JP2004035521A - 液相ペプチド合成装置 - Google Patents
液相ペプチド合成装置 Download PDFInfo
- Publication number
- JP2004035521A JP2004035521A JP2002198242A JP2002198242A JP2004035521A JP 2004035521 A JP2004035521 A JP 2004035521A JP 2002198242 A JP2002198242 A JP 2002198242A JP 2002198242 A JP2002198242 A JP 2002198242A JP 2004035521 A JP2004035521 A JP 2004035521A
- Authority
- JP
- Japan
- Prior art keywords
- solvent
- solution
- solvent solution
- mixing tank
- amino acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Peptides Or Proteins (AREA)
Abstract
【解決手段】温度により相溶状態と相分離状態とを可逆的に変化できる第一・第二溶媒の組み合わせと、第一溶媒に対し可溶性で、第二溶媒に対し難溶性で、かつアミノ酸系物質と結合する液相担体を用い、該液相担体に逐次ペプチド結合する液相ペプチド合成装置でコストダウン、量産を実現した。相溶状態で合成反応、分離状態で合成反応物と残留物の排除、を繰り返す。分離界面の検知手段20、反応推定手段などで排除量を判定する効率よい排除手段7を配備した。
【選択図】図7
Description
【発明の属する技術分野】
本発明は、アミノ酸を特定の順序でペプチド結合してなるペプチドの合成装置に関し、特に、相溶状態と相分離状態とが温度で可逆的に変化する溶媒の組み合わせを好適に利用してペプチドの量産を可能にする液相ペプチド合成装置に関する。
【0002】
【従来の技術】
医学、薬学、生物学など広範囲の分野においてペプチドの合成技術の重要性はいうまでもない。アミノ酸を特定の順序でペプチド結合させたペプチドは、抗原−抗体相互作用の研究、臨床診断に利用するペプチド抗原の研究、種々の遺伝子研究などきわめて多くの研究にかかわる。免疫でも感染源でもタンパク質の活性はたかだかアミノ酸5個から10個が結合したペプチドで決まる。したがって、その部分の合成は非常に重要であり研究用として多くの需要がある。
【0003】
もちろんアミノ酸10個以上結合したペプチドも重要である。合成可能とされるペプチドの結合数(残基数)の限界は50程度であり、このアミノ酸結合数の限界を超えたペプチドの合成技術も望まれている。
【0004】
研究の成果として、特定のタンパクやペプチドの薬効が検証されれば、化学合成ワクチン等の医薬品向けペプチドの大量需要が発生する。よって、商用規模の大量の需要に対応できるペプチド量産技術が強く望まれている。
【0005】
化学的にアミノ酸を連結していくペプチド合成法は化学合成法と呼ばれ、本発明の装置のプロセスはこれに含まれる。これ以外にも、目的のペプチドをコードするヌクレオチド配列からなるDNAを調製して宿主細胞等に発現させる遺伝子組換え法がある。しかしこれは手間がかかりコスト高で量産には向かない。
【0006】
その理由は、遺伝子組換え法で50アミノ酸(残基)以上のペプチドを合成するには、まずそのアミノ酸をコードする150ヌクレオチド以上のDNAを人工合成しなければならないからである。しかも、この方法ではD体のアミノ酸、天然に存在しないアミノ酸誘導体を含むペプチドは合成できない。ここで、アミノ酸誘導体を含むペプチドとは、ペプチドのアミノ酸残基に任意化合物が結合したものである。
【0007】
また、まず短い部分ペプチド(セグメント)を合成してから、それらを側鎖保護基が付いた状
態でカップリングさせるセグメント縮合法がある。しかし、この方法も複数の工程を必要とする
上、各セグメントのC末端アミノ酸がGly、 Proなど特定のアミノ酸でなければならず、セグメント設計上の制約がある。
【0008】
量産をねらって反応の自由度が大きく、反応選択性が小さい化学合成法(従来の液相法)をもちいた場合には、アミノ基とカルボキシル基とがとり違えられ結合したり、アミノ酸自体の異性体が間違って結合したりしてしまう。さらに、反応後に多量の試薬、触媒、反応補助剤、副生成物などが残留する。そのため合成反応を行った後、クロマトグラフィなどによって目的とする生成物を分離精製するプロセスを必要とするが、目的とするペプチドの収率が極めて悪いことが多い。そのため、一般の液相法(反応選択性が小さい従来の液相法)はほとんど用いられていない。
【0009】
反応選択性を向上させ副生成物の発生を抑えるため、固体表面に化学的にアミノ酸を連結していく、固相合成法が現在のペプチド合成の主流となっている。この固相ペプチド合成法(Solid Phase Peptide Synthesis法)は、メリフイールド(Merrifield)により開発された。
【0010】
固相ペプチド合成法を図1〜図2で説明する。固相ペプチド合成では、合成すべきペプチドのカルボキシル基側末端(C末端)のアミノ酸を、不溶性の微小樹脂(レジンなど)ビーズの表面に化学的に結合させる。この微小樹脂ビーズは固体であり、アミノ酸を担持しつつ結合していくので、「固体担体」と呼ばれる。図1〜図2の9が、固体担体である。
【0011】
固体担体に結合されたC末端アミノ酸のアミノ基側末端(N末端)に、さらに結合すべきアミノ酸を用意する。この結合すべきアミノ酸では、N末端を不活性化、C末端を活性化する処理を行う。この操作を結合前処理と呼ぶことにする。不活性化は、N末端にFmoc (9−flourenylmethloxycarbonyl) あるいはt−Boc (tert−butyloxycarbonyl) あるいはCbz(ベンジルオキシカルボニル)などの反応保護基を結合させる。
【0012】
図1〜図2の12が、結合すべきアミノ酸に結合前処理をした化合物である。12の「X」は、C末端の活性化基である。このようにして、N末端の反応をブロックしてC末端のみ反応させるのである。
【0013】
固体担体に結合されたアミノ酸のN末端にも保護基が結合されているので、この保護基を図中の10の操作で除去する。それに続いて、その活性化されたN末端にC末端を活性化した12をペプチド結合させる反応操作11を行う。ペプチド合成反応温度は、アミノ酸が変性しない50℃程度の比較的低温であり、反応促進剤の添加など公知の方法を適用して行う。その反応後、未反応アミノ酸を洗浄除去する。
【0014】
図1では、合成すべきペプチドのC末端から二つのアミノ酸(残基R1、R2)がペプチド結合された部分ができあがる。それに続く図2では、三つのアミノ酸(残基R1、R2、R3)がペプチド結合された部分ができあがる。こういった操作を繰り返して合成すべきペプチドを得る。
【0015】
ペプチド結合が完了したら、C末端を固体担体から開裂させ、必要に応じて保護基を除去したり付加したりする。この工程は、クリーベイジ(cleavage)と呼ばれる。
【0016】
このようにアミノ酸を1種ずつ添加結合することで、反応の自由度、選択性をきわめて小さく
し、所望のアミノ酸を所望の順序でペプチド結合させ、所望のペプチドを合成する。固相ペプチド合成では、不溶性の微小樹脂ビーズをアミノ酸系物質の「担体」として用いることに特徴がある。(ここで「アミノ酸系物質」とは、単独のアミノ酸あるいはアミノ酸残基、複数のアミノ酸がペプチド結合したペプチドを含む。)固体担体の素材としてはガラス、シリカ、合成樹脂などが知られているが、合成樹脂が最も普通に使用されている。
【0017】
【発明が解決しようとする課題】
しかしながら、固相ペプチド合成も欠点がある。固体表面で化学反応を行わなければならないため、試薬が固体表面に接近しにくく、液相反応に比べると反応が起こりにくい。すなわち、固体担体がアミノ酸に比べてきわめて巨大な分子であり、その巨大分子のごく小さな反応部にアミノ酸を結合させる必要があるが、それが確率的に起こりにくい。そのため高価なアミノ酸反応試薬12を大量に供給しなければならない。通常反応量の100倍程度を供給する。その結果として反応に関与できない反応試薬が大量に発生し無駄になる。
【0018】
しかも、n番目のアミノ酸の未反応部には次の結合工程で、n+1番目のアミノ酸がn番目として結合してしまうので所望のペプチドではない不純物となってしまう。こういった未反応が、個々の結合反応で5%しか発生しないとしても、50アミノ酸(残基)のペプチドを合成すると、最終的な収率はたったの7.7%となってしまう(0.95の50乗)。30アミノ酸(残基)でも21.5%である(0.95の30乗)。
【0019】
このように、固相ペプチド合成では個々のペプチド結合の未反応を極力減らすべく、前記のように反応試薬を大量に使用せざるを得ないというコスト面での問題、および反応時間を十二分に長く取らざるを得ない、といった生産効率上の問題があった。
【0020】
この他にも固相ペプチド合成では、目的の反応が進行したことを簡便に確認することができない、固体担体が微小とはいえ数ミクロンの大きさがあるため反応槽をスケールアップすると、巨大なものになってしまう、固相担体が高価で再利用ができない(使い捨て)といった問題があった。
【0021】
本発明は、上記のような従来のペプチド合成装置の問題を解決すべく、相溶状態と相分離状態とが可逆的に変化する溶媒の組み合わせを好適に用いたペプチド合成装置を提供するものである。
【0022】
【課題を解決するための手段】
本発明は、本案発明者による特願2001−254109「相溶性−多相有機溶媒システム」を利用した液相ペプチド合成装置であって、より具体的には、本案発明者による特願2001−385493「相溶性−多相有機溶媒システムによりアミノ酸を逐次的に付加する液相ペプチド合成法」に開示された方法を実現する装置である。
【0023】
<液相ペプチド合成法の溶媒セット> まず、相溶性−多相有機溶媒システムを説明し、次にそれを用いた液相ペプチド合成法を説明する。図3が相溶性−多相有機溶媒システムを構成する具体的な溶媒の組み合わせの実験写真である。
【0024】
特願2001−254109「相溶性−多相有機溶媒システム」にて、温度により相溶状態と相分離状態とが可逆的に変化する第一の溶媒と第二の溶媒のセット(組み合わせ)が開示されている。ここで第一の溶媒と第二の溶媒のそれぞれは、複数の溶媒の混合溶媒でもよい。
【0025】
図3は第一の溶媒と第二の溶媒を混合した例であり、下層の第二の溶媒に染色剤を混合して可視化してある。これらの溶媒の組み合わせ(以下溶媒セットと記載する)にて、25℃では相分離状態(図3a)、これを45℃に加熱すると相溶状態(図3b)となる。これを冷却すると相分離状態に戻る。図3のa、b、c、d、eは時間を追って撮影したものを順に並べたもので、c、dは45℃から25℃に冷却される中間状態である。この実験の溶媒セットは、温度により相溶状態と相分離状態とが可逆変化することがわかる。
【0026】
液相ペプチド合成に好適な溶媒セットは、特願2001−385493「相溶性−多相有機溶媒システムによりアミノ酸を逐次的に付加する液相ペプチド合成法」に開示されているように、一方の溶媒または混合溶媒(第一の溶媒)を構成する有機溶媒がシクロアルカン系の化合物からなる。
【0027】
第一の溶媒は、基本的には低極性有機溶媒であり、該溶媒を構成する化合物群としては、アルカン、シクロアルカン、アルケン、アルキン、芳香族化合物などで、中でも好ましいものが、シクロアルカン系の化合物であり、特に好適なものとして「シクロヘキサン」を挙げることができる。シクロヘキサンのイス型−舟形配座異性体の変換が他の溶媒との関連で温度的に比較的穏やかな条件で起こることに関連していると推測できる。シクロヘキサンは融点が6.5℃と比較的高く、反応後の生成物などを固化して分離できるという利点もあり、最終工程である回収工程でもメリットがありこの面からも好ましい。回収工程はあとで説明する。
【0028】
一方、第一の溶媒と組み合わせる他方の溶媒または混合溶媒(第二の溶媒)を構成する有機溶媒は、基本的には高極性有機溶媒である。好ましいものとしては、ニトロアルカン、ニトリル、アルコール、ハロゲン化アルキル、アミド化合物およびスルフォキサイドからなる群から選択される少なくとも一種から構成されたものである。
【0029】
第二の溶媒は、さらに具体的には、ニトロアルカンのアルキル基は炭素数が1、2または3であり、ニトリルのアルキル基の炭素数が1、2または3であり、アミド化合物はN−ジアルキルまたはN−モノアルキルアミドのアルキル基およびアシル基またはホルミル基の炭素数の合計は6以下であり、アルコールは炭素数が8以下であり、スルフォキサイドのアルキル基は炭素数が1、2または3であり、またハロゲン化アルキルのアルキル基は炭素数が6以下である。
【0030】
上記の第一の溶媒と第二の溶媒との溶媒セットは、図3のように温度により、可逆的に均一相溶混合溶媒系の状態(相溶状態)と複数相に分離した分離溶媒系の状態(相分離状態)とを可逆的に取り得る。
【0031】
<相溶化温度> 第一の溶媒あるいは第二の溶媒の構成を変えることによって、相溶状態と相分離状態が切り替わる温度も自在に変えることができる。たとえば、図18が第一の溶媒であるシクロヘキサン(CH)と第二の溶媒であるニトロアルカン混合溶媒(NA)の構成と相溶化温度の変化の説明図である。パラメータとしてCHとNAの容積比を1:5、2:5、1:1、5:1とし、それぞれのNAを構成しているニトロメタン(NM)とニトロエタン(NE)の容積混合比を横軸、溶媒温度を縦軸として、両溶媒を混合した際の相溶化温度データをプロットした。
【0032】
また、図19は第一の溶媒であるシクロヘキサン(CH)と第二の溶媒を1:1の等容積(それぞれ50容積%)と固定して、第二の溶媒を、ニトロメタン(NM)とニトロエタン(NE)の混合溶媒、または、アセトニトリル(AN)とプロピオニトリル(PN)の混合溶媒、または、ジメチルホルムアミド(DMF)とジメチルアセトアミド(DMA)の混合溶媒として、第二の溶媒の容積混合比を横軸、溶媒温度を縦軸として、両溶媒を混合した際の相溶化温度データをプロットした。
【0033】
図18、図19より、20℃から60℃の温度で相溶化温度が、第一・第二の溶媒構成で変化することがわかる。換言すれば、第一の溶媒と第二の溶媒のセットにおいて、第一・第二の溶媒構成を変える手段をもつことによって、両溶媒の相溶化温度を変えることができる。つまり相溶化状態での化学反応を温度が低いレベルでも可能になしうる。
【0034】
第一・第二の溶媒構成は、第一の溶媒と第二の溶媒の混合比でもよいし、混合溶媒である第一の溶媒あるいは第二の溶媒をなす混合溶媒要素の混合比でもよい。構成変化手段は、第一の溶媒と第二の溶媒の供給混合に際して、前記構成を変化させるべく、第一の溶媒あるいは第二の溶媒の供給量を加減調整したり、新たに混合溶媒要素を付加したりすればよい。
【0035】
上記のように相溶化温度が変えられることを加味し、混合前の第一・第二溶媒の供給量は、それらに溶解されるアミノ酸、アミノ酸系物質で行うペプチド合成の温度をどうするかを考慮し図18、図19のようなデータに基づいて決定するとよい。当然のことながら反応のための温度制御の温度も図18、図19のようなデータに基づいて決定するとよい。
【0036】
<液体担体> さて、特願2001−385493(液相ペプチド合成法)において上記の溶媒セットを用いてアミノ酸を逐次的に付加する液相ペプチド合成法を提案しているが、この合成法にて溶媒セットと共に重要なものは、固相ペプチド合成の固体担体に相当する「液体の担体」である。
【0037】
これは、特願2001−254109(溶媒システム)において、「第一の溶媒あるいは第二の溶媒いずれか一方のみ溶解する反応に関与する化学成分」と記載したものに相当する。
【0038】
すなわち、第一の溶媒に対し可溶性であり、第二の溶媒に対し難溶性である化合物から誘導され、かつ、アミノ酸系物質と結合する液体の担体である。機能について固体担体と等価であるので、本明細書ではこれを「液体担体」と呼称する。この液体担体について説明する。
【0039】
従来技術の固相表面反応を液相の反応に置換すれば、従来問題であった反応性の悪さ(固体担体がアミノ酸に比べてきわめて巨大な分子であり反応部位に接近しにくい)を改善できる。さらに、前述の相分離する溶媒セットをうまく使えば、得られた反応生成物の分離が極めて容易に実現できる。このように画期的な利点をもつ液相ペプチド合成法の実現には、固相ペプチド合成の固体担体に相当する液体の担体が必要で、発明者はこれを見出した。その液体担体は以下の機能を必要とする。
【0040】
すなわち、液体担体はペプチドの形成を開始するアミノ酸との結合部を有すること、アミノ酸を順次結合させ伸長させたペプチド鎖を担持できること、さらにアミノ酸と結合した化合物および合成中のペプチド鎖を担持した化合物が、第一の溶媒に溶解されること、である。
【0041】
これら機能を持つ液体担体の候補化合物は、親シクロアルカン系溶媒部分とアミノ酸と結合する官能基を有するものであることを特徴とする下記の一般式A(化1)で表される芳香族炭化水素環または炭素数10以上の炭化水素基を基本骨格化合物である。
【0042】
【化1】
【0043】
一般式A(化1)において、L1は、アミノ酸と結合する水酸基、チオール基、アミノ基、またはカルボニル基と結合する単結合、該水酸基、チオール基、アミノ基、またはカルボニル基と結合する原子団、または点線とも結合して2環の縮合芳香族環を形成する原子団である。
【0044】
一般式A(化1)において、点線はHとの結合または前記L1と結合して前記縮合芳香族環を形成する原子団の結合であり、XはO、S、N、エステル基、スルフィド基またはイミノ基であり、Rは、シクロアルカン系の溶剤への溶解性を高めるO、S、またはNを結合原子として含んでいても良い炭素数10以上の炭化水素基である。また、nは1〜5の整数である。
【0045】
一般式A(化1)は、より具体的には、下記の一般式群B(化2)から選択される。一般式群B(化2)において、X、Rおよびnは一般式A(化1)と同じ。Qは、単結合または炭化水素基であり、R2はアミノ酸と結合する水酸基、チオール基、アミノ基、またはカルボニル基であり、R3およびR4は、一般式C(化3)の基である。また、一般式C(化3)のR5は、アミノ酸と結合する水酸基、チオール基、アミノ基、またはカルボニル基である。
【0046】
【化2】
【0047】
【化3】
【0048】
前に説明した第一の溶媒は、分離状態において、上記液体担体および液体担体とアミノ酸系物質との結合物質を溶解するが、液体担体と結合していないアミノ酸(ペプチド結合させるべきアミノ酸)は溶解しない(難溶である)。ここで、アミノ酸系物質とは、単一のアミノ酸あるいはペプチドである。
【0049】
また逆に、第二の溶媒は、分離状態において、アミノ酸(ペプチド結合させるアミノ酸)を溶解するが、上記液体担体および液体担体とアミノ酸系物質との結合物質を溶解しない(難溶である)特性を持っている。
【0050】
液体担体の好適な具体例を図4の1に示す。1は、前記の一般式群Bにおいて、RがC18H37−であり、XがOであり、nが3であり、QがCH2であり、R2がOHである。名称は、(3,4,5−トリオクタデシルオキシフェニル)メタン−1−オール、〔(3,4,5−trioctadecyloxyphenyl)methan−1−ol 〕である。この液体担体1は、第一の溶媒に対し可溶性であり、第二の溶媒に対し難溶性である化合物から誘導され、かつ、アミノ酸系物質と結合する。
【0051】
本案は1に限定されることはないが以下、この液体担体具体例1を用いて、本案装置のプロセスである液相ペプチド合成法を説明する。図4から図6は、固相ペプチド合成法の固体担体9を液体担体1に置換した本案液相ペプチド合成の説明図である。図4から図6は、図1、図2に対応している。図4の2は、液体担体とアミノ酸の結合物質における液相担体の部分である。
【0052】
図4は、N末端を保護され、C末端を活性化された(活性化基Xを結合された)R1残基アミノ酸12のC末端を、液体担体1に結合する反応(図4中の8)を示す反応フロー図である。ここで、液体担体1は、第一の溶媒(A)に1が溶解された第一溶媒溶液(A1)という溶液の状態であり、R1残基アミノ酸12は、あらかじめ第二の溶媒(B)に溶解され、第二溶媒溶液(B12)として準備される。(A、B、A1、B12という標記は図4から図6には記載されていないが、これらは後に説明される図10から図14に対応している)
【0053】
前記第一の溶媒(A)に1が溶解された第一溶媒溶液(A1)と、R1残基アミノ酸12が第二の溶媒(B)に溶解された第二溶媒溶液(B12)とが混合される。第二溶媒溶液(B12)は多少過剰に投入されるのが好ましい。その理由は、相対的に第一溶媒溶液が多いとすべてのペプチド反応が生じても、未反応の末端をもつ担体が残留するからである。これは固相合成法と同様であるが、固相合成法のように必要量の100倍も過剰に投入する必要はない。
【0054】
両溶液混合後、それらが相溶状態となる温度に加熱される。すると、液体担体1の末端はアミノ酸と結合する水酸基であるので、R1残基アミノ酸C末端とペプチド結合反応(図4中の8)して1afとなる。この1afも、相溶化状態の両溶媒に溶けている。
【0055】
ペプチド反応後、固相合成では未反応アミノ酸等との分離のために洗浄除去などを行っていたが、本発明では、第一溶媒溶液と第二溶媒溶液とが相分離する温度に冷却すればよい。このことで、1afは分離された第一の溶媒(A)に溶解されたA1afとして、第二溶媒溶液から分離される。その分離状態で第二溶媒溶液を排除する。
【0056】
排除される第二溶媒溶液中には、過剰に投入したため未反応で残留したR1残基アミノ酸、および反応副生物などが溶解している。この分離操作は、従来と比較にならない単純操作であり、かつ不純物の混入もきわめて少ない。したがってクロマトグラフィ等による精製工程も省略が可能である。
【0057】
分離状態にある第一・第二溶媒溶液にて、第二溶媒溶液を排除するのであるが、この排除操作で第一溶媒溶液だけが残留することが重要である。したがって歩留まりは悪くなるが、第二溶媒溶液と共に、多少の第一溶媒溶液も排除してもかまわない。残留した第一溶媒溶液には、1にR1残基アミノ酸C末端が結合した1afが溶解している(A1af)。
【0058】
次の工程である図5では、第一溶媒溶液中の液体担体1とR1残基アミノ酸が結合した物質1afのアミノ末端を保護しているFmocを除去して活性化(図5中の10)する。図4同様に、N末端を保護したR2残基アミノ酸12を、あらかじめ第二の溶媒に溶解し、第二溶媒溶液B12として準備し、これら第一溶媒溶液A1aと第二溶媒溶液B12とを混合する。同様に第二溶媒溶液B12は過剰に混合されるのが好ましい。
【0059】
その混合後、再び混合液を相溶化温度に加熱して、相溶状態で溶液中の1aと、R2残基アミノ酸C末端をペプチド結合させる(図5中の11)。その結果、相溶化溶液中に液体担体1にR1、R2残基ペプチドが結合した物質1bfができる。
【0060】
上記ペプチド反応後、第一溶媒溶液と第二溶媒溶液とが相分離する温度に冷却し、1bfを分離された第一溶媒溶液に溶解されたA1bfとし、第二溶媒溶液から分離する。その分離状態で第二溶媒溶液を排除する。同様に第二溶媒溶液と共に、多少の第一溶媒溶液も排除してもかまわない。
【0061】
次の工程である図6も同様に、第一溶媒溶液中の液体担体1とR1、R2残基ペプチドが結合した物質1bfのアミノ末端を保護しているFmocを除去して活性化(図6中の10)する。同様に、N末端を保護したR3残基アミノ酸12を、あらかじめ第二の溶媒に溶解し、第二溶媒溶液B12として準備し、これら第一溶媒溶液A1bと第二溶媒溶液B12とを混合する。
【0062】
その混合後、再び混合液を相溶化温度に加熱して、相溶状態で溶液中の1bと、R3残基アミノ酸C末端をペプチド結合させる(図6中の11)。その結果、相溶化溶液中に液体担体1にR1、R2、R3残基ペプチドが結合した物質1cfができる。以下同様の操作でペプチドを伸長させていく。
【0063】
このように一連のペプチド結合を行い、それが完了したら、ペプチドC末端を液体担体から必要に応じて開裂し、同じく必要に応じて保護基を除去したり付加したりする。このクリーベイジ(cleavage)工程は固相合成と同様である。すなわち、液体担体に結合したペプチドは、そのまま使用時まで低温保存してもよいし、結合部分を開裂させる公知の化合物ないしは酵素試薬をもちいて結合を切り離し保存してもよい。開裂後のペプチドN末端は、そのまま保存してもよいし公知の保護基を結合してもよい。
【0064】
固相合成との大きな相違は、溶媒に溶解された溶液での反応であるので、ペプチド合成の個々のペプチド結合での未反応がきわめて少ないことである。したがって、多少は過剰に加えるものの、固相合成のように100倍といった大量の反応試薬を過剰に投入しなくともよい。液相反応なので当然反応時間も短縮される。
【0065】
また、溶媒を染料等で着色するなどして、目的の反応の進行を色によって確認することもできる。さらにまた、反応槽などからなる後述の装置のスケールアップも通常の液相プロセス同様に容易に可能となる。
【0066】
R1をバリン(Val)、R2をグリシン(Gly)、R3をフェニルアラニン(Phe)とした図4から図6のペプチド液相合成を実施した結果、収率は95%、97%、99%であった。(図20参照)収率100%とならないのは、液体担体または液体担体とアミノ酸系物質との結合物質が、第二の溶媒に全く溶解しないと言うのではないためである。(難溶性であるためである。)
【0067】
<液相ペプチド合成装置> 本案の装置を説明する。本案装置は、以上説明した液相ペプチド合成を行う装置である。すなわち、第一の溶媒と第二の溶媒の組み合わせ、および第一の溶媒に対し可溶性であり、第二の溶媒に対し難溶性である化合物から誘導され、かつ、アミノ酸系物質と結合する液体担体を用いて、該液体担体に合成すべきペプチド鎖のアミノ酸を逐次ペプチド結合させる液相ペプチド合成装置である。
【0068】
本案の液相ペプチド合成装置の第一例を図7に示す。本案の液相ペプチド合成装置は、液体担体と第一の溶媒を供給する手段(図7では省略)、および結合前処理後のアミノ酸を第二の溶媒に溶解した、第二溶媒溶液を供給する手段(図7の5)に連結され、液体担体または液体担体とアミノ酸系物質との結合物質を第一の溶媒に溶解した、第一溶媒溶液と、供給された第二溶媒溶液とを混合する混合槽(図7の3)と、前記混合槽の温度を、混合された第一溶媒溶液と第二溶媒溶液が相溶状態となる温度、または混合された第一溶媒溶液と第二溶媒溶液が相分離状態となる温度に制御する混合槽の温度制御手段(図7の6)と、前記混合槽の第一溶媒溶液/第二溶媒溶液の界面を検知する界面検知手段(図7の20)と、該手段によって得られる界面位置に基づいて第二溶媒溶液の量を判定し、その判定量に基づいて混合槽から第二溶媒溶液を排除する手段(図7の7)とを有する。
【0069】
ここで、アミノ酸とは、アミノ酸残基に任意化合物が結合したアミノ酸誘導物質を含むものであり、アミノ酸系物質とは、単一のアミノ酸あるいはペプチドであり、結合前処理とは、合成すべきペプチドを構成するアミノ酸のアミノ基側末端を不活性化、カルボキシル基側を活性化する処理である。
【0070】
合成工程の初期にて、液体担体と第一の溶媒を供給する手段(図7では省略)によって、あらかじめ液体担体を第一の溶媒に溶解した第一溶媒溶液を混合槽3に供給する。あるいは、液体担体、第一の溶媒をそれぞれ個別に供給して混合槽3で溶解してもよい。説明の簡単のため、液体担体を1とし、第一の溶媒をA、第一の溶媒に液体担体を溶解した第一溶媒溶液をA1と記載する。
【0071】
第二の溶媒をBと記載し、N末端に保護基Fmocなどを結合した結合前処理後のアミノ酸を12と記載し、12をBに溶解した、第二溶媒溶液をB12と記載する。合成工程の初期に、混合槽3に供給されたA1にB12が供給され混合される。
【0072】
混合槽3には、温度制御手段6が配備されている。これは公知の加熱ヒータや湯浴や高温ガスによる加熱装置、ぺルチェ素子や冷浴や低温ガスによる冷却装置を任意に採用すればよい。なお図7にて、A0は任意物質を溶解した第一溶媒溶液を示す。A0には、A1、A1a、A1af、A1b、A1bf、A1c、A1cf が例として含まれる。これらの意味は符号の説明の項を参照のこと。
【0073】
混合槽3へB12を供給する手段5が、3に連結されており、これはB12の準備槽4からB12を移送する流路(配管)5a、流路開閉手段(バルブ等)および移送ポンプ5bなどで構成されている。図7に示すように複数の準備槽を配備し、結合前処理後の異なったアミノ酸を第二の溶媒Bに溶解させ、あらかじめ準備しておくと便利である。
【0074】
すなわち、図7のごとく複数のB12の準備槽4から、逐次合成すべき結合前処理後のアミノ酸が選択的に混合槽3へ供給される構成が好適である。
【0075】
混合槽3に前記第二溶媒溶液B12とが供給され、A1(A0)と混合され、温度制御手段6にて、相溶状態にする。その制御温度は、混合槽3に初期供給された第一溶媒溶液の供給量および溶液成分、第二溶媒溶液B12の供給量および溶液成分に基づいて決める。具体的には、第一第二の溶媒溶液の種類(溶媒の種類、混同比、溶媒に溶解された液体担体やアミノ酸系物質の種類)および供給手段による供給量が既知であるので、それらと図18、図19の相溶化温度のデータを照らし合わせた上で決められる。
【0076】
また第一第二の溶媒溶液の供給量自体も、あらかじめ図18、図19の相溶化温度のデータを照らし合わせた上で調整し、合成反応の温度を適切なものにすることも制御設計上可能である。
【0077】
すなわち、混合槽の温度制御手段が、混合槽の第一溶媒溶液の量および該溶液成分と、混合槽に供給される第二溶媒溶液の供給量および該溶液成分に基づいて温度を制御するのが好適であり、かつ第二溶媒溶液を供給する手段の供給量が、第一溶媒溶液の溶液成分、および第二溶媒溶液の溶液成分に基づいて決定されるのが好適である。溶液供給量の制御については図23を用いて後で説明する。
【0078】
ここで、第一溶媒溶液の溶液成分とは、第一の溶媒を構成する溶媒の化学成分、および第一の溶媒に溶解された液体担体とアミノ酸系物質のそれぞれ化合物成分であり、第二溶媒溶液の溶液成分とは、第二の溶媒を構成する溶媒の化合物成分、および第二の溶媒に溶解された結合前処理後のアミノ酸の化合物成分である。
【0079】
相溶状態でペプチド合成反応が行われる。この反応の終了は、たとえば溶媒の着色などによる反応マーカで確認することもできる。もちろん、供給量と反応時間のデータをあらかじめ採取しておき、反応時間で反応終了を判定してもよい。その判定後、相溶化温度より低温である任意の温度に冷却して相分離状態とする。
【0080】
相分離状態で、第一溶媒溶液/第二溶媒溶液の界面を検知する界面検知手段20で、第一溶媒溶液/第二溶媒溶液の界面を検知する。界面の位置がわかれば、既知である混合槽の形状、容量にて、第二溶媒溶液の量の判定は容易である。よって界面位置に基づいて第二溶媒溶液の量を判定する。
【0081】
前記第二溶媒溶液の判定量に基づいて、混合槽3より第二溶媒溶液を排除手段7で排除する。この排除の量は、第二溶媒溶液が完全に排除されるように、前記判定された第二溶媒溶液量よりも多少多めが好適である。図7の7aは7の一部で、第二溶媒溶液を排除する流路(配管)、流路開閉手段(バルブ等)、ポンプなどである。
【0082】
第一溶媒溶液/第二溶媒溶液の界面を検知する界面検知手段20は、たとえば図8のように混合槽3内に挿入される溶媒物性センサーのプローブ(探触子)20a、20aのセンサーヘッド20bとからなるものであって、センサーヘッド電極間の導電率など溶液の電気特性を検出し、その相違で界面を検出するもの等を採用すればよい。なお、20cは20aの内部電気配線である。
【0083】
図9は、図中に第一溶媒溶液/第二溶媒溶液の界面を検知する界面検知手段20を別の例とした本案装置の第二例(温度制御手段6は省略した)である。図9中の20eは、光(放射エネルギー)発生器であり、20fは、光(放射エネルギー)受信器である。この受信器で溶液の光学特性、エネルギー透過特性を検知し、その相違で界面を検出する。
【0084】
界面検知を容易とするために、一方の溶媒に染料を添加して着色するなどすれば上記の光学的界面検知手段は有効であろう。なお図9中、混合槽3の部分のB0は、反応後の第二溶媒溶液で未反応の12、その他の副産物も第二の溶媒に溶解しているのでB0(任意物質を溶解した第二溶媒溶液)と記載した。
【0085】
図10から図14が、初期工程の後の本案装置でのペプチド合成工程の説明図である。これらは図4から図6の反応フロー図に対応している。すなわち、図4にて液体担体1にR1残基アミノ酸を結合させるまでが図10の(a)(b)(c)である。図10(c)では、温度制御手段6は相溶化温度に制御されている(6a)。
【0086】
図11は次工程であり、温度制御手段6を相分離温度として(6b)、第一溶媒溶液と第二溶媒溶液とが相分離する温度に冷却され(図11(e))、分離状態で第二溶媒溶液B0を排除する(図11(f))。ついで図12にて、液体担体とR1残基アミノ酸の結合物質にR2残基アミノ酸を結合させる(図12の(g)(h)(i))。図5の活性化反応10は省略されている。
【0087】
以下同様に、図13は、温度制御手段6を6bとして第一溶媒溶液と第二溶媒溶液とが相分離する温度に冷却され(図13(k))、分離状態で第二溶媒溶液B0を排除する(図13(l))。ついで図14にて、液体担体とR1、R2残基アミノ酸の結合物質にR3残基アミノ酸を結合させる(図14の(m)(n)(o))。図6の活性化反応10は、混合槽内で行われるが省略されている。
【0088】
図15は、本案の液相ペプチド合成装置の第三例であって、これは前例の混合槽3は混合と反応専用とし、これに加えて分離専用の分離槽17を設けた例である。これらはそれぞれ相溶温度、相分離温度に制御されている。すなわち、第一溶媒溶液と第二溶媒溶液が相溶状態となる温度に制御された混合槽3と、混合槽内で相溶状態となった第一溶媒溶液と第二溶媒溶液の移送手段16を介して、該混合槽と連結され、移送された第一溶媒溶液と第二溶媒溶液が相分離状態となる温度に温度制御された分離槽17と、分離槽17の第二溶媒溶液の量を判定する手段(図15では省略)と、前記第二溶媒溶液の量に基づいて分離槽から第二溶媒溶液を排除する手段18とを有する。
【0089】
混合と反応専用の混合槽には、第一の溶媒に、液体担体または液体担体とアミノ酸系物質との結合物質を溶解した、第一溶媒溶液(A0)を供給する手段、および第二の溶媒に、結合前処理後のアミノ酸を溶解した、第二溶媒溶液(B12)を供給する手段が連結されている。
【0090】
図15の構成では、分離槽17で第二溶媒溶液を排除された第一溶媒溶液(A0)が、再度混合槽3に戻って供給される。すなわち、混合槽3に供給される第一溶媒溶液が、分離槽17で第二溶媒溶液を排除された後に残留した第一溶媒溶液である。つまり、混合槽3に第一溶媒溶液を供給する手段が、分離槽17の残留第一溶媒溶液を混合槽に移送する移送手段である。
【0091】
図15の構成は、より正確には図21に示すように、A1を混合槽に供給する手段が配備されている。また、図21に示すようにN末端の保護基であるFmoc等を除去して活性化する操作(工程)10をなす反応槽・反応装置である末端活性化手段10aが付帯配備されている。図21にて、前述の混合槽3に第一溶媒溶液を供給する手段は、この末端活性化手段10aを介して、分離槽17と混合槽3を結ぶ太点線で示されている。この太点線ルートで分離槽17の残留第一溶媒溶液が混合槽に移送される。
【0092】
もちろん、第一例、第二例のように末端活性化反応10を、混合槽3内、または分離槽17内で行なってもよい。図15中の16aは、16の一部で、流路開閉手段(バルブ等)または移送ポンプなどであり、図中の18は、第二溶媒溶液の量を判定して分離槽17から排除する手段で、18aは、18の一部で、流路開閉手段(バルブ等)または移送ポンプなどである。
【0093】
図15のように上方に混合槽、下方に分離槽を配備すれば、16による第一溶媒溶液と第二溶媒溶液の移送は容易である。混合槽で相溶化された第一・第二溶媒溶液が重力で落下して、分離槽に移送され、そこで相分離温度となって分離する。分離状態で、判定手段18にて第二溶媒溶液の量を判定し、その判定に基づいて第二溶媒溶液(B0)を排除する。
【0094】
混合槽、分離槽の制御温度は、第一例第二例と同様に、混合槽に供給される第一溶媒溶液の供給量および該溶液成分と、混合槽に供給される第二溶媒溶液の供給量および該溶液成分に基づいて図18、図19のようなデータを参照して決定されるのが好適である。
【0095】
また、第一溶媒溶液を供給する手段の供給量、および第二溶媒溶液を供給する手段の供給量自体も、第一溶媒溶液の溶液成分、および第二溶媒溶液の溶液成分に基づいて図18、図19のようなデータを参照して決定されるのが好適である。
【0096】
ここでも前に説明した通り、第一溶媒溶液の溶液成分とは、第一の溶媒を構成する溶媒の化学成分、および第一の溶媒に溶解された液体担体とアミノ酸系物質のそれぞれ化合物成分であり、第二溶媒溶液の溶液成分とは、第二の溶媒を構成する溶媒の化合物成分、および第二の溶媒に溶解された結合前処理後のアミノ酸の化合物成分であって、これらで図18、図19等のデータを参照する。
【0097】
第二溶媒溶液の量を判定して排除する手段18では、前に説明した分離槽内の界面検出手段(図15では省略)による第一・第二溶媒溶液界面の検出に基づいて量を判定して排除操作をすればよい。この説明は略す。
【0098】
一方図17は、分離槽17の第二溶媒溶液の量を判定する別の手段を説明する図である。すなわち、分離槽17の第二溶媒溶液の量を判定する手段が、混合槽3に供給される第一溶媒(A0)および第二溶媒溶液(B12)のそれぞれ供給量およびそれぞれ溶液成分と、相溶状態の混合槽3の温度に基づいて、混合層の反応を推定する推定手段19を有し、該推定手段による反応の推定に基づいて、分離槽の第二溶媒溶液の量を判定するものである。
【0099】
ここでも、第一溶媒溶液の溶液成分とは、第一の溶媒を構成する溶媒の化学成分、および
第一の溶媒に溶解された液体担体とアミノ酸系物質のそれぞれ化合物成分であり、第二溶媒溶液の溶液成分とは、第二の溶媒を構成する溶媒の化合物成分、および第二の溶媒に溶解された結合前処理後のアミノ酸の化合物成分である。
【0100】
これら反応条件と反応前化合物の条件が既知であるので結合反応が予測できる。つまり、分離槽17のペプチド結合反応は、3に供給される溶液の成分と量、および反応活性化試薬など既知の反応条件情報から予測が可能である。理論的な予測が困難でも、同じ条件で実験データをあらかじめ採取しておいて、実験データから外挿内挿するなどの方法でも可能である。その場合には実験データをテーブル化して推定手段19に記憶させて引用すればよい。
【0101】
推定には、図17に示すように分離槽の温度、混合槽から分離槽に移送される相溶状態の溶液量を入力して用いてもよい。このようにして分離槽17での反応を推定し、その推定に基づいてペプチド反応による第一・第二溶媒溶液の量の変化を推定し、センサーレスで分離された分離槽の第二溶媒溶液の量を18で判定するものである。もちろん前記の界面検知手段等のセンサーと組み合わせて、より精度の高い量の判定を行ってもよい。
【0102】
判定された量に基づいて、たとえば流路開閉手段(バルブ等)または移送ポンプなど(18a)で流量を計測しながら分離槽17から第二溶媒溶液を排除する。流量センサーなどの流量制御系の図示は略した。
【0103】
図17で説明した第二溶媒溶液の量を判定する手段は、分離槽をもたない混合槽のみである本案第一例(図7)、第二例(図9)でも適用が可能である。すなわち、混合槽の第二溶媒溶液の量を判定する手段が、混合槽の第一・第二溶媒溶液の量および溶液成分と、相溶状態の混合槽の温度に基づいて、混合層の反応を推定する推定手段を有し、該推定手段による反応の推定に基づいて、混合槽の第二溶媒溶液の量を判定すればよい。
【0104】
図16は、本案の液相ペプチド合成装置の第四例であって、工程を連続化した量産向けの装置である。図16にて16,18は省略した。このような構成であれば、複数の別種のペプチドを連続して流れ作業的に合成できる。すなわち、合成すべきアミノ酸に応じて図の上方から供給される第二溶媒溶液(B12)の種類を逐次変えてアミノ酸を結合させればよい。
【0105】
図16の構成の特徴は、混合槽と、該混合槽と連結された分離槽とからなる、複数組の混合槽・分離槽の組み合わせを有し、ひとつの混合槽・分離槽組み合わせの混合槽に供給される第一溶媒溶液が、他の混合槽・分離槽組み合わせの分離槽で第二溶媒溶液を排除された後に残留した第一溶媒溶液となっていることである。
【0106】
図16にて、N末端の保護基を除去して活性化する操作(工程)10をなす末端活性化手段10aが図示されている。この末端活性化手段10aを介して、分離槽17と混合槽3を結ぶ太点線で示されているルートが、ひとつの混合槽・分離槽組み合わせの混合槽に第一溶媒溶液を供給する手段であって、これが他の混合槽・分離槽組み合わせの分離槽の残留第一溶媒溶液をひとつの混合槽・分離槽組み合わせの混合槽に移送する移送手段である。
【0107】
図16の第四例にて、それぞれの混合槽に供給される第二溶媒溶液B12の種類を固定する。すなわち、合成すべきアミノ酸の種類を固定した混合槽・分離槽、たとえば、バリン結合用混合槽・分離槽、グルタミン酸結合用混合槽・分離槽、フェニルアラニン結合用混合槽・分離槽・・・などを近接して配列配備する。そして、合成すべきペプチドのアミノ酸結合順に応じて、分離槽から混合槽に移送する移送手段の連結が自在に切り替えできる装置構成としてもよい。
【0108】
すなわち、図16にて10aを介して分離槽17と混合槽3を結ぶ太点線で示される部分の配管系にて、切り替え弁などを配備して、分離槽で出た第一溶媒溶液が次に結合されるアミノ酸結合用の混合槽に移送されるよう切り替え自在とする構成である。
【0109】
こういった切り替えを実施すると切り替え前の残留物による不純物混入が懸念されるが、図16中10aの末端活性化手段に不純物浄化の工程をおこなう手段を追加配備すれば問題解決できる。これは配管系を固定し、合成すべきアミノ酸に応じて図の上方から供給される第二溶媒溶液(B12)の種類を逐次変える前述の構成でも同様である。
【0110】
図22は、本案の液相ペプチド合成装置の第五例であり、2組の混合槽・分離槽の組み合わせ構成の例である。このように2組、3組(例示略)・・・などと複数組を組み合わせておけば、ペプチドの回収工程操作や混合槽・分離槽の不純物除去、洗浄操作を行いやすい。第五例の説明は第三例、第四例と同様であるので略す。
【0111】
<溶液供給量の制御>図23は、図18、図19等の相溶化温度のデータに基づいて混合槽への溶液量を制御することの説明図である。図18、図19に示したような溶液成分とその混合比率によって相溶化温度が変化するデータが図23の30にデータベースとして記憶されている。この30は、B12、A1xの成分(溶媒A、溶媒Bの構成成分、12、1xのアミノ酸系物質成分)情報35を入力し、データベースの相溶化温度変化データを参照して最適な溶液比、溶液量を決定する。
【0112】
30は第一溶媒溶液と第二溶媒溶液の量と比率の制御手段31に最適な溶液比、溶液量を出力し、31はB12の供給量の制御手段(流量制御装置)33、A1xの供給量の制御手段(流量制御装置)34へ制御指令を出力する。
【0113】
溶液比の最適化に際して、必要に応じて第一の溶媒のみ、あるいは第二の溶媒のみを付加的に追加供給すれば溶液比、溶液量の制御自由度が増し、好適である。したがって、第一・第二の溶媒の準備槽Atank・Btankと、第一・第二の溶媒A・Bを混合槽に供給する手段と、付加追加量の制御手段(流量制御装置)32を配備し、31の制御指令が32に出力されるような構成とすればよい。
【0114】
この付加追加は、本装置の第一例から第五例いずれも適用が可能である。すなわち、混合槽あるいは分離槽に連結して、第一の溶媒、あるいは第二の溶媒を供給する第一・第二溶媒の付加供給手段を配備し、この付加供給手段で溶媒を単独で付加的に混合槽に追加供給して溶媒比率を調整制御すればよい。これによって相溶化温度を変えることができる。
【0115】
<追補>排除手段7は、ここまで主として図示した混合槽あるいは分離槽の下方から溶液沈殿部を流出させる方式以外、混合槽あるいは分離槽の上方から溶液吸引手段で溶液上澄み部を吸い出す方式で排除する装置、混合槽あるいは分離槽の任意の部位から溶液を部分抽出する機能をもつその他の公知の溶液抽出装置を適用してもよい。
【0116】
また、ここまで説明したように、第二溶媒溶液を排除し、残留する第一溶媒溶液に合成すべきペプチドを合成する装置構成とは逆に、第一溶媒溶液を逐次抽出して、その第一溶媒溶液に合成すべきペプチドを合成していく構成を部分的に採用してもよい。
【0117】
合成したペプチドを回収する最終工程は、シクロヘキサンを第一溶媒に用いた場合、その融点が6.5℃であるので、それ以下に冷却して固体として分離し、その後加熱し、シクロヘキサンを蒸発除去することにより液体担体に結合したペプチドを回収する。
【0118】
液体担体に結合したペプチドは、そのまま使用時まで低温保存してもよいし、結合部分を開裂させる公知の化合物ないしは酵素試薬をもちいて結合を切り離し保存すればよい。開裂後のペプチドN末端は、そのまま保存してもよいし公知の保護基を結合してもよい。
【0119】
【実施例】
ペプチド合成実施例のフローを図20に示す。図20における具体的操作を以下実施例1に説明する。また、他の実施例を実施例2から実施例4に示す。以下の実施例では、液体担体を〔SC〕と一部略記する。これら実施例では、末端活性化反応10は、混合槽で行なった。また、本案装置を構成する混合槽3、分離槽17、準備槽4、温度制御手段6等の記載は省略した。実施例中のろ過、攪拌、濃縮乾固等を行なう、ろ過装置、攪拌装置、ロータリーエバポレーターなどは本案の装置構成に適宜付帯、付加すればよい。このような公知の装置を連結した構成とすることは容易である。
【0120】
実施例1
液体担体〔SC〕−バリン(Val)−グリシン(Gly)−フェニルアラニン(Phe)−Fmoc 〔(SC)−Val−Gly−Phe−Fmoc〕 〕の液相合成。液体担体〔SC〕として、前記の(3,4,5−トリオクタデシルオキシフェニル)メタン−1−オール、〔(3,4,5−trioctadecyloxyphenyl)methan−1−ol 〕を用いる。
【0121】
工程1)
Fmoc−Val(170mg)をジクロロメタン3mLに溶解し、さらにジシクロヘキシルカルボジイミド(DCC)125mgを添加する。本溶液を室温にて15分間撹拌した後、ろ過する。ろ液をロータリーエバポレーターで濃縮乾固した後、得られた残渣をジメチルホルムアミド(DMF)3mL に溶解する。続いて液体担体〔SC〕を溶解したシクロヘキサン溶液(液体担体50mg/3mL)3MlをDMF溶液に添加する。それにDMAP4−ジメチルアミノピリジン(DMAP)6.5mgを添加し、反応溶液を50℃に加温し、30分反応を行う。このときシクロヘキサン層とDMF層に分離していた溶液系は均一溶液系になる。
【0122】
反応終了後、反応溶液を室温に戻し、反応溶液を再び二相に分離させる。下層のDMF相を分離、除去し、10%ジエチルアミン/DMF溶液を3mL添加し、50℃で20分間攪拌する。反応液を冷却し、シクロヘキサン層を分離する。このシクロヘキサン層には液体担体結合バリン−NH2(〔SC〕−Val−NH2) が回収される。(収率95%)
【0123】
工程2)
Fmoc−Gly57mg、HOBt55mg、ジイソプロピルカルボジイミド(DIPCD)25mgをDMF 2mLに溶解し、150分間室温で攪拌する。この溶液を活性化したFmoc−グリシン−OH/DMF溶液として用いる。すなわち、この溶液2mLを5℃に冷却後、工程1)で得た〔SC〕−Val−NH2/シクロヘキサン溶液(2mL)を添加する。反応液は5℃から50℃まで一時間かけて穏やかに上昇させ、さらに50℃で30分放置する。
【0124】
最後に、反応液を室温まで冷却すると、再び2層に分離するので、上層(シクロヘキサン層)から目的の生成物〔SC〕−Val−Gly−Fmoc)を分離する。Fmoc基は同溶液にジエチルアミンを添加することにより、脱離し〔SC〕−Val−Gly−NH2 を得る。(収率97%)
【0125】
工程3)
つぎに、Fmoc−Phe57mg、HOBt55mg、ジイソプロピルカルボジイミド(DIPCD)25mgをDMF 2mLに溶解し、150分間室温で攪拌する。この溶液を活性化したFmoc−フェニルアラニ−OH/DMF溶液として用いる。すなわち、この溶液2 mlを5℃に冷却後工程2)で得た〔SC〕−Val−Gly−NH2/シクロヘキサン溶液(2mL)を添加する。反応液は5℃から50℃まで一時間かけて穏やかに上昇させ、さらに50℃で30分放置する。
【0126】
最後に、反応液を室温まで冷却すると、再び2層に分離するので、上層(シクロヘキサン層)から目的の生成物〔SC〕−Val−Gly−Phe−Fmoc)を分離する。以上の操作を繰り返すことにより、液体担体に逐次アミノ酸を結合させ、目的とするペプチドが合成された。(収率99%)
【0127】
構造確認
〔SC〕シクロヘキサン液体担体;(3,4,5−トリオクタデシルオキシフェニル)メタン−1−オール〔(3,4,5−trioctadecyloxyphenyl)methan−1−ol 〕。
1H−NMR(400MHz);5.54(2H、s)、4.58(2H、d、J=5.1Hz)、3.96(4H、t、J=6.6Hz)、3.96(3H、s)、1.82−1.70(6H、m)、1.50−1.41(6H、m)、1.38−1.20(84H、br)、0.88(9H,6,8Hz)、13C−NMR(100Hz);(100MHz δ:153.2,137.4,136.0,105.2、73.4、69.1、65.7、32.0、30.4、29.8、29.7、29.5、26.2、22.8、14.2、;MALDI TOF−MS(pos)、C61H116O4に対する計算値 〔M+Na〕+ 935、実験値935.
【0128】
〔SC〕−Val−Fmoc;(CDCl3)δ7.76(2H、d、J=7.7Hz)、7.60(2H、d、J=7.7Hz)、7.40(2H、dt、J=2.6、7.3Hz)、7.31(2H、t、J=7.3Hz)、6.53(2H、s)、5.31(1H、d、J=9.2Hz)、5.11(1H、d、J=12.1Hz)、5.05(1H、d、J=12.1)、4.38(2H、m)、4.29(1H、t、J=7.3Hz)、3.94(6H、m)、2.19(1H、m)、1,78(4H、m)、1.73(2H、m)、1.45(8H、m)、1.35−1.23(84H、br)、0.96(3H、d、J=7.0Hz)、0.88(12H、m)、;13C−NMR(CDCl3)、δ172.0、156.2、153.2、143.8、141.3、138.4、130.2、128、3、127.7、127.1、125,1、120.0、107.1、73.4、69.2、67.4、67.1、59.0、47.2、32.0、31.4、30.3、29.8、29.7、29.5、29.4、26.1、22.7、141;TOF−MS(POS)MF、C81H135NO7〔M+Na〕+に対する計算値1257、実験値1257
【0129】
〔SC〕−Val−NH2
1H−NMR(400 δ: 6.54(2H、s)、5.07(1H、d、J=12.1Hz)、503(1H、d、J=12.1 Hz)、3.95(4H、t、J=6.6 Hz)、3.94(2H、t、J=6.6 Hz)、3.33(2H、d、J=5.1 Hz)、2.07−2.01(1H、m)、1.81−1.77(4H、m)、1.76−1.71(2H、m)、1.49−1.43(6H、m)、1.37−1.23(84H、br)、0.96(3H、d、J=7.0 Hz)、
0.89−0.86(12H、m)、;13C−NMR(150 MHz)δ、175.4、153.2、138.3、130.7、107.1、73.4、69.2、66.8、59.9、32.2、32.0、30.9、29.8、29.7、29.6、29.4、26.1、22.7、19.3、17.1、14.1;TOF−MS(pos)C66H125NO5〔M+Na〕+に対する計算値1034、実験値1034
【0130】
〔SC〕−Val−Gly−Fmoc
1H−NMR(400 MHz)δ:7.77(2H、d、J=7.3 Hz)、7.59(2H、d、J=7.3Hz)、7.40(2H、t、J=7.3Hz)、7.31(2H、dt、J=7.3Hz)、6.52(2H、s)、6.38(1H、d、J=8.4 Hz)、5.44−5.37(1H、br)、5.10(1H、d、J=12.1 Hz)、5.02(1H、d、J=12.1 Hz)、4.62(2H、dd、J=8.4、4.8 Hz)、4.42(2H、d、J=7.0 Hz)、4.24(1H、t、J=7.0 Hz)、3.96−3.92(8H、m)、2.21−2.16(1H、m)、1.81−1.76(4H、m)、1.75−1.70(2H、m)、1.48−1.43(6H、m)、1.37−1.21(84H、br)、0.91(3H、d、J=7.0Hz)、0.88(9H、t、J=7.0 Hz)、0.86(3H、d、J=7.0 Hz)、;13C−NMR(150 MHz)δ:171.5、168.7、156.5、153.1、143.6、141.2、138.3、130.0、127.7、127.0、125.0、120.0、107.0、73.4、69.2、67.5、57.1、47.1、32.0、31.4、30.4、29.8、29.7、29.5、29.4、26.1、22,8、19.0、17.7、14.2、;MALDI TOF−MS(pos)C83H138N2O8〔M+Na〕+に対する計算値1314、実験値1314
【0131】
〔SC〕−Val−Gly−NH2
1H−NMR(600 MHz)δ:7.74(1H、d、J=9.2 Hz)、6.53(2H、s)、5.11(1H、d、J=12.1 Hz)、5.02(1H、d、J=12.1 Hz)、4.61(1H、dd、J=9.2、5.1 Hz)、3.95(4H、t、J=6.6 Hz)、3.94(2H、t、J=6.6 Hz)、3.39(2H、s)、2.24−2.18(1H、m)、1.81−1.76(4H、m)、1.75−1.71(2H、m)、1.49−1.44(6H、m)、1.37−1.20(84H、br)、0.93(3H、d、J=7.0 Hz)、0.90−0.86(12H、m)、;13C−NMR(150 MHZ)δ:172.6、171.8、153.1、130.3、125.5、106.9、73.4、69.2、67.2、56.6、44.8、32.0、31.3、30.4、30.3、29.8、29.7、29.5、29.4、26.2、22.8、19.1、17.8、14.2;MALDI TOF−MS(pos)C68H128N2O6〔M+Na〕+に対する計算値1091、実験値1091
【0132】
〔SC〕−Val−Gly−Phe−Fmoc
1H−NMR(600 MHz)δ:7.75(2H、d、J=7.7 Hz)、7.53−7.49(2H、m)、7.39(2H、dd、J=7.3、22 Hz)、7.30−7.27(4H、m)、7.25−7.21(1H、m)、7.20−7.15(2H、br)、6.76−6.69(1H、br)、6.60−6.55(1H、br)、6.50(2H、s)、5.40−5.34(1H、br)、5.07(1H、d、J=12.1 Hz)、4.99(1H、d、J=12.1 Hz)、4.56(1H、dd、J=8.8、4.8 Hz)、4.46−4.30(2H、m)、4.17(1H、t、J=7.0 Hz)、4.10−4.03(1H、m)、3.92(6H、t、J=6.6 Hz)、3.83−3.76(2H、m)、3.18−3.11(1H、m)、3.10−3.02(1H、m)、2.20−2.13(1H、m)、1,79−1.69(6H、m)、1,48−1,41(6H、m)、1.35−1.23(84H、brm)、0.91−0.85(15H、m);13C−NMR(150MHz)δ:171.5、171.3、168.3、156.0、153,1、143.6、141.2、138.2、136.2、130.1、129.1、128.8、127.7、127.1、127.0、125.0、124.9、120.0、107.0、73.4、69.2、67.5、67.1、57.3、47.2、32.0、31.3、30.4、29.8、29.7、29.5、29.4、26.2、22.8、19.0、17.8、14.2;MALDITOF−MS(pos)C92H147N3O9〔M+Na〕+に対する計算値1461、実験値1461
【0133】
〔SC〕−Val−Gly−Phe−NH2
1H−NMR(400 MHz)δ:7.99−7.93(1H、m)、7.35−7.30(2H、m)、7.27−7.21(3H、m)、6.66(1H、d、J=8.8 Hz)、6.52(2H、s)、5.11(1H、d、J=12.1)、5.02(1H、d、J=12.1Hz)、4.58(1H、dd、J=8.8、4.8 Hz)、4.05(1H、d、J=5.9 Hz、minor)、4.01(1H、d、J=5.9 Hz、major)、3.98−3.91(7H、m)、3.66(1H、d、J=10.0 Hz)、3.32(1H、dd、J=13.6、3,9 Hz)、2.67(1H、dd、J=13.6、10.0 Hz)、2,24−2.15(1H、m)、1.82−1.69(6H、m)、1.50−1.39(6H、m)、1.37−1.21(84H、br)、0.92(3H、d、J=6.8 Hz)、0.90−0.85(12H、m);13C−NMR(150 MHz)δ:175.2、171.5、168.9、153.1、151.4、137.7、129.2、128.8、126.9、125.5、107.0、73.5、69.2、67.5、57.2、56.5、43.4、40.9、32.0、31.3、30.4、29.8、29.7、29.5、29.4、26.2、22.8、19.1、17.7、14.2;MALDI TOF−MS(pos)C77H137N3O7〔M+Na〕+に対する計算値1239、実験値1239
【0134】
実施例2
〔SC〕−バリン−フェニルアラニン−Fmoc(〔SC〕―Val―Phe―Fmoc)の液相合成
Fmoc−Phe 63mg、HOBt 63mg、ジイソプロピルカルボジイミド(DIPCD)25mgをDMF2mLに溶解し、150分間室温で攪拌する。この溶液を活性化したFmoc−Phe/DMF溶液として用いる。すなわち、この溶液2mLを5℃に冷却後、実施例1の工程1)で得た〔SC〕−Val−NH2/シクロヘキサン溶液(2mL)を添加する。反応液は5℃から50℃まで一時間かけて穏やかに上昇させ、さらに50℃で30分放置する。
【0135】
最後に、反応液を室温まで冷却すると、再び2層に分離するので、上層(シクロヘキサン層)から目的の生成物〔SC〕−Val−Phe−Fmoc)を分離する。以上の操作を繰り返すことにより、液体担体に逐次アミノ酸を結合させ、目的とするペプチドが合成される。
【0136】
実施例3
〔SC〕−バリン−プロリン−Fmoc(〔SC〕―Val―Pro―Fmoc)の液相合成
Fmoc−Pro53mg、HOBt 57mg、ジイソプロピルカルボジイミド(DIPCD)25mgをDMF2mLに溶解し、150分間室温で攪拌する。この溶液を活性化したFmoc−Pro−OH/DMF溶液として用いる。すなわち、この溶液2 mlを5℃に冷却後、実施例1の1)で得た〔SC〕−Val−NH2/シクロヘキサン溶液(2ml)を添加する。反応液は5℃から50℃まで一時間かけて穏やかに上昇させ、さらに50℃で30分放置する。
【0137】
最後に、反応液を室温まで冷却すると、再び2層に分離するので、上層(シクロヘキサン層)から目的の生成物〔SC〕−Val−Pro−Fmoc)を分離する。以上の操作を繰り返すことにより、液体担体に逐次アミノ酸を結合させ、目的とするペプチドが合成される。
【0138】
実施例4
液体担体−バリン−アラニン−Fmoc(〔SC〕−Val−Ala−Fmoc)の液相合成
Fmoc−Ala 50mg、HOBt53mg、ジイソプロピルカルボジイミド(DIPCD)25mgをDMF2mLに溶解し、150分間室温で攪拌する。この溶液を活性化したFmoc−Ala−OH/DMF溶液として用いる。すなわち、この溶液2mLを5℃に冷却後、実施例1の工程1)で得た〔SC〕−Val−NH2/シクロヘキサン溶液(2 ml)を添加する。反応液は5℃から50℃まで一時間かけて穏やかに上昇させ、さらに50℃で30分放置する。
【0139】
最後に、反応液を室温まで冷却すると、再び2層に分離するので、上層(シクロヘキサン層)から目的の生成物〔SC〕−Val−Ala−Fmoc)を分離する。以上の操作を繰り返すことにより、液体担体に逐次アミノ酸を結合させ、目的とするペプチドが合成される。
【0140】
【発明の効果】
従来の固相反応ペプチド合成装置では、固相にアミノ酸結合基が存在するためアミノ酸との反応性が悪く、反応する量の100倍といった大過剰量のアミノ酸を反応系に供給しなければならないという問題があった。これに対して本発明の液相ペプチド合成装置では、合成反応が相溶状態の均一溶液系で進行するため、反応効率が極めて高く、担体に結合したペプチド末端に対して、外部から添加して反応させるためのアミノ酸分子の量は過剰量必要としない。同様に液相のため反応も早く、固相合成とは比較にならない短時間で合成が進む。
【0141】
また本装置では、合成途中のペプチドの活性化された末端での未反応がきわめて少ないので、未反応が原因の誤結合による所望ペプチド以外の不純物ペプチドの発生が少ない。よって、従来必須であったクロマトグラフィ等による精製工程が省略可能であるし、限界とされているペプチドの結合数(残基数)50程度以上のペプチドの実用的な合成が可能となる。
【0142】
さらにまた、固相ペプチド合成では困難であった目的の反応が進行チェックも、溶媒を染料等で着色するなどで可能である。本装置のスケールアップも通常の液相プロセス装置と同様に容易であるので、望まれていたペプチドの安価な量産が可能となる。
【図面の簡単な説明】
【図1】固相ペプチド合成のフロー説明図(その1)
【図2】固相ペプチド合成のフロー説明図(その2)
【図3】温度により相溶状態と相分離状態とが可逆的に変化する第一の溶媒と第二の溶媒の
実験例:下層の第二の溶媒に染色剤を混合したものの写真
【図4】液体担体1にR1残基アミノ酸を結合する反応フロー図
【図5】液体担体1とR1残基アミノ酸が結合した物質1afのFmocを除去活性化し、R2残基アミノ酸を結合する反応フロー図
【図6】液体担体1とR1、R2残基アミノ酸鎖が結合した物質1bfのFmocを除去活性化し、R3残基アミノ酸を結合する反応フロー図
【図7】本案の液相ペプチド合成装置の第一例
【図8】液体導電率センサーヘッド
【図9】本案の液相ペプチド合成装置の第二例(温度制御手段6は省略した)
【図10】本案装置によるペプチド合成工程の説明図(その1)
【図11】本案装置によるペプチド合成工程の説明図(その2)
【図12】本案装置によるペプチド合成工程の説明図(その3)
【図13】本案装置によるペプチド合成工程の説明図(その4)
【図14】本案装置によるペプチド合成工程の説明図(その5)
【図15】本案の液相ペプチド合成装置の第三例:分離槽17を設けた例
【図16】本案の液相ペプチド合成装置の第四例:連続化装置(16,18は省略した)
【図17】合成層でのペプチド結合反応の前後の条件から排除量を推定する原理の説明図
【図18】第一の溶媒と第二の溶媒の構成と相溶化温度の変化の説明図(その1)
【図19】第一の溶媒と第二の溶媒の構成と相溶化温度の変化の説明図(その2)
【図20】本案の液相ペプチド合成装置を用いた液相ペプチド合成の実施例の説明図
【図21】本案の液相ペプチド合成装置の第三例補足説明図
【図22】本案の液相ペプチド合成装置の第五例:連続化装置(16,18は省略した)
【図23】溶液供給量の制御の説明図
【符号の説明】
1 液体担体の例
1a 液体担体とR1残基アミノ酸の結合物質
1af 1aのR1残基アミノ酸のN末端に保護基Fmocが結合した物質
1b 液体担体とR1、R2残基アミノ酸の結合物質
1bf 1bのR2残基アミノ酸のN末端に保護基Fmocが結合した物質
1c 液体担体とR1、R2、R3残基アミノ酸の結合物質
1cf 1cのR3残基アミノ酸のN末端に保護基Fmocが結合した物質
2 液体担体とアミノ酸の結合物質における液相担体の部分
3 第一溶媒溶液と第二溶媒溶液とを混合する混合槽
4 第二の溶媒に、結合前処理後のアミノ酸を溶解した、第二溶媒溶液B12の準備槽
5 第二溶媒溶液B12を混合槽3に供給する手段
5a 5の一部で、第二溶媒溶液の移送流路(配管)
5b 5の一部で、流路開閉手段(バルブ等)および移送ポンプなど
6 合成槽3の温度制御手段
6a 第一・第二溶媒溶液が相溶状態となる温度に制御(加熱)中である温度制御手段
6b 第一・第二溶媒溶液が相分離状態となる温度に制御(冷却)中である温度制御手段
7 第二溶媒溶液の量を20より得られる界面位置から判定して混合槽3から排除する手段
7a 7の一部で、第二溶媒溶液を排除する流路(配管)、流路開閉手段(バルブ等)、ポンプなど
8 液相担体にR1残基アミノ酸のN末端に保護基Fmocを結合したR1残基アミノ酸を結合
する反応
9 固相担体(レジンなどの樹脂)
10 N末端の保護基であるFmoc等を除去して活性化する操作
10a 10の操作(工程)をなす反応槽・反応装置である末端活性化手段
11 活性化されたN末端部分に12をペプチド結合反応させる操作
12 N末端に保護基Fmocなどを結合した結合前処理後のアミノ酸
16 混合槽内で相溶状態となった第一・第二溶媒溶液の移送手段
16a 16の一部で、流路開閉手段(バルブ等)または移送ポンプなど
17 第一・第二溶媒溶液を相分離状態とする分離槽
18 第二溶媒溶液の量を判定して分離槽17から排除する手段
18a 18の一部で、流路開閉手段(バルブ等)または移送ポンプなど
19 混合槽の反応を推定する手段
20 第一溶媒溶液/第二溶媒溶液の界面を検知する界面検知手段
20a 合成槽3内に挿入される溶媒物性センサーのプローブ(探触子)
20b 20aのセンサーヘッドの例で、20aの先端に配設された電気特性測定電極
20c 20aの内部電気配線
20e 光(放射エネルギー)発生器
20f 光(放射エネルギー)受信器
30 第一溶媒溶液と第二溶媒溶液の量と比率を決定する手段
31 第一溶媒溶液と第二溶媒溶液の量と比率の制御手段
32 第一の溶媒、あるいは第二の溶媒を付加追加する量の制御手段(流量制御装置)
33 B12の供給量の制御手段(流量制御装置)
34 A1xの供給量の制御手段(流量制御装置)
35 B12、A1xの成分(溶媒A、溶媒Bの構成成分、12、1xのアミノ酸系物質成分)情報
A 第一の溶媒
A0 任意物質を溶解した第一溶媒溶液
A1 液体担体を第一の溶媒に溶解した第一溶媒溶液
A1a 液体担体とR1残基アミノ酸との結合物質(1a)を第一の溶媒に溶解した第一溶媒溶液
A1af 1aに保護基を結合した物質(1af)を第一の溶媒に溶解した第一溶媒溶液
A1b 液体担体とR1、R2残基アミノ酸との結合物質(1b)を第一の溶媒に溶解した第一溶媒溶液
A1bf 1bに保護基を結合した物質(1bf)を第一の溶媒に溶解した第一溶媒溶液
A1c 液体担体とR1、R2、R3残基アミノ酸鎖の結合物質(1c)を第一の溶媒に溶解した第一溶媒溶液
A1cf 1cに保護基を結合した物質(1cf)を第一の溶媒に溶解した第一溶媒溶液
A1x 液体担体と任意アミノ酸系物質との結合物質(1x)を第一の溶媒に溶解した第一溶媒溶液
A1xf 1xに保護基を結合した物質(1xf)を第一の溶媒に溶解した第一溶媒溶液
Atank 第一の溶媒の準備槽
B 第二の溶媒
B0 任意物質を溶解した第二溶媒溶液
B12 12を第二の溶媒に溶解した第二溶媒溶液
Btank 第二の溶媒の準備槽
R1、R2、R3 図面上の記載であってR1、R2、R3と同じ
R1、R2、R3 合成すべきペプチド鎖を構成するアミノ酸残基
Claims (15)
- 温度により相溶状態と相分離状態とが可逆的に変化する第一の溶媒と第二の溶媒の組み合わせ、および第一の溶媒に対し可溶性であり第二の溶媒に対し難溶性である化合物から誘導され、かつ、アミノ酸系物質と結合する液体担体を用いて、該液体担体に合成すべきペプチドのアミノ酸を逐次ペプチド結合させる液相ペプチド合成装置であって、液体担体と第一の溶媒を供給する手段、および結合前処理後のアミノ酸を第二の溶媒に溶解した第二溶媒溶液を供給する手段に連結され、液体担体または液体担体とアミノ酸系物質との結合物質を第一の溶媒に溶解した第一溶媒溶液と供給された第二溶媒溶液とを混合する混合槽と、前記混合槽の温度を混合された第一溶媒溶液と第二溶媒溶液が相溶状態となる温度または混合された第一溶媒溶液と第二溶媒溶液が相分離状態となる温度に制御する混合槽の温度制御手段と、前記混合槽の第二溶媒溶液の量を判定する手段と、前記第二溶媒溶液の量に基づいて混合槽から第二溶媒溶液を排除する手段とを有することを特徴とした液相ペプチド合成装置
- 混合槽の第二溶媒溶液の量を判定する手段が、混合槽において、相分離状態の第一溶媒溶液/第二溶媒溶液の界面を検知する手段を具備し、該手段によって得られる界面位置に基づいて混合槽の第二溶媒溶液の量を判定するものである、請求項1の液相ペプチド合成装置
- 混合槽の第二溶媒溶液の量を判定する手段が、混合槽の第一溶媒溶液の量および該溶液成分と、混合槽に供給される第二溶媒溶液の供給量および該溶液成分と、混合槽の温度に基づいて、混合層の反応を推定する推定手段を有し、該推定手段による反応の推定に基づいて、混合槽の第二溶媒溶液の量を判定するものである、請求項1の液相ペプチド合成装置
- 第二溶媒溶液を供給する手段の供給量が、第一溶媒溶液の溶液成分、および第二溶媒溶液の溶液成分に基づいて決定される請求項1の液相ペプチド合成装置
- 混合槽の温度制御手段が、混合槽の第一溶媒溶液の量および該溶液成分と、混合槽に供給される第二溶媒溶液の供給量および該溶液成分に基づいて温度を制御するものである、請求項1の液相ペプチド合成装置
- 第一溶媒溶液の溶液成分が、第一の溶媒を構成する溶媒の化学成分、および第一の溶媒に溶解された液体担体とアミノ酸系物質のそれぞれ化合物成分であり、第二溶媒溶液の溶液成分が、第二の溶媒を構成する溶媒の化合物成分、および第二の溶媒に溶解された結合前処理後のアミノ酸の化合物成分である、請求項3から請求項5に記載された液相ペプチド合成装置
- 温度により相溶状態と相分離状態とが可逆的に変化する第一の溶媒と第二の溶媒の組み合わせ、および第一の溶媒に対し可溶性であり第二の溶媒に対し難溶性である化合物から誘導され、かつ、アミノ酸系物質と結合する液体担体を用いて、該液体担体に合成すべきペプチドのアミノ酸を逐次ペプチド結合させる液相ペプチド合成装置であって、液体担体または液体担体とアミノ酸系物質との結合物質を第一の溶媒に溶解した第一溶媒溶液を供給する手段、および結合前処理後のアミノ酸を第二の溶媒に溶解した第二溶媒溶液を供給する手段に連結され、供給された第一溶媒溶液と第二溶媒溶液を混合し、かつ、第一溶媒溶液と第二溶媒溶液が相溶状態となる温度に制御された混合槽と、前記混合槽内の第一溶媒溶液と第二溶媒溶液を移送する手段を介して該混合槽と連結され、移送された第一溶媒溶液と第二溶媒溶液が相分離状態となる温度に制御された分離槽と、前記分離槽の第二溶媒溶液の量を判定する手段と、前記第二溶媒溶液の量に基づいて分離槽から第二溶媒溶液を排除する手段とを有することを特徴とした液相ペプチド合成装置
- 分離槽の第二溶媒溶液の量を判定する手段が、分離槽において、相分離状態の第一溶媒溶液/第二溶媒溶液の界面を検知する手段を具備し、該手段によって得られる界面位置に基づいて分離槽の第二溶媒溶液の量を判定するものである、請求項7の液相ペプチド合成装置
- 分離槽の第二溶媒溶液の量を判定する手段が、混合槽に供給される第一溶媒溶液の供給量および該溶液成分と、混合槽に供給される第二溶媒溶液の供給量および該溶液成分と、
混合槽の温度に基づいて、混合層の反応を推定する手段を有し、該推定手段による反応の推定に基づいて、分離槽の第二溶媒溶液の量を判定するものである、請求項7の液相ペプチド合成装置 - 第一溶媒溶液を供給する手段の供給量、および第二溶媒溶液を供給する手段の供給量が、第一溶媒溶液の溶液成分、および第二溶媒溶液の溶液成分に基づいて決定される請求項7の液相ペプチド合成装置
- 混合槽または分離槽の制御温度が、混合槽に供給される第一溶媒溶液の供給量および該溶液成分と、混合槽に供給される第二溶媒溶液の供給量および該溶液成分に基づいて決定される請求項7の液相ペプチド合成装置
- 第一溶媒溶液の溶液成分が、第一の溶媒を構成する溶媒の化学成分、および第一の溶媒に溶解された液体担体とアミノ酸系物質のそれぞれ化合物成分であり、第二溶媒溶液の溶液成分が、第二の溶媒を構成する溶媒の化合物成分、および第二の溶媒に溶解された結合前処理後のアミノ酸の化合物成分である、請求項9から請求項11に記載された液相ペプチド合成装置
- 混合槽に供給される第一溶媒溶液が、分離槽で第二溶媒溶液を排除された後に残留した第一溶媒溶液であって、混合槽に第一溶媒溶液を供給する手段が、分離槽の残留第一溶媒溶液を混合槽に移送する移送手段である、請求項7の液相ペプチド合成装置
- 混合槽と、該混合槽と連結された分離槽とからなる、複数組の混合槽・分離槽の組み合わせを有し、ひとつの混合槽・分離槽組み合わせの混合槽に供給される第一溶媒溶液が、他の混合槽・分離槽組み合わせの分離槽で第二溶媒溶液を排除された後に残留した第一溶媒溶液であって、ひとつの混合槽・分離槽組み合わせの混合槽に第一溶媒溶液を供給する手段が、他の混合槽・分離槽組み合わせの分離槽の残留第一溶媒溶液をひとつの混合槽・分離槽組み合わせの混合槽に移送する移送手段である、請求項7の液相ペプチド合成装置
- アミノ酸が、アミノ酸残基に任意化合物が結合したアミノ酸誘導物質を含むものであり、アミノ酸系物質が、単一のアミノ酸あるいはペプチドであり、結合前処理が、合成すべきペプチドを構成するアミノ酸のアミノ基側末端を不活性化、カルボキシル基側末端を活性化する処理である、請求項1から請求項14に記載された液相ペプチド合成装置
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002198242A JP4082451B2 (ja) | 2002-07-08 | 2002-07-08 | 液相ペプチド合成装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002198242A JP4082451B2 (ja) | 2002-07-08 | 2002-07-08 | 液相ペプチド合成装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004035521A true JP2004035521A (ja) | 2004-02-05 |
JP4082451B2 JP4082451B2 (ja) | 2008-04-30 |
Family
ID=31705750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002198242A Expired - Fee Related JP4082451B2 (ja) | 2002-07-08 | 2002-07-08 | 液相ペプチド合成装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4082451B2 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006046530A1 (ja) * | 2004-10-29 | 2006-05-04 | Moritex Corporation | 連続合成装置及び方法 |
EP1681092A1 (en) * | 2003-10-08 | 2006-07-19 | Japan Science and Technology Agency | Method of reacting two-phase solution changing in phase state with temperature change and apparatus for practicing the same |
JPWO2007034812A1 (ja) * | 2005-09-20 | 2009-03-26 | 国立大学法人東京農工大学 | 分離用担体、化合物の分離方法、及びこれを用いたペプチド合成方法 |
WO2019009317A1 (ja) * | 2017-07-05 | 2019-01-10 | 日産化学株式会社 | ベンジル化合物 |
WO2020218497A1 (ja) * | 2019-04-25 | 2020-10-29 | 味の素株式会社 | ペプチドの連続的製造方法 |
-
2002
- 2002-07-08 JP JP2002198242A patent/JP4082451B2/ja not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1681092A1 (en) * | 2003-10-08 | 2006-07-19 | Japan Science and Technology Agency | Method of reacting two-phase solution changing in phase state with temperature change and apparatus for practicing the same |
EP1681092A4 (en) * | 2003-10-08 | 2007-11-14 | Japan Science & Tech Agency | METHOD FOR REACTING A STATE CHANGING SOLUTION WITH TEMPERATURE CHANGES AND APPARATUS FOR CARRYING OUT SAID METHOD |
US8865475B2 (en) | 2003-10-08 | 2014-10-21 | Japan Science And Technology Agency | Method of reacting two-phase solution changing in phase state with temperature change and apparatus for practicing the same |
WO2006046530A1 (ja) * | 2004-10-29 | 2006-05-04 | Moritex Corporation | 連続合成装置及び方法 |
JPWO2007034812A1 (ja) * | 2005-09-20 | 2009-03-26 | 国立大学法人東京農工大学 | 分離用担体、化合物の分離方法、及びこれを用いたペプチド合成方法 |
JP4500854B2 (ja) * | 2005-09-20 | 2010-07-14 | Jitsubo株式会社 | 分離用担体 |
US8633298B2 (en) | 2005-09-20 | 2014-01-21 | Jitsubo Co., Ltd. | Carrier for separation, method for separation of compound, and method for synthesis of peptide using the carrier |
US9284348B2 (en) | 2005-09-20 | 2016-03-15 | Jitsubo Co., Ltd. | Method for synthesis of peptide using a carrier |
WO2019009317A1 (ja) * | 2017-07-05 | 2019-01-10 | 日産化学株式会社 | ベンジル化合物 |
WO2020218497A1 (ja) * | 2019-04-25 | 2020-10-29 | 味の素株式会社 | ペプチドの連続的製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP4082451B2 (ja) | 2008-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2615083T3 (es) | Vehículo de separación, método de separación de un compuesto, y método de síntesis del péptido utilizando el vehículo | |
AU2023203001A1 (en) | Process for preparing a GIP/GLP1 dual agonist | |
JPWO2010113939A1 (ja) | ジフェニルメタン化合物 | |
JP4283469B2 (ja) | 相溶性−多相有機溶媒システムによりアミノ酸を逐次的に付加する液相ペプチド合成法 | |
JP2004059509A (ja) | 液相ペプチド合成用アミノ酸試薬 | |
JP4082451B2 (ja) | 液相ペプチド合成装置 | |
JP5750209B2 (ja) | 機能性分子、機能性分子合成用アミダイド、及び標的物質解析方法 | |
JP2016113481A (ja) | ピロール・イミダゾールからなるポリアミドの製造方法 | |
CN102816213A (zh) | 使用固相和液相组合技术制备普兰林肽的方法 | |
WO2023028466A1 (en) | Compounds and methods for liquid phase synthesis | |
KR102403904B1 (ko) | 용액공정상 pna 올리고머의 제조방법 | |
CN110078798B (zh) | 一种利用微通道模块化反应装置合成亮丙瑞林的方法 | |
KR101171095B1 (ko) | 루프로라이드의 제조방법 | |
JP2004067555A (ja) | 液相ペプチド合成用担体、液相ペプチド合成法 | |
JP2001253871A (ja) | タンパク質またはペプチドのレセプター化合物 | |
WO2005078430A1 (ja) | 化学物質の分離方法 | |
KR20200001546A (ko) | Pna 올리고머의 제조방법 | |
TWI854284B (zh) | 用於液相合成之化合物及方法 | |
Wilking et al. | Solid phase synthesis of an amphiphilic peptide modified for immobilisation at the C-terminus | |
CN108148113A (zh) | 一种nmda受体调控剂四肽衍生物的固相合成方法 | |
Dayi | Thèse D | |
US20110237774A1 (en) | Method for introducing dota | |
Pan | Synthesis of Fmoc-3-(N-ethyl-3-carbazolyl)-L-alanine and Its Incorporation into a Cyclic Peptide | |
Bordas | Solid phase amino acid protection, peptide construction and synthetic peptide use in defining protein stabilities, functions and in identifying contributing residues of enzymatic active sites | |
JPH0411886A (ja) | ラット多機能プロテアーゼ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050317 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050317 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20050317 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080122 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080205 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120222 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120222 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130222 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130222 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130222 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140222 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140222 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |