JP2007204781A - Method for producing steel material excellent in fatigue crack propagating characteristic - Google Patents
Method for producing steel material excellent in fatigue crack propagating characteristic Download PDFInfo
- Publication number
- JP2007204781A JP2007204781A JP2006022382A JP2006022382A JP2007204781A JP 2007204781 A JP2007204781 A JP 2007204781A JP 2006022382 A JP2006022382 A JP 2006022382A JP 2006022382 A JP2006022382 A JP 2006022382A JP 2007204781 A JP2007204781 A JP 2007204781A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- fatigue crack
- crack propagation
- less
- propagation characteristics
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は,使用条件によっては、構造物に負荷される変動荷重により疲労亀裂が発生し、疲労破壊が懸念される,船舶,橋梁,海洋構造物などの大形構造物に溶接して使用される鋼材(厚板,形鋼)に適した,耐疲労亀裂伝播特性に優れた鋼に関するものである。 The present invention is used by welding to large structures such as ships, bridges, and offshore structures where fatigue cracks occur due to fluctuating loads applied to the structures depending on the conditions of use, and fatigue fracture is a concern. This is related to steels with excellent fatigue crack propagation characteristics, suitable for steel materials (thick plates, section steels).
鋼板に連続的に変動荷重が与えられると,疲労亀裂が発生する場合がある。特に溶接部では,溶接金属と鋼材との間に不連続な形状変化,組織変化や残留応力変化が存在するために応力が集中しやすく,疲労亀裂の発生点になりやすい。 When a fluctuating load is continuously applied to the steel plate, fatigue cracks may occur. Especially in the weld zone, there are discontinuous shape change, structure change and residual stress change between the weld metal and steel material, so stress tends to concentrate and it tends to become the starting point of fatigue crack.
また,通常,発生した疲労亀裂は伝播を続け,最悪の場合には構造物自体の破壊となる。構造物が船舶,橋梁,海洋構造物などであれば,破壊した場合の社会的影響は大きく,多くの場合は人命の危険を伴うことが予想される。 Also, the generated fatigue cracks continue to propagate, and in the worst case, the structure itself breaks down. If the structure is a ship, a bridge, an offshore structure, etc., the social impact when it is destroyed is large, and in many cases it is expected to be accompanied by danger of human life.
これら構造物では,溶接部からの疲労破壊の発生を防止するため,構造的に応力集中が生じない設計を採用したり,適切な溶接条件の選定により溶接金属と母材との境界で応力集中が生じることを回避している。 In these structures, in order to prevent the occurrence of fatigue failure from the weld, a design that does not cause stress concentration structurally is adopted, or stress concentration at the boundary between the weld metal and the base metal is selected by selecting appropriate welding conditions. Is avoided.
構造物に疲労亀裂が発生した場合,鋼材の疲労伝播速度が遅ければ,構造物の破壊を生じる前に定期点検で亀裂を発見し,補修することが可能で,補修の頻度ひいては定期点検の頻度を低減させ,ライフサイクルコスト的に有利となる。 When fatigue cracks occur in a structure, if the fatigue propagation rate of steel is slow, cracks can be found and repaired by periodic inspection before the structure breaks down. This is advantageous in terms of life cycle cost.
鋼材の耐疲労亀裂伝播特性に関しては、ミクロ組織において軟質フェライト相に硬質なパーライトやベイナイトあるいはマルテンサイト相を分散させ,その硬度差や第2相の分散状態や量を規定すること、および当該ミクロ組織を有する鋼板の製造方法に関して多数の提案がなされている(例えば,特許文献1〜5)。
しかしながら、構造体の設計方法により疲労破壊を防止する場合、設計に大きな制約が生じるために効率的な設計ができず,一方、溶接施工側で応力集中を防止することは溶接の仕上に時間がかかり,非効率的であると同時に高コスト化の原因となっている。 However, when fatigue fracture is prevented by the structure design method, it is impossible to design efficiently because of the large constraints on the design. On the other hand, preventing stress concentration on the welding work side requires time to finish welding. This is inefficient and causes high costs.
また,特許文献1〜5記載の鋼板は成分組成において高価なMoを必須元素として添加したり、製造条件において熱処理条件や冷却方法に制約が多く、大量の鋼板を必要とする大型構造物への適用は必ずしも容易でなかった。
In addition, the steel sheets described in
そこで本発明は,特殊な製造条件を用いずに製造可能な耐疲労亀裂伝播特性に優れる溶接構造用鋼材を提供することを目的とする。 Therefore, an object of the present invention is to provide a steel material for welded structure that has excellent fatigue crack propagation characteristics that can be manufactured without using special manufacturing conditions.
本発明者らは,前記課題を解決するため,軟質なフェライト相に硬質な第2相が分散した鋼として、フェライト・パーライト鋼を対象に、疲労亀裂伝播特性に優れたミクロ組織および該ミクロ組織を得るための成分組成および製造条件について、従来技術とは全く発想が異なる鋼素材の凝固ミクロ偏析に着目して,種々検討を行った。 In order to solve the above-described problems, the present inventors have proposed a microstructure with excellent fatigue crack propagation characteristics and a microstructure of ferrite / pearlite steel as a steel in which a hard second phase is dispersed in a soft ferrite phase. Various studies were conducted on the composition of components and production conditions to obtain solidification, focusing on solidification microsegregation of steel materials, which is completely different from the conventional technology.
その結果、1.特定の体積率(体積分率)及びアスペクト比(伸長性)を有する粒状パーライト組織が疲労亀裂伝播特性に優れること、2.そのような組織が偏析度と偏析部のフェライト変態挙動に依存し、ミクロ偏析する成分元素の調整や、素材製造段階で生じるミクロ偏析を溶体化処理により軽減することで得られることを見出した。 As a result, 1. A granular pearlite structure having a specific volume fraction (volume fraction) and aspect ratio (extensibility) is excellent in fatigue crack propagation characteristics; It has been found that such a structure depends on the degree of segregation and the ferrite transformation behavior of the segregation part, and can be obtained by adjusting the component elements to be microsegregated and reducing the microsegregation generated in the raw material production stage by solution treatment.
本発明は得られた知見を基に更に検討を加えてなされたもので、すなわち本発明は、
1.質量%で、C:0.05〜0.2%
Si:0.05〜0.7%
Mn:0.05〜2.5%
P:0.03%以下
S:0.02%以下
Al:0.005〜0.1%
Ti:0.005〜0.03%
を満足する残部Feおよび不可避的不純物からなる鋼を溶体化処理した後、Ar1以下まで冷却し、再度1000〜1350℃に加熱後、熱間圧延を行い、パーライト、ベイナイト、マルテンサイトの少なくとも1種以上の第2相が体積率15%以上、アスペクト比:5以下であることを特徴とする疲労亀裂伝播特性に優れた鋼材の製造方法。
2.更に、質量%で、鋼の成分組成に、
Cu:0.01〜1%
Ni:0.01〜4%
Cr:0.01〜2%
Mo:0.01〜1%
Nb:0.003〜0.1%
V:0.003〜0.5%
B:0.0005〜0.004%
の1種または2種以上を添加することを特徴とする1記載の疲労亀裂伝播特性に優れた鋼材の製造方法。
3.更に、質量%で、鋼の成分組成に、
Ca:0.0005〜0.006%
Mg:0.0005〜0.006%
REM:0.0005〜0.02%
の1種または2種以上を添加することを特徴とする1または2記載の疲労亀裂伝播特性に優れた鋼材の製造方法。
4.1乃至3の何れか一つに記載の成分組成の鋼を溶体化処理後Ar1以下まで冷却し、再度1000〜1350℃に加熱後、熱間圧延後、加速冷却を行うことを特徴とする疲労亀裂伝播特性に優れた鋼材の製造方法。
5.1乃至3の何れか一つに記載の成分組成の鋼を溶体化処理後Ar1以下まで冷却し、再度1000〜1350℃に加熱後、熱間圧延し、加速冷却後,Ac1点以下の温度で焼戻しを行うことを特徴とする疲労亀裂伝播特性に優れた鋼材の製造方法。
6.溶体化処理が1200℃〜1350℃に5h以上保持することを特徴とする1乃至5のいずれか一つに記載の疲労亀裂伝播特性に優れた鋼材の製造方法。
The present invention was made by further study based on the obtained knowledge, that is, the present invention is
1. % By mass, C: 0.05 to 0.2%
Si: 0.05-0.7%
Mn: 0.05 to 2.5%
P: 0.03% or less S: 0.02% or less Al: 0.005-0.1%
Ti: 0.005 to 0.03%
After the solution treatment of the steel composed of the remaining Fe and the inevitable impurities satisfying the above, it is cooled to Ar 1 or less, heated again to 1000 to 1350 ° C., hot-rolled, and at least one of pearlite, bainite, and martensite. A method for producing a steel material having excellent fatigue crack propagation characteristics, wherein the second phase of seeds or more has a volume ratio of 15% or more and an aspect ratio of 5 or less.
2. Furthermore, in mass%, the component composition of steel
Cu: 0.01 to 1%
Ni: 0.01-4%
Cr: 0.01-2%
Mo: 0.01 to 1%
Nb: 0.003 to 0.1%
V: 0.003-0.5%
B: 0.0005 to 0.004%
1 or 2 types or more are added, The manufacturing method of the steel materials excellent in the fatigue crack propagation characteristics of 1 characterized by the above-mentioned.
3. Furthermore, in mass%, the component composition of steel
Ca: 0.0005 to 0.006%
Mg: 0.0005 to 0.006%
REM: 0.0005 to 0.02%
1 or 2 or more types are added, The manufacturing method of the steel materials excellent in the fatigue crack propagation characteristics of 1 or 2 characterized by the above-mentioned.
The steel having the composition described in any one of 4.1 to 3 is solution-treated, cooled to Ar 1 or less, heated again to 1000 to 1350 ° C., hot-rolled, and then accelerated cooled. A method for producing a steel material having excellent fatigue crack propagation characteristics.
5.1 After cooling the steel having the composition described in any one of 1 to 3 to Ar 1 or less, heating again to 1000 to 1350 ° C., hot rolling, accelerated cooling, and Ac 1 point A method for producing a steel material having excellent fatigue crack propagation characteristics, characterized by performing tempering at the following temperature.
6). The method for producing a steel material having excellent fatigue crack propagation characteristics according to any one of 1 to 5, wherein the solution treatment is held at 1200 ° C to 1350 ° C for 5 hours or more.
本発明によれば,ミクロ組織において硬質第2相が分散し、疲労亀裂伝播特性の優れた溶接構造用鋼材を極めて容易に実製造することが可能で,産業上極めて有用である。 According to the present invention, a hard second phase is dispersed in a microstructure, and a welded structural steel material having excellent fatigue crack propagation characteristics can be manufactured very easily, which is extremely useful industrially.
本発明は、ミクロ凝固偏析が少ない成分組成とし、溶体化処理を施した後、熱間圧延を行うことを特徴とする。以下、成分組成、製造条件および得られるミクロ組織について詳細に説明する。尚、成分組成において%は質量%とする。 The present invention is characterized by having a component composition with little microsolidification segregation and performing hot rolling after solution treatment. Hereinafter, the component composition, production conditions, and obtained microstructure will be described in detail. In the component composition,% is mass%.
[成分組成]
C:0.05〜0.2%
Cは,強度を向上させ、硬質第2相であるパーライト、ベイナイトまたはマルテンサイト分率を支配する基本的な元素であり,溶接構造用鋼としての強度を確保し、硬質第2相であるパーライト、ベイナイトまたはマルテンサイトの体積率を15%以上確保するため,最低0.05%以上必要である。
[Ingredient composition]
C: 0.05 to 0.2%
C is a basic element that improves the strength and governs the fraction of pearlite, bainite or martensite, which is a hard second phase, and ensures the strength as a welded structural steel, and is a pearlite that is a hard second phase. In order to secure a volume fraction of bainite or martensite of 15% or more, a minimum of 0.05% or more is necessary.
一方,Cが0.2%を越えての添加は,溶接構造用鋼にとって基本となる溶接性を低下させるために,上限を0.2%とした。好ましくは,0.08〜0.18%の範囲のC量とすることが好ましい。 On the other hand, when C exceeds 0.2%, the upper limit is made 0.2% in order to lower the weldability that is fundamental for welded structural steel. Preferably, the C content is in the range of 0.08 to 0.18%.
Si:0.05〜0.7%以下
Siは,鋼中へ固溶し強度を上昇させる基本的な元素であるが,そのような効果を期待するためには最低0.05%以上の添加が必要である。一方,0.7%を越えての添加は母材および溶接熱影響部の靭性を損なうため,上限を0.7%とした。好ましくは,0.6%を上限とすることが望ましい。
Si: 0.05 to 0.7% or less Si is a basic element that dissolves into steel and increases the strength, but in order to expect such an effect, at least 0.05% or more is added. is required. On the other hand, addition exceeding 0.7% impairs the toughness of the base metal and the weld heat-affected zone, so the upper limit was made 0.7%. Preferably, the upper limit is 0.6%.
Mn:0.05〜2.5%
Mnは,溶接構造用鋼の高強度化に有用な元素であることから,0.05%以上を添加する。しかしながら,2.5%を越えての添加は,溶接性を阻害することから、上限を2.5%とした。
Mn: 0.05 to 2.5%
Since Mn is an element useful for increasing the strength of welded structural steel, 0.05% or more is added. However, since addition exceeding 2.5% inhibits weldability, the upper limit was made 2.5%.
P:0.03%以下
Pは,鋼中へ不可避的に存在し脆化を促進させることから,少ないことが望ましい。しかしながら,Pを低減することは溶製上,多大なコストアップを招き,実用性を損なうことから,0.03%を上限とした。好ましくは,0.025%を上限とすることが望ましい。
P: 0.03% or less P is unavoidably present in steel and promotes embrittlement, so it is desirable that P be small. However, reducing P causes a significant cost increase in melting and impairs practicality, so 0.03% was made the upper limit. Preferably, the upper limit is 0.025%.
S:0.02%以下
Sも鋼中に不可避的に存在し,MnSを形成して,フェライトの変態核となり,硬質第2相のバンド化を促進させることから,少ないことが望ましい。しかしながら,Sを低減することは溶製上,多大なコストアップを招き,実用性を損なうことから,0.02%を上限とした。好ましくは,0.015%を上限とするのが望ましい。
S: 0.02% or less S is also unavoidably present in the steel, and forms MnS, which becomes a transformation nucleus of ferrite and promotes banding of the hard second phase, so it is desirable that the content of S be small. However, reducing S causes a significant cost increase in melting and impairs practicality, so 0.02% was made the upper limit. Preferably, the upper limit is 0.015%.
Al:0.005〜0.1%
Alは脱酸元素として最も有効であり,鋼中の酸化物系介在物を低減することで,鋼材の靭性,延性を向上させる。しかしながら,0.005%未満ではその効果が小さく,逆に0.1%を越えての添加は効果が飽和し,逆に靭性を低下させる。したがって,0.005〜0.1%の範囲とした。
Al: 0.005 to 0.1%
Al is most effective as a deoxidizing element and improves the toughness and ductility of steel by reducing oxide inclusions in the steel. However, if the content is less than 0.005%, the effect is small. Conversely, if the content exceeds 0.1%, the effect is saturated and the toughness is decreased. Therefore, it was made into the range of 0.005 to 0.1%.
Ti:0.005〜0.03%
TiはTiNとしてフリーNの固定化に有効であり、溶接熱影響部の靭性向上も期待できるが,0.005%未満ではその効果が小さく、逆に0.03%を越えての添加は,Ti炭化物の析出に伴い、疲労亀裂伝播特性や靭性の低下をもたらすことから、上限を0.03%とした。
Ti: 0.005 to 0.03%
Ti is effective for fixing free N as TiN and can be expected to improve the toughness of the weld heat affected zone. However, if the content is less than 0.005%, the effect is small. With the precipitation of Ti carbide, fatigue crack propagation characteristics and toughness are reduced, so the upper limit was made 0.03%.
以上が本発明の基本成分組成であるが、更に特性を向上させる場合、Cu、Ni、Cr、Mo、Nb、V、B、Ca、Mg、REMの1種または2種以上を選択元素として添加する。 The above is the basic component composition of the present invention, but when further improving the characteristics, one or more of Cu, Ni, Cr, Mo, Nb, V, B, Ca, Mg, and REM are added as selective elements. To do.
Cu:0.01〜1%
CuはCrと同様に,母材の高強度化に対して多量に添加しても,ミクロ偏析に伴うAr3への影響が小さく,ベイナイトまたはマルテンサイトの粒状化に対して有効な元素である。
Cu: 0.01 to 1%
Cu, like Cr, is an effective element for granulation of bainite or martensite, even if added in large amounts to increase the strength of the base metal, and has little effect on Ar 3 due to microsegregation. .
しかし,0.05%未満ではその効果が小さく,逆に1%を越えての添加は,Cu析出に伴う脆化を助長するので,上限を1%とした。なお,Cuは熱間脆性も促進させることから,添加に際しては,Niとの併用が好ましい。 However, if the content is less than 0.05%, the effect is small. Conversely, addition exceeding 1% promotes embrittlement accompanying Cu precipitation, so the upper limit was made 1%. In addition, since Cu also promotes hot brittleness, it is preferable to use Ni together with addition.
Ni:0.01〜4%
Niは,母材や溶接熱影響部の靭性を損なうことなく,高強度化を得る有効な元素であるが,0.05%未満ではその効果が得られない。一方,4%を越えて添加しても疲労特性に与える影響は飽和することから,実用性を考慮し、上限を4%とした。
Ni: 0.01-4%
Ni is an effective element for obtaining high strength without impairing the toughness of the base metal and the weld heat-affected zone, but if it is less than 0.05%, the effect cannot be obtained. On the other hand, even if added over 4%, the effect on fatigue properties is saturated, so the upper limit was made 4% in consideration of practicality.
Cr:0.05〜2%
Crは,母材の高強度化に対して多量に添加しても,ミクロ偏析に伴うAr3への影響が小さく,ベイナイトまたはマルテンサイトの粒状化に対して有効な元素である。しかしながら,0.05%未満では高強度化に対して不十分であり,逆に2%を越えての添加は,溶接性を損なうために,上限を2%とした。
Cr: 0.05-2%
Even if Cr is added in a large amount for increasing the strength of the base material, it has little influence on Ar 3 due to microsegregation, and is an effective element for granulating bainite or martensite. However, if it is less than 0.05%, it is insufficient for increasing the strength. Conversely, if it exceeds 2%, the weldability is impaired, so the upper limit was made 2%.
Mo:0.01〜1%
Moは焼入れ性を増加させ,厚肉材の高強度化を図る有用な元素であり,その効果を期待する際には0.01%以上の添加が必要である。一方,Moの増加は溶接性を低下させるので,上限を1%とした。
Mo: 0.01 to 1%
Mo is a useful element that increases the hardenability and increases the strength of the thick-walled material. Addition of 0.01% or more is necessary to expect the effect. On the other hand, the increase in Mo decreases weldability, so the upper limit was made 1%.
Nb:0.003〜0.1%
Nbは,微量の添加で組織の微細化とNbの析出強化により極めて熱間圧延溶接構造用鋼材の高強度化に対して有効な元素であるが,0.003%以上の添加を必要とする。一方,0.1%を越えての添加は逆に靭性を損なうので,上限は0.1%とした。
Nb: 0.003 to 0.1%
Nb is a very effective element for increasing the strength of hot rolled welded structural steels by refining the structure and strengthening the precipitation of Nb by adding a small amount, but it must be added in an amount of 0.003% or more. . On the other hand, addition exceeding 0.1% adversely affects toughness, so the upper limit was made 0.1%.
V:0.003〜0.5%
VもNbと同様に微量添加で高強度化を得る有用な元素であり,その効果を得るためには0.003%以上添加する必要がある。逆に,0.5%を越えての添加は,HAZ靭性を低下させることから,上限を0.5%とした。
V: 0.003-0.5%
V, like Nb, is a useful element that increases the strength by adding a small amount, and in order to obtain the effect, it is necessary to add 0.003% or more. Conversely, addition exceeding 0.5% lowers the HAZ toughness, so the upper limit was made 0.5%.
B:0.0005〜0.004%
Bは、焼入れ性を向上させる有用な元素であるが,その効果を期待する場合には0.0005%以上の添加が必要である。逆に,0.004%を越えての添加しても効果は飽和することから、上限を0.004%とした。
B: 0.0005 to 0.004%
B is a useful element that improves the hardenability, but 0.0005% or more must be added if the effect is expected. Conversely, the effect is saturated even if added over 0.004%, so the upper limit was made 0.004%.
Ca:0.0005〜0.006%
Caは鋳造時のノズル詰まり防止や介在物の形態を制御し、いっそうのHAZ靭性向上を期待する場合に添加するが,その量が0.0005%未満では効果がなく、逆に0.006%を越えて添加すると清浄性を損なうことから,上限を0.006%とした。
Ca: 0.0005 to 0.006%
Ca is added to prevent nozzle clogging during casting and to control the form of inclusions, and to further improve HAZ toughness. However, if the amount is less than 0.0005%, there is no effect, and conversely 0.006% If added beyond the range, the cleanliness is impaired, so the upper limit was made 0.006%.
Mg:0.0005〜0.006%
Mgは、鋼中のSを固定して鋼板の靭性を向上させる働きや微細な酸化物や酸硫化物あるいはそれらの複合の介在物となりTiNの析出の核として微細分散に効果的な元素である。この効果は0.0005%以上の添加で有効となり、0.006%を越えて添加すると効果が飽和するとともに鋼中の介在物量が粗大化および増加し、清浄性を阻害し靭性をかえって劣化させる。
Mg: 0.0005 to 0.006%
Mg is an element effective for fine dispersion as a nucleus for precipitation of TiN by fixing S in steel and improving the toughness of the steel sheet, becoming a fine oxide, oxysulfide or a complex inclusion thereof. . This effect becomes effective when 0.0005% or more is added, and if added over 0.006%, the effect is saturated and the amount of inclusions in the steel becomes coarse and increases, which inhibits cleanliness and deteriorates toughness. .
REM:0.0005〜0.02%
REMは、鋼中のSを固定して鋼板の靭性を向上させる働きや微細な酸化物や酸硫化物あるいはそれらの複合の介在物となりTiNの析出の核として微細分散に効果的な元素である。この効果は0.0005%以上の添加で有効となり、0.02%を越えて添加すると効果が飽和するとともに鋼中の介在物量が粗大化および増加し、清浄性を阻害し靭性をかえって劣化させる。
REM: 0.0005 to 0.02%
REM is an element that works to improve the toughness of the steel sheet by fixing S in the steel, and is an effective element for fine dispersion as a core of precipitation of TiN that becomes a fine oxide, oxysulfide, or a composite inclusion thereof. . This effect becomes effective when added over 0.0005%, and when added over 0.02%, the effect is saturated and the amount of inclusions in the steel becomes coarse and increases, which impairs cleanliness and deteriorates toughness. .
[製造条件]
上記組成の溶鋼を、転炉、電気炉、真空溶解炉等通常の方法で溶製し、連続鋳造法、造塊法などの通常公知の鋳造方法でスラブ等の圧延素材とする。
溶体化処理
本発明で、溶体化処理は、ミクロ凝固偏析を解消し、疲労亀裂伝播特性を向上させる重要な工程である。
[Production conditions]
Molten steel having the above composition is melted by a normal method such as a converter, electric furnace, vacuum melting furnace, or the like, and is used as a rolling material such as a slab by a generally known casting method such as a continuous casting method or an ingot forming method.
Solution Treatment In the present invention, the solution treatment is an important process for eliminating micro solidification segregation and improving fatigue crack propagation characteristics.
図2は、高Mn鋼においてパーライトがバンド゛状に伸長する機構を模式的に説明する図で、高Mn鋼の場合、Mnのミクロ凝固偏析(C/Co)が増加し、γ域の圧延中でMnが正偏析、負偏析したミクロ偏析部が層状に形成される(a)。 FIG. 2 is a diagram schematically illustrating the mechanism of pearlite stretching in a band shape in high Mn steel. In the case of high Mn steel, micro solidification segregation (C / Co) of Mn increases, and rolling in the γ region is performed. Among them, a micro-segregation part in which Mn is positively segregated and negatively segregated is formed in a layer shape (a).
Mnが負偏析した領域はAr3点が高くなるため、冷却過程において先行してフェライト変態が生じ,このフェライト変態に伴いMn正偏析部に炭素が排出される(b)。その結果、Mn正偏析部において炭素が濃化してパーライト変態し、パーライトがバンド゛化する(c)。 In the region where Mn is negatively segregated, since the Ar 3 point is high, the ferrite transformation precedes in the cooling process, and carbon is discharged to the Mn positive segregation portion along with this ferrite transformation (b). As a result, carbon is concentrated in the Mn positive segregation part to cause pearlite transformation, and pearlite is banded (c).
すなわち、添加した合金がミクロ偏析して過度に正負ミクロ偏析部のフェライト変態温度(Ar3)差が拡大した場合に,バンド゛状のパーライトが形成され,パーライトを粒状化するためには,正負ミクロ偏析部のAr3温度差を小さくすることが有効である。 That is, when the added alloy is microsegregated and the difference in ferrite transformation temperature (Ar 3 ) between the positive and negative microsegregations is excessively increased, band-like pearlite is formed. It is effective to reduce the Ar 3 temperature difference in the micro-segregation part.
図3は、溶体化処理がミクロ組織に及ぼす影響を示す図で、(a)はSi−Mn鋼、(b)はNb添加鋼の場合を示す。 FIG. 3 is a diagram showing the effect of solution treatment on the microstructure, where (a) shows the case of Si-Mn steel and (b) shows the case of Nb-added steel.
ミクロ組織は素材を1250℃−50hの溶体化処理後、1100℃に再加熱し,圧延仕上げ温度920℃で板厚22mmに熱間圧延後、空冷させ、L,C,およびZ断面を観察した。溶体化処理を行うことで、硬質第2相が粒状化し,ミクロ組織の異方性が極めて少なくなる。 The microstructure was 1250 ° C-50h after solution treatment, reheated to 1100 ° C, hot-rolled to a sheet thickness of 22mm at a rolling finish temperature of 920 ° C, air cooled, and observed for L, C, and Z cross sections. . By performing the solution treatment, the hard second phase is granulated and the anisotropy of the microstructure is extremely reduced.
図4は、図3で示した其々のミクロ組織を有する鋼の疲労亀裂伝播特性で、(a)はSi−Mn鋼、(b)はNb添加鋼の場合を示す。溶体化処理された鋼では疲労亀裂伝播特性が向上する。 FIG. 4 shows the fatigue crack propagation characteristics of the steels having the respective microstructures shown in FIG. 3, wherein (a) shows the case of Si—Mn steel and (b) shows the case of Nb-added steel. Fatigue crack propagation properties are improved in solution treated steel.
以下、本発明の溶体化処理条件を具体的に説明する。本発明に係る成分組成の素材では1200〜1350℃の温度範囲で少なくとも5h以上加熱,保持を行うことが望ましい。 Hereinafter, the solution treatment conditions of the present invention will be specifically described. It is desirable to heat and hold at least 5 hours or more in the temperature range of 1200 to 1350 ° C. in the material having the component composition according to the present invention.
加熱温度が1200℃未満では、溶体化が不十分で第2相がバンド化し、逆に1350℃を越えての加熱はスケールロスや表面疵が増加する。よって、加熱温度は1200〜1350℃の範囲が望ましい。保持時間については、5h未満では溶体化の効果が小さいので、5h以上とすることが望ましく、一方,上限については特に規定しないが、生産性を考慮すると100h以下が望ましい。 When the heating temperature is less than 1200 ° C., solutionization is insufficient and the second phase is banded, and conversely, heating above 1350 ° C. increases scale loss and surface defects. Therefore, the heating temperature is desirably in the range of 1200 to 1350 ° C. The holding time is preferably 5 hours or more because the effect of solution treatment is small if it is less than 5 hours. On the other hand, the upper limit is not particularly specified, but is preferably 100 hours or less in consideration of productivity.
再加熱条件
溶体化処理後、Ac1点以下まで冷却した後,1000〜1350℃に再加熱する。再加熱は溶体化処理で粗大化したγを微細化させるために必要な工程で,Ac1点以上の温度から再加熱すると、γの再結晶が不十分で粗大なまま残留し、母材の靭性を低下させるためAc1点以下まで冷却する。
Reheating conditions After the solution treatment, after cooling to Ac1 point or less, reheat to 1000 to 1350 ° C. Reheating is a process necessary for refining γ coarsened by solution treatment. When reheated from a temperature higher than the Ac1 point, γ recrystallization remains insufficient and coarse, and the toughness of the base metal In order to lower the temperature, it is cooled to the Ac1 point or less.
再加熱温度は,1000〜1350℃とする。1000℃未満では添加元素が十分固溶しないで、溶接構造用鋼として必要な強度靭性が得られず、一方、1350℃以上に加熱するとγ粒が粗大化し、溶接構造用鋼として必要な靭性が確保できないため、1000〜1350℃とする。 Reheating temperature shall be 1000-1350 degreeC. If it is less than 1000 ° C., the additive element does not sufficiently dissolve, and the strength toughness required for welded structural steel cannot be obtained. On the other hand, when heated to 1350 ° C. or higher, γ grains become coarse, and the toughness required for welded structural steel Since it cannot ensure, it shall be 1000-1350 degreeC.
熱間圧延
再加熱後、熱間圧延を行い所望の板厚とするが、本発明では、所望する強度靭性に応じて、熱間圧延において適宜、圧下率、圧延温度を規定する制御圧延を実施したり、熱間圧延後、加速冷却し、更に焼き戻しを行うことが可能である。熱間圧延、加速冷却および加速冷却後の焼き戻しは常法でよく、本発明では特に規定しない。以下、本発明の効果を実施例で示す。
After hot-rolling reheating, hot-rolling is performed to obtain a desired sheet thickness. In the present invention, however, controlled rolling that appropriately defines the reduction rate and rolling temperature is performed in hot-rolling according to the desired strength and toughness. Or after hot rolling, accelerated cooling, and further tempering. Hot rolling, accelerated cooling, and tempering after accelerated cooling may be conventional methods and are not particularly defined in the present invention. Hereinafter, the effect of the present invention will be shown in Examples.
本発明に係る鋼では、ミクロ組織としてパーライト、ベイナイト、マルテンサイトの少なくとも1種以上の第2相が体積率15%以上、アスペクト比:5以下が得られる。 In the steel according to the present invention, a volume ratio of 15% or more and an aspect ratio of 5 or less of at least one second phase of pearlite, bainite, and martensite is obtained as a microstructure.
パーライト、ベイナイト、マルテンサイトの少なくとも1種以上の第2相を有するミクロ組織の鋼では、当該第2相のアスペクト比が5以下の場合、その体積分率が15%以上となると疲労亀裂伝播速度は大きく低下するようになる。尚、第2相のアスペクト比(伸長性)は圧延方向の断面ミクロ組織における平均アスペクト比とする。 In a microstructured steel having at least one second phase of pearlite, bainite, martensite, when the aspect ratio of the second phase is 5 or less, the fatigue crack propagation rate when the volume fraction is 15% or more Will drop significantly. The aspect ratio (extension) of the second phase is the average aspect ratio in the cross-sectional microstructure in the rolling direction.
図1に、アスペクト比(伸長性)が5以下の第2相の体積率が疲労亀裂伝播速度に与える影響を示す。図では比較のため、アスペクト比(伸長性)が10の鋼について調査した結果を合わせて示す。 FIG. 1 shows the effect of the volume fraction of the second phase having an aspect ratio (extension) of 5 or less on the fatigue crack propagation rate. For comparison, the figure also shows the results of investigation on a steel having an aspect ratio (elongation) of 10.
試験材はC:0.04〜0.23%、Mn:0.1〜1.6%を含む成分組成でYP:300〜350MPaの鋼で、第2相はパーライト、ベイナイト、マルテンサイトの少なくとも1種以上に調整した。 The test material is a steel having a component composition including C: 0.04 to 0.23%, Mn: 0.1 to 1.6%, and YP: 300 to 350 MPa, and the second phase is at least pearlite, bainite, martensite. Adjusted to one or more.
アスペクト比(伸長性)が5以下の第2相の場合、体積率が15%以上では疲労亀裂伝播速度は大きく低下し、アスペクト比(伸長性)が10の場合は体積率が増加しても疲労亀裂伝播速度の低下は小さい。 In the case of the second phase having an aspect ratio (extension) of 5 or less, the fatigue crack propagation rate is greatly reduced when the volume ratio is 15% or more, and when the aspect ratio (extension) is 10, the volume ratio is increased. The decrease in the fatigue crack propagation rate is small.
常用プロセスにより溶製した鋼素材を用いて,厚鋼板および形鋼を常用プロセスにて製造し,強度,靭性および疲労亀裂伝播特性を調べた。供試材の化学組成および製造条件を表1に、得られた鋼材のミクロ組織、強度,靭性およびΔK=25MPa√mにおける疲労亀裂伝播速度を表2に示す。 Using steel materials melted by the regular process, thick steel plates and sections were produced by the regular process, and their strength, toughness and fatigue crack propagation characteristics were investigated. Table 1 shows the chemical composition and production conditions of the specimen, and Table 2 shows the microstructure, strength, toughness, and fatigue crack propagation rate at ΔK = 25 MPa√m of the obtained steel.
開発鋼で溶体化処理条件が好ましい範囲内の表2中、No.2,5,7〜11の鋼では,疲労亀裂伝播速度が8×10−8mm/cycle以下と極めて疲労亀裂伝播速度が遅延した鋼材が得られ、表2中、No.3,6の鋼は8〜9×10−8mm/cycleの疲労亀裂伝播速度であった。
In Table 2, the solution treatment conditions of the developed steel are within the preferable range. In
一方,溶体化処理を施さず発明範囲を逸脱する鋼で表2中、No.1,4の鋼は、硬質第2相が伸長していることにより,疲労亀裂伝播速度が9.5×10−8mm/cycle以上と高く疲労亀裂伝播特性に劣る。 On the other hand, in Table 2, No. 1 is a steel that does not undergo solution treatment and deviates from the scope of the invention. The steels Nos. 1 and 4 have a fatigue crack propagation speed as high as 9.5 × 10 −8 mm / cycle or more due to the extension of the hard second phase, and are inferior in fatigue crack propagation characteristics.
Claims (6)
Si:0.05〜0.7%
Mn:0.05〜2.5%
P:0.03%以下
S:0.02%以下
Al:0.005〜0.1%
Ti:0.005〜0.03%
を満足する残部Feおよび不可避的不純物からなる鋼を溶体化処理した後、Ar1以下まで冷却し、再度1000〜1350℃に加熱後、熱間圧延を行い、パーライト、ベイナイト、マルテンサイトの少なくとも1種以上の第2相が体積率15%以上、アスペクト比:5以下であることを特徴とする疲労亀裂伝播特性に優れた鋼材の製造方法。 % By mass, C: 0.05 to 0.2%
Si: 0.05-0.7%
Mn: 0.05 to 2.5%
P: 0.03% or less S: 0.02% or less Al: 0.005-0.1%
Ti: 0.005 to 0.03%
After the solution treatment of the steel composed of the remaining Fe and the inevitable impurities satisfying the above, it is cooled to Ar 1 or less, heated again to 1000 to 1350 ° C., hot-rolled, and at least one of pearlite, bainite, and martensite. A method for producing a steel material having excellent fatigue crack propagation characteristics, wherein the second phase of seeds or more has a volume ratio of 15% or more and an aspect ratio of 5 or less.
Cu:0.01〜1%
Ni:0.01〜4%
Cr:0.01〜2%
Mo:0.01〜1%
Nb:0.003〜0.1%
V:0.003〜0.5%
B:0.0005〜0.004%
の1種または2種以上を添加することを特徴とする請求項1記載の疲労亀裂伝播特性に優れた鋼材の製造方法。 Furthermore, in mass%, the component composition of steel
Cu: 0.01 to 1%
Ni: 0.01-4%
Cr: 0.01-2%
Mo: 0.01 to 1%
Nb: 0.003 to 0.1%
V: 0.003-0.5%
B: 0.0005 to 0.004%
1 or 2 types or more of these are added, The manufacturing method of the steel materials excellent in the fatigue crack propagation characteristics of Claim 1 characterized by the above-mentioned.
Ca:0.0005〜0.006%
Mg:0.0005〜0.006%
REM:0.0005〜0.02%
の1種または2種以上を添加することを特徴とする請求項1または2記載の疲労亀裂伝播特性に優れた鋼材の製造方法。 Furthermore, in mass%, the component composition of steel
Ca: 0.0005 to 0.006%
Mg: 0.0005 to 0.006%
REM: 0.0005 to 0.02%
The method for producing a steel material having excellent fatigue crack propagation characteristics according to claim 1 or 2, wherein one or more of the above are added.
The method for producing a steel material having excellent fatigue crack propagation characteristics according to any one of claims 1 to 5, wherein the solution treatment is held at 1200 ° C to 1350 ° C for 5 hours or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006022382A JP5217092B2 (en) | 2006-01-31 | 2006-01-31 | Manufacturing method of steel material with excellent fatigue crack propagation resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006022382A JP5217092B2 (en) | 2006-01-31 | 2006-01-31 | Manufacturing method of steel material with excellent fatigue crack propagation resistance |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011284603A Division JP5397460B2 (en) | 2011-12-27 | 2011-12-27 | Manufacturing method of steel material with excellent fatigue crack propagation resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007204781A true JP2007204781A (en) | 2007-08-16 |
JP5217092B2 JP5217092B2 (en) | 2013-06-19 |
Family
ID=38484500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006022382A Expired - Fee Related JP5217092B2 (en) | 2006-01-31 | 2006-01-31 | Manufacturing method of steel material with excellent fatigue crack propagation resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5217092B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7967923B2 (en) | 2008-10-01 | 2011-06-28 | Nippon Steel Corporation | Steel plate that exhibits excellent low-temperature toughness in a base material and weld heat-affected zone and has small strength anisotropy, and manufacturing method thereof |
JP2012112045A (en) * | 2011-12-27 | 2012-06-14 | Jfe Steel Corp | Method for producing steel product excellent in resistance to fatigue crack growth |
JP2012180584A (en) * | 2011-03-03 | 2012-09-20 | Jfe Steel Corp | Rolled h-section steel excellent in toughness and method of manufacturing the same |
CN103451534A (en) * | 2013-09-18 | 2013-12-18 | 济钢集团有限公司 | 60mm steel plate with excellent performance in thickness direction for ocean platform and production method thereof |
CN103514723A (en) * | 2012-06-20 | 2014-01-15 | 深圳市豪恩安全科技有限公司 | Method and system for automatically calibrating smoke detector alarm value |
JP2014201815A (en) * | 2013-04-09 | 2014-10-27 | Jfeスチール株式会社 | Thick steel sheet excellent in low temperature toughness of sheet thickness center part after pwht and manufacturing method therefor |
CN113234999A (en) * | 2021-04-27 | 2021-08-10 | 南京钢铁股份有限公司 | Efficient welding bridge steel and manufacturing method thereof |
CN114381661A (en) * | 2021-12-10 | 2022-04-22 | 东北大学 | EH 36-grade steel plate and preparation method thereof |
CN116875900A (en) * | 2023-07-24 | 2023-10-13 | 鞍钢股份有限公司 | 800 MPa-level steel plate with excellent seawater corrosion fatigue resistance for ship and manufacturing method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH111742A (en) * | 1997-06-10 | 1999-01-06 | Nippon Steel Corp | Steel excellent in propagation characteristic of fatigue crack and manufacture therefor |
JP2003239036A (en) * | 2002-02-19 | 2003-08-27 | Nippon Steel Corp | Thick steel plate having excellent fatigue strength and production method therefor |
JP2004204344A (en) * | 2002-06-19 | 2004-07-22 | Nippon Steel Corp | Steel for crude oil tank, its production method, crude oil tank and its corrosion prevention method |
JP2005298877A (en) * | 2004-04-08 | 2005-10-27 | Nippon Steel Corp | Steel plate with excellent fatigue crack propagation characteristic, and its manufacturing method |
-
2006
- 2006-01-31 JP JP2006022382A patent/JP5217092B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH111742A (en) * | 1997-06-10 | 1999-01-06 | Nippon Steel Corp | Steel excellent in propagation characteristic of fatigue crack and manufacture therefor |
JP2003239036A (en) * | 2002-02-19 | 2003-08-27 | Nippon Steel Corp | Thick steel plate having excellent fatigue strength and production method therefor |
JP2004204344A (en) * | 2002-06-19 | 2004-07-22 | Nippon Steel Corp | Steel for crude oil tank, its production method, crude oil tank and its corrosion prevention method |
JP2005298877A (en) * | 2004-04-08 | 2005-10-27 | Nippon Steel Corp | Steel plate with excellent fatigue crack propagation characteristic, and its manufacturing method |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7967923B2 (en) | 2008-10-01 | 2011-06-28 | Nippon Steel Corporation | Steel plate that exhibits excellent low-temperature toughness in a base material and weld heat-affected zone and has small strength anisotropy, and manufacturing method thereof |
JP2012180584A (en) * | 2011-03-03 | 2012-09-20 | Jfe Steel Corp | Rolled h-section steel excellent in toughness and method of manufacturing the same |
JP2012112045A (en) * | 2011-12-27 | 2012-06-14 | Jfe Steel Corp | Method for producing steel product excellent in resistance to fatigue crack growth |
CN103514723A (en) * | 2012-06-20 | 2014-01-15 | 深圳市豪恩安全科技有限公司 | Method and system for automatically calibrating smoke detector alarm value |
JP2014201815A (en) * | 2013-04-09 | 2014-10-27 | Jfeスチール株式会社 | Thick steel sheet excellent in low temperature toughness of sheet thickness center part after pwht and manufacturing method therefor |
CN103451534A (en) * | 2013-09-18 | 2013-12-18 | 济钢集团有限公司 | 60mm steel plate with excellent performance in thickness direction for ocean platform and production method thereof |
CN113234999A (en) * | 2021-04-27 | 2021-08-10 | 南京钢铁股份有限公司 | Efficient welding bridge steel and manufacturing method thereof |
CN113234999B (en) * | 2021-04-27 | 2022-05-20 | 南京钢铁股份有限公司 | Efficient welding bridge steel and manufacturing method thereof |
CN114381661A (en) * | 2021-12-10 | 2022-04-22 | 东北大学 | EH 36-grade steel plate and preparation method thereof |
CN116875900A (en) * | 2023-07-24 | 2023-10-13 | 鞍钢股份有限公司 | 800 MPa-level steel plate with excellent seawater corrosion fatigue resistance for ship and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5217092B2 (en) | 2013-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5522084B2 (en) | Thick steel plate manufacturing method | |
JP5217092B2 (en) | Manufacturing method of steel material with excellent fatigue crack propagation resistance | |
JP6883107B2 (en) | High-strength steel with excellent fracture initiation and propagation resistance at low temperatures and its manufacturing method | |
JP6989606B2 (en) | High-strength steel with excellent fracture initiation and propagation resistance at low temperatures, and its manufacturing method | |
JP7411072B2 (en) | High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same | |
JP4538095B2 (en) | Steel plate with excellent low temperature toughness and low strength anisotropy of base metal and weld heat affected zone, and method for producing the same | |
JP2007254767A (en) | Welded joint of high-tensile strength thick steel plate | |
JP2005171300A (en) | High tensile steel for high heat input welding, and weld metal | |
JP5716419B2 (en) | Steel plate with excellent fatigue resistance and method for producing the same | |
JP4985086B2 (en) | High tensile thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP2005213534A (en) | Method for producing steel material excellent in toughness at welding heat affected zone | |
JP4752441B2 (en) | Steel material with excellent fatigue crack propagation resistance | |
JP6926247B2 (en) | Cold-rolled steel sheet for flux-cored wire and its manufacturing method | |
JP5008879B2 (en) | High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate | |
JP5747398B2 (en) | High strength steel | |
JP5397460B2 (en) | Manufacturing method of steel material with excellent fatigue crack propagation resistance | |
JP7348947B2 (en) | Structural steel material with excellent brittle fracture resistance and its manufacturing method | |
JP2005298962A (en) | Method for manufacturing high-strength steel plate superior in workability | |
JP2000104116A (en) | Production of steel excellent in strength and toughness | |
JP6673320B2 (en) | Thick steel plate and method for manufacturing thick steel plate | |
JP5245202B2 (en) | High strength welded structural steel with excellent high heat input weld HAZ toughness and method for producing the same | |
JP4497009B2 (en) | Thick steel plate with excellent fatigue crack propagation characteristics and toughness and method for producing the same | |
JP3736209B2 (en) | High tensile steel with excellent weld toughness and manufacturing method thereof | |
JP4206056B2 (en) | Low YR high strength steel sheet and method for manufacturing the same | |
JP2006241510A (en) | Steel for high strength welded structure having excellent low temperature toughness in high heat input weld haz and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080925 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111227 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120821 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120925 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130218 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160315 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5217092 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |