JP2004363069A - 半導体電極およびその製造方法、ならびにそれを用いた色素増感型太陽電池 - Google Patents
半導体電極およびその製造方法、ならびにそれを用いた色素増感型太陽電池 Download PDFInfo
- Publication number
- JP2004363069A JP2004363069A JP2003168114A JP2003168114A JP2004363069A JP 2004363069 A JP2004363069 A JP 2004363069A JP 2003168114 A JP2003168114 A JP 2003168114A JP 2003168114 A JP2003168114 A JP 2003168114A JP 2004363069 A JP2004363069 A JP 2004363069A
- Authority
- JP
- Japan
- Prior art keywords
- metal oxide
- layer
- semiconductor electrode
- oxide layer
- conductive substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
- Hybrid Cells (AREA)
Abstract
【解決手段】導電性基板3上に、非晶質金属酸化物を含む塗布液を塗布し結晶化せずに、さらに金属酸化物の粒子を塗布し、これらを同時に加熱処理することで緻密な結晶化粒子からなる下地層7と多孔質な金属酸化物層8とを形成する半導体電極2の製造方法。
【選択図】 図1
Description
【発明の属する技術分野】
本発明は、色素が吸着された半導体電層を有する光電極を備えた色素増感型太陽電池ならびにその製造方法に関する。
【0002】
【従来の技術】
環境汚染のないクリーンなエネルギーの一つとして、太陽光のエネルギーを電気エネルギーとして取り出す太陽電池が開発されている。現在実用化されている太陽電池は、シリコン結晶系(単結晶系、多結晶系)、または非晶質系シリコン半導体を用いてガラス基板上にp型半導体とn型半導体を形成したpn接合型であり、変換効率は高い(11〜23%程度)が、製造コストが高いので、限られた用途にしか適用されていないのが実情である。また1991年に発表された色素増感型太陽電池(グレッツエル・セル)は、導電性ガラス基板の表面に酸化チタンの微粒子からなる多孔質半導体膜を形成しそこにルテニウム色素を吸着させた光電極と、上記透明導電膜の表面に白金をコーティングした対極とを酸化還元系を含む電解質溶液を介して向い合せて構成される。この色素増感型太陽電池は、化合物半導体を用いた湿式太陽電池と同じ動作原理を有するが、半導体膜が多孔質化され、内部実表面積が広いため色素を多量に吸着できるので、可視光線のほぼ全波長領域の光を電気に変換することができ、10%以上の光電変換効率が得られると共に、安価な酸化チタンを高純度に精製することなく使用するので、低コスト化が可能であるという利点があり、その実用化が検討されている。
【0003】
上記のように高い光電変換効率を達成する可能性を持つグレッツエル・セルではあるが、未だ11%以上の光電変換効率は報告されていない。また、耐久性の問題が残されている。上記半導体層は結晶性酸化チタンゾルを導電性基板上に塗布後焼結して作製されており、酸化チタンゾルと導電性ガラス基板との密着性が十分でないと考えられる。そこで酸化チタンゾルと導電性ガラス基板との密着性を向上させるために、種々の構造が提案されており、例えば特許文献1には、増感色素を吸着させる金属酸化物層を緻密な構造を有する金属酸化物層と多孔質構造を有する金属酸化物層からなる2層構造とする色素増感型太陽電池が開示されている。
【0004】
【特許文献1】
特開2002−8740号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記の2層構造であっても、導電性ガラス基板と緻密な構造を有する金属酸化物層、さらには緻密層と多孔質構造を有する金属酸化物層との密着性が未だ十分とはいえない。
【0006】
従って本発明の目的は、半導体層と導電性基板との密着性が向上した色素増感型太陽電池ならびにその製造方法を提供することである。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本願第一の発明である半導体電極は、非晶質金属酸化物を含む塗布液を導電性基板上に塗布して下地層を形成して作製されることを特徴とする。
【0008】
本発明では非晶質金属酸化物がペルオキソ基を有する金属酸化物であることが好ましい。
【0009】
本願第二の発明である半導体電極は、導電性基板上に、ペルオキソ基を有する金属酸化物を溶解した溶液を塗布して下地層を形成して作製されることを特徴とする。
【0010】
本発明では前記非晶質金属酸化物をさらに、結晶化して作製されることが好ましい。
【0011】
本発明では導電性基板と下地層との密着強度が1MPa以上であることが好ましい。
【0012】
本発明では金属酸化物は粒子でありその粒径が、30nm以下の範囲であることが好ましい。
【0013】
本発明では下地層の膜厚が、0.01〜1μmの範囲であることを特徴とすることが好ましい。
【0014】
本願第三の発明である半導体電極は、非晶質金属酸化物を含む塗布液を導電性基板上に塗布し、又は導電性基板上に、ペルオキソ基を有する金属酸化物を溶解した溶液を塗布し、さらに金属酸化物層を塗布した後、下地層を緻密な結晶化層に、金属酸化物層を多孔質層にそれぞれ同時に変化させて得られることを特徴とする。本発明では非晶質金属酸化物がペルオキソ基を有する金属酸化物であることが好ましい。
【0015】
本願第四の発明である半導体電極は、導電性基板上に、緻密な結晶化粒子からなる下地層と多孔質な金属酸化物層とが積層して形成され、JISH8504の規定に準じた引きはがし試験をおこないJISB7721に規定する試験機を使用して測定したときに、金属酸化物層内で剥離が生じることを特徴とする。
【0016】
第三,四の発明においては、金属酸化物層の粒子の粒径が、10〜100nmの範囲であることが好ましい。
【0017】
第三,四の発明においては、金属酸化物層の膜厚が、1〜50μmの範囲であることが好ましい。
【0018】
本願第五の発明である半導体電極の製造方法は、非晶質金属酸化物を含む塗布液を導電性基板上に塗布して下地層を形成することを特徴とする。本発明では非晶質金属酸化物がペルオキソ基を有する金属酸化物であることが好ましい。
【0019】
本願第六の発明である半導体電極の製造方法は、非晶質金属酸化物を含む塗布液を導電性基板上に塗布し、結晶化せずに、さらに金属酸化物の粒子を塗布した後、これらを同時に加熱処理することで緻密な結晶化粒子からなる下地層と多孔質な金属酸化物層とを形成することを特徴とする。本発明では非晶質金属酸化物がペルオキソ基を有する金属酸化物であることが好ましい。加熱処理の手段としては高温雰囲気による焼成やマイクロ波加熱が好適である。
【0020】
本願第七の発明である半導体電極の製造方法は、導電性基板上に、ペルオキソ基を有する金属酸化物を溶解した溶液を塗布して下地層を形成することを特徴とする。
【0021】
本願第八の発明である半導体電極の製造方法は、導電性基板上に、ペルオキソ基を有する金属酸化物を溶解した溶液を塗布し、結晶化せずにさらに金属酸化物の粒子を塗布した後、これらを同時に加熱処理することで緻密な結晶化粒子からなる下地層と多孔質な金属酸化物層とを形成することを特徴とする。
【0022】
本願第九の発明である色素増感型太陽電池は、本願第三又は四の発明である半導体電極と対極とを電解質を介して対向配置したことを特徴とする。
【0023】
本発明において、前記金属酸化物層は結晶性酸化チタンからなる厚さ1〜50μmの多孔質層であることが好ましい。前記下地層は結晶性酸化チタン粒子からなる厚さ0.01〜1μmの実質的に空隙を含まない緻密な組織からなる層であることが好ましい。
【0024】
【発明の実施の形態】
以下本発明の詳細を添付図面により説明する。図1は、本発明の実施の形態に係わる色素増感型太陽電池の断面図である。図1に示す色素増感型太陽電池1は、絶縁性を有する透明基板4の表面に透明な電極層5を有する導電性基板3と電極層5上に金属酸化物からなる半導体層6を有する半導体電極2と、透明基板11の表面に電極層12を有する対極10とを、半導体層6と電極層12との間に封入され両端部がシール材(不図示)で封止された電解質13を介して対向配置した構造である。電極層5と電極層12は取り出した起電力を外部負荷(不図示)に供給するために外部負荷を介して電気的に接続されている。半導体層6は、ペルオキソ基を有する金属酸化物をふくむ溶液から作製した下地層7と、増感色素9が吸着された金属酸化物粒子からなる多孔質の金属酸化物層8を含む。この色素増感型太陽電池1によれば、透明基板4から太陽光が入射すると、金属酸化物層8に吸着された増感色素9が励起され、それにより発生した電子が電極層5を通って、外部回路(不図示)に送り出され、対極10の電極層12に移動する。電極層12に達した電子は、電解質4の酸化還元系を還元する。一方、金属酸化物層8に電子を注入した増感色素9は、酸化された状態となるが、電解質13の酸化還元系により還元され、元の状態に戻る。このようにして、色素増感型太陽電池1内を電子が流れることにより、起電力が発生し、色素増感型太陽電池として機能する。この色素増感型太陽電池1の各部は、例えば次のように構成される。
【0025】
導電性基板3は、絶縁性をもつ透明基板4とその表面に支持された透明な電極層5とで形成され、光が入射する側の基板として機能するために、可視光領域乃至近赤外光領域の波長の光透過率が高い(約50%以上)ことが好ましい。透明基板4を形成する材料としては、価格及び強度の点から、例えばソーダライムガラス、無アルカリガラスなどの透明なガラスや、ポリエチレンテレフタレート、ポリフェニレンスルフィド、ポリカーボネート等の透明なエンジニアリングプラスチックを使用できる。電極層5は、光を透過し、かつ集電体として機能するために低い表面抵抗を有することが必要であり、具体的な表面抵抗としては、30Ω/□以下が好ましく10Ω/□以下がより好ましい。電極層5の厚さは、均一な厚さを保ちかつ光の透過率を低下させないために、0.1〜10μmの範囲が好ましい。電極層5を形成する材料としては、例えば酸化錫(TCO)、フッ素をドープした酸化錫(FTO)、酸化インジウム(ICO)、酸化錫をドープした酸化インジウム(ITO)、アンチモンをドープした酸化錫(ATO)、アルミニウムをドープした酸化亜鉛(AZO)等を使用できる。
【0026】
下地層7は、例えば酸化チタン(TiO2)、酸化ニオブ(Nb2O5)、酸化亜鉛(ZnO)、酸化スズ(SnO2)、酸化タングステン(WO3)、チタン酸バリウム(BaTiO3)、チタン酸ストロンチウム(SrTiO3)等の金属酸化物で形成される。これらの内では、特に、半導体特性、耐食性、安定性の点で優れた酸化チタンが好適である。下地層7は、非晶質金属酸化物を含む塗布液を電極層5上に塗布、乾燥、焼成して得られる緻密層から形成される。非晶質金属酸化物を含む塗布液としてペルオキソ基を有する金属酸化物を溶解した溶液あるいは含水チタン酸ゲルを硝酸溶液中に分散させたゾル溶液等を好適に使用することができるが前者がより好ましい。ペルオキソ基を有する金属酸化物を溶解した溶液は、ペルオキソ基の持つ強力な酸化力で導電性基板3を酸化する。このため下地層7と導電性基板3との密着力が強くなる。一方、ペルオキソ基を有する金属酸化物を溶解した溶液を塗布し乾燥させた層は非晶質であるが、焼成時に結晶化され下地層7を形成する。その際に界面近傍の金属酸化物層8の酸化チタンを伴って結晶粒子の成長が起こり、界面における密着力が強くなる。したがって、電極層5上にペルオキソ基を有する金属酸化物を溶解した溶液を塗布し乾燥させた後に焼成せずに、更に金属酸化物層8を構成する粒子(結晶構造を有するものでもよい)を塗布、乾燥し、その後に両者を同時に焼成することにより下地層7と金属酸化物層8と形成するのである。こうして得られた下地層7は電極層5と金属酸化物層8とを強固に結びつける接着層として有効に機能し、両者の密着性を高めることができる。下地層7を構成する金属酸化物粒子の結晶粒径は30nm以下が好ましい。これより大きな粒子では光が透過できないためである。下地層7の膜厚は、薄いと均一な厚さの皮膜の形成が困難となり、厚いと直列抵抗が増加して変換効率が低下するため0.01〜1μmが好ましい。
【0027】
金属酸化物層8は、電子キャリアの電子授受が可能な特性を具備し光電極として機能するために、下地層7と同様に、例えば酸化チタン(TiO2)、酸化ニオブ(Nb2O5)、酸化亜鉛(ZnO)、酸化スズ(SnO2)、酸化タングステン(WO3)、チタン酸バリウム(BaTiO3)、チタン酸ストロンチウム(SrTiO3)等の金属酸化物で形成される。これらの内では、特に、半導体特性、耐食性、安定性の点で優れた酸化チタンが好適である。この金属酸化物粒子の結晶粒径は10〜100nmの範囲が好ましい。これより小さいと良好な多孔質層が形成できず、大きいと比表面積が低下し、色素吸着量が減少するため望ましくない。多孔質金属酸化物層8の膜厚は、1〜50μmの範囲がよい。これより薄いと十分な色素が吸着できず、また、厚いと直列抵抗が増加し、効率に寄与しなくなるためである。
【0028】
下地層7をペルオキソ基を有する金属酸化物を含む溶液から作製し、金属酸化物層8を結晶構造を有する酸化チタン粒子から作製する場合、例えば次の手順に従って作製することが好ましい。
(1)ペルオキソ基を有する酸化チタンを含む溶液、例えばペルオキソチタン酸溶液を準備する。ペルオキソチタン酸溶液(過酸化チタン)は、含水チタン酸ゲル(またはゾル)あるいはチタン化合物の水溶液に過酸化水素水を添加して、含水チタン酸を溶解して調製される。チタン化合物としては、ハロゲン化チタン、硫酸チタン等のチタン塩、テトラアルコキシチタン等のチタンアルコキシド、水素化チタン等を使用できる。図4にペルオキソチタン酸の構造式を示す。
(2)上記溶液を、50〜150℃に加熱した透明電極層の表面にスプレー法、スピンコート法、ドクターブレード法、ディップ法等の公知の手法により塗布、乾燥する。
(3)蒸留水にジルコニアビーズ、ポリエチレングリコール(PEG)、硝酸、酸化チタン微粒子とを加えて攪拌することによりスラリーを作製する。
(4)上記スラリーを(2)で得られた基板の表面に所定の厚さに塗布後、室温〜100℃以下の温度で乾燥する。
(5)乾燥後は、加熱炉に装入して、大気中450〜600℃の温度で10分〜1時間焼成する。
【0029】
ペルオキソチタン酸溶液の代わりに含水チタン酸ゲルを硝酸溶液中に分散させたゾル溶液を使用する場合も上記(2)以下は同様である。
【0030】
金属酸化物層8に吸着される増感色素9としては、可視光領域及び/又は赤外光領域に吸収をもち、半導体を増感させる機能を有する色素、例えば金属錯体あるいは有機色素が使用できる。金属錯体としては、ルテニウム、オスミニウム、鉄、亜鉛などの金属錯体や銅フタロシアニン、チタニルフタロシアニンなどの金属フタロシアニン、クロロフィル誘導体、ヘミンが例示される。これらのうちでは、ルテニウム錯体が、増感効果、耐久性の点で優れている。特に800nmまでの光を吸収するルテニウムビピリジン錯体(N719色素)と900nmまでの光を吸収するルテニウムターピジリン錯体(ブラック・ダイ色素)が好ましい。有機色素としては、メタルフリーフタロシアニン、シアニン系色素、メロシアニン系色素、トリフェニルメタン系色素、クマリン系色素が有効で、特に分子中にカルボキシル基、カルボキシアルキル基、ヒドロキシル基、スルホン基、カルボキシアルキル基等の官能基を有するものが、吸着性の点で好ましい。
【0031】
増感色素9の吸着量は、金属酸化物層8の単位面積(1×10−4m2)当たり10−7mol以上が好ましい。金属酸化物層8への増感色素9の吸着量が少ないと十分な増感効果が得られないためである。金属酸化物層8への増感色素9の吸着は、増感色素9を溶媒(水、アルコール、トルエン等)に溶かした溶液に金属酸化物層8を浸漬させることによって行えばよく、特に浸漬中に加熱還流をすることにより、効率よく吸着することができる。
【0032】
電解質13は、増感色素の酸化体に電子を補充する機能を担うもので、通常は、酸化還元系のイオンが溶解した溶液、例えば電気化学的に活性な塩と酸化還元系を形成する少なくとも1種の化合物との混合物が使用される。電気化学的に活性な塩としては、テトラプロピルアンモニウムアイオダイドなどの4級アンモニウム塩が挙げられる。酸化還元系を形成する化合物としては、キノン、ヒドロキノン、ヨウ素、ヨウ化カリウム、臭素、臭化カリウム等が挙げられる。これらの電解質は、必要に応じ溶媒を用いて電解質溶液とすることができる。溶媒としては、増感色素が金属酸化物層から脱着して溶解しないものが望ましく、水、アルコール類、オリゴエーテル類、カーボネート類、リン酸エステル類、アセトニトリル等を用い得る。この他、低分子または高分子のゲル化剤やP型半導体(CuI)を添加して固体化した電解質を使用してもよく、固体電解質は、電解質溶液よりも光電変換効率はやや低下するが、封止を容易に行えるという利点を有する。
【0033】
対極10は、透明基板4と同様の材料で形成される透明基板11の上に良好な反射性と良好な耐食性を有する電極層12を形成することにより作製される。太陽電池の使用条件(対極側から光が入射しない場合)によっては、透明基板11の代わりにセラミックなどの不透明な基板を使用することができる。電極層12は、集電体として機能するために低い表面抵抗を有することが必要であり、具体的な表面抵抗としては、30Ω/□以下が好ましく、10Ω/□以下がより好ましい。電極層5の厚さは、均一な厚さを保ちかつ低い表面抵抗を保つために、1nm〜1μmの範囲が好ましい。電極層12は、例えば白金、金、銀、チタン、バナジウム、クロム、ジルコニウム、ニオブ、モリブデン、パラジウム、タンタル、タングステン及びこれらの合金(パラジウム−白金、白金−金−パラジウム等)を使用して形成することができる。これらの内では、白金及びその合金は、電解質の酸化体に電子を与える触媒作用をもち、太陽電池の正極として効率よく作用するので好適である。特に、電極層12は、ガラス基板上にスパッタリングにて白金を担持して作製することが望ましい。
【0034】
上記の構造を有する色素増感型太陽電池1は、例えば次の手順で作製することができる。所定温度に加熱した透明導電性基板3の表面に、ペルオキソチタン酸を含む溶液を塗布、乾燥することにより、緻密な下地層7を形成する。その表面に上記スラリーを塗布後焼成して多孔質金属酸化物層8を形成し、ついで増感色素9を吸着させることにより、半導体電極2を作製する。半導体電極2と対極10との間に電解質13を封入することにより、色素増感型太陽電池1が作製される。
【0035】
(実施例)
(実施例1)
チタンアルコキシド(チタニウムテトライソプロポキシド)のイソプロピルアルコール溶液を加水分解し、非晶質酸化チタンゲルを沈殿させた。沈殿物を濾別し、乾燥後、過酸化水素水を加えて攪拌することによりペルオキソチタン酸溶液(0.5wt%TiO2)を作製した。蒸留水8mlにジルコニアビーズ30×10−3kg、結晶性酸化チタン微粒子(日本アエロジル社製:P25)6g、分子量2万のポリエチレングリコール2×10−3kg、硝酸0.6mlを加えてハイブリッドミキサー(キーエンス社製HM−500)にて攪拌することによりスラリーを作製した。次に、FTO膜(電極層)を有するソーダライムガラスからなる透明基板(5Ω/□、セントラル硝子社製)を100℃に加熱した後FTO膜の表面に上記ペルオキソチタン酸溶液を焼成後の下地層の厚さが7〜200nmになるようにスプレーにより塗布し、乾燥させた。この段階における下地層は未だ焼成していないため非晶質状酸化チタンのままである。更にその表面に上記スラリーをスキージ法にて均一に塗布後乾燥し、大気中550℃の温度で30分間焼成して下地層および厚さ20μm程度の多孔質な金属酸化物層を形成した。次いでこの基板を、増感色素{N3[Ru(4,4‘−ジカルボキシ−2,2‘−ビピリジン)2−(NCS)2]}を分散させたエタノール溶液中に浸漬し、80℃の温度で加熱還流することにより、金属酸化物層に増感色素を吸着させて、半導体電極を作製した。透明基板(5Ω/□、セントラル硝子社製)上に白金を厚さ60nmまでスパッタリングし、対極を作製した。半導体電極と対極との間に電解質(ヨウ素、ヨウ化リチウム、イミダゾリウム塩、t−ブチルピリジンをメトキシアセトニトリルに溶解)を封入することにより色素増感型太陽電池を作製した。
【0036】
この半導体電極の断面の透過型電子顕微鏡像を図2に示す。図3は図2を模式的に表した図である。電極層(FTO膜)5上に下地層7、多孔質な金属酸化物層8が順次積層された構成であることがわかる。金属酸化物層8の空隙部には色素が担持されるとともに電解質(電解液)が侵入する。図2から下地層7は粒径が10nm程の結晶性酸化チタンの緻密な層であり、金属酸化物層8は粒径が30nm程のP25の酸化チタンからなる多孔質層であることが確認された。下地層7は金属酸化物層8を構成する酸化チタンより小さい酸化チタン粒子で構成され実質的に空隙を含まない。また、図2に重ねて示した回折パターンから接着層7と金属酸化物層8はアナターゼ型酸化チタンからなることが確認された。さらにX線回折にて詳細に分析したところP25は2割程度ルチル型酸化チタンを含むことが確認された。
【0037】
(実施例2)
金属酸化物層8を形成しないこと以外は実施例1と同様にしてFTO膜の表面に焼成後の層厚さが200nmになるように下地層のみを形成し酸化物半導体電極を作製した。
【0038】
(比較例1)
ガラス基板上に形成されたFTO膜の表面に金属酸化物層のみを形成(下地層を省略)した以外は実施例1と同様の色素増感型太陽電池を作製した。
【0039】
(比較例2)
FTO膜の表面に上記ペルオキソチタン酸溶液を焼成後の下地層の厚さが200nmになるようにスプレーにより塗布した後乾燥させ、大気中550℃の温度で30分間焼成して下地層を形成した。更にその下地層の表面に上記スラリーをスキージ法にて均一に塗布後乾燥し、大気中550℃の温度で30分間焼成して厚さ20μm程度の多孔質な金属酸化物層を形成した。これらの点を除いて実施例1と同様にして色素増感型太陽電池を作製した。
【0040】
(評価)
上記実施例及び比較例の色素増感型太陽電池を用いJISH8504の規定に準じた引きはがし試験をおこないJISB7721に規定する試験機を使用して半導体層の密着強度を測定した。引張試験機はデジタルフォースゲージ(日本電産シンポ社製)を使用した。接着剤は0.7MPa未満では両面テープ(株式会社寺岡製作所社製)を0.7MPa以上ではエポキシ樹脂(ニチバン株式会社製)をそれぞれ使用した。また、ソーラーシミュレーター(英弘精機社製EXIL−05A50K)により擬似太陽光(AM1.5、1kW/m2)を照射して、そのときのI−V特性を測定することにより光電変換効率を算出した。膜厚測定には触針法膜厚測定器(デックタック製DEKTAK8000)を使用した。その結果を表1に示す。
【0041】
【表1】
【0042】
表1から実施例1,2によれば、比較例1よりも高い密着強度を有することがわかる。下地層膜厚10nm以上、特に下地層膜厚25nm以上で高い密着強度が得られる。下地層膜厚10nm未満では高い密着強度は得られない。また、実施例1では、金属酸化物層内で、実施例2では、FTO膜内で、比較例1では、FTO膜と酸化チタン膜との界面でそれぞれ剥離したことが、剥離面での元素分析と、断面写真により確認され、ペルオキソチタン酸より作製した下地層がFTO膜との界面および金属酸化物層との界面において強力な密着力を示すことが証明された。比較例2の結果を実施例1−5と比べると下地層と金属酸化物層とを別々に焼成したのでは密着強度と変換効率がともに低くなることが分かる。
【0043】
密着強度の増大とともに変換効率も増大している。これはFTO膜、下地層および金属酸化物層間の各界面の密着度が向上したことによる界面での電気抵抗の低下によるものと考えられる。また、緻密な構造の下地層を設けたことによりFTO膜と電解液(電解質)とが直接接触しないために漏れ電流(電子が外部回路を通らずに電解液と反応してしまう現象)が抑制されたことも変換効率の増大に寄与しているものと考えられる。
【0044】
金属酸化物層8は、球状の金属酸化物からなる多孔質膜であるが、例えば金属酸化物層8が膜厚20μm、平均粒径25nmとすると金属酸化物粒子800個が厚さ方向(電流方向)に積層されるため電流の粒界抵抗が大きくなる。この粒界抵抗を小さくするために球状の金属酸化物粒子に代えて高アスペクト比の金属酸化物粒子を用いることが好ましく、例えばチタニアナノチューブともよばれるチューブ形状の酸化チタン粒子(図5)、針形状の酸化チタン粒子(図6)、又はワイヤー形状の酸化チタン粒子(図7)を使用することが出来る。これらの粒子の配置は下地層7の面に対して粒子の長手方向が垂直でも水平でもよいが、粒界抵抗を抑制するのには垂直方向が好ましい。これにより同一の開放電圧であっても金属酸化物層8の電気抵抗が低減するため短絡電流密度が増大し変換効率を更に向上させることができる。さらに、高アスペクト比の金属酸化物粒子が単結晶であると、結晶粒界抵抗が低減するために好ましい。また、高アスペクト比の金属酸化物粒子のうちチューブ形状の酸化チタンは他の粒子に較べて、大きな比表面積を有するため色素吸着量を増大させることができ、高い短絡電流密度が得られる。
【0045】
【発明の効果】
以上に記述の如く、本発明によれば、密着性が向上すると共に、密着性の向上により高い変換効率を有する色素増感型太陽電池を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係わる色素増感型太陽電池の概略断面図である。
【図2】半導体電極の断面の透過型電子顕微鏡像である。
【図3】図2を模式的に表す図である。
【図4】ペルオキソチタン酸の構造式を示す図である。
【図5】チューブ形状の粒子からなる金属酸化物層8の例を表す図である。
【図6】針形状の粒子からなる金属酸化物層8の例を表す図である。
【図7】ワイヤ形状の粒子からなる金属酸化物層8の例を表す図である。
【符号の説明】
1:色素増感型太陽電池
2:半導体電極
3:導電性基板
4:透明基板
5:電極層
6:半導体層
7:下地層
8:金属酸化物層
9:増感色素
10:対極
11:透明基板
12:電極層
13:電解質
Claims (16)
- 非晶質金属酸化物を含む塗布液を導電性基板上に塗布して下地層を形成して作製されることを特徴とする半導体電極。
- 非晶質金属酸化物がペルオキソ基を有する金属酸化物であることを特徴とする請求項1に記載の半導体電極。
- 導電性基板上に、ペルオキソ基を有する金属酸化物を溶解した溶液を塗布して下地層を形成して作製されることを特徴とする半導体電極。
- 前記金属酸化物をさらに、結晶化して作製されることを特徴とする請求項1乃至3の何れかに記載の半導体電極。
- 導電性基板と下地層との密着強度が1MPa以上であることを特徴とする請求項4に記載の半導体電極。
- 金属酸化物は粒子でありその粒径が、30nm以下の範囲であることを特徴とする請求項4に記載の半導体電極。
- 下地層の膜厚が、0.01〜1μmの範囲であることを特徴とする請求項4に記載の半導体電極。
- 請求項1乃至3の何れかに記載の半導体電極の上層にさらに金属酸化物層を塗布した後、下地層を緻密な結晶化層に、金属酸化物層を多孔質層にそれぞれ同時に変化させて得られることを特徴とする半導体電極。
- 導電性基板上に、緻密な結晶化粒子からなる下地層と多孔質な金属酸化物層とが積層して形成され、JISH8504の規定に準じた引きはがし試験をおこないJISB7721に規定する試験機を使用して測定したときに、金属酸化物層内で剥離が生じることを特徴とする半導体電極。
- 金属酸化物層の粒子の粒径が、10〜100nmの範囲であることを特徴とする請求項8又は9に記載の半導体電極。
- 金属酸化物層の膜厚が、1〜50μmの範囲であることを特徴とする請求項8乃至10の何れかに記載の半導体電極。
- 非晶質金属酸化物を含む塗布液を導電性基板上に塗布して下地層を形成することを特徴とする半導体電極の製造方法。
- 非晶質金属酸化物を含む塗布液を導電性基板上に塗布し、結晶化せずにさらに金属酸化物の粒子を塗布した後、これらを同時に加熱処理することで緻密な結晶化粒子からなる下地層と多孔質な金属酸化物層とを形成することを特徴とする半導体電極の製造方法。
- 導電性基板上に、ペルオキソ基を有する金属酸化物を溶解した溶液を塗布して下地層を形成することを特徴とする半導体電極の製造方法。
- 導電性基板上に、ペルオキソ基を有する金属酸化物を溶解した溶液を塗布し、結晶化せずにさらに金属酸化物の粒子を塗布した後、これらを同時に加熱処理することで緻密な結晶化粒子からなる下地層と多孔質な金属酸化物層とを形成することを特徴とする半導体電極の製造方法。
- 請求項8乃至11の何れかに記載の半導体電極と対極とを電解質を介して対向配置したことを特徴とする色素増感型太陽電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003168114A JP4596305B2 (ja) | 2002-06-14 | 2003-06-12 | 半導体電極およびその製造方法、ならびにそれを用いた色素増感型太陽電池 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002173870 | 2002-06-14 | ||
JP2003102774 | 2003-04-07 | ||
JP2003168114A JP4596305B2 (ja) | 2002-06-14 | 2003-06-12 | 半導体電極およびその製造方法、ならびにそれを用いた色素増感型太陽電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004363069A true JP2004363069A (ja) | 2004-12-24 |
JP4596305B2 JP4596305B2 (ja) | 2010-12-08 |
Family
ID=34068852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003168114A Expired - Fee Related JP4596305B2 (ja) | 2002-06-14 | 2003-06-12 | 半導体電極およびその製造方法、ならびにそれを用いた色素増感型太陽電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4596305B2 (ja) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2423189A (en) * | 2005-02-15 | 2006-08-16 | Martin Lister | Coloured solar cell |
JP2006286526A (ja) * | 2005-04-04 | 2006-10-19 | Teijin Dupont Films Japan Ltd | 色素増感型太陽電池用電極およびその製造方法 |
JP2008210713A (ja) * | 2007-02-27 | 2008-09-11 | Jgc Catalysts & Chemicals Ltd | 光電気セルおよびその製造方法 |
WO2009087848A1 (ja) * | 2008-01-08 | 2009-07-16 | Konica Minolta Holdings, Inc. | 色素増感型太陽電池 |
JP2009289669A (ja) * | 2008-05-30 | 2009-12-10 | Jgc Catalysts & Chemicals Ltd | 光電気セル用多孔質金属酸化物半導体膜形成用塗料および光電気セル |
JP2010033915A (ja) * | 2008-07-29 | 2010-02-12 | Gunze Ltd | 色素増感太陽電池及び色素増感太陽電池の製造方法 |
JP2010040172A (ja) * | 2008-07-31 | 2010-02-18 | Jgc Catalysts & Chemicals Ltd | 光電気セルの製造方法 |
WO2010050575A1 (ja) | 2008-10-29 | 2010-05-06 | 富士フイルム株式会社 | 色素、これを用いた光電変換素子、光電気化学電池、および色素の製造方法 |
EP2302650A2 (en) | 2009-09-28 | 2011-03-30 | Fujifilm Corporation | Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell |
EP2306479A2 (en) | 2009-09-28 | 2011-04-06 | Fujifilm Corporation | Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell |
JP2012089380A (ja) * | 2010-10-20 | 2012-05-10 | Toyo Seikan Kaisha Ltd | 色素増感型太陽電池に使用される半導体電極用基板及び電極 |
JP2012146631A (ja) * | 2010-12-20 | 2012-08-02 | Peccell Technologies Inc | 光電変換素子の作製方法、光電変換素子及び光電池 |
JP5089381B2 (ja) * | 2005-04-11 | 2012-12-05 | 日本化薬株式会社 | 光電変換素子用電解液組成物及びそれを用いた光電変換素子 |
JP2015520509A (ja) * | 2012-05-08 | 2015-07-16 | エルジー・ケム・リミテッド | 色素増感太陽電池およびその製造方法{dye−sensitizedsolarcellandmethodformanufacturingsame} |
JP2016082005A (ja) * | 2014-10-14 | 2016-05-16 | 積水化学工業株式会社 | 有機無機ハイブリッド太陽電池の製造方法、及び、有機無機ハイブリッド太陽電池 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11312541A (ja) * | 1998-04-30 | 1999-11-09 | Minolta Co Ltd | 太陽電池 |
JP2000285979A (ja) * | 1999-03-31 | 2000-10-13 | Toshiba Corp | 光増感型太陽光発電セル |
JP2000285974A (ja) * | 1999-03-30 | 2000-10-13 | Toshiba Corp | 光増感型太陽光発電素子 |
-
2003
- 2003-06-12 JP JP2003168114A patent/JP4596305B2/ja not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11312541A (ja) * | 1998-04-30 | 1999-11-09 | Minolta Co Ltd | 太陽電池 |
JP2000285974A (ja) * | 1999-03-30 | 2000-10-13 | Toshiba Corp | 光増感型太陽光発電素子 |
JP2000285979A (ja) * | 1999-03-31 | 2000-10-13 | Toshiba Corp | 光増感型太陽光発電セル |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2423189A (en) * | 2005-02-15 | 2006-08-16 | Martin Lister | Coloured solar cell |
JP2006286526A (ja) * | 2005-04-04 | 2006-10-19 | Teijin Dupont Films Japan Ltd | 色素増感型太陽電池用電極およびその製造方法 |
KR101231935B1 (ko) * | 2005-04-11 | 2013-02-08 | 니폰 가야꾸 가부시끼가이샤 | 광전 변환 소자용 전해액 조성물 및 그것을 이용한 광전변환 소자 |
JP5089381B2 (ja) * | 2005-04-11 | 2012-12-05 | 日本化薬株式会社 | 光電変換素子用電解液組成物及びそれを用いた光電変換素子 |
JP2008210713A (ja) * | 2007-02-27 | 2008-09-11 | Jgc Catalysts & Chemicals Ltd | 光電気セルおよびその製造方法 |
JPWO2009087848A1 (ja) * | 2008-01-08 | 2011-05-26 | コニカミノルタホールディングス株式会社 | 色素増感型太陽電池 |
WO2009087848A1 (ja) * | 2008-01-08 | 2009-07-16 | Konica Minolta Holdings, Inc. | 色素増感型太陽電池 |
JP2009289669A (ja) * | 2008-05-30 | 2009-12-10 | Jgc Catalysts & Chemicals Ltd | 光電気セル用多孔質金属酸化物半導体膜形成用塗料および光電気セル |
JP2010033915A (ja) * | 2008-07-29 | 2010-02-12 | Gunze Ltd | 色素増感太陽電池及び色素増感太陽電池の製造方法 |
JP2010040172A (ja) * | 2008-07-31 | 2010-02-18 | Jgc Catalysts & Chemicals Ltd | 光電気セルの製造方法 |
WO2010050575A1 (ja) | 2008-10-29 | 2010-05-06 | 富士フイルム株式会社 | 色素、これを用いた光電変換素子、光電気化学電池、および色素の製造方法 |
EP2845882A2 (en) | 2008-10-29 | 2015-03-11 | Fujifilm Corporation | Dye, Photoelectric Conversion Element and Photoelectrochemical Cell |
EP2306479A2 (en) | 2009-09-28 | 2011-04-06 | Fujifilm Corporation | Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell |
EP2302650A2 (en) | 2009-09-28 | 2011-03-30 | Fujifilm Corporation | Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell |
JP2012089380A (ja) * | 2010-10-20 | 2012-05-10 | Toyo Seikan Kaisha Ltd | 色素増感型太陽電池に使用される半導体電極用基板及び電極 |
JP2012146631A (ja) * | 2010-12-20 | 2012-08-02 | Peccell Technologies Inc | 光電変換素子の作製方法、光電変換素子及び光電池 |
JP2015520509A (ja) * | 2012-05-08 | 2015-07-16 | エルジー・ケム・リミテッド | 色素増感太陽電池およびその製造方法{dye−sensitizedsolarcellandmethodformanufacturingsame} |
US9620295B2 (en) | 2012-05-08 | 2017-04-11 | Dentons Us Llp | Dye-sensitized solar cell and method for manufacturing same |
EP2833414B1 (en) * | 2012-05-08 | 2020-11-25 | LG Chem, Ltd. | Dye-sensitized solar cell and method for manufacturing same |
JP2016082005A (ja) * | 2014-10-14 | 2016-05-16 | 積水化学工業株式会社 | 有機無機ハイブリッド太陽電池の製造方法、及び、有機無機ハイブリッド太陽電池 |
Also Published As
Publication number | Publication date |
---|---|
JP4596305B2 (ja) | 2010-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5084730B2 (ja) | 色素増感太陽電池 | |
EP2432069B1 (en) | Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module | |
JP5191647B2 (ja) | 酸化チタン膜、酸化チタン膜電極膜構造および色素増感太陽電池 | |
JP4063802B2 (ja) | 光電極 | |
JP4596305B2 (ja) | 半導体電極およびその製造方法、ならびにそれを用いた色素増感型太陽電池 | |
JP2005235725A (ja) | 色素増感型太陽電池モジュール | |
JP2004311197A (ja) | 光電極およびそれを使用した色素増感型太陽電池 | |
JP4863662B2 (ja) | 色素増感型太陽電池モジュールおよびその製造方法 | |
JP5118805B2 (ja) | 色素増感太陽電池及び色素増感太陽電池モジュール | |
JP2000285975A (ja) | 光電変換用半導体および光電変換素子 | |
JP4777592B2 (ja) | 対極及びこれを備えた色素増感型太陽電池 | |
JP4678125B2 (ja) | 光電変換素子およびその製造方法ならびに電子装置およびその製造方法 | |
JP4448478B2 (ja) | 色素増感型太陽電池モジュール | |
JP4892186B2 (ja) | 色素増感太陽電池および色素増感太陽電池モジュール | |
JP2003187883A (ja) | 光電変換素子 | |
JP4963165B2 (ja) | 色素増感型太陽電池及び色素増感型太陽電池モジュール | |
JP4341197B2 (ja) | 光電変換素子及びその製造方法 | |
JP4155431B2 (ja) | 光電変換素子 | |
JP5467237B2 (ja) | 色素増感型光電変換素子およびそれを用いた色素増感型太陽電池の製造方法 | |
JP2006076855A (ja) | 半導体ナノ粒子を含む粘性分散液 | |
JP2004241234A (ja) | 光電極およびそれを使用した色素増感型太陽電池 | |
JP2005243498A (ja) | 酸化物半導体電極の製造方法および色素増感型太陽電池の製造方法 | |
JP4380214B2 (ja) | 色素増感型太陽電池の製造方法 | |
JP4601582B2 (ja) | 光電極、およびそれを用いた色素増感太陽電池、色素増感太陽電池モジュール | |
JP4104108B2 (ja) | 有機色素増感型金属酸化物半導体電極及びこの半導体電極を有する太陽電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060515 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091030 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091229 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100507 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100524 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100827 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100909 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4596305 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131001 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |