was calculated by the following formula.
Ar 3 = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo
However, each element has a steel content (mass%).
得られた厚鋼板について、板厚の1/4部よりΦ14のJIS14A号試験片を試験片の長手方向が圧延方向と直角となるように採取し、引張試験を行い、降伏点(YS)、引張強さ(TS)を測定した。 About the obtained thick steel plate, a JIS14A test piece of Φ14 was collected from 1/4 part of the plate thickness so that the longitudinal direction of the test piece was perpendicular to the rolling direction, a tensile test was performed, and the yield point (YS), Tensile strength (TS) was measured.
また、板厚の1/4部よりJIS4号衝撃試験片を試験片の長手軸の方向が圧延方向と平行となるように採取し、シャルピー衝撃試験を行って、破面遷移温度(vTrs)を求めた。板厚1/4部におけるシャルピー破面遷移温度が―40℃以下のものを本発明範囲内とした。 In addition, a JIS No. 4 impact test piece was taken from 1/4 part of the plate thickness so that the direction of the longitudinal axis of the test piece was parallel to the rolling direction, and a Charpy impact test was conducted to determine the fracture surface transition temperature (vTrs). Asked. The Charpy fracture surface transition temperature at ¼ part of the plate thickness was within the range of the present invention within −40 ° C.
また、鋼板の集合組織を評価するため、板厚中央部における圧延面での{100}<011>方位強度と、板厚1/4部における圧延面での{100}<011>方位強度を測定した。 Further, in order to evaluate the texture of the steel sheet, the {100} <011> azimuth strength at the rolling surface at the central portion of the plate thickness and the {100} <011> azimuth strength at the rolling surface at the ¼ portion of the plate thickness. It was measured.
方位強度は、X線回折装置(理学電機株式会社製)を使用し、Mo線源を用いて(200)、(110)および(211)正極点図を求め、得られた正極点図から3次元結晶方位密度関数を計算することにより求めた。 The azimuth strength is 3 from the obtained positive electrode point diagram using an X-ray diffractometer (manufactured by Rigaku Denki Co., Ltd.), obtaining (200), (110) and (211) positive electrode point diagrams using a Mo ray source. It was determined by calculating the dimensional crystal orientation density function.
圧延方向に平行な断面の板厚中央部におけるミクロ組織のアスペクト比は、圧延方向断面のミクロ組織を3%ナイタール水溶液で腐食することにより現出後、500倍の光学顕微鏡で観察し、画像処理によって求めた平均値とした。 The aspect ratio of the microstructure in the central part of the plate thickness of the cross section parallel to the rolling direction is revealed by corroding the microstructure of the cross section in the rolling direction with a 3% nital aqueous solution, and then observed with a 500 × optical microscope for image processing. The average value obtained by
次に、脆性亀裂伝播停止特性を評価するため、温度勾配型ESSO試験を行い、Kca(−50℃)を求めた。 Next, in order to evaluate the brittle crack propagation stop characteristic, a temperature gradient type ESSO test was performed to obtain Kca (−50 ° C.).
表3にこれらの試験結果を示す。板厚中央部、板厚1/4部における集合組織が本発明の範囲内である供試鋼板(製造番号1〜10)の場合、Kca(−50℃)が5000〜8100N/mm3/2と優れた脆性亀裂伝播停止性能を示した。 Table 3 shows the results of these tests. In the case of a test steel plate (manufacturing number 1 to 10) in which the texture at the center of the plate thickness and 1/4 of the plate thickness is within the scope of the present invention, Kca (−50 ° C.) is 5000 to 8100 N / mm 3/2. And showed excellent brittle crack propagation stopping performance.
一方、鋼板の成分組成が本発明範囲外の供試鋼板(製造番号11〜16)および製造条件が本発明範囲外で、鋼板の集合組織が本発明の規定を満たさない鋼板(製造番号17〜28)ではKcaの値は4100N/mm3/2以下で本発明例に及ばなかった。 On the other hand, the steel plate whose component composition is outside the scope of the present invention (manufacturing numbers 11 to 16) and the manufacturing conditions are outside the scope of the present invention, and the texture of the steel sheet does not meet the provisions of the present invention (manufacturing numbers 17 to In 28), the value of Kca was 4100 N / mm 3/2 or less, which was not equivalent to the example of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009050165A JP5434145B2 (en) | 2009-03-04 | 2009-03-04 | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009050165A JP5434145B2 (en) | 2009-03-04 | 2009-03-04 | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010202931A true JP2010202931A (en) | 2010-09-16 |
JP5434145B2 JP5434145B2 (en) | 2014-03-05 |
Family
ID=42964702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009050165A Active JP5434145B2 (en) | 2009-03-04 | 2009-03-04 | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5434145B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102586676A (en) * | 2012-03-22 | 2012-07-18 | 内蒙古包钢钢联股份有限公司 | Rare earth-containing high-strength steel plate for manufacturing wind power tower, and rolling method of steel plate |
WO2013099319A1 (en) * | 2011-12-27 | 2013-07-04 | Jfeスチール株式会社 | High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor |
WO2013099318A1 (en) * | 2011-12-27 | 2013-07-04 | Jfeスチール株式会社 | High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor |
JP2013136827A (en) * | 2011-11-28 | 2013-07-11 | Jfe Steel Corp | High strength thick steel sheet for structure excellent in brittle crack arrestability and method for producing the same |
RU2495148C1 (en) * | 2012-03-27 | 2013-10-10 | Открытое акционерное общество "Магнитогорский металлургический комбинат" | Low-carbon low-alloy steel for production of large hot-rolled standard and profiled stock |
KR20150119281A (en) * | 2013-03-26 | 2015-10-23 | 제이에프이 스틸 가부시키가이샤 | High strength thick steel plate with superior brittle crack arrestability for high heat input welding and method for manufacturing same |
KR20160021912A (en) | 2011-12-27 | 2016-02-26 | 제이에프이 스틸 가부시키가이샤 | High strength steel plate having excellent brittle crack arrestability |
KR101732997B1 (en) * | 2013-03-26 | 2017-05-08 | 제이에프이 스틸 가부시키가이샤 | High strength thick steel plate for high heat input welding with excellent brittle crack arrestability and manufacturing method therefor |
CN109482645A (en) * | 2018-11-08 | 2019-03-19 | 瓯锟科技温州有限公司 | A kind of cold rolling process of zinc chrome alloy composite materials |
WO2020116538A1 (en) * | 2018-12-07 | 2020-06-11 | Jfeスチール株式会社 | Steel sheet and production method therefor |
CN112501504A (en) * | 2020-11-13 | 2021-03-16 | 南京钢铁股份有限公司 | BCA 2-grade container ship crack arrest steel plate and manufacturing method thereof |
RU2758602C1 (en) * | 2020-08-05 | 2021-11-01 | Акционерное общество «ЕВРАЗ Нижнетагильский металлургический комбинат» (АО «ЕВРАЗ НТМК») | COLUMN I-BEAM WITH A SHELF THICKNESS OF UP TO 40 mm |
CN113584408A (en) * | 2021-09-29 | 2021-11-02 | 江苏省沙钢钢铁研究院有限公司 | Structural steel plate for wind power and production method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000309851A (en) * | 1999-04-23 | 2000-11-07 | Kobe Steel Ltd | Steel plate excellent in arrest property and ductile fracture characteristic |
JP2008214653A (en) * | 2007-02-28 | 2008-09-18 | Jfe Steel Kk | High strength thick steel plate for structural purpose having excellent brittle crack arrest property, and method for producing the same |
JP2008261030A (en) * | 2007-04-13 | 2008-10-30 | Nippon Steel Corp | Method of manufacturing thick high-strength steel plate excellent in brittle crack propagation stopping characteristic |
JP2009132995A (en) * | 2007-11-09 | 2009-06-18 | Jfe Steel Corp | High strength thick steel plate for structural use having excellent brittle crack propagation arrest property, and method for producing the same |
JP2009221585A (en) * | 2008-03-19 | 2009-10-01 | Jfe Steel Corp | High strength steel plate having excellent high heat input weld zone toughness and brittle fracture propagation arresting property, and method for producing the same |
-
2009
- 2009-03-04 JP JP2009050165A patent/JP5434145B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000309851A (en) * | 1999-04-23 | 2000-11-07 | Kobe Steel Ltd | Steel plate excellent in arrest property and ductile fracture characteristic |
JP2008214653A (en) * | 2007-02-28 | 2008-09-18 | Jfe Steel Kk | High strength thick steel plate for structural purpose having excellent brittle crack arrest property, and method for producing the same |
JP2008261030A (en) * | 2007-04-13 | 2008-10-30 | Nippon Steel Corp | Method of manufacturing thick high-strength steel plate excellent in brittle crack propagation stopping characteristic |
JP2009132995A (en) * | 2007-11-09 | 2009-06-18 | Jfe Steel Corp | High strength thick steel plate for structural use having excellent brittle crack propagation arrest property, and method for producing the same |
JP2009221585A (en) * | 2008-03-19 | 2009-10-01 | Jfe Steel Corp | High strength steel plate having excellent high heat input weld zone toughness and brittle fracture propagation arresting property, and method for producing the same |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013136827A (en) * | 2011-11-28 | 2013-07-11 | Jfe Steel Corp | High strength thick steel sheet for structure excellent in brittle crack arrestability and method for producing the same |
EP2799585A4 (en) * | 2011-12-27 | 2015-01-14 | Jfe Steel Corp | High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor |
WO2013099319A1 (en) * | 2011-12-27 | 2013-07-04 | Jfeスチール株式会社 | High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor |
KR101588258B1 (en) | 2011-12-27 | 2016-01-25 | 제이에프이 스틸 가부시키가이샤 | High-strength thick steel plate for structural use with excellent brittle crack arrestability and method for manufacturing the same |
JP2013151732A (en) * | 2011-12-27 | 2013-08-08 | Jfe Steel Corp | Structural high-strength thick steel plate excellent in property of preventing brittle crack propagation and production method thereof |
JP2013151731A (en) * | 2011-12-27 | 2013-08-08 | Jfe Steel Corp | Structural high-strength thick steel plate excellent in property of preventing brittle crack propagation and production method thereof |
KR20160021912A (en) | 2011-12-27 | 2016-02-26 | 제이에프이 스틸 가부시키가이샤 | High strength steel plate having excellent brittle crack arrestability |
KR20140094022A (en) * | 2011-12-27 | 2014-07-29 | 제이에프이 스틸 가부시키가이샤 | High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor |
KR20140097463A (en) * | 2011-12-27 | 2014-08-06 | 제이에프이 스틸 가부시키가이샤 | High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor |
KR101588261B1 (en) | 2011-12-27 | 2016-01-25 | 제이에프이 스틸 가부시키가이샤 | High-strength thick steel plate for structural use having excellent brittle crack arrestability and method for manufacturing the same |
EP2799585A1 (en) * | 2011-12-27 | 2014-11-05 | JFE Steel Corporation | High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor |
WO2013099318A1 (en) * | 2011-12-27 | 2013-07-04 | Jfeスチール株式会社 | High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor |
CN102586676A (en) * | 2012-03-22 | 2012-07-18 | 内蒙古包钢钢联股份有限公司 | Rare earth-containing high-strength steel plate for manufacturing wind power tower, and rolling method of steel plate |
RU2495148C1 (en) * | 2012-03-27 | 2013-10-10 | Открытое акционерное общество "Магнитогорский металлургический комбинат" | Low-carbon low-alloy steel for production of large hot-rolled standard and profiled stock |
KR101732997B1 (en) * | 2013-03-26 | 2017-05-08 | 제이에프이 스틸 가부시키가이샤 | High strength thick steel plate for high heat input welding with excellent brittle crack arrestability and manufacturing method therefor |
KR101984531B1 (en) * | 2013-03-26 | 2019-05-31 | 제이에프이 스틸 가부시키가이샤 | High strength thick steel plate with superior brittle crack arrestability and high heat input welding performance and method for manufacturing same |
KR20150119281A (en) * | 2013-03-26 | 2015-10-23 | 제이에프이 스틸 가부시키가이샤 | High strength thick steel plate with superior brittle crack arrestability for high heat input welding and method for manufacturing same |
CN109482645A (en) * | 2018-11-08 | 2019-03-19 | 瓯锟科技温州有限公司 | A kind of cold rolling process of zinc chrome alloy composite materials |
WO2020116538A1 (en) * | 2018-12-07 | 2020-06-11 | Jfeスチール株式会社 | Steel sheet and production method therefor |
JPWO2020116538A1 (en) * | 2018-12-07 | 2021-02-15 | Jfeスチール株式会社 | Steel plate and its manufacturing method |
RU2758602C1 (en) * | 2020-08-05 | 2021-11-01 | Акционерное общество «ЕВРАЗ Нижнетагильский металлургический комбинат» (АО «ЕВРАЗ НТМК») | COLUMN I-BEAM WITH A SHELF THICKNESS OF UP TO 40 mm |
CN112501504A (en) * | 2020-11-13 | 2021-03-16 | 南京钢铁股份有限公司 | BCA 2-grade container ship crack arrest steel plate and manufacturing method thereof |
CN113584408A (en) * | 2021-09-29 | 2021-11-02 | 江苏省沙钢钢铁研究院有限公司 | Structural steel plate for wind power and production method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5434145B2 (en) | 2014-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5434145B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5733425B2 (en) | High-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5304925B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5151090B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5598617B1 (en) | High strength thick steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5304924B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JPWO2014155440A1 (en) | High strength thick steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP2018024905A (en) | Structural high strength thick steel plate excellent in brittle crack arrest property and production method thereof | |
JP5181496B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP2008214652A (en) | High strength thick steel plate for structural purpose having excellent brittle crack propagation arrest property, and method for producing the same | |
JP5035199B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP2009221585A (en) | High strength steel plate having excellent high heat input weld zone toughness and brittle fracture propagation arresting property, and method for producing the same | |
JP2008111165A (en) | High strength thick steel plate for structural use having excellent brittle crack arrest property, and its production method | |
JP5034392B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5812193B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5949113B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5733424B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP2008111166A (en) | High strength thick steel plate for structural use having excellent brittle crack arrest property, and its production method | |
JP6112265B2 (en) | High-strength extra heavy steel plate and method for producing the same | |
JP6477743B2 (en) | High-strength ultra-thick steel plate excellent in brittle crack propagation stopping characteristics and weld heat-affected zone toughness and method for producing the same | |
JP5838801B2 (en) | Thick steel plate and method for manufacturing thick steel plate | |
JP6338022B2 (en) | High-strength extra-thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5949114B2 (en) | Manufacturing method of structural high strength thick steel plate with excellent brittle crack propagation stopping characteristics | |
WO2018030186A1 (en) | Thick high-strength steel plate and production process therefor | |
JP6274375B1 (en) | High strength thick steel plate and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120220 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130807 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130813 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131010 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131125 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5434145 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |