WO2020218497A1 - ペプチドの連続的製造方法 - Google Patents
ペプチドの連続的製造方法 Download PDFInfo
- Publication number
- WO2020218497A1 WO2020218497A1 PCT/JP2020/017670 JP2020017670W WO2020218497A1 WO 2020218497 A1 WO2020218497 A1 WO 2020218497A1 JP 2020017670 W JP2020017670 W JP 2020017670W WO 2020218497 A1 WO2020218497 A1 WO 2020218497A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- protected
- peptide
- solution
- terminal
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K1/00—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
- C07K1/06—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
- C07K1/061—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups
- C07K1/062—General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups for alpha- or omega-carboxy functions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Definitions
- the present invention relates to a method for continuously producing a peptide, and is useful in the field of peptide synthesis.
- Peptide synthesis is classified into a solid phase method and a liquid phase method according to the mode of C-protected peptide (C-protected amino acid at the time of dipeptide formation reaction).
- the solid-phase method peptide elongation is performed with the C-terminal of the peptide (or amino acid) bound to the solid support, and the target peptide is separated from the solid support at the final stage. Therefore, reagents and by-products remaining due to excess or unreaction can be easily eliminated by washing the solid support. For this reason, the solid phase method is used in the industrial production of peptide drugs. However, since the reaction is limited to the surface of the solid support, there are problems in scale-up and reactivity.
- the liquid phase method is easy to scale up and has relatively good reactivity, so that it can be a means to solve the above problems in the solid phase method.
- it is necessary to remove residual reagents and by-products in each step of the condensation reaction and the deprotection reaction, which complicates the manufacturing process and increases the time required for manufacturing the final drug. There was a problem. Further, even on a small scale for research use, the liquid phase method has a problem that the manufacturing process is complicated and the manufacturing takes time.
- Patent Documents 1 to 7 a production method using a pseudo-solid phase protecting group (Patent Documents 1 to 7) capable of isolation and purification by solid-liquid separation (that is, crystallization) is used.
- Patent Documents 1 to 7 a pseudo-solid phase protecting group capable of isolation and purification by solid-liquid separation (that is, crystallization) is used.
- crystallization a pseudo-solid phase protecting group
- a production method using a pseudo solid phase protecting group in which the reaction is carried out in a uniform liquid phase, the solvent composition is changed after the reaction, isolation and purification can be performed only by extraction and washing without the need for a solid-liquid separation operation.
- Patent Documents 8 to 12 By protecting the C-terminal and / or side chain functional groups of amino acids or peptides with pseudo-solid phase protective groups in peptide synthesis, the lipid-soluble and organic solvents of the peptides of the production intermediates obtained in each step of the peptide extension reaction ( In particular, the solubility in non-polar organic solvents) is remarkably improved, and purification can be performed only by an extraction and washing operation. Therefore, according to this method, complicated and time-consuming operations such as solid-liquid separation are not required, speed is improved, and efficiency and productivity are remarkably improved.
- the above-mentioned production method using a pseudo solid-phase protecting group is a very useful method having the advantages of a solid-phase reaction and a liquid-phase reaction, and is attracting attention from an industrial point of view.
- a pseudo solid-phase protecting group is a very useful method having the advantages of a solid-phase reaction and a liquid-phase reaction, and is attracting attention from an industrial point of view.
- the peptide synthesis process by the liquid phase method described above is a synthetic process that has been widely performed in the field of organic synthesis called "batch synthesis", but in recent years, in the field of organic synthesis, a flow reactor (particularly) , Flow microreactor) is also being studied for "flow synthesis".
- "Flow synthesis” is said to have advantages such as shortening of synthesis time and ease of scale-up.
- peptide synthesis also has an oil-water separation means for separating and removing unreacted aqueous phase components after synthesis.
- Patent Document 13 A continuous synthesizer for peptide synthesis utilizing a flow reactor has been proposed (Patent Document 13).
- Patent Document 13 A continuous synthesizer for peptide synthesis utilizing a flow reactor has been proposed (Patent Document 13).
- studies have been conducted on short-chain peptides having 4 or less amino acid residues, but the target compounds have been limited (Non-Patent Document 1). ..
- Patent Document 13 discloses a continuous synthesizer for performing peptide synthesis utilizing a flow reactor, which has an oil-water separation means for separating and removing unreacted aqueous phase components after synthesis.
- Non-Patent Document 1 is known as an example of actually performing peptide synthesis using a flow reactor, but this is a study on a short-chain peptide having 4 or less amino acid residues. , The target compound was limited. Further, in order to establish continuous synthesis, it is essential to remove residual raw materials, residual reagents, and reaction impurities (By-Products) when used excessively so as not to affect the next reaction. In the case of Patent Document 13 and Non-Patent Document 1, it is considered difficult to remove the impurities and the like.
- the present inventors used a peptide protected by a pseudo solid-phase protecting group so that the peptide can maintain its solubility in a solvent even if it becomes a long chain and can easily remove reaction contaminants and the like. , Elongation of peptide chains in the flow reactor (with continuous flow if necessary), washing to remove unreacted substances and by-products in the flow reactor of the products of each step, and oil-water separation. A means for synthesizing a desired peptide has been found by combining with the stratification by means. Among them, surprisingly, regardless of the chain length of the peptide, the product does not cause the phenomenon of clogging in the flow reactor, and the product is a surfactant despite having a pseudo-solid phase protecting group.
- the present invention has been completed by finding that peptides can be synthesized and purified extremely efficiently (if necessary, continuously as a whole production flow) by separating into an organic layer even in an oil-water separation means without forming micelles as described above.
- the present invention is as follows.
- a method for producing a peptide which comprises the following step (A) and / or step (B).
- the N-terminal amino group and C-terminal may be protected by a protective group, and the side chain functional group may be further protected by a protective group, and at least one of the C-terminal or side chain functional group is a pseudo-solid phase protective group.
- the reaction solution containing the N-protected C-protected peptide (N-protected C-protected peptide) protected by is washed with water and / or a hydrophilic organic solvent in a continuous flow in a flow reactor, and then oil-water separation is performed in the continuous flow.
- the N-terminal amino group may not be protected, the C-terminal may be protected by a protective group, and the side chain functional group may be further protected by a protective group, at least one of the C-terminal or side chain functional group.
- a reaction solution containing a C-protected peptide (N-unprotected C-protected peptide), one of which is protected by a pseudo-solid phase protective group, is washed with water and / or a hydrophilic organic solvent in a continuous flow in a flow reactor, and then continuously.
- a method for producing a peptide which comprises the following steps (1), (A), (2), and (B).
- the C-terminal may be protected by a protective group, the side chain functional group may be further protected by a protective group, and at least one of the C-terminal or the side chain functional group is protected by a pseudo-solid phase protective group.
- the C-protected amino acid (C-protected amino acid), or C-terminal may be protected by a protective group, and the side chain functional group may be further protected by a protective group, and at least one of the C-terminal or side chain functional group is a pseudo solid phase.
- C-protected peptide protected by a protective group C-protected peptide
- the C-terminal is not protected, the N-terminal amino group is protected by a protective group, and the side chain functional group may be further protected by a protective group.
- N-protected amino acid N-protected amino acid
- the C-terminal is protected.
- N-protected peptide in which the N-terminal amino group is protected by a protective group and the side chain functional group may be further protected by a protective group; Condensing agent; And soluble organic solvent, Introduced into a flow reactor, the condensation reaction is carried out in a continuous flow in the flow reactor, and the extension of the N-terminal protects the N-terminal amino group and C-terminal with a protecting group, further protecting the side chain functional group.
- N-protected C-protected peptide which may be protected by a group and in which at least one of the C-terminal or side chain functional groups is protected by a pseudo-solid-solid protecting group.
- a step of obtaining an N-protected C-protected peptide (N-protected C-protected peptide), which may be protected by a group and in which at least one of the C-terminal or side chain functional groups is protected by a pseudo-solid-solid protecting group.
- the reaction solution containing the N-protected C-protected peptide is washed with water and / or a hydrophilic organic solvent in a continuous flow in a flow reactor, and then separated by an oil-water separation means in a continuous flow to obtain the N.
- a step of purifying the N-protected C-protected peptide by separating an organic layer containing the protected C-protected peptide.
- An organic layer containing an N-protected C-protected peptide is introduced into the flow reactor in a continuous flow, and the protective group of the N-terminal amino group is removed by the continuous flow in the flow reactor to remove N.
- the terminal amino group may be unprotected, the C-terminal may be protected by a protecting group, the side chain functional group may be further protected by a protecting group, and at least one of the C-terminal or side chain functional group is a pseudo-solid phase.
- Step of obtaining a C-protected peptide (N-unprotected C-protected peptide) protected by a protecting group (B)
- the reaction solution containing the N-unprotected C-protected peptide is washed in a flow reactor with water and / or a hydrophilic organic solvent in a continuous flow, and then separated by an oil-water separation means in the continuous flow.
- a step of purifying the N unprotected C protected peptide by separating an organic layer containing the N unprotected C protected peptide.
- [7] The method for producing a peptide according to any one of [1] to [6], wherein the protecting group for the amino group is a 9-fluorenylmethyloxycarbonyl group, a tert-butoxycarbonyl group or a benzyloxycarbonyl group.
- [8] The method for producing a peptide according to [7], wherein the protecting group for the amino group is a 9-fluorenylmethyloxycarbonyl group.
- [10] The method for producing a peptide according to any one of [1] to [9], wherein a peptide having 5 or more and 100 or less amino acid residues (more preferably 5 or more and 50 or less) is produced.
- TIPS indicates a triisopropylsilyl group
- TBDPS indicates a tert-butyldiphenylsilyl group
- the pseudo-solid phase protecting group (4', 4'-bis (2,3-dihydrophytyloxy) phenyl) methylamine); 3,4,5-tri (2', 3'-dihydrophytyloxy) benzyl alcohol; Selected from 2- [3,4,5-tri (2', 3'-dihydrophytyloxy) benzyloxy] -4-methoxybenzyl alcohol; and 3,4,5-tri (octadecyloxy) cyclohexanemethanol , The method for producing a peptide according to any one of [1] to [10].
- the present invention while taking advantage of peptide synthesis by the pseudo solid phase method that the product can be easily purified and isolated by oil-water separation, in the peptide elongation step (that is, the condensation step and / or the deprotection step).
- the post-processing operation time can be shortened.
- the present invention provides a new method for producing a peptide, which improves the drawbacks of the conventional method.
- the amino acid that is a constituent unit of the peptide produced by the present invention is a compound having an amino group and a carboxy group in the same molecule, and may be a natural amino acid or an unnatural amino acid, and may be an L-form or a D-form. Alternatively, it may be racemic.
- the structural unit is not limited to amino acids, and may be other compounds applicable to peptide synthesis (hereinafter referred to as amino acid analogs). Those skilled in the art can appropriately select such amino acid analogs and manufacture or purchase them according to a method known per se or a method similar thereto.
- the flow reactor used in the steps (1), (A), (2), and (B) of the present invention is not particularly limited, but may be appropriately selected according to the desired reaction (function). it can. Further, one or two or more flow reactors may be connected to carry out the reaction as appropriate. Further, as the flow reactor, a flow microreactor that requires a micro effect is preferable, but a flow reactor that does not require a micro effect is also included.
- Examples of the material of the flow reactor used at the time of reaction include metal, Teflon, glass, and silicon. From the viewpoint of compatibility with reagents, thermal conductivity, price, etc., metal and Teflon are preferable.
- Appropriate conditions can be selected for the amount of reagent, reaction temperature, and residence time during the reaction, depending on the reaction.
- the pumps and mixers used in the flow reactor are not limited as long as they are known in the industry and can be used.
- the C-terminal may be protected by a protective group
- the side chain functional group may be further protected by a protective group
- at least one of the C-terminal or the side chain functional group is protected by a pseudo-solid phase protective group.
- the C-protected amino acid (C-protected amino acid), or the C-terminal may be protected by a protective group
- the side chain functional group may be further protected by a protective group, and at least one of the C-terminal or the side chain functional group is used.
- the functional group may be further protected by a protective group N-protected amino acid (N-protected amino acid), or the C-terminal is not protected, the N-terminal amino group is protected by a protective group, and the side chain functional group is further protected.
- N-protected peptide N-protected peptide
- a solution in a soluble organic solvent containing a condensing agent separately, simultaneously, or in any two or more solutions.
- the C-protected amino acid may be obtained by discontinuous batch synthesis, or may be separately purchased or obtained by another method.
- the C-protected peptide may be obtained by carrying out the step (B) of the present invention, may be obtained by discontinuous batch synthesis, or may be separately obtained by another method. It may be purchased / obtained. Of these, the one obtained by carrying out the step (B) of the present invention is preferable.
- the N-terminal amino group of the C-protected amino acid or the C-protected peptide need only be able to react with the N-protected amino acid or the N-protected peptide, and in addition to the case where the N-terminal amino group is unprotected, the N-terminal amino group May be substituted with one or more substituents.
- substituents include a substituent generally used in an amino group (an alkyl group having 1 to 6 carbon atoms, etc.), a substituent that activates a reaction with an N-protected amino acid or an N-protected peptide, and the like. .. It is preferable that the N-terminal amino group of the C-protected amino acid or C-protected peptide is not protected.
- step (1) (Regarding the reaction conditions in step (1))
- a solution containing a C-protected amino acid or a C-protected peptide 2) a solution containing an N-protected amino acid or an N-protected peptide, and 3) a solution containing a condensing agent are separately separated.
- the solution can be introduced into a flow reactor, mixed in a continuous flow in the flow reactor, and the condensation reaction proceeds.
- Pseudo-solid phase protecting group Pseudo-solid phase protecting groups used for C-terminal protection (C protection) of C-protected amino acids or C-protected peptides or, if necessary, for protection of side chain functional groups, "react in a uniform liquid phase and after the reaction. It is a protecting group that can change the solvent composition and isolate and purify the product only by oil-water separation. " The pseudo-solid phase protecting group is not particularly limited, including those known to those skilled in the art, and can be appropriately selected from these.
- preferred pseudo-solid phase protecting groups include branched chain-containing aromatic compounds described in International Publication No. 2012/029794, and further branched chain-containing saturated carbocyclic compounds. Specifically, it is represented by the following formula (I), and a specific benzyl compound (in the formula (I), both X and Z are hydrogen atoms and R 1 is a hydrogen atom); a specific diphenylmethane compound ( In formula (I), X is a hydrogen atom, R 1 is a hydrogen atom, k is 1, and Z is formula (a) (in formula, R 2 is a hydrogen atom and m is 0.
- Ring A represents a benzene ring or a cyclohexane ring.
- R aa Shows a- ; k number of R a and -NR a - R a in each independently, an aliphatic hydrocarbon group having a branched chain one or at least one has a total branched number be 3 or more, and An organic group having a total carbon number of 14 or more and 300 or less, -C (0) R aa or -S (0) 2 R aa (in the formula, R aa is an aliphatic group which may have a hydrogen atom or a substituent.
- k represents an integer from 1 to 4;
- R 1 is a hydrogen atom or Z is a group represented by the following formula (a), it shows a single bond together with R 2 and forms a fluorene ring together with ring B. May be;
- Ring A is a C 1-6 alkyl group, which may be further substituted with a halogen atom, one or more halogen atoms, in addition to R 1 , k QR a , and C (X) (Y) Z.
- X indicates a hydrogen atom or a phenyl group
- Y represents a hydroxyl group or -NHR group (R represents a hydrogen atom, an alkyl group or an aralkyl group)
- Z is a hydrogen atom or formula (a) :.
- Ring B represents a benzene ring or a cyclohexane ring.
- m represents an integer from 0 to 4;
- m R b and -NR b - R b in are each independently an aliphatic hydrocarbon group having a branched chain one or at least one has a total branched number be 3 or more, and Shows organic groups with a total carbon number of 14 or more and 300 or less;
- R 2 may represent a hydrogen atom or show a single bond with R 1 to form a fluorene ring with ring A; and
- ring B has m QR b , and R.
- a halogen atom a C 1-6 alkyl group optionally substituted with one or more halogen atoms, and a C 1-6 alkoxy group optionally substituted with one or more halogen atoms.
- R 3 and R 4 independently represent a hydrogen atom or a C 1-4 alkyl group, respectively;
- X 1 represents a single bond, C 1-4 alkylene group or oxygen atom.
- both R 3 and R 4 are not hydrogen atoms.
- the compound represented by the formula (I) of the present invention and the compound intended for protection are condensation of a hydroxyl group or NHR group which is a Y group and a C-terminal carboxyl group of the compound intended for protection. It binds by reaction.
- examples of the "alkyl group” represented by R in the above formula (I) include C 1-30 alkyl groups, preferably C 1-10 alkyl groups, and more preferably C 1-6 alkyl. It is a group. Suitable specific examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl and the like, with methyl and ethyl being particularly preferred.
- examples of the "aralkyl group” represented by R in the above formula (I) include a C 7-30 aralkyl group, preferably a C 7-20 aralkyl group, and more preferably a C 7-16 aralkyl group. It is a group (C 6-10 aryl-C 1-6 alkyl group).
- Suitable specific examples include benzyl, 1-phenylethyl, 2-phenylethyl, 1-phenylpropyl, ⁇ -naphthylmethyl, 1- ( ⁇ -naphthyl) ethyl, 2- ( ⁇ -naphthyl) ethyl, 1- ( Examples thereof include ⁇ -naphthyl) propyl, ⁇ -naphthylmethyl, 1- ( ⁇ -naphthyl) ethyl, 2- ( ⁇ -naphthyl) ethyl, 1- ( ⁇ -naphthyl) propyl, and benzyl is particularly preferable.
- a hydrogen atom, a C 1-6 alkyl group or a C 7-16 aralkyl group is preferable, a hydrogen atom, methyl, ethyl or benzyl is more preferable, and a hydrogen atom is particularly preferable.
- halogen atom in the above formula (I) is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
- ring A in the above formula (I) represents a benzene ring or a cyclohexane ring, both of which are preferable.
- ring B in the above formula (I) represents a benzene ring or a cyclohexane ring, both of which are preferable.
- an "organic group having a total carbon number of 14 or more and 300 or less” is an organic group having at least one aliphatic hydrocarbon group having one or more branched chains in its molecular structure and having a total number of branched chains of three or more. Moreover, it is an organic group having a total carbon number of 14 or more and 300 or less.
- the "branched chain” in the "aliphatic hydrocarbon group having one or more branched chains” is a linear or branched saturated aliphatic hydrocarbon group, preferably a C 1-6 alkyl group, preferably a C 1-4 alkyl. Groups are more preferred, methyl or ethyl groups are even more preferred. Further, the "branched chain” may be substituted with one or more halogen atoms.
- One or more branched chains in “an organic group having at least one aliphatic hydrocarbon group having one or more branched chains, a total number of branched chains of 3 or more, and a total carbon number of 14 or more and 300 or less”
- the site of the "aliphatic hydrocarbon group having” is not particularly limited, and may be present at the terminal (monovalent group) or at another site (for example, a divalent group).
- aliphatic hydrocarbon group having one or more branched chains include a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group and a dodecyl group.
- (Lauryl group) tridecyl group, myristyl group, cetyl group, stearyl group, araquil group, behenyl group, oleyl group, linoleyl group, lignoceryl group and other branched isomers, monovalent groups having one or more branched chains.
- divalent groups derived from them preferably 3,7,11-trimethyldodecyl group, 3,7,11,15-tetramethylhexadecyl group (hereinafter, 2,3-dihydrophytyl group). ), 2,2,4,8,10,10-hexamethylundecane-5-yl group, formula:
- 1 branched chain in “an organic group having at least one aliphatic hydrocarbon group having 1 or more branched chains, a total number of branched chains of 3 or more, and a total carbon number of 14 or more and 300 or less”.
- each of them may be the same or different.
- Sites other than the above-mentioned aliphatic hydrocarbon group can be arbitrarily set. For example, it has sites such as -O-, -S-, -CO-, -NH-, -COO-, -OCONH-, -CONH-, -NHCO-, and a hydrocarbon group (monovalent group or divalent group). You may be doing it.
- hydrocarbon group examples include an aliphatic hydrocarbon group, an aromatic aliphatic hydrocarbon group, a monocyclic saturated hydrocarbon group and an aromatic hydrocarbon group, and specific examples thereof include an alkyl group. , Alkenyl group, alkynyl group, cycloalkyl group, aryl group, aralkyl group and other monovalent groups and divalent groups derived from them are used.
- alkyl group examples include a C 1-6 alkyl group and the like, and examples thereof include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl and the like.
- alkenyl group for example, a C 2-6 alkenyl group or the like is preferable, and examples thereof include vinyl, 1-propenyl, allyl, isopropenyl, butenyl, isobutenyl and the like.
- alkynyl group for example, a C 2-6 alkynyl group or the like is preferable, and examples thereof include ethynyl, propargyl, 1-propynyl and the like.
- cycloalkyl group for example, a C 3-6 cycloalkyl group and the like are preferable, and examples thereof include cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
- aryl group for example, a C6-14 aryl group or the like is preferable, and examples thereof include phenyl, 1-naphthyl, 2-naphthyl, biphenylyl, 2-anthryl and the like. Of these, the C 6-10 aryl group is more preferable, and phenyl is particularly preferable.
- aralkyl group for example, C 7-20 aralkyl group is preferable, for example, benzyl, 1-phenylethyl, 2-phenylethyl, 1-phenylpropyl, naphthylmethyl, 1-naphthylethyl, 1-naphthylpropyl and the like. Can be mentioned.
- a C 7-16 aralkyl group (C 6-10 aryl-C 1-6 alkyl group) is more preferable, and benzyl is particularly preferable.
- the "hydrocarbon group” may be substituted with a substituent selected from a halogen atom (chlorine atom, bromine atom, fluorine atom, iodine atom), an oxo group and the like.
- the compound represented by the formula (I) has k QR a groups.
- the k QR a groups may be the same or different.
- the total number of carbon atoms in the "organic group having a total carbon number of 14 or more and 300 or less” is 14 or more, preferably 16 or more, and more preferably 18 or more.
- the compound having at least one aliphatic hydrocarbon group having one or more branched chains and having an aliphatic hydrocarbon group having a total number of branched chains of three or more represented by Ra and R b
- the total number of carbon atoms is 300 or less, preferably 200 or less, and more preferably 160 or less.
- an aliphatic hydrocarbon group having at least one branched chain and having a total number of branched chains of 3 or more, which is indicated as Ra and R b is used.
- the total number of branched chains in the "having organic group” is 3 or more, preferably 4 or more, more preferably 8 or more, still more preferably 10 or more. As the total number of branched chains increases, the compound protected by the compound of the present invention becomes an oil having good solubility in various organic solvents even when the peptide chain becomes a long chain.
- R 3 and R 4 independently represent a hydrogen atom or a C 1-4 alkyl group, respectively;
- X 1 represents a single bond, C 1-4 alkylene group or oxygen atom.
- R 3 and R 4 are not hydrogen atoms.
- the number of carbon atoms in the definition of each symbol in the formulas (c) to (e), the number of repeating units (m 1 , n 0 to n 9 ), etc. are shown for convenience, and the total number of carbon atoms is 14.
- the above preferably 16 or more, more preferably 18 or more
- 300 or less preferably 200 or less, more preferably 160 or less
- the formulas (c) to (e) will be described in order.
- Equation (c) is as follows.
- n 0 represents an integer from 2 to 40;
- the n 0 R 7 and R 8 independently represent a hydrogen atom or a C 1-4 alkyl group, respectively;
- n 0 pieces of X 2 are each independently a single bond or a C 1-4 alkylene group;
- R 9 represents a hydrogen atom or a C 1-4 alkyl group;
- R 10 is a C 1-4 alkyl group or formula (I'):
- Ring A' indicates a benzene ring or a cyclohexane ring; Other symbols have the same meaning as described above.
- ring A' is a C 1-6 alkyl group which may be further substituted with a halogen atom, one or more halogen atoms, in addition to R 1 , Q, and C (X) (Y) Z. And may have a substituent selected from the group consisting of C 1-6 alkoxy groups which may be substituted with one or more halogen atoms.
- R 9 represents a C 1-4 alkyl group.
- R 5 and R 6 are both hydrogen atoms; n 0 is an integer from 2 to 40; The n 0 R 7 and R 8 are independently hydrogen atoms, methyl or ethyl groups, respectively; n 0 X 2s are independently single-bonded, methylene or ethylene groups, respectively; and R 9 is preferably a group that is a hydrogen atom, methyl or ethyl group (provided that R 7 and R 8 are). Is not both hydrogen atoms, and when n 0 is 2, R 9 represents a methyl or ethyl group).
- a more preferable group of the formula (c) is a branched isomer having 14 to 160 carbon atoms such as a myristyl group, a cetyl group, a stearyl group, an araquil group and a behenyl group, and has a total number of branched chains of 3 or more.
- a myristyl group such as a myristyl group, a cetyl group, a stearyl group, an araquil group and a behenyl group
- 2,3-dihydrophytyl group, 3,7,11-trimethyldodecyl group and 2,2,4,8,10,10-hexamethyl-5-dodecanoyl group are particularly preferable.
- Equation (d) is as follows.
- m 1 OR 11 is a group having a hydroxyl group substituted with a group represented by the formula (c') or a polyalkylene glycol group having a total number of branched chains of 3 or more (for example, polypropylene glycol group, polyneo). Indicates a hydroxyl group substituted with a pentylglycol group); m 1 represents an integer of 1 to 3.
- the description of the group represented by the above formula (c') is that of the group represented by the above formula (c), except that * indicates the bond position with O, not the bond position with Q. Same as the description.
- R 11 is a branched isomer having 14 to 30 carbon atoms such as a myristyl group, a cetyl group, a stearyl group, an araquil group and a behenyl group, and has a total number of branched chains of 3 or more. Groups are more preferred, with 2,3-dihydrophytyl groups and 3,7,11-trimethyldodecyl groups being particularly preferred.
- Equation (e) is as follows.
- n 1 represents an integer from 1 to 10
- n 2 represents an integer from 1 to 10
- n One R 15 and R 16 independently represent a hydrogen atom or a C 1-4 alkyl group, respectively
- n 1 X 3 indicates a single bond or C 1-4 alkylene group
- n Two R 17 and R 18 independently represent a hydrogen atom or a C 1-4 alkyl group, respectively
- the n 2 X 5 is a single bond or C 1-4 alkylene group
- X 4 represents a single bond or C 1-4 alkylene group
- R 12 , R 13 , R 14 , R 19 , R 20 and R 21 are independent hydrogen atoms or C 1-4 alkyl groups, respectively.
- R 15 and R 16 and / or R 17 and R 18 are not both hydrogen atoms and n 1 + n 2 is 2, two or more of R 12 , R 13 and R 14 Independently indicate a C 1-4 alkyl group, respectively, or two or more of R 19 , R 20 and R 21 independently indicate a C 1-4 alkyl group, respectively.
- One R 15 and R 16 are independently hydrogen atoms, methyl or ethyl groups, respectively;
- n 1 X 3 is a single bond, methylene group or ethylene group;
- the two R 17 and R 18 are independently hydrogen atoms, methyl or ethyl groups, respectively;
- the n 2 X 5 is a single bond, a methylene group or an ethylene group;
- X 4 is a single bond, methylene group or ethylene group; and
- R 12 , R 13 , R 14 , R 19 , R 20 and R 21 are independently hydrogen atoms or C 1-4 alkyl groups, respectively.
- R 15 and R 16 and / or R 17 and R 18 are not both hydrogen atoms and n 1 + n 2 is 2, then R 12 , R 13 and Two or more of R 14 independently indicate a C 1-4 alkyl group, or two or more of R 19 , R 20 and R 21 independently exhibit a C 1-4 alkyl group). ..
- a particularly suitable base of the formula (e) is n 1 is an integer from 1 to 5; n 2 is an integer from 1 to 5; n One R 15 and R 16 are independently hydrogen atoms or methyl groups, respectively; n 1 X 3 is a single bond or a methylene group; n The two R 17 and R 18 are independently hydrogen atoms or methyl groups, respectively; the n 2 X 5 is a single bond or a methylene group; X 4 is a single bond or a methylene group; and R 12 , R 13 , R 14 , R 19 , R 20 and R 21 include groups that are methyl groups (provided that R 15 and R 16 and / Or R 17 and R 18 are neither hydrogen atoms).
- the "other group represented by any one of the above formula (c) ⁇ (e) is an oxygen atom 3 or more, i.e., the total branched-chain number It may be a group containing a polyalkylene glycol group such as a polypropylene glycol group and a polyneopentyl glycol group having 3 or more.
- Organic group having at least one aliphatic hydrocarbon group having 1 or more branched chains, having a total number of branched chains of 3 or more, and having a total carbon number of 14 or more and 300 or less represented by R a and R b.
- R a and R b the following groups can be mentioned. * In each group indicates a bond position, n 3 in the formula indicates an integer of 3 or more, and n 4 can be appropriately set so that the total carbon number of the group is 14 or more and 300 or less.
- Another embodiment of the "organic group” includes the following groups. * In each group indicates the bond position.
- n 5 to n 9 can be appropriately set so that the total carbon number of each group is 14 or more and 300 or less.
- Organic group having at least one aliphatic hydrocarbon group having 1 or more branched chains, having a total number of branched chains of 3 or more, and having a total carbon number of 14 or more and 300 or less represented by R a and R b.
- the method for producing the pseudo-solid phase protecting group is not particularly limited, but is produced from the raw material compound according to a method known per se (see [0128] to [0154] of International Publication No. 2012/029794) or a method similar thereto. can do.
- the compound used as the raw material compound for example, the halide corresponding to the group R 2 or R 4 of the formula (I), is available as a commercially available product, or is a method known per se or a method equivalent thereto. Can be manufactured according to.
- pseudo-solid phase protecting group in the present invention, it is described in any one of International Publication No. 2016/140232, International Publication No. 2003/018188, International Publication No. 2017/038650, and International Publication No. 2019/09317.
- International Publication No. 2017/038650 describes a benzyl compound having a terminal modified with a silyl-based protecting group as a pseudo-solid-phase protecting group, and these pseudo-solid-phase protecting groups are also included in the present invention.
- pseudo-solid-solid protecting groups that can be used in the present invention include Japanese Patent Application Laid-Open No. 2000-44493, International Publication No. 2006/104166, International Publication No. 2007/034812, and International Publication No. 2007/122847. No., International Publication No. 2010/1133939, International Publication No. 2010/104169, International Publication No. 2011/078295, and the like are also mentioned.
- a pseudo-solid-phase protecting group having a molecular weight of 300 or more, which is soluble in a halogen-based solvent or an ether-based solvent and insoluble in a polar solvent (for example, benzyl).
- a polar solvent for example, benzyl
- examples thereof include a group containing a compound, a diphenylmethane compound, a fluorene compound, and a saturated carbocyclic compound thereof), which can be condensed with a C-terminal carboxy group.
- pseudo-solid phase protecting group having a molecular weight of 300 or more, which is soluble in the above halogen-based solvent or ether-based solvent and insoluble in the polar solvent, is a compound represented by the following formula (II). Among these, those having a molecular weight of 400 or more are preferable. Equation (II):
- Ring A represents a benzene ring or a cyclohexane ring.
- R 1 is a hydrogen atom or R b is a group represented by the following formula (a')
- R 1 is a hydrogen atom or R b is a group represented by the following formula (a')
- R 2 are each independently an organic group having an aliphatic hydrocarbon group
- p indicates an integer from 1 to 4
- Ring A consists of a halogen atom, a C 1-6 alkyl group optionally substituted with a halogen atom, and a C 1-6 alkoxy group optionally substituted with a halogen atom, in addition to p OR 2.
- Ra represents a phenyl group that may be substituted with a hydrogen atom or a halogen atom
- R b is a hydrogen atom, or formula (a'):
- Ring B represents a benzene ring or a cyclohexane ring.
- r indicates an integer from 0 to 4; r pieces of R 4 each independently represents an organic group having an aliphatic hydrocarbon group; R 3 is either a hydrogen atom, or represents a single bond together with R 1, ring A and may form a fluorene ring with ring B; and ring B, r-number of OR 4 in addition to further halogen atom, a C 1-6 alkyl group optionally substituted by a halogen atom, and a substituent is also selected from the group consisting of a C 1-6 alkoxy group optionally substituted by a halogen atom You may have. ); And Y indicates a hydroxy group, NHR (R indicates a hydrogen atom, an alkyl group or an aralkyl group), or a halogen atom. ]
- the pseudo-solid-phase protecting group represented by the above formula (II) binds to the compound intended for protection. That is, a pseudo-solid-phase protecting group in which Y is a hydroxy group, an ⁇ NHR group, or a halogen atom protects a compound by condensing with the C-terminal of an amino acid or peptide.
- examples of the "alkyl group" represented by R in the above formula (II) include a linear or branched C 1-30 alkyl group, preferably a C 1-10 alkyl group, more preferably. Is a C 1-6 alkyl group. Suitable specific examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl and the like, with methyl and ethyl being particularly preferred.
- examples of the "aralkyl group” represented by R in the above formula (II) include C 7-30 aralkyl groups, preferably C 7-20 aralkyl groups, and more preferably C 7-16 aralkyl groups. It is a group (C 6-10 aryl-C 1-6 alkyl group).
- Preferable specific examples include benzyl, 1-phenylethyl, 2-phenylethyl, 1-phenylpropyl, naphthylmethyl, 1-naphthylethyl, 1-naphthylpropyl and the like, and benzyl is particularly preferable.
- a hydrogen atom, a C 1-6 alkyl group or a C 7-16 aralkyl group is preferable, a hydrogen atom, methyl, ethyl or benzyl is more preferable, and a hydrogen atom is particularly preferable.
- the "halogen atom" in the above formula (II) is a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
- a chlorine atom, a bromine atom and an iodine atom are preferable, and a bromine atom is more preferable.
- ring A in the above formula (II) represents a benzene ring or a cyclohexane ring, both of which are preferable.
- ring B in the above formula (II) represents a benzene ring or a cyclohexane ring, both of which are preferable.
- the "organic group having an aliphatic hydrocarbon group" represented by R 2 or R 4 in the above formula (II) is a monovalent organic having an aliphatic hydrocarbon group in its molecular structure. It is a group.
- the "aliphatic hydrocarbon group" in the "organic group having an aliphatic hydrocarbon group” is a linear or branched saturated or unsaturated aliphatic hydrocarbon group, and is an aliphatic hydrocarbon having 5 or more carbon atoms.
- the group is preferable, the aliphatic hydrocarbon group having 5 to 60 carbon atoms is more preferable, the aliphatic hydrocarbon group having 5 to 30 carbon atoms is more preferable, and the aliphatic hydrocarbon group having 10 to 30 carbon atoms is particularly preferable.
- the site of the "aliphatic hydrocarbon group” in the "organic group having an aliphatic hydrocarbon group” is not particularly limited, and may be present at the terminal (monovalent group) or at any other site. (For example, a divalent group).
- aliphatic hydrocarbon group examples include monovalent groups such as an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group and an alkynyl group, and a divalent group derived from them, and a methyl group is preferable.
- Examples thereof include a monovalent group such as a group, a stearyl group, an araquil group, a behenyl group, an oleyl group and an isostearyl group, and a divalent group derived from them.
- the site other than the "aliphatic hydrocarbon group" in the "organic group having an aliphatic hydrocarbon group” can be arbitrarily set.
- the linker may have sites such as -O-, -S-, -COO-, -OCONH-, and -CONH-, and a hydrocarbon group (monovalent group or divalent group).
- the "hydrocarbon group” include an aliphatic hydrocarbon group, an aromatic aliphatic hydrocarbon group, a monocyclic saturated hydrocarbon group and an aromatic hydrocarbon group, and specific examples thereof include an alkyl group.
- Alkenyl group, alkynyl group, cycloalkyl group, aryl group, aralkyl group and other monovalent groups and divalent groups derived from them are used.
- alkyl group include a C 1-6 alkyl group and the like, and examples thereof include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl and the like.
- alkenyl group for example, a C 2-6 alkenyl group or the like is preferable, and examples thereof include vinyl, 1-propenyl, allyl, isopropenyl, butenyl, isobutenyl and the like.
- alkynyl group for example, a C 2-6 alkynyl group or the like is preferable, and examples thereof include ethynyl, propargyl, 1-propynyl and the like.
- cycloalkyl group for example, a C 3-6 cycloalkyl group or the like is preferable, and examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.
- aryl group for example, a C6-14 aryl group or the like is preferable, and examples thereof include phenyl, 1-naphthyl, 2-naphthyl, biphenylyl, 2-anthryl and the like. Of these, the C 6-10 aryl group is more preferable, and phenyl is particularly preferable.
- aralkyl group for example, C 7-20 aralkyl group is preferable, for example, benzyl, 1-phenylethyl, 2-phenylethyl, 1-phenylpropyl, naphthylmethyl, 1-naphthylethyl, 1-naphthylpropyl and the like. Can be mentioned. Of these, a C 7-16 aralkyl group (C 6-10 aryl-C 1-6 alkyl group) is more preferable, and benzyl is particularly preferable.
- the "hydrocarbon group” is composed of a halogen atom (chlorine atom, bromine atom, fluorine atom, iodine atom), an alkyl group having 1 to 6 carbon atoms which may be substituted with one or more halogen atoms, an oxo group and the like. It may be substituted with the selected substituent.
- a halogen atom chlorine atom, bromine atom, fluorine atom, iodine atom
- an alkyl group having 1 to 6 carbon atoms which may be substituted with one or more halogen atoms, an oxo group and the like. It may be substituted with the selected substituent.
- the "organic group having an aliphatic hydrocarbon group" constituting the OR 2 group or the OR 4 group in the above formula (II) may have a plurality of "aliphatic hydrocarbon groups" due to branching or the like.
- a plurality of "aliphatic hydrocarbon groups” are present in the "organic group having an aliphatic hydrocarbon group", each of them may be the same or different.
- the lower limit of the total number of carbon atoms is preferably 5, more preferably 10, further preferably 12, and 14 Even more preferably, 16 is particularly preferable, and 20 is particularly preferable.
- the upper limit of the total number of carbon atoms in the "organic group having an aliphatic hydrocarbon group” represented as R 2 or R 4 is preferably 200, more preferably 150, further preferably 120, and even more preferably 100. 80 is particularly preferable, 60 is particularly preferable, 40 is particularly preferable, and 30 is most preferable. Even when the peptide chain becomes a long chain, the compound protected by the compound of the present invention becomes an oil having good solubility in various organic solvents.
- Suitable specific examples of the "OR 2 " group or the “OR 4 " group include dodecyloxy, cetyloxy, octadecyloxy, docosyloxy, docosyloxy-dodecyloxy, triacontyloxy and the like.
- substituents which may be contained in the ring A or the ring B in the above formula (II) include C 1-6 alkoxy groups (eg, methoxy, ethoxy, propoxy, isopropoxy, butoxy, etc.).
- C 1-4 alkoxy groups such as isobutoxy, sec-butoxy, tert-butoxy
- C 1-6 alkyl groups optionally substituted with one or more halogens (eg, methyl, ethyl, propyl, isopropyl, butyl, C 1-6 alkyl groups such as isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, halogen-substituted C 1-6 alkyl groups such as trifluoromethyl and trichloromethyl), or halogen atoms, among others.
- a C 1-6 alkoxy group is preferred.
- Y is a hydroxy group in the formula (II);
- R 1 is a hydrogen atom;
- R 2 and / or R 4 are aliphatic hydrocarbon groups having 5 to 60 carbon atoms;
- p is an integer of 1 to 3;
- Y is a hydroxy group; R a , R b , and R 1 are all hydrogen atoms; R 2 is an aliphatic hydrocarbon group having 5 to 60 carbon atoms; It is a compound in which p is an integer of 1 to 3.
- Y is a hydroxy group; R a , R b , and R 1 are all hydrogen atoms; R 2 is an alkyl group having 10 to 40 carbon atoms; A compound having p of 2 or 3.
- Y is a hydroxy group; R a , R b , and R 1 are all hydrogen atoms; R 2 is an alkyl group having 12 to 30 carbon atoms; A compound having p of 2 or 3.
- Y is a hydroxy group; R a , R b , and R 1 are all hydrogen atoms; R 2 is a benzyl group having 1 to 3 alkoxy group having 12 to 30 carbon atoms; It is a compound in which p is an integer of 1 to 3.
- Y is a hydroxy group; R a , R b , and R 1 are all hydrogen atoms; R 2 is cyclohexylmethyl group having 1 to 3 alkoxy group having 12 to 30 carbon atoms; It is a compound in which p is an integer of 1 to 3.
- pseudo-solid-phase protecting groups are preferable examples of the pseudo-solid-phase protecting groups having a molecular weight of 300 or more, which are soluble in halogen-based solvents or ether-based solvents and insoluble in polar solvents in the above-mentioned details. Can be mentioned.
- the following pseudo-solid-phase protecting groups are more preferable than the above.
- (4 ', 4'-bis (2,3-dihydro-phytyl) phenyl) methylamine) (NH 2 -Dpm (OPhy) ); 3,4,5-tri (2', 3'-dihydrophytyloxy) benzyl alcohol (TOBPhy-OH); 2- [3,4,5-tri (2', 3'-dihydrophytyloxy) benzyloxy] -4-methoxybenzyl alcohol (MTBPhy-OH); 3,4,5-Tri (octadecyloxy) cyclohexanemethanol (TOC-OH); [Bis- (4-docosoxy-phenyl) -methyl] -amine; 3,4,5-tri (octadecyloxy) benzyl alcohol; 4-Methoxy-2- [3', 4', 5'-tris (octadecyloxy) benzyloxy) benzyl alcohol;
- pseudo-solid-phase protecting groups are also mentioned as other preferable ones.
- pseudo-solid-phase protecting groups are particularly preferable examples.
- (4 ', 4'-bis (2,3-dihydro-phytyl) phenyl) methylamine) (NH 2 -Dpm (OPhy) ); 3,4,5-tri (2', 3'-dihydrophytyloxy) benzyl alcohol (TOBPhy-OH); 2- [3,4,5-tri (2', 3'-dihydrophytyloxy) benzyloxy] -4-methoxybenzyl alcohol (MTBPhy-OH); and 3,4,5-tri (octadecyloxy) cyclohexane Methanol (TOC-OH).
- the method for producing the pseudo-solid phase protecting group is not particularly limited, but is a method known per se (Japanese Patent Laid-Open No. 2000-44493, International Publication No. 2006/104166, International Publication No. 2007/034812, International Publication No. It can be produced from a raw material compound according to 2007/122847, International Publication No. 2010/1133939, International Publication No. 2010/104169, International Publication No. 2011/078295, etc.) or a method similar thereto.
- C-terminal protecting group examples include an ester-type protecting group, an amide-type protecting group, a hydrazide-type protecting group, and the like, in addition to the above-mentioned pseudo solid-phase protecting group.
- ester-type protecting group a substituted or unsubstituted alkyl ester and a substituted or unsubstituted aralkyl ester are preferably used.
- substituted or unsubstituted alkyl ester methyl ester, ethyl ester, tert-butyl ester, cyclohexyl ester, trichloroethyl ester, phenacyl ester and the like are preferably used.
- substituted or unsubstituted aralkyl ester benzyl ester, p-nitrobenzyl ester, p-methoxybenzyl ester, diphenylmethyl ester, 9-fluorenylmethyl (Fm) ester, 4-picoryl (Pic) ester and the like are preferable. Used.
- amide protecting group examples include primary amides such as unsubstituted amide, N-methylamide, N-ethylamide and N-benzylamide, and secondary amides such as N, N-dimethylamide, pyrrolidinylamide and piperidinylamide. Amides and the like are preferably used.
- hydrazide-type protecting group unsubstituted hydrazide, N-phenylhydrazide, N, N'-diisopropylhydrazide and the like are preferably used.
- ester-type protecting groups such as t-butyl ester and substituted or unsubstituted benzyl ester, which are stable under the deprotection condition of the protecting group of the N-terminal amino group, are preferably used, and substituted or unsubstituted benzyl ester is compared. It is particularly preferably used because it is easy to synthesize.
- the amino acid or peptide used in the present invention often has a functional group to be subjected to a dehydration condensation reaction such as an amino group, a carboxy group and a hydroxy group, in addition to an amino group or a carboxy group involved in the formation of a peptide bond. ..
- a dehydration condensation reaction such as an amino group, a carboxy group and a hydroxy group
- side chain functional groups to distinguish them from the amino and carboxy groups that form the peptide bond of the main chain.
- Side chain functional groups need not necessarily be protected as long as they do not impair the essence of the present invention, but in order to prevent unwanted side reactions during the formation of peptide bonds by dehydration condensation reaction and the deprotection reaction of N-terminal amino groups. , It is preferable to protect with an appropriate protecting group.
- the protecting group of the side chain functional group is subject to certain restrictions in combination with the protecting group of the N-terminal amino group, similarly to the above-mentioned C-terminal protecting group. That is, the protecting group of the side chain functional group needs to be retained until the desired amino acid sequence is completed without being removed even under the removal conditions of the protecting group of the N-terminal amino group (for example, Fmoc group).
- the protecting group is not particularly limited as long as the side chain functional group does not cause an undesired side reaction during the formation of a peptide bond by the dehydration condensation reaction and the deprotection reaction of the N-terminal amino group.
- the protecting group of the side chain functional group is not particularly limited as long as it is stable under the deprotecting conditions of the protecting group (temporary protecting group) of the N-terminal amino group.
- the protecting group temporary protecting group
- Protecting groups in Organic Synthesis PROTECTIVE GROUPS IN ORGANIC SYNTHESIS
- 3rd Edition John Willy & Sons (1999), etc.
- Protecting groups can be mentioned.
- the same protecting group as described above can be mentioned as the C-terminal protecting group.
- the side chain functional group is a carboxy group, it may be protected by the above-mentioned pseudo solid phase protecting group, and this aspect is also included in the scope of the present invention.
- the side chain functional group is an amino group
- urethane-type protecting group acyl-type protecting group, sulfonyl-type protecting group, etc.
- sulfonyl-type protecting group etc.
- urethane-type protecting group for example, a methoxycarbonyl group, an ethoxycarbonyl group, a tert-butoxycarbonyl (Boc) group, a benzyloxycarbonyl (Cbz) group and the like are used, and preferably a methoxycarbonyl group, an ethoxycarbonyl group and a Boc. It is a basis.
- the Boc group is particularly preferably used because it can selectively deprotect under mildly acidic conditions.
- acyl-type protecting group for example, a formyl group, an acetyl group, a trifluoroacetyl group and the like are preferably used.
- sulfonyl type protecting group for example, a p-toluenesulfonyl (Ts) group, a p-tolylmethanesulfonyl group, a 4-methoxy-2,3,6-trimethylbenzenesulfonyl group and the like are preferably used.
- the functional group on the peptide is a hydroxy group (including a phenolic hydroxy group)
- an alkyl-type protecting group an alkoxyalkyl-type protecting group, an acyl-type protecting group, an alkylsilyl-type protecting group and the like can be mentioned.
- alkyl-type protecting group examples include a methyl group, an ethyl group, a tert-butyl group and the like.
- alkoxyalkyl-type protecting group examples include a methoxymethyl group (MOM group), a 2-tetrahydropyranyl group (THP group), an ethoxyethyl group (EE group), and the like.
- MOM group methoxymethyl group
- THP group 2-tetrahydropyranyl group
- EE group ethoxyethyl group
- acyl-type protecting group examples include an acetyl group, a pivaloyl group, a benzoyl group, and the like.
- alkylsilyl type protective group examples include a trimethylsilyl group (TMS group), a triethylsilyl group (TES group), a tert-butyldimethylsilyl group (TBS group or TBDMS group), a triisopropylsilyl group (TIPS group), and tert-. Butyldiphenylsilyl group (TBDPS group), etc. may be mentioned.
- guanidino group of arginine can be protected by a p-toluenesulfonyl group, a 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl group (Pbf) group and the like.
- the amide group of asparagine and glutamine, and the imidazole group of histidine can be protected by a trityl group, a benzyloxymethyl group, and the like.
- the SH group of cysteine can be protected by a trityl group.
- the indole group of tryptophan can be protected by a Boc group, a formyl group or the like.
- protecting groups for functional groups on peptides have been described above, protection schemes in the art selected by those skilled in the art in line with the overall synthetic strategy in carrying out the invention (eg, Fmoc / tBu strategy, etc.). This step can be carried out by appropriately selecting according to the tBu / Bzl strategy, Bzl / tBu strategy, etc.). Of these, the Fmoc / tBu strategy is preferred.
- the side chain functional group may be deprotected if necessary after forming the desired peptide bond.
- the protecting group (temporary protecting group) of the N-terminal amino group of the acid component used in the condensation step in the present invention is, for example, a 9-fluorenylmethyloxycarbonyl group (hereinafter, also referred to as Fmoc group), tert-butoxy. It is a carbonyl group (hereinafter, also referred to as a Boc group) or a benzyloxycarbonyl group (hereinafter, also referred to as a Cbz group (or Z group)), and is preferably an Fmoc group or a Boc group. Most preferably, it is an Fmoc group.
- the Cbz group may also be used in peptide synthesis, but in deprotection, it takes time and effort in the flow reactor to blow hydrogen gas using a metal powder for catalytic reduction.
- an Fmoc group or a Boc group is more preferable.
- the Boc group may be preferable in a sequence that does not contain Cys, Met, etc., but the Fmoc group is particularly preferable because it can be used for general purposes regardless of the sequence in peptide synthesis, and is generated at the time of deprotection.
- removal of the reaction residue derived from the Fmoc group is essential, in the present invention, the Fmoc group is particularly preferable from the viewpoint that this residue can be easily removed by using the pseudo-solid phase protecting group.
- Suitable side chain functional groups include the same protecting groups as described above for C-protected amino acids / C-protected peptides.
- the C-protected amino acid, C-protected peptide, N-protected amino acid, and N-protected peptide used in this step start from a known compound and are described in accordance with a method known in the art or a method described in the present specification. Any trader can synthesize it as appropriate.
- This step is performed under peptide synthesis conditions generally used in the field of peptide chemistry, using a condensing agent, a condensation accelerator, and the like.
- Condensing agents include dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIC), N-ethyl-N'-3-dimethylaminopropylcarbodiimide and its hydrochloride (EDC / HCl), hexafluorophosphate (benzotriazole-1-).
- DCC dicyclohexylcarbodiimide
- DIC diisopropylcarbodiimide
- EDC / HCl N-ethyl-N'-3-dimethylaminopropylcarbodiimide and its hydrochloride
- benzotriazole-1- hexafluorophosphate
- the amount of the condensing agent used is, for example, 1 to 10 mol, preferably 1 to 5 mol, with respect to 1 mol of the C-protected amino acid or C-protected peptide.
- condensation accelerator examples include 1-hydroxybenzotriazole (HOBt), 1-hydroxy-1H-1,2,3-triazole-5-carboxylic acid ethyl ester (HOCt), and 1-hydroxy-7-azabenzotriazole (HOAt).
- the amount of the condensation accelerator used is preferably 0.05 mol or more, more preferably 0.9 mol or more, and preferably 1.5 mol or less, based on 1 mol of the C-protected amino acid or C-protected peptide. It is preferably 1.1 mol or less.
- condensing agents and condensation accelerators in this step are N-ethyl-N'-3-dimethylaminopropylcarbodiimide hydrochloride (EDC / HCl) and 1-hydroxybenzotriazole (HOBt) or ethyl 2-. It is cyano-2-hydroxyiminoacetate (Oxyma).
- the above-mentioned condensing agent and condensation accelerator include those for N-terminal activation in addition to those for C-terminal activation.
- the solvent used is a soluble organic solvent and is not particularly limited as long as it can dissolve each reaction component.
- a solvent that does not affect the reaction is preferable.
- ethers such as diethyl ether, tetrahydrofuran (THF), 1,4-dioxane, methyl-t-butyl ether, cyclopentyl methyl ether (CPME); acetate esters such as ethyl acetate and isopropyl acetate; chloroform, dichloromethane.
- Halogenized hydrocarbons such as; aromatic hydrocarbons such as toluene and xylene; hydrocarbons such as hexane, heptane and cyclohexane. Two or more of these solvents may be mixed and used in an appropriate ratio.
- Tetrahydrofuran (THF), ethyl acetate, isopropyl acetate, chloroform, dichloromethane, cyclopentyl methyl ether (CPME), and toluene are preferable, and tetrahydrofuran (THF) is preferable from the viewpoint that a good extraction operation can be expected and industrial use is possible.
- Ethyl acetate, isopropyl acetate, cyclopentyl methyl ether (CPME), toluene are more preferred, tetrahydrofuran (THF), ethyl acetate, isopropyl acetate, cyclopentyl methyl ether (CPME) are even more preferred, tetrahydrofuran (THF), chloroform, isopropyl acetate, cyclopentyl.
- Methyl ether (CPME) is even more preferred.
- a mixed solvent in which a polar organic solvent (dimethylformamide (DMF) or the like) is added to these solvents is also acceptable.
- a preferable concentration of a solution containing a C-protected amino acid or a C-protected peptide, an N-protected amino acid, or a solution containing an N-protected peptide includes a solvent amount diluted 3 to 1000 times.
- the mixing conditions, the flow rate (flow velocity), and the temperature control conditions of each solution can be appropriately selected.
- the mixing conditions of the solution it is preferable to use a T-shaped mixer or a cross-shaped mixer.
- the flow rate (flow velocity) differs depending on the piping, and appropriate conditions can be selected as appropriate.
- the temperature control condition is preferably 5 to 50 ° C.
- the N-protected C-protected peptide may be obtained by carrying out the step (1) of the present invention, may be obtained by discontinuous batch synthesis, and may be obtained separately. It may be purchased / obtained by the method of. Of these, it is preferable that the product is obtained by carrying out the step (1) of the present invention.
- Water and / or hydrophilic organic solvent can be used to remove and wash unreacted substances and by-products at the time of extraction.
- a hydrophilic organic solvent may be used instead of water.
- Water also includes a mixed solution of water and salt.
- Neutral is preferred.
- the hydrophilic organic solvent include nitriles such as acetonitrile and propionitrile; ketones such as acetone, methyl ethyl ketone and 2-butanone; N, N-dimethylformamide (DMF) and N-methylpyrrolidone (NMP). ) And the like; sulfoxides such as dimethyl sulfoxide (DMSO) and the like.
- DMSO dimethyl sulfoxide
- Acetonitrile, N, N-dimethylformamide (DMF), and N-methylpyrrolidone (NMP) are preferable from the viewpoint of assisting solubility and not affecting stratification.
- nitriles such as acetonitrile and propionitrile
- amides such as N, N-dimethylformamide (DMF) and N-methylpyrrolidone (NMP)
- acetonitrile in particular, acetonitrile, etc.
- N, N-dimethylformamide (DMF) and N-methylpyrrolidone (NMP) are preferable.
- an organic solvent that is immiscible with the hydrophilic organic solvent for example, hydrocarbons such as hexane, heptane, and cyclohexane; aromatic hydrocarbons such as toluene and xylene; halogenated hydrocarbons such as chloroform and dichloromethane).
- hydrocarbons such as hexane, heptane, and cyclohexane
- aromatic hydrocarbons such as toluene and xylene
- halogenated hydrocarbons such as chloroform and dichloromethane
- a mixed solvent of water and a hydrophilic organic solvent acetoyl, N, N-dimethylformamide (DMF), or N-methylpyrrolidone (NMP)
- acetoyl, N, N-dimethylformamide (DMF), or N-methylpyrrolidone (NMP) a mixed solvent with a hydrophilic organic solvent
- NMP N-methylpyrrolidone
- the concentration condition it is preferable to dilute the substrate (N-protected C-protected peptide) 5 to 100 times.
- washing appropriate conditions can be selected as appropriate with respect to the mixing method and washing time, but washing in neutral is preferable, and “mixed solution of water and salt” is preferable.
- the oil-water separation means examples include a continuous layer separation means having a structure including a filter and a Gravity type continuous layer separation means.
- an arbitrary filter can be appropriately selected, and examples thereof include means having a configuration including a filter such as a membrane filter.
- a liquid-liquid separator system manufactured by Zaiput can be used.
- the Gravity type continuous layer separation means is a layer separation means using gravity, which is a continuous separation funnel, and is a means for gradually draining the liquid from the bottom layer and the top layer of the separation.
- Means including a structure including a Gravity Settler, means including a structure including an inclined plate, and the like can also be mentioned. For example, Parkson's Lamella Gravity Settler and the like can be mentioned.
- Appropriate conditions can be selected as appropriate for the mixing conditions, flow rate (flow velocity), and temperature control conditions of each solution when the flow reactor is used in the step (A).
- a slag flow flow of alternating organic and aqueous layers.
- Those skilled in the art can appropriately determine the conditions.
- an organic layer containing an N-protected C-protected peptide is introduced into the flow reactor in a continuous flow, and the protective group of the N-terminal amino group is removed by the continuous flow in the flow reactor.
- the N-terminal amino group may not be protected, the C-terminal may be protected by a protecting group, the side chain functional group may be further protected by a protecting group, and at least one of the C-terminal or side chain functional group is pseudo-solid. This is done by obtaining a C-protected peptide (N-unprotected C-protected peptide) protected by a phase protecting group.
- the N unprotected C-protected peptide may be obtained by carrying out the step (A) of the present invention, may be obtained by discontinuous batch synthesis, or may be obtained by another method separately. It may be purchased / obtained by. Of these, it is preferable that the product is obtained by carrying out the step (A) of the present invention.
- Removal (deprotection) of the N-terminal protecting group of the N-protected C-protected peptide can be performed according to a method known in the field of peptide synthesis. For example, deprotection is performed by treating with a base when the protecting group is an Fmoc group, by treating with an acid when the protecting group is a Boc group, and when the protecting group is a Cbz group. In some cases, it can be carried out by contact reduction, or the like. Deprotection is performed by appropriately introducing a solution in which an N-protected C-protected peptide is dissolved in a solvent that does not affect the reaction into a flow reactor.
- a solution or solution in which a suitable deprotection reagent (organic base, acid, catalyst for catalytic reduction, etc.) is dissolved in a solvent that does not affect the reaction, depending on the type of protecting group to be removed.
- the suspension suspended in a solvent that does not affect the reaction is also introduced into the flow reactor.
- hydrogen gas is further introduced into the flow reactor.
- the introduction of each reaction component into the flow reactor is carried out separately, simultaneously or after appropriately mixing any two or more reaction components, and then introduced into the flow reactor with continuous flow in the flow reactor. This can be done by mixing and allowing the deprotection reaction to proceed.
- the organic base that can be used for removing the Fmoc group is not particularly limited, but secondary amines such as diethylamine, piperidine, and morpholin, diisopropylethylamine, dimethylaminopyridine, and 1,8-diazabicyclo [5.4.0] -7.
- secondary amines such as diethylamine, piperidine, and morpholin, diisopropylethylamine, dimethylaminopyridine, and 1,8-diazabicyclo [5.4.0] -7.
- -Primary amines such as undecene (DBU), 1,4-diazabicyclo [2.2.2] octane (DABCO), 1,5-diazabicyclo [4.3.0] -5-nonen (DBN), etc. Be done.
- the amount of the organic base used is, for example, 1 to 100 mol, preferably 1 to 10 mol, based on 1 mol of the N-protected C-protect
- the removal of the Fmoc group is carried out by treating with a non-nucleophilic organic base in a halogen-based solvent or an ether-based solvent. Deprotection is carried out in a solvent that does not affect the reaction.
- Non-nucleophilic bases include 1,8-diazabicyclo [5.4.0] -7-undecene (DBU), 1,4-diazabicyclo [2.2.2] octane (DABCO), and 1,5. -Diazabicyclo [4.3.0] -5-Nonen (DBN) and the like are mentioned, and DBU and DBN are preferable, and DBU is more preferable.
- the amount of the non-nucleophilic base used is preferably 0.8 equivalents or more, more preferably 1 equivalent or more, relative to the reaction substrate (N-Fmoc-protected C-protected amino acid or N-Fmoc-protected C-protected peptide). , Preferably 5 equivalents or less, more preferably 3 equivalents or less.
- the halogen-based solvent or the ether-based solvent may be a mixed solvent of two or more kinds.
- the halogen-based solvent or ether-based solvent is preferably chloroform, dichloromethane, tetrahydrofuran (THF) or cyclopentyl methyl ether (CPME). These can be used in combination with N, N-dimethylformamide (DMF).
- CPME cyclopentyl methyl ether
- propylene carbonate can be used as the solvent, and when propylene carbonate is used, a mixed solvent with N, N-dimethylformamide (DMF) or N-methylpyrrolidone (NMP) is preferable.
- the above Fmoc group removal reaction is more preferably carried out in the coexistence of 3-mercaptopropionic acid, thioapple acid and cysteine. In particular, it is preferable to carry out in the presence of thioapple acid.
- the N-terminal temporary protecting group is an Fmoc group
- the excess amount of organic base used for deprotection may adversely affect the reaction product during post-treatment such as solvent distillation. Therefore, a neutralization step by adding an acid may be incorporated before the next step.
- the acid that can be used for removing the Boc group is not particularly limited, but is not limited to mineral acids such as hydrogen chloride, sulfuric acid and nitrate, carboxylic acids such as formic acid and trifluoroacetic acid (TFA), methanesulfonic acid, p-toluenesulfonic acid and the like. Sulfonic acids and the like, or mixtures thereof can be used. Examples of the mixture include hydrogen bromide / acetic acid, hydrogen chloride / dioxane, hydrogen chloride / acetic acid and the like.
- mineral acids such as hydrogen chloride, sulfuric acid and nitrate
- carboxylic acids such as formic acid and trifluoroacetic acid (TFA), methanesulfonic acid, p-toluenesulfonic acid and the like.
- Sulfonic acids and the like, or mixtures thereof can be used. Examples of the mixture include hydrogen bromide / acetic acid, hydrogen chloride / dioxan
- an acid that is not an aqueous solution for example, formic acid or methanesulfonic acid
- a non-aqueous system while leaving a pseudo solid phase protecting group that is a protecting group for a carboxy group that is hydrolyzed under acidic conditions, for example. It is also possible to selectively remove the Boc group.
- sulfonic acids that are liquid at room temperature and water-soluble, such as methanesulfonic acid are suitable because when used in a non-aqueous system, the reaction can proceed rapidly at room temperature with a relatively small amount.
- the amount of the acid used is, for example, 1 to 100 mol, preferably 1 to 10 mol, based on 1 mol of the N-protected C-protected amino acid or N-protected C-protected peptide.
- the catalyst that can be used for removing the Cbz group is not particularly limited, and examples thereof include palladium.
- the amount of the catalyst used is, for example, 1 part by weight or more, preferably 5 parts by weight or more, and for example, 50 parts by weight or less, preferably 30 parts by weight, based on 100 parts by weight of the N-protected C-protected peptide.
- solvent that does not affect the reaction examples include halogen-based solvents such as chloroform, dichloromethane and 1,2-dichloroethane; aromatic hydrocarbons such as toluene and xylene; diethyl ether, cyclopentyl methyl ether (CPME) and tetrahydrofuran ( Ether-based solvents such as THF), 1,4-dioxane; and the like, or mixtures thereof, are preferred, such as chloroform, dichloromethane or tetrahydrofuran (THF).
- halogen-based solvents such as chloroform, dichloromethane and 1,2-dichloroethane
- aromatic hydrocarbons such as toluene and xylene
- CPME cyclopentyl methyl ether
- Ether-based solvents such as THF
- 1,4-dioxane 1,4-dioxane
- THF tetrahydrofuran
- the mixing conditions, the flow rate (flow velocity), and the temperature control conditions of each solution can be appropriately selected.
- the mixing conditions of the solution it is preferable to use a T-shaped mixer or a cross-shaped mixer.
- the flow rate (flow velocity) differs depending on the piping, and appropriate conditions can be selected as appropriate.
- the temperature control condition is preferably 5 to 50 ° C.
- the N unprotected C-protected peptide may be obtained by carrying out the step (2) of the present invention, may be obtained by discontinuous batch synthesis, or may be obtained separately. It may be purchased or obtained by other methods. Of these, it is preferable that the product is obtained by carrying out the step (2) of the present invention.
- Water and / hydrophilic organic solvent can be used to remove and wash unreacted substances and by-products at the time of extraction.
- Various hydrophilic organic solvents may be used instead of water.
- Water also includes a mixed solution of water and sodium carbonate or potassium carbonate, or a mixed solution of water and salt.
- the hydrophilic organic solvent include nitriles such as acetonitrile and propionitrile; ketones such as acetone, methyl ethyl ketone and 2-butanone; N, N-dimethylformamide (DMF) and N-methylpyrrolidone (NMP). ) And the like; sulfoxides such as dimethyl sulfoxide (DMSO) and the like.
- DMSO dimethyl sulfoxide
- Acetonitrile, N, N-dimethylformamide (DMF), and N-methylpyrrolidone (NMP) are preferable from the viewpoint of assisting solubility and not affecting stratification.
- nitriles such as acetonitrile and propionitrile
- amides such as N, N-dimethylformamide (DMF) and N-methylpyrrolidone (NMP)
- acetonitrile in particular, acetonitrile, etc.
- N, N-dimethylformamide (DMF) and N-methylpyrrolidone (NMP) are preferable.
- an organic solvent that is immiscible with the hydrophilic organic solvent for example, hydrocarbons such as hexane, heptane, and cyclohexane; aromatic hydrocarbons such as toluene and xylene; halogenated hydrocarbons such as chloroform and dichloromethane).
- hydrocarbons such as hexane, heptane, and cyclohexane
- aromatic hydrocarbons such as toluene and xylene
- halogenated hydrocarbons such as chloroform and dichloromethane
- a mixed solvent of water and a hydrophilic organic solvent acetoyl, N, N-dimethylformamide (DMF), or N-methylpyrrolidone (NMP)
- acetoyl, N, N-dimethylformamide (DMF), or N-methylpyrrolidone (NMP) acetoyl, N, N-dimethylformamide (DMF), or N-methylpyrrolidone (NMP)
- “Mixing of water and sodium carbonate” Either “Solution”, “Mixed solution of water and potassium carbonate", or “Mixed solution of water and salt”
- hydrophilic organic solvent acetoyl, N, N-dimethylformamide (DMF), or N-methyl
- NMP N-methyl A mixed solvent with pyrrolidone
- the concentration condition it is preferable to dilute the substrate (N unprotected C protected peptide) 2 to 100 times.
- cleaning in order to enhance the cleaning effect, cleaning can be performed a plurality of times (for example, twice).
- the first cleaning can be performed with a basic solvent such as an aqueous sodium carbonate solution
- the second cleaning can be performed with a neutral solvent such as a saline solution. ..
- washing conditions such as the number of washings and the washing solvent according to the type of the peptide produced, the type of the reagent used, and the like.
- the base treatment it suffices if the N-terminal amino group of the peptide can be made free, and specific examples thereof include washing with an aqueous sodium carbonate solution or an organic base.
- the oil-water separation means examples include a continuous layer separation means having a configuration including a filter and a Gravity type continuous layer separation means.
- an arbitrary filter can be appropriately selected, and examples thereof include means having a configuration including a filter such as a membrane filter.
- a liquid-liquid separator system manufactured by Zaiput can be used.
- the Gravity type continuous layer separation means is a layer separation means using gravity, which is a continuous separation funnel, and is a means for gradually draining the liquid from the bottom layer and the top layer of the separation.
- Examples include a means having a structure including a Gravity Settler, a means having a structure including an inclined plate, and the like. For example, Parkson's Lamella Gravity Settler and the like can be mentioned.
- Appropriate conditions can be selected for the mixing conditions, flow rate (flow velocity), and temperature control conditions of each solution when the flow reactor in step (B) is used.
- a reaction solution containing an N-unprotected C-protected peptide and water and / or a hydrophilic organic solvent into a flow reactor, a slag stream (organic and aqueous layers alternates).
- the conditions under which the flow) is formed are particularly preferred. Those skilled in the art can appropriately determine the conditions.
- the N unprotected C-protected peptide obtained in the step (B) may further have the "C-terminal protected by a protecting group and the side chain functional group further protected by a protecting group" in the step (1).
- the C-protected peptide (C-protected peptide), in which at least one of the protecting groups is a pseudo-solid-phase protecting group, is used in the cycles of steps (1), (A), (2) and (B) of the present invention. , The peptide chain can be extended by repeating this cycle as appropriate.
- the N unprotected C-protected peptide obtained in step (B) has the desired peptide sequence, it is the final product by further removing the C-protecting group and the protective group of the side chain functional group.
- Peptides can be obtained. Any of these embodiments are within the scope of the present invention. This deprotection step can be appropriately carried out by referring to a method known per se or a method for removing protecting groups described in the present specification.
- the target peptide chain length (number of amino acid residues) is not particularly limited, but the number of amino acid residues is preferably 100 or less, more preferably 50 or less, still more preferably 30 or less. , Especially preferably 20 or less. Further, although there is no particular lower limit, the number of amino acid residues is preferably 5 or more, more preferably 6 or more.
- steps (1), (A), (2) and (B) of the present invention have been described in detail above.
- Steps (1), (A), (2) and (B) can be carried out continuously (in a continuous flow) using a flow reactor.
- Such an embodiment is one of the preferred embodiments.
- the raw material compound may be, for example, obtained by batch synthesis, and may not necessarily be obtained by carrying out the steps of the present invention.
- Such another embodiment is also included within the scope of the present invention.
- the removal of the pseudo-solid phase protecting group is performed after the step (A) or the step (B).
- the C-terminal of the peptide is -COOH (for example, when Y of the formula (I) or the formula (II) is a hydroxy group or a halogen atom), or -CONHR (for example, the formula (I) or the formula (II). ) Is an NHR group), the final target peptide is obtained.
- Reagents used for selective deprotection of pseudo-solid protecting groups include acids (eg, trifluoroacetic acid (hereinafter referred to as TFA), hydrochloric acid, sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid), and fluorine substitution.
- Acids for example, trifluoroethanol (hereinafter referred to as TFE), hexafluoroisopropanol (hereinafter referred to as HFIP)
- TFE trifluoroethanol
- HFIP hexafluoroisopropanol
- examples of the solvent used for deprotection include chloroform, dichloromethane, 1,2-dichloroethane, and a mixed solvent thereof.
- the concentration of the acid used to deprotect the pseudo-solid-phase protecting group is, for example, 0.1 w / v% to 5 w / v%, which is a weak acid treatment, and is a fluorine substitution used to deprotect the pseudo-solid-phase protecting group.
- the concentration of alcohol is, for example, 10 w / v% to 100 w / v%.
- a pseudo-solid-solid protecting group derived from an aromatic compound (a compound having a pseudo-solid-protecting group) in which Y of the formula (I) or the formula (II) is a hydroxy group, a -NHR group, or a halogen atom is used.
- the conventional method used in the field, particularly peptide synthesis, is used, but the method of adding an acid or the like is preferably adopted.
- the acid TFA, hydrochloric acid, sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid, etc. are used.
- the amount of the acid used is appropriately set according to the type of acid used, and an appropriate amount is used to remove the pseudo-solid phase protecting group.
- the amount of the acid used is preferably 3 mol or more, more preferably 5 mol or more, preferably 100 mol or less, more preferably 50 mol, based on 1 mol of the N-protected C-protected peptide or N-unprotected C-protected peptide. It is as follows. With their use, it can be as an additional strong acid source, and trifluoromethanesulfonic acid, trimethylsilyl trifluoromethanesulfonate, also be added, such as BF 3 ⁇ etherate.
- the protecting group of the side chain functional group can be appropriately removed according to the method usually used in the art or the method for removing the protecting group described in the present specification, depending on the type.
- the reaction temperature is not particularly limited as long as the reaction proceeds, but is preferably 0 ° C to 50 ° C, more preferably 0 ° C to 30 ° C.
- the reaction time is, for example, 0.5 to 24 hours.
- the present invention is a method for producing a peptide, which comprises carrying out steps (1), (A), (2) and (B) described in detail above, but if necessary, it corresponds to step (1).
- the purification / separation step of the reaction solution containing the obtained product is carried out in the step (A) and the step of the present invention.
- an N-protected C-protected peptide or an N-unprotected C-protected peptide can be efficiently purified and isolated, and can be efficiently attached to another reaction step.
- a method for producing a peptide which comprises independently utilizing the step (A) and / or the step (B) of the present invention is also included in the scope of the present invention.
- Production Example 1 using a reaction Fmoc-Leu-OH of the pseudo solid phase protecting group as a starting material, 4 ', 4'-bis (2,3-dihydro-phytyl) phenyl) methylamine (hereinafter, NH 2 -Dpm (Indicated as OPhy)) is used as a pseudo-solid phase protecting group to synthesize Fmoc-Leu-NH-Dpm (OPhy) according to a conventional method (see International Publication No. 2010/1193939 and International Publication No. 2012/029794). Further, a de-Fmoc reaction was carried out using a base to obtain H-Leu-NH-Dpm (OPhy).
- Step (1) Condensation reaction A chloroform solution (solution-1) containing 0.10 mmol / ml H-Leu-NH-Dpm (OPhy) obtained in Production Example 1 and 0.11 mmol / ml Fmoc-Tyr.
- each solution is sent at a flow rate of 0.20 ml / min, and a T-shaped mixer (Unionty SS-100-3; outer diameter 1 /). 16 inches) was used for mixing.
- a chloroform solution (solution-3) containing 0.05 mmol / ml N-ethyl-N'-3-dimethylaminopropylcarbodiimide hydrochloride (EDC / HCl) was sent at a flow rate of 0.40 ml / min to form a T-shape.
- the Fmoc-Tyr (tBu) -Leu-NH-Dpm (OPhy) solution obtained in the above step (1) has a flow rate of 0.25 ml / min, and a 20 wt% NaCl aqueous solution has a flow rate of 0.
- the solutions were pumped at .17 ml / min, respectively, and merged using a T-shaped mixer (Unionty SS-200-3; outer diameter 1/8 inch).
- the liquid that became a slag flow (flow in which the organic layer and the aqueous layer are alternately repeated) after merging was passed through a PFA tube (inner diameter 1.6 mm, length 2 m) for 10 minutes, and the EDC / HCl remaining in the condensation reaction.
- a PFA tube inner diameter 1.6 mm, length 2 m
- the EDC / HCl remaining in the condensation reaction was deactivated and slagged into the aqueous layer, and then separated using an oil-water separation membrane (OB-2000-S-10; a hydrophobic membrane having a pore size of 1.0 ⁇ m), and the permeated organic layer was recovered.
- OB-2000-S-10 oil-water separation membrane
- Step (2) De-Fmocification reaction A flow rate of an organic layer (solution-1) containing 0.10 mmol / ml of Fmoc-Tyr (tBu) -Leu-NH-Dpm (OPhy) obtained in the above step (A) is 0. A DMF solution (solution-2) containing .56 ml / min, 1.10 mmol / ml of thioannic acid, and 3.30 mmol / ml of 1,8-diazabicyclo [5.4.0] -7-undecene (DBU) was applied at a flow rate of 0.
- DBU 1,8-diazabicyclo [5.4.0] -7-undecene
- the liquids were fed at 20 ml / min using a pump, and mixed using a T-shaped mixer (Unionty SS-100-3; outer diameter 1/16 inch).
- the mixed solution was reacted in a PFA tube (inner diameter 1.0 mm, length 10 m) for 10 minutes to obtain an H-Tyr (tBu) -Leu-NH-Dpm (OPhy) solution.
- Dibenzofulvene (DBF) generated during the reaction was reacted with thioapple acid to convert it into a fulvene adduct.
- Step (B) -1 Washing with an aqueous sodium carbonate solution after the de-Fmocization reaction chloroform containing 0.10 mmol / ml of H-Tyr (tBu) -Leu-NH-Dpm (OPhy) obtained in the above step (2).
- a 5.0 wt% Na 2 CO 3 aqueous solution (solution-2) containing 0.34 ml / min of acetic acid and 0.33 mmol / ml of acetic acid is pumped at a flow rate of 0.34 ml / min.
- the solution was liquid and merged using a T-shaped mixer (Unionty SS-200-3; outer diameter 1/8 inch).
- a liquid that has become a slag flow (a flow in which an organic layer and an aqueous layer are alternately repeated) after merging is passed through a PFA tube (inner diameter 1.6 mm, length 2 m) for 6 minutes to be generated during the de-Fmoc reaction.
- the fulvene adduct was removed into the aqueous layer and then separated using an oil-water separation membrane (OB-2000-S-10; a hydrophobic membrane having a pore size of 1.0 ⁇ m), and the permeated organic layer was recovered.
- OB-2000-S-10 oil-water separation membrane
- Step (B) -2 Washing with sodium chloride aqueous solution after washing with sodium carbonate aqueous solution H-Tyr (tBu) -Leu-NH-Dpm (OPhy) solution (solution-1) obtained in the above step (B) -1.
- H-Tyr (tBu) -Leu-NH-Dpm (OPhy) solution (solution-1) obtained in the above step (B) -1.
- a T-shaped mixer (Unionty SS-200-3; outer diameter 1). / 8 inch) was used to merge.
- the liquid that became a slag flow (flow in which the organic layer and the aqueous layer are alternately repeated) after merging was passed through a PFA tube (inner diameter 1.6 mm, length 2 m) for 6 minutes, and in the above step (B) -1.
- the fulvene adduct that could not be completely removed was removed into the aqueous layer, and then separated using an oil-water separation membrane (OB-2000-S-10; hydrophobic membrane with a pore size of 1.0 ⁇ m) to separate the permeated organic layer. It was recovered.
- OB-2000-S-10 oil-water separation membrane
- Example 2 Synthesis of 6-residue peptide (H-Ile-Pro-Glu (OtBu) -Glu (OtBu) -Tyr (tBu) -Leu-NH-Dpm (OPhy)) Synthesis device (flow microreactor, coil) Tube reactor, tube, mixer, oil-water separation means) Flow Microreactor: R2 Plus [Vaportec] Coil tube reactor: Coil tube reactor (PFA material, outer diameter 1/8 inch, inner diameter 1/16 inch, capacity 5 ml or 10 ml) [Vapourtec] or coil tube reactor (PFA material, outer diameter 1/8 inch, inner diameter 1) / 16 inch, capacity 5 ml or 10 ml) [Idex] Tube: Tube (PFA material, outer diameter 1/8 inch, inner diameter 0.020 inch) [Idex] or tube (PFA material, outer diameter 1/8 inch, inner diameter 1/16 inch) [Idex] Mixer: T-shaped mixer (ETFE (copolymer of ethylene and tetra
- Step (2) De-Fmoc reaction A solution prepared by dissolving 2.2 g of Fmoc-Leu-NH-Dpm (OPhy) obtained in Production Example 1 in 37 ml of chloroform was mixed with a T-shaped mixer at a flow rate of 0.83 ml / min. At the same time as introducing from one of Idex's ETFE material, inner diameter 0.020 inch), T-shaped solutions (2.4 mol / l and 0.79 mol / l, respectively) in which both DBU and thiophosphate were dissolved in DMF.
- Step (B) -1 Washing with an aqueous sodium carbonate solution after the de-Fmocization reaction
- the quenched mixture obtained in the above step (2) is a T-shaped mixer (Swagelok, stainless steel material) from the coil tube reactor outlet.
- a 7.5 w / w% Na 2 CO 3 solution was introduced from the other at a flow rate of 0.80 ml / min, and the two solutions were mixed at room temperature.
- a coil tube reactor (tube made by Idex, PFA material, outer diameter 1/16 inch, inner diameter 0.020 inch, capacity 10 ml) was passed through the outlet of the T-shaped mixer at room temperature for cleaning. ..
- a liquid separator equipped with a hydrophobic membrane (pore diameter 1.0 ⁇ m) manufactured by Zaiput was provided on SEP-10 manufactured by Zaiput, and a washing mixture was allowed to pass therethrough.
- the liquid discharged from the liquid separator was separated into an organic layer and an aqueous layer, and the aqueous layer was collected in a measuring cylinder (54 ml).
- Step (B) -2 Washing with sodium chloride aqueous solution after washing with sodium carbonate aqueous solution
- the organic layer obtained in step (B) -1 above is a T-shaped mixer (manufactured by Swagelok, stainless steel material, outer diameter 1/8 inch). ) was introduced. From the other side of the T-shaped mixer, a solution obtained by mixing a 20 w / w% NaCl aqueous solution and DMF at a ratio of 6: 4 was introduced at a flow rate of 0.88 ml / min, and the two solutions were mixed at room temperature, and then T-shaped.
- a coil tube reactor (tube made by Idex, PFA material, outer diameter 1/16 inch, inner diameter 0.020 inch, capacity 5 ml) was passed through the outlet of the mixer at room temperature to perform a cleaning operation.
- a liquid separator equipped with a hydrophobic membrane (pore diameter 0.5 ⁇ m) manufactured by Zaiput was provided on SEP-10 manufactured by Zaiput, and a washing mixture was allowed to pass therethrough.
- the liquid discharged from the liquid separator is separated into an organic layer and an aqueous layer, and each is collected in a measuring cylinder, and 68 ml of the organic layer containing H-Leu-NH-Dpm (OPhy) and 46 ml of the aqueous layer are added. Obtained.
- Step (1) Condensation reaction 25 ml of the H-Leu-NH-Dpm (OPhy) organic layer obtained in the above step (B) -2 was mixed with a cross-shaped mixer (made by Idex, ETFE material) at a flow rate of 0.68 ml / min. At the same time as introducing from one of (inner diameter 0.020 inches), a solution (0.50 mol / l and 0.10 mol / l, respectively) in which Fmoc-Tyr (tBu) -OH and HOBt were dissolved in DMF was flown at a flow rate of 0.065 ml.
- a cross-shaped mixer made by Idex, ETFE material
- the reaction mixture obtained in step (1) above is from the outlet of the coil tube reactor to the next T-shaped mixer (made by Idex, ETFE material, inner diameter 0.020 inch).
- a 20 w / w% NaCl aqueous solution was introduced from the other at a flow rate of 0.12 ml / min, the two liquids were mixed at room temperature, and then a coil tube reactor (from the outlet of the T-shaped mixer) ( The cleaning operation was carried out by passing it through a PFA material manufactured by Vaportec, volume 5 ml) at room temperature.
- a liquid separator equipped with a hydrophobic membrane (pore diameter 1.0 ⁇ m) manufactured by Zaiput was provided on SEP-10 manufactured by Zaiput, and a washing mixture was allowed to pass therethrough.
- the liquid discharged from the liquid separator is separated into an organic layer and an aqueous layer, each of which is collected in a measuring cylinder, and 44 ml of an organic layer containing Fmoc-Tyr (tBu) -Leu-NH-Dpm (OPhy) is added. And 45 ml of aqueous layer was obtained.
- the Fmoc-Tyr (tBu) -Leu-NH-Dpm (OPhy) obtained above is further subjected to step (2), step (B) -1 and step (B) -2 of the de-Fmocification reaction. , H-Tyr (tBu) -Leu-NH-Dpm (OPhy), and further repeat the above steps (1), (A), (2), (B) -1 and (B) -2.
- N-protected amino acids Fmoc-Glu (OtBu) -OH, Fmoc-Glu (OtBu) -OH, Fmoc-Pro-OH, and Fmoc-Ile-OH are sequentially used, and H-Ile-Pro-Glu.
- a protective peptide of (OtBu) -Glu (OtBu) -Tyr (tBu) -Leu-NH-Dpm (OPhy) was obtained. LC / MS M + m / z 1688.3
- Step (1) Condensation reaction (2-residue peptide)
- a chloroform solution (solution-1) containing 0.10 mmol / ml H-Leu-NH-Dpm (OPhy) obtained in Production Example 1 and 0.35 mmol / ml Fmoc-Lys (Boc) -OH and 0.
- a DMF solution (solution-2) containing 09 mmol / ml 1-hydroxybenzotriazole (HOBt) anhydride is pumped (plunger pump YMCU-22 (syringer pump YSP-301 or diaphragm pump Q-10-6TP-).
- the Fmoc-Lys (Boc) -Leu-NH-Dpm (OPhy) solution obtained in the above step (1) was pumped at a flow rate of 0.84 ml / min, and the 20 wt% NaCl aqueous solution was pumped at a flow rate of 0.56 ml / min.
- the liquids were sent and merged using a T-shaped mixer (Unionty SS-200-3; outer diameter 1/8 inch).
- the liquid that became a slag flow (flow in which the organic layer and the aqueous layer are alternately repeated after merging) was passed through a PFA tube (inner diameter 1.6 mm), and N-ethyl-N'-3 remaining in the condensation reaction -Dimethylaminopropyl carbodiimide hydrochloride (EDC / HCl) is deactivated, removed into the aqueous layer, and then separated using an oil-water separation membrane (OB-2000-S-10; hydrophobic membrane with a pore size of 1.0 ⁇ m). , The permeated organic layer was recovered.
- OB-2000-S-10 oil-water separation membrane
- Step (2) De-Fmocification reaction (2-residue peptide)
- the organic layer (solution-1) containing 0.06 mmol / ml of Fmoc-Lys (Boc) -Leu-NH-Dpm (OPhy) obtained in the above step (A) was flown at a flow rate of 0.73 ml / min, and thiophosphate was 0.
- a DMF solution (Solution-2) containing 2.02 mmol / ml of .67 mmol / ml and 1,8-diazabicyclo [5.4.0] -7-undecene (DBU) was pumped at a flow rate of 0.35 ml / min.
- the solution was sent and mixed using a T-shaped mixer (Unionty SS-100-3; outer diameter 1/16 inch).
- the mixed solution was reacted in a PFA tube (inner diameter 1.0 mm) to obtain an H-Lys (Boc) -Leu-NH-Dpm (OPhy) solution.
- Step (B) -1 Washing with aqueous sodium carbonate solution after de-Fmoc reaction (2-residue peptide)
- a fulvene adduct produced during the de-Fmocization reaction is produced by passing a liquid that has become a slag flow (flow in which an organic layer and an aqueous layer are alternately repeated) through a PFA tube (inner diameter 1.6 mm) after merging. After selection into the aqueous layer, separation was performed using an oil-water separation membrane (OB-2000-S-10; a hydrophobic membrane having a pore size of 1.0 ⁇ m), and the permeated organic layer was recovered.
- OB-2000-S-10 oil-water separation membrane having a pore size of 1.0 ⁇ m
- Step (B) -2 Washing with sodium chloride aqueous solution after washing with sodium carbonate aqueous solution (2-residue peptide)
- the H-Lys (Boc) -Leu-NH-Dpm (OPhy) solution (solution-1) obtained in the above step (B) -1 was mixed with a flow rate of 1.08 ml / min and a 20 wt% NaCl aqueous solution (solution-2).
- the solutions were pumped at a flow rate of 0.88 ml / min and merged using a T-shaped mixer (Unionty SS-200-3; outer diameter 1/8 inch).
- the liquid that became a slag flow (flow in which the organic layer and the aqueous layer are alternately repeated) after merging was passed through a PFA tube (inner diameter 1.6 mm) and could not be completely eliminated in the above step (B) -1.
- the fulvene adduct was removed into the aqueous layer and then separated using an oil-water separation membrane (OB-2000-S-10; a hydrophobic membrane having a pore size of 1.0 ⁇ m), and the permeated organic layer was recovered.
- OB-2000-S-10 oil-water separation membrane
- Step (1) Condensation reaction (3-residue peptide)
- a chloroform solution (solution-1) containing 0.05 mmol / ml H-Lys (Boc) -Leu-NH-Dpm (OPhy) obtained in the above step (B) -2 and 0.18 mmol / ml Fmoc.
- a dimethylformamide (DMF) solution (solution-2) containing -Glu (OtBu) -OH and 0.05 mmol / ml 1-hydroxybenzotriazole (HOBt) anhydride is pumped (plunger pump YMCU-22 (syringer pump)).
- YSP-301 and diaphragm pump Q-10-6TP-M49 are also acceptable)
- the solution is sent at a flow rate of 0.50 ml / min and 0.21 ml / min, respectively, and a T-shaped mixer (Unionty SS- 100-3; outer diameter 1/16 inch) was used for mixing.
- the Fmoc-Glu (OtBu) -Lys (Boc) -Leu-NH-Dpm (OPhy) solution obtained in the above step (1) was used at a flow rate of 0.84 ml / min, and the 20 wt% NaCl aqueous solution was used at a flow rate of 0.56 ml / min.
- the solutions were pumped and merged using a T-shaped mixer (Unionty SS-200-3; outer diameter 1/8 inch).
- the liquid that became a slag flow (flow in which the organic layer and the aqueous layer are alternately repeated) after merging is passed through a PFA tube (inner diameter 1.6 mm) to deactivate the EDC / HCl remaining in the condensation reaction, and water. After selection into the layer, it was separated using an oil-water separation membrane (OB-2000-S-10; a hydrophobic membrane having a pore size of 1.0 ⁇ m), and the permeated organic layer was recovered.
- OB-2000-S-10 oil-water separation membrane
- An organic layer (solution-1) containing 0.03 mmol / ml of Fmoc-Glu (OtBu) -Lys (Boc) -Leu-NH-Dpm (OPhy) obtained in the above step (A) was flown at a flow rate of 0.73 ml / min.
- DBU 1,8-diazabicyclo [5.4.0] -7-undecene
- the solutions were sent using a pump and mixed using a T-shaped mixer (Unionty SS-100-3; outer diameter 1/16 inch).
- the mixed solution was reacted in a PFA tube (inner diameter 1.0 mm) to obtain an H-Glu (OtBu) -Lys (Boc) -Leu-NH-Dpm (OPhy) solution.
- Step (B) -1 Washing with an aqueous sodium carbonate solution after the de-Fmoc reaction (3-residue peptide)
- a chloroform solution (solution-1) containing H-Glu (OtBu) -Lys (Boc) -Leu-NH-Dpm (OPhy) obtained in the above step (2) was applied at a flow rate of 1.08 ml / min, and acetic acid was added at 0.
- a 5.0 wt% Na 2 CO 3 aqueous solution (solution-2) containing 10 mmol / ml was pumped at a flow rate of 0.80 ml / min, respectively, and a T-shaped mixer (Unionty SS-200-3; outer diameter) was sent.
- a fulvene adduct produced during the de-Fmocization reaction is produced by passing a liquid that has become a slag flow (flow in which an organic layer and an aqueous layer are alternately repeated) through a PFA tube (inner diameter 1.6 mm) after merging. After selection into the aqueous layer, separation was performed using an oil-water separation membrane (OB-2000-S-10; a hydrophobic membrane having a pore size of 1.0 ⁇ m), and the permeated organic layer was recovered.
- OB-2000-S-10 oil-water separation membrane having a pore size of 1.0 ⁇ m
- Step (B) -2 Washing with sodium chloride aqueous solution after washing with sodium carbonate aqueous solution (3-residue peptide)
- the H-Glu (OtBu) -Lys (Boc) -Leu-NH-Dpm (OPhy) solution (solution-1) obtained in the above step (B) -1 was applied to a 20 wt% NaCl aqueous solution at a flow rate of 1.08 ml / min.
- Solution-2) was pumped at a flow rate of 0.88 ml / min, respectively, and merged using a T-shaped mixer (Unionty SS-200-3; outer diameter 1/8 inch).
- Step (1) Condensation reaction (4-residue peptide) A chloroform solution (solution-1) containing 0.04 mmol / ml H-Glu (OtBu) -Lys (Boc) -Leu-NH-Dpm (OPhy) obtained in the above step (B) -2 and 0.
- Pump a dimethylformamide (DMF) solution (solution-2) containing 15 mmol / ml Fmoc-Ala-OH ⁇ H 2 O and 0.04 mmol / ml 1-hydroxybenzotriazole (HOBt) anhydride.
- DMF dimethylformamide
- the solution is sent at a flow rate of 0.50 ml / min and 0.21 ml / min, respectively, and is T-shaped.
- Mixing was performed using a mixer (Unionty SS-100-3; outer diameter 1/16 inch).
- the Fmoc-Ala-Glu (OtBu) -Lys (Boc) -Leu-NH-Dpm (OPhy) solution obtained in the above step (1) has a flow rate of 0.84 ml / min, and a 20 wt% NaCl aqueous solution has a flow rate of 0.56 ml / min.
- the solutions were pumped at min and merged using a T-shaped mixer (Unionty SS-200-3; outer diameter 1/8 inch).
- the liquid that became a slag flow (flow in which the organic layer and the aqueous layer are alternately repeated) after merging is passed through a PFA tube (inner diameter 1.6 mm) to deactivate the EDC / HCl remaining in the condensation reaction, and water. After selection into the layer, it was separated using an oil-water separation membrane (OB-2000-S-10; a hydrophobic membrane having a pore size of 1.0 ⁇ m), and the permeated organic layer was recovered.
- OB-2000-S-10 oil-water separation membrane
- DBU 1,8-diazabicyclo [5.4.0] -7-undecene
- the solutions were fed at / min using a pump and mixed using a T-shaped mixer (Unionty SS-100-3; outer diameter 1/16 inch).
- the mixed solution was reacted in a PFA tube (inner diameter 1.0 mm) to obtain an H-Ala-Glu (OtBu) -Lys (Boc) -Leu-NH-Dpm (OPhy) solution.
- Step (B) -1 Washing with an aqueous sodium carbonate solution after the de-Fmoc reaction (4-residue peptide) A chloroform solution (solution-1) containing H-Ala-Glu (OtBu) -Lys (Boc) -Leu-NH-Dpm (OPhy) obtained in the above step (2) was applied at a flow rate of 1.08 ml / min and acetic acid.
- a 5.0 wt% Na 2 CO 3 aqueous solution (solution-2) containing 0.11 mmol / ml was pumped at a flow rate of 0.80 ml / min, respectively, and a T-shaped mixer (Unionty SS-200-3; The outer diameter was 1/8 inch) and they were merged.
- a fulvene adduct produced during the de-Fmocization reaction is produced by passing a liquid that has become a slag flow (flow in which an organic layer and an aqueous layer are alternately repeated) through a PFA tube (inner diameter 1.6 mm) after merging. After selection into the aqueous layer, separation was performed using an oil-water separation membrane (OB-2000-S-10; a hydrophobic membrane having a pore size of 1.0 ⁇ m), and the permeated organic layer was recovered.
- OB-2000-S-10 oil-water separation membrane having a pore size of 1.0 ⁇ m
- Step (B) -2 Washing with sodium chloride aqueous solution after washing with sodium carbonate aqueous solution (4-residue peptide) H-Ala-Glu (OtBu) -Lys (Boc) -Leu-NH-Dpm (OPhy) solution (solution-1) obtained in the above step (B) -1 was applied to a flow rate of 1.08 ml / min and 20 wt% NaCl. Aqueous solutions (solution-2) were pumped at a flow rate of 0.88 ml / min, respectively, and merged using a T-shaped mixer (Unionty SS-200-3; outer diameter 1/8 inch).
- Step (1) Condensation reaction (5-residue peptide) A chloroform solution (solution-1) containing 0.02 mmol / ml H-Ala-Glu (OtBu) -Lys (Boc) -Leu-NH-Dpm (OPhy) obtained in step (B) -2 above.
- Pump (plunger) a dimethylformamide (DMF) solution (solution-2) containing 0.06 mmol / ml Fmoc-Glu (OtBu) -OH and 0.02 mmol / ml 1-hydroxybenzotriazole (HOBt) anhydride.
- DMF dimethylformamide
- the solution is sent at a flow rate of 0.50 ml / min and 0.21 ml / min, respectively, and is T-shaped.
- Mixing was performed using a mold mixer (Unionty SS-100-3; outer diameter 1/16 inch).
- the Fmoc-Glu (OtBu) -Ala-Glu (OtBu) -Lys (Boc) -Leu-NH-Dpm (OPhy) solution obtained in the above step (1) was used at a flow rate of 0.84 ml / min and a 20 wt% NaCl aqueous solution.
- the solutions were pumped at a flow rate of 0.56 ml / min, and merged using a T-shaped mixer (Unionty SS-200-3; outer diameter 1/8 inch).
- the liquid that became a slag flow (flow in which the organic layer and the aqueous layer are alternately repeated) after merging is passed through a PFA tube (inner diameter 1.6 mm) to deactivate the EDC / HCl remaining in the condensation reaction, and water. After selection into the layer, it was separated using an oil-water separation membrane (OB-2000-S-10; a hydrophobic membrane having a pore size of 1.0 ⁇ m), and the permeated organic layer was recovered.
- OB-2000-S-10 oil-water separation membrane
- Step (B) -1 Washing with an aqueous sodium carbonate solution after the de-Fmoc reaction (5-residue peptide)
- a fulvene adduct produced during the de-Fmocization reaction is produced by passing a liquid that has become a slag flow (flow in which an organic layer and an aqueous layer are alternately repeated) through a PFA tube (inner diameter 1.6 mm) after merging. After selection into the aqueous layer, separation was performed using an oil-water separation membrane (OB-2000-S-10; a hydrophobic membrane having a pore size of 1.0 ⁇ m), and the permeated organic layer was recovered.
- OB-2000-S-10 oil-water separation membrane having a pore size of 1.0 ⁇ m
- Step (B) -2 Washing with sodium chloride aqueous solution after washing with sodium carbonate aqueous solution (5-residue peptide)
- the H-Glu (OtBu) -Ala-Glu (OtBu) -Lys (Boc) -Leu-NH-Dpm (OPhy) solution (solution-1) obtained in the above step (B) -1 was applied at a flow rate of 1.08 ml / A min and 20 wt% NaCl aqueous solution (solution-2) was pumped at a flow rate of 0.88 ml / min, respectively, and a T-shaped mixer (Unionty SS-200-3; outer diameter 1/8 inch) was used. And joined.
- Oil-water separation membrane device SEP-10 [Zaiput]
- Oil-water separation membrane OB-2000-S-10 (hydrophobic membrane with a pore size of 1.0 ⁇ m), OB-900-S-10 (hydrophobic membrane with a pore diameter of 0.5 ⁇ m) [Zaiput]
- Example 4 15-residue peptide ( containing D-amino acid ) (H-Glu (OtBu) -Ala- (D) Pro-Pro-Gln (Trt) -Ala-Ala- (D) Pro-Pro-Ile- Synthesis of Pro-Gln (Trt) -Ala-Ala-Leu-OTOBPhy)
- Step (B) -1 Washing with sodium carbonate aqueous solution after de-Fmocification reaction / Step (B) -2: Washing with sodium chloride aqueous solution after washing with sodium carbonate aqueous solution 0.08 mmol / ml H- prepared by the batch method (D) Pro-Pro-Gln (Trt) -Ala-Ala- (D) Pro-Pro-Ile-Pro-Gln (Trt) -Ala-Ala-Leu-OTOBPhy in a chloroform solution (solution-1) 5 A T-shaped mixer (union) containing a mixture of a 0.0 wt% Na 2 CO 3 aqueous solution and dimethylformamide (DMF) at a volume ratio of 8: 2 (solution-2) at a flow rate of 0.80 ml / min using a diaphragm pump.
- DMF Pro-Pro-Ile-Pro-Gln
- solution-3 in which a 20.0 wt% NaCl aqueous solution and dimethylformamide (DMF) were mixed at a volume ratio of 6: 4 in the organic layer generated here was added at a flow rate of 0.88 ml / min using a diaphragm pump.
- T-shaped mixer Unionty SS-100-3; outer diameter 1/16 inch
- the liquid that became a slag flow flow in which the organic layer and the aqueous layer are alternately repeated
- a fulvene adduct that could not be completely removed in step (B) -1 was removed into the aqueous layer by passing a solution through a PFA tube (inner diameter 1.6 mm, length 5.0 m) for 5 minutes, and then an oil-water separation membrane. Separation using (OB-900-S-10; hydrophobic membrane having a pore size of 0.5 ⁇ m), H- (D) Pro-Pro-Gln (Trt) -Ala-Ala- (D) Pro-Pro-Ile An organic layer containing -Pro-Gln (Trt) -Ala-Ala-Leu-OTOBPhy was recovered. LC / MS M + m / z 2734.1 *) TOBPhy represents a 3,4,5-tri (2', 3'-dihydrophytyloxy) benzyl group.
- a dimethylformamide (DMF) solution (Solution-2) containing ml Fmoc-Ala-OH and 0.04 mmol / ml 1-hydroxybenzotriazole (HOBt) anhydride was used in a plunger pump (using a syringe pump or diaphragm pump).
- the solutions were pumped at a flow rate of 0.500 and 0.208 ml / min, respectively, and mixed using a T-shaped mixer (Unionty SS-100-3; outer diameter 1/16 inch).
- a chloroform solution (solution-3) containing 0.23 mmol / ml N-ethyl-N'-3-dimethylaminopropylcarbodiimide hydrochloride (EDC.HCl) was sent at a flow rate of 0.133 ml / min to form a T-shape.
- a mold mixer Unionty SS-100-3; outer diameter 1/16 inch
- a 20 wt% NaCl aqueous solution (solution-4) was sent at 0.56 ml / min using a diaphragm pump to a mixed solution of solutions 1, 2, and 3 with a T-shaped mixer (T-shaped mixer (solution-4).
- T-shaped mixer (solution-4).
- the liquid that became a slag flow (flow in which the organic layer and the aqueous layer are alternately repeated) after merging was passed through a PFA tube (inner diameter 1.6 mm, length 5.0 m) for 7 minutes, and the EDC remaining in the condensation reaction. ..
- Fmoc-Ala- (D) Pro-Pro-Gln (Trt) -Ala-Ala- (D) Pro-Pro-Ile-Pro-Gln (Trt) -Ala obtained by continuous implementation of 1) and (A) -An organic layer (solution-1) containing 0.03 mmol / Ala-Leu-OTOBPhy, 0.33 mmol / ml thiophosphate and 0.98 mmol / ml 1,8-diazabicyclo [5.4.0] -7-
- a dimethylformamide (DMF) solution (solution-2) containing undecene (DBU) was sent using a plunger pump (a syringe pump or a diaphra
- solution-4 in which a 20.0 wt% NaCl aqueous solution and dimethylformamide (DMF) were mixed at a volume ratio of 6: 4 in the organic layer generated here was added at a flow rate of 0.88 ml / min using a diaphragm pump.
- T-shaped mixer Unionty SS-100-3; outer diameter 1/16 inch
- step (B) -1 A fulvene adduct that could not be completely removed in step (B) -1 was removed into the aqueous layer by passing a solution through a PFA tube (inner diameter 1.6 mm, length 5.0 m) for 5 minutes, and then an oil-water separation membrane. (OB-900-S-10; hydrophobic membrane with a pore size of 0.5 ⁇ m) was used for separation, and H-Ala- (D) Pro-Pro-Gln (Trt) -Ala-Ala- (D) Pro-Pro. An organic layer containing -Ile-Pro-Gln (Trt) -Ala-Ala-Leu-OTOBPhy was recovered. LC / MS M + m / z 2804.9
- Step (1) Condensation reaction / Step (A): Extraction after the condensation reaction 0.03 mmol / ml obtained by continuously carrying out the above steps (2), step (B) -1 and step (B) -2.
- a dimethylformamide (DMF) solution (solution-2) containing 1), 0.11 mmol / ml Fmoc-Glu (OtBu) -OH and 0.03 mmol / ml 1-hydroxybenzotriazole (HOBt) anhydride is prepared.
- a jar pump a syringe pump or diaphragm pump can also be used
- the solution is sent at a flow rate of 0.500 and 0.208 ml / min, respectively, and a T-shaped mixer (Unionty SS-100-3; outer diameter 1 /). 16 inches) was used for mixing.
- a chloroform solution (solution-3) containing 0.23 mmol / ml N-ethyl-N'-3-dimethylaminopropylcarbodiimide hydrochloride (EDC.HCl) was sent at a flow rate of 0.133 ml / min to form a T-shape.
- EDC.HCl N-ethyl-N'-3-dimethylaminopropylcarbodiimide hydrochloride
- solution-4 20 wt% NaCl aqueous solution
- solution-4 20 wt% NaCl aqueous solution
- solution-1, 2 and 3 20 wt% NaCl aqueous solution
- T-shaped mixer union
- Tiss SS-100-3; outer diameter 1/16 inch was used for merging.
- the liquid that became a slag flow (flow in which the organic layer and the aqueous layer are alternately repeated) after merging was passed through a PFA tube (inner diameter 1.6 mm, length 5.0 m) for 7 minutes, and the EDC remaining in the condensation reaction. ..
- step ( 1) Fmoc-Glu (OtBu) -Ala- (D) Pro-Pro-Gln (Trt) -Ala-Ala- (D) Pro-Pro-Ile-Pro- obtained by continuous execution of the step (A).
- solution-4 in which a 20.0 wt% NaCl aqueous solution and dimethylformamide (DMF) were mixed at a volume ratio of 6: 4 in the organic layer generated here was added at a flow rate of 0.88 ml / min using a diaphragm pump.
- T-shaped mixer Unionty SS-100-3; outer diameter 1/16 inch
- step (B) -1 A fulvene adduct that could not be completely removed in step (B) -1 was removed into the aqueous layer by passing a solution through a PFA tube (inner diameter 1.6 mm, length 5.0 m) for 5 minutes, and then an oil-water separation membrane.
- OB-900-S-10 hydrophobic membrane having a pore size of 0.5 ⁇ m
- Step (1) Condensation reaction 1.50 eq. To a chloroform solution (solution-1) containing 0.03 mmol / ml H-Leu-NH-Dpm (OPhy) obtained in Production Example 1. 1-Hydroxybenzotriazole (HOBt) anhydride, Fmoc-Asn (Trt) -OH, N-ethyl-N'-3-dimethylaminopropylcarbodiimide hydrochloride (EDC.HCl) was added, and Fmoc-Asn (Trt) ) -Leu-NH-Dpm (OPhy) was obtained. After that, 1.50 eq. N-Ethyl-N'-3-dimethylaminopropylcarbodiimide hydrochloride (EDC.HCl) and thioannic acid were added to inactivate the excess active ester.
- EDC.HCl N-Ethyl-N'-3-dimethylaminopropylcar
- solution-1 solution containing 0.03 mmol / ml Fmoc-Asn (Trt) -Leu-NH-Dpm (OPhy) obtained in the above step (1) and 20 wt. % NaCl aqueous solution (solution-2) was sent at 1.500 and 1.50 ml / min using a plunger pump and a diaphragm pump, respectively, and a T-shaped mixer (Uniont
- the liquid that became a slag flow (flow in which the organic layer and the aqueous layer are alternately repeated) after merging was passed through a PFA tube (inner diameter 1.6 mm, length 7.5 m) for 5 minutes, and the EDC remaining in the condensation reaction. .. After deactivating HCl and removing it into the aqueous layer, it was separated with a separatory funnel to recover the organic layer.
- DMF dimethylformamide
- solution-2 Containing dimethylformamide (DMF) solution (solution-2) was sent using a plunger pump (a syringe pump or diaphragm pump can also be used) at a flow rate of 0.700 and 0.300 ml / min, respectively.
- a character mixer Unionty SS-100-3; outer diameter 1/16 inch
- the reaction was carried out in a PFA tube (inner diameter 1.0 mm, length 10.0 m) for 7 min.
- Dibenzofulvene (DBF) generated during the reaction was reacted with thioapple acid to convert it into a fulvene adduct.
- a 20.0 wt% NaCl aqueous solution was added to this de-Fmoc reaction solution using a diaphragm pump at a flow rate of 0.50 ml / min using a T-shaped mixer (Unionty SS-100-3; outer diameter 1/16 inch). After merging, the liquid that became a slag flow (flow in which the organic layer and the aqueous layer are alternately repeated) was passed through a PFA tube (inner diameter 1.6 mm, length 2.0 m) for 3 minutes.
- the fulvene adduct produced during the de-Fmoc reaction was removed into the aqueous layer, and then separated by a separatory funnel to recover the organic layer containing H-Asn (Trt) -Leu-NH-Dpm (OPhy). ..
- DBU de-Fmocification reaction / Step (B) -1: Cleaning with sodium carbonate aqueous solution after de-Fmocification reaction Fmoc-Asn (Trt) -Leu-NH-Dpm obtained in the above step (A) ( An organic layer (solution-1) containing 0.04 mmol / ml of OPhy), 0.44 mmol / ml thioapple acid
- a dimethylformamide (DMF) solution (solution-2) containing the above solution is sent using a plunger pump (a syringe pump or a diaphragm pump can also be used) at a flow rate of 0.700 and 0.300 ml / min, respectively, to form a T-shape.
- a plunger pump a syringe pump or a diaphragm pump can also be used
- a flow rate 0.700 and 0.300 ml / min, respectively, to form a T-shape.
- a mold mixer Unionty SS-100-3; outer diameter 1/16 inch
- the reaction was carried out in a PFA tube (inner diameter 1.0 mm, length 10.0 m) for 7 min.
- Dibenzofulvene (DBF) generated during the reaction was reacted with thioapple acid to convert it into a fulvene adduct.
- Step (B) -2 Washing with sodium chloride aqueous solution after washing with sodium carbonate aqueous solution Volume ratio of organic layer (solution-1) obtained in step (B) -1 with 20.0 wt% NaCl aqueous solution and dimethylformamide (DMF) T-shaped mixer (Unionty SS-200-3; outer diameter) using a plunger pump and a diaphragm pump at a flow rate of 1.500 and 1.50 ml / min, respectively, for a solution (solution-2) mixed at a ratio of 6: 4.
- DMF dimethylformamide
- the liquid that became a slag flow (flow in which the organic layer and the aqueous layer are alternately repeated) after merging is put into a PFA tube (inner diameter 1.6 mm, length 7.5 m).
- the fluben adduct which could not be completely eliminated in step (B) -1, was allowed to pass through the solution for 5 minutes, and then separated into the aqueous layer, separated by a liquid separator, and H-Asn (Trt) -Leu-NH-.
- the organic layer containing Dpm (OPhy) was recovered.
- DMF dimethylformamide
- the solution is sent at a flow rate of 0.500 and 0.208 ml / min, respectively, and a T-shaped mixer (Unionty SS-100-3; outer diameter 1) is used. / 16 inch) was used for mixing.
- a chloroform solution (solution-3) containing 0.55 mmol / ml N-ethyl-N'-3-dimethylaminopropylcarbodiimide hydrochloride (EDC.HCl) was sent at a flow rate of 0.133 ml / min to form a T-shape.
- the liquid that became a slag flow (flow in which the organic layer and the aqueous layer are alternately repeated) after merging was passed through a PFA tube (inner diameter 1.6 mm, length 5.0 m) for 7 minutes, and the EDC remaining in the condensation reaction. .. After deactivating HCl and removing it into the aqueous layer, it was separated with a separatory funnel to recover the organic layer containing Fmoc-Asp (OtBu) -Leu-NH-Dpm (OPhy).
- Step (2) De-Fmocification reaction / Step (B) -1: Washing with an aqueous sodium carbonate solution after the de-Fmocification reaction Fmoc-Asp (OtBu) obtained by continuously carrying out the above steps (1) and (A).
- DMF -7-Dimethylformamide
- DBU undecene
- Step (B) -2 Washing with sodium chloride aqueous solution after washing with sodium carbonate aqueous solution Volume ratio of organic layer (solution-1) obtained in step (B) -1 with 20.0 wt% NaCl aqueous solution and dimethylformamide (DMF) T-shaped mixer (Unionty SS-200-3; outer diameter) using a plunger pump and a diaphragm pump at a flow rate of 1.500 and 1.50 ml / min, respectively, for a solution (solution-2) mixed at a ratio of 6: 4.
- DMF dimethylformamide
- the liquid that became a slag flow (flow in which the organic layer and the aqueous layer are alternately repeated) after merging is put into a PFA tube (inner diameter 1.6 mm, length 5.0 m).
- the fluben adduct which could not be completely eliminated in step (B) -1, was allowed to pass through the solution for 3 minutes, and then separated into the aqueous layer, separated by a liquid separator, and H-Asp (OtBu) -Leu-NH-.
- the organic layer containing Dpm (OPhy) was recovered.
- DMF dimethylformamide
- solution-2 containing 0.35 mmol / ml Fmoc-Ala-OH and 0.09 mmol / ml 1-hydroxybenzotriazole (HOBt) anhydride was added to a plunger pump (syringer pump).
- a diaphragm pump can also be used to send solutions at flow rates of 0.500 and 0.208 ml / min, respectively, and use a T-shaped mixer (Unionty SS-100-3; outer diameter 1/16 inch). And mixed.
- the liquid that became a slag flow (flow in which the organic layer and the aqueous layer are alternately repeated) after merging was passed through a SUS pipe (inner diameter 1.0 mm, length 7.0 m) for 4 minutes, and the EDC remaining in the condensation reaction. .. After deactivating HCl and removing it into the aqueous layer, it was separated with a separating funnel to recover the organic layer containing Fmoc-Ala-Leu-NH-Dpm (OPhy).
- Step (2) De-Fmocification reaction / Step (B) -1: Washing with an aqueous sodium carbonate solution after the de-Fmocification reaction Fmoc-Ala-Leu- obtained by continuously carrying out the above steps (1) and (A).
- the liquid that became a slag flow (flow in which the organic layer and the aqueous layer are alternately repeated) after merging is placed in a SUS pipe (inner diameter 1.0 mm, length 7.0 m).
- Step (B) -2 Washing with sodium chloride aqueous solution after washing with sodium carbonate aqueous solution Volume ratio of organic layer (solution-1) obtained in step (B) -1 with 20.0 wt% NaCl aqueous solution and dimethylformamide (DMF)
- a T-shaped mixer (micromixer manufactured by Sanko Seiki Kogyo Co., Ltd .; inner diameter 1.) was prepared by using a plunger pump and a diaphragm pump to mix the solution (solution-2) at a ratio of 6: 4 at a flow rate of 1.000 and 1.00 ml / min, respectively.
- Step (1) Condensation reaction (preparation by batch method) 1.50 eq.
- CPME cyclopentyl methyl ether
- solution-1 containing 0.06 mmol / ml H-Lys (Boc) -NH-Dpm (OPhy) obtained by the same method as in Production Example 1.
- the liquid that became a slag flow (flow in which the organic layer and the aqueous layer are alternately repeated) after merging was passed through a PFA tube (inner diameter 1.6 mm, length 7.5 m) for 5 minutes, and the EDC remaining in the condensation reaction. .. After deactivating HCl and removing it into the aqueous layer, it was separated with a separatory funnel to recover the organic layer.
- DMF dimethylformamide
- DBU undecene
- the mixture was mixed using a T-shaped mixer (Unionty SS-100-3; outer diameter 1/16 inch), and then reacted in a PFA tube (inner diameter 1.0 mm, length 10.0 m) for 8 minutes.
- Dibenzofulvene (DBF) generated during the reaction was reacted with mercaptopropionic acid to convert it into a fulvene adduct.
- a 20.0 wt% NaCl aqueous solution was added to this de-Fmoc reaction solution using a diaphragm pump at a flow rate of 0.50 ml / min using a T-shaped mixer (Unionty SS-100-3; outer diameter 1/16 inch).
- DMF dimethylformamide
- HOBt 1-hydroxybenzotriazole
- a syringe pump or diaphragm pump can also be used) to deliver solutions at flow rates of 0.500 and 0.208 ml / min, respectively, and a T-shaped mixer (Unionty SS-100-3; outer diameter 1/16 inch).
- a chloroform solution solution-3) containing 0.32 mmol / ml N-ethyl-N'-3-dimethylaminopropylcarbodiimide hydrochloride (EDC.HCl) was sent at a flow rate of 0.133 ml / min to form a T-shape.
- the liquid that became a slag flow (flow in which the organic layer and the aqueous layer are alternately repeated) after merging was passed through a PFA tube (inner diameter 1.6 mm, length 5.0 m) for 7 minutes, and the EDC remaining in the condensation reaction. .. After deactivating HCl and removing it into the aqueous layer, it was separated with a separatory funnel to recover the organic layer containing Fmoc-Gly-Glu (OtBu) -OMTBPhy. *) MTBPhy represents a 2- (3,4,5-tri (2', 3'-dihydrophytyloxy) benzyloxy) -4-methoxybenzyl group.
- Step (2) De-Fmocification reaction / Step (B) -1: Cleaning with an aqueous sodium carbonate solution after the de-Fmocification reaction Fmoc-Gly-Glu obtained by continuously carrying out the above steps (1) and (A) ( An organic layer (solution-1) containing 0.05 mmol / OtBu) -OMTBPhy, 0.52 mmol / ml thioapple acid and 1.57 mmol / ml 1,8-diazabicyclo [5.4.0] -7-undecene ( A dimethylformamide (DMF) solution (solution-2) containing DBU) was sent using a plunger pump (a syringe pump or a diaphragm pump can also be used) at a flow rate of 0.732 and 0.346 ml / min, respectively.
- DMF dimethylformamide
- the liquid that became a slag flow (flow in which the organic layer and the aqueous layer are alternately repeated) after merging is put into a PFA tube (inner diameter 1.6 mm, length 5.0 m). ), The fulvene adduct produced during the de-Fmoc reaction was removed into the aqueous layer, and then separated by a separating funnel to recover the organic layer.
- Step (B) -2 Cleaning with sodium chloride aqueous solution after washing with sodium carbonate aqueous solution Volume ratio of the organic layer (solution-1) obtained in step (B) -1 with 20.0 wt% NaCl aqueous solution and dimethylformamide (DMF) T-shaped mixer (Unionty SS-200-3; outer diameter) using a plunger pump and a diaphragm pump at a flow rate of 1.500 and 1.50 ml / min, respectively, for a solution (solution-2) mixed at a ratio of 6: 4.
- DMF dimethylformamide
- DMF dimethylformamide
- tBu Fmoc-Tyr
- HOBt 1-hydroxybenzotriazole
- a syringe pump or diaphragm pump can also be used) to deliver solutions at flow rates of 0.500 and 0.208 ml / min, respectively, and a T-shaped mixer (Unionty SS-100-3; outer diameter 1/16 inch).
- a chloroform solution solution-3) containing 0.34 mmol / ml N-ethyl-N'-3-dimethylaminopropylcarbodiimide hydrochloride (EDC.HCl) was sent at a flow rate of 0.133 ml / min to form a T-shape.
- the liquid that became a slag flow (flow in which the organic layer and the aqueous layer are alternately repeated) after merging was passed through a PFA tube (inner diameter 1.6 mm, length 5.0 m) for 7 minutes, and the EDC remaining in the condensation reaction. .. After deactivating HCl and removing it into the aqueous layer, it was separated with a separating funnel to recover the organic layer containing Fmoc-Tyr (tBu) -Phe-OTOC. *) TOC represents a 3,4,5-tri (octadecyloxy) cyclohexylmethyl group.
- Step (2) De-Fmocification reaction / Step (B) -1: Washing with an aqueous potassium carbonate solution after the de-Fmocification reaction Fmoc-Tyr (tBu) obtained by continuously carrying out the above steps (1) and (A).
- the liquid that became a slag flow (flow in which the organic layer and the aqueous layer are alternately repeated) after merging is put into a PFA tube (inner diameter 1.6 mm, length 5.0 m). ), The fulvene adduct produced during the de-Fmoc reaction was removed into the aqueous layer, and then separated by a separating funnel to recover the organic layer.
- Step (B) -2 Washing with sodium chloride aqueous solution after washing with potassium carbonate aqueous solution Volume ratio of organic layer (solution-1) obtained in step (B) -1 with 20.0 wt% NaCl aqueous solution and dimethylformamide (DMF) T-shaped mixer (Unionty SS-200-3; outer diameter) using a plunger pump and a diaphragm pump at a flow rate of 1.500 and 1.50 ml / min, respectively, for a solution (solution-2) mixed at a ratio of 6: 4.
- DMF dimethylformamide
- Example 11 16-residue peptide ( containing D-amino acid ) (H-Leu-Lys (Boc) -Glu (OtBu)-(D) Pro-Pro-Gln (Trt) -Ala-Ala- (D) Pro -Pro-Ile-Pro-Gln (Trt) -Ala-Ala-Leu-OTOBPhy) synthesis
- Step (1) Condensation reaction 0.03 mmol / ml H- (D) Pro-Pro-Gln (Trt) -Ala-Ala- (D) Pro-Pro-Ile-Pro-Gln (Trt) prepared by the batch method. ) -Ala-Ala-Leu-OTOBPhy in a chloroform solution (solution-1) with 1.50 eq. 1-Hydroxybenzotriazole (HOBt) anhydride, Fmoc-Glu (OtBu) -OH, N-ethyl-N'-3-dimethylaminopropylcarbodiimide hydrochloride (EDC.HCl) was added, and Fmoc-Glu (OtBu) was added.
- the solutions were pumped at 1.500 and 1.50 ml / min and merged using a T-shaped mixer (Unionty SS-200-3; outer diameter 1/8 inch).
- DMF dimethylformamide
- a pump or diaphragm pump can also be used) to send the solution at a flow rate of 0.700 and 0.300 ml / min, respectively, to a T-shaped mixer (Unionty SS-100-3; outer diameter 1/16 inch). After mixing using, the reaction was carried out in a PFA tube (inner diameter 1.0 mm, length 10.0 m) for 7 min. Dibenzofulvene (DBF) generated during the reaction was reacted with thioapple acid to convert it into a fulvene adduct.
- DPF Dibenzofulvene
- a 20.0 wt% NaCl aqueous solution was added to this de-Fmoc reaction solution using a diaphragm pump at a flow rate of 0.50 ml / min using a T-shaped mixer (Unionty SS-100-3; outer diameter 1/16 inch).
- T-shaped mixer Unionty SS-100-3; outer diameter 1/16 inch.
- the liquid that became a slag flow flow in which the organic layer and the aqueous layer are alternately repeated
- was passed through a PFA tube inner diameter 1.6 mm, length 5.0 m
- the fulvene adduct produced during the de-Fmoc reaction was removed into the aqueous layer and then separated by a separatory funnel to recover the organic layer.
- the obtained organic layer is passed through an oil-water separation membrane (OB-2000-S-10; a hydrophobic membrane having a pore size of 1.0 ⁇ m) to remove a small amount of water remaining in the organic layer, and H- Obtain an organic layer containing Glu (OtBu)-(D) Pro-Pro-Gln (Trt) -Ala-Ala- (D) Pro-Pro-Ile-Pro-Gln (Trt) -Ala-Ala-Leu-OTOBPhy It was. LC / MS M 2+ m / z 1460.0
- Step (1) Condensation reaction 0.03 mmol / ml H-Glu (OtBu)-(D) Pro-Pro-Gln (Trt) obtained by continuously carrying out the above steps (2) and (B) -3.
- a solution containing -Ala- (D) Pro-Pro-Ile-Pro-Gln (Trt) -Ala-Ala-Leu-OTOBPhy (solution-1) and a 20 wt% NaCl aqueous solution (solution-2) were used with a plunger pump, respectively.
- the solutions were fed at 1.500 and 1.50 ml / min using a diaphragm pump and merged using a T-shaped mixer (Unionty SS-200-3; outer diameter 1/8 inch).
- the liquid that became a slag flow (flow in which the organic layer and the aqueous layer are alternately repeated) after merging was passed through a PFA tube (inner diameter 1.6 mm, length 7.5 m) for 5 minutes, and the EDC remaining in the condensation reaction. ..
- DMF dimethylformamide
- T-shaped mixer (Unionty SS-100-3; outer diameter) by sending liquid at a flow rate of 0.700 and 0.300 ml / min using a plunger pump (a syringe pump or a diaphragm pump can also be used). After mixing using 1/16 inch), the reaction was carried out in a PFA tube (inner diameter 1.0 mm, length 10.0 m) for 8 min. Dibenzofulvene (DBF) generated during the reaction was reacted with thioapple acid to convert it into a fulvene adduct.
- DPF Dibenzofulvene
- a 20.0 wt% NaCl aqueous solution was added to this de-Fmoc reaction solution using a diaphragm pump at a flow rate of 0.50 ml / min using a T-shaped mixer (Unionty SS-100-3; outer diameter 1/16 inch).
- a T-shaped mixer Unionty SS-100-3; outer diameter 1/16 inch.
- the obtained organic layer is passed through an oil-water separation membrane (OB-2000-S-10; a hydrophobic membrane having a pore size of 1.0 ⁇ m) to remove a small amount of water remaining in the organic layer, and H- Lys (Boc) -Glu (OtBu)-(D) Pro-Pro-Gln (Trt) -Ala-Ala- (D) Pro-Pro-Ile-Pro-Gln (Trt) -Ala-Ala-Leu-OTOBPhy An organic layer containing was obtained.
- Step (1) Condensation reaction 0.04 mmol / ml H-Lys (Boc) -Glu (OtBu)-(D) Pro-Pro obtained by continuously carrying out the above steps (2) and (B) -3.
- -Pump a solution containing Ala-Ala- (D) Pro-Pro-Ile-Pro-Gln (Trt) -Ala-Ala-Leu-OTOBPhy (solution-1) and a 20 wt% NaCl aqueous solution (solution-2), respectively.
- the solutions were pumped at 1.500 and 1.50 ml / min using a pump and a diaphragm pump, and merged using a T-shaped mixer (Unionty SS-200-3; outer diameter 1/8 inch).
- the liquid that became a slag flow (flow in which the organic layer and the aqueous layer are alternately repeated) after merging was passed through a PFA tube (inner diameter 1.6 mm, length 7.5 m) for 5 minutes, and the EDC remaining in the condensation reaction. ..
- Step (2) De-Fmocification reaction / Step (B) -3: Washing with an aqueous sodium chloride solution after the de-Fmocification reaction Fmoc-Leu-Lys (Boc) -Glu (OtBu) obtained in the above step (A).
- a 20.0 wt% NaCl aqueous solution was added to this de-Fmoc reaction solution using a diaphragm pump at a flow rate of 0.50 ml / min using a T-shaped mixer (Unionty SS-100-3; outer diameter 1/16 inch).
- T-shaped mixer Unionty SS-100-3; outer diameter 1/16 inch.
- the liquid that became a slag flow flow in which the organic layer and the aqueous layer are alternately repeated
- was passed through a PFA tube inner diameter 1.6 mm, length 5.0 m
- the fulvene adduct produced during the de-Fmoc reaction was removed into the aqueous layer and then separated by a separatory funnel to recover the organic layer.
- the obtained organic layer is passed through an oil-water separation membrane (OB-2000-S-10; a hydrophobic membrane having a pore size of 1.0 ⁇ m) to remove a small amount of water remaining in the organic layer, and H- Leu-Lys (Boc) -Glu (OtBu)-(D) Pro-Pro-Gln (Trt) -Ala-Ala- (D) Pro-Pro-Ile-Pro-Gln (Trt) -Ala-Ala-Leu-
- OB-2000-S-10 oil-water separation membrane
- the present invention relates to a method for continuously producing a peptide, and is useful in the field of peptide synthesis.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Peptides Or Proteins (AREA)
Abstract
下記工程(1)、(A)、(2)、および(B)を含む、ペプチドの製造方法。 (1)フロー・リアクター中での縮合反応により、N末端アミノ基およびC末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているN保護C保護ペプチド(N保護C保護ペプチド)を得る工程、 (A)N保護C保護ペプチドを含む反応液を、フロー・リアクター中で洗浄・油水分離して、N保護C保護ペプチドを含有する有機層を分層する工程、 (2)N保護C保護ペプチドを含有する有機層を、フロー・リアクター中でN末端アミノ基の保護基の除去反応に付して、N末端アミノ基が保護されておらず、C末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているC保護ペプチド(N無保護C保護ペプチド)を得る工程、 (B)N無保護C保護ペプチドを含む反応液を、フロー・リアクター中で洗浄・油水分離して、N無保護C保護ペプチドを含有する有機層を分層する工程。
Description
本発明は、ペプチドの連続的製造方法に関するものであり、ペプチド合成の分野において有用である。
ペプチド合成は、C保護ペプチド(ジペプチド形成反応時には、C保護アミノ酸)の態様により固相法と液相法とに分類される。
固相法では、ペプチド(またはアミノ酸)のC末端を固体支持体に結合した状態でペプチド伸長を行ない、最終段階で目的のペプチドは固体支持体から切り離される。したがって、過剰または未反応により残留した試薬や副生成物は固体支持体の洗浄により容易に淘汰することができる。このため、固相法はペプチド医薬品の工業的な製造において用いられている。しかしながら、反応が固体支持体表面に限定されるためスケールアップや反応性などに課題がある。
それに対して、液相法はスケールアップが容易であり、反応性も相対的に良好となるため、固相法における上記課題を解決する手段となりうる。しかし液相法は、縮合反応および脱保護反応の各工程において、都度、残留試薬や副生成物を除去することが必要であり、製造工程が複雑化し、最終医薬品の製造に要する時間も増大するという問題があった。また、研究用途向けの小スケールにおいても、液相法では製造工程が複雑化し、製造に時間を要する問題があった。
上記のような液相法の問題を解決するため、単離・精製を固液分離(すなわち、晶析)で行える、擬似固相保護基を用いた製造方法(特許文献1~7)を用いることが考えられた。しかし、晶析による単離・精製法を用いる場合、工程が非連続となるため、連続的にペプチドを製造することは困難であった。
一方、反応を均一な液相で行い、反応後に溶媒組成を変化させ、固液分離の操作を必要とせず、単離・精製を抽出洗浄だけで行える、擬似固相保護基を用いた製造方法が見出されている(特許文献8~12)。ペプチド合成においてアミノ酸またはペプチドのC末端および/または側鎖の官能基を擬似固相保護基で保護することで、ペプチド伸長反応の各工程で得られる製造中間体のペプチドの脂溶性および有機溶媒(特に、非極性有機溶媒)に対する溶解性が格段に向上し、抽出洗浄操作のみで精製が可能となる。このため、本方法によれば、固液分離など複雑で時間を要する操作を必要とせず、スピードが向上し、効率性・生産性が格段に向上する。
上記の擬似固相保護基を用いた製造法は、固相反応と液相反応の利点を兼備した非常に有用な手法であり、工業的な観点からも注目されているが、都度、精製工程をバッチ処理によって非連続的流れで行う場合には、精製に時間を要するという課題が残されており、さらなる改良が望まれていた。
ところで、上記の液相法でのペプチド合成プロセスは、「バッチ合成」と呼ばれる有機合成の分野で従来から広く行われてきた合成プロセスであるが、近年有機合成の分野では、フロー・リアクター(特に、フロー・マイクロリアクター)を活用した「フロー合成」の検討も進められてきている。「フロー合成」は、合成時間の短縮やスケールアップの容易さなどの利点があるとされ、例えば、ペプチド合成に関しても、合成後の未反応となる水相成分を分離除去する油水分離手段を有する、フロー・リアクターを活用したペプチド合成のための連続合成装置が提案されている(特許文献13)。また、ペプチド合成でのフロー・リアクターの活用として、アミノ酸残基数が4残基以下の短鎖ペプチドでの検討がなされてはいるが、その対象化合物は限定されていた(非特許文献1)。
S. Fuse et al., Angew.Chem.Int. Ed.2014,53,851-855
フロー・リアクター中でのフロー合成を適用するに当たっての大きな懸念は、“詰まり”と呼ばれる現象である。生成物が十分に溶媒に溶けず、例えば結晶のような固形物が生成する場合には、フロー・リアクターが目詰まりを起こし、所期の目的を達成することができない。合成時の保護基の種類にも負うが、目的とするペプチドが特に長鎖となる場合には、必ずしも十分な溶媒への溶解性を期待できないため、ペプチド合成に適用する場合には、この点への懸念が大きくなる。
特許文献13には、合成後の未反応となる水相成分を分離除去する油水分離手段を有する、フロー・リアクターを活用したペプチド合成を行うための連続合成装置が開示されてはいる。しかし、実際にペプチド合成を行った事例は開示されておらず、更に、どの程度の鎖長のペプチド合成まで適用できるのか、適用範囲も明らかにされていない。また、実際にフロー・リアクターを活用しペプチド合成を行った事例として、前述のとおり非特許文献1が知られているが、アミノ酸残基数が4残基以下の短鎖ペプチドでの検討であり、その対象化合物が限定されていた。
また、連続的合成の確立には、次反応に影響しないように、過剰に使用した際の残原料や残試薬、反応夾雑物(By-Products)の除去が必須となる。特許文献13および非特許文献1の場合、この夾雑物等の除去も困難であると考えられる。
さらに、擬似固相保護基を有するペプチドを合成する場合には、生成物がいわば界面活性作用を有する構造的特徴を有することから分層せず、特許文献13が開示するような油水分離手段により生成物であるペプチド(特にペプチドが伸長し長鎖となった場合)が当初の目的どおり有機層に分層できるのか否かも明らかではなかった。
特許文献13には、合成後の未反応となる水相成分を分離除去する油水分離手段を有する、フロー・リアクターを活用したペプチド合成を行うための連続合成装置が開示されてはいる。しかし、実際にペプチド合成を行った事例は開示されておらず、更に、どの程度の鎖長のペプチド合成まで適用できるのか、適用範囲も明らかにされていない。また、実際にフロー・リアクターを活用しペプチド合成を行った事例として、前述のとおり非特許文献1が知られているが、アミノ酸残基数が4残基以下の短鎖ペプチドでの検討であり、その対象化合物が限定されていた。
また、連続的合成の確立には、次反応に影響しないように、過剰に使用した際の残原料や残試薬、反応夾雑物(By-Products)の除去が必須となる。特許文献13および非特許文献1の場合、この夾雑物等の除去も困難であると考えられる。
さらに、擬似固相保護基を有するペプチドを合成する場合には、生成物がいわば界面活性作用を有する構造的特徴を有することから分層せず、特許文献13が開示するような油水分離手段により生成物であるペプチド(特にペプチドが伸長し長鎖となった場合)が当初の目的どおり有機層に分層できるのか否かも明らかではなかった。
本発明者らは、ペプチドが長鎖になっても溶媒への溶解性を保ち、かつ、反応夾雑物等の除去を簡易に行えるように、擬似固相保護基により保護されたペプチドを用いて、(必要により連続的流れで)フロー・リアクター中でのペプチド鎖の伸長と、各工程での生成物のフロー・リアクター中での未反応物や副生物を除去するための洗浄と、油水分離手段による分層とを組み合わせることにより、所望のペプチドを合成する手段を見出した。その中で、意外にも、ペプチドの鎖長にかかわらず、フロー・リアクターで詰まりの現象を起こさせず、かつ、擬似固相保護基を有しているにもかかわらず生成物が界面活性剤のようにミセル化せずに油水分離手段においても有機層に分層し、極めて効率的にペプチドを(必要により製造フロー全体として連続的に)合成・精製できることを見出し、本発明を完成した。本発明は、以下の通りである。
[1]下記工程(A)および/または工程(B)を含む、ペプチドの製造方法。
(A)N末端アミノ基およびC末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているN保護C保護ペプチド(N保護C保護ペプチド)を含む反応液を、フロー・リアクター中で水および/または親水性有機溶媒により連続的流れで洗浄後、連続的流れで油水分離手段により分液して、当該N保護C保護ペプチドを含有する有機層を分層することにより当該N保護C保護ペプチドを精製する工程、
(B)N末端アミノ基が保護されておらず、C末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているC保護ペプチド(N無保護C保護ペプチド)を含む反応液を、フロー・リアクター中で水および/または親水性有機溶媒により連続的流れで洗浄後、連続的流れで油水分離手段により分液して、当該N無保護C保護ペプチドを含有する有機層を分層することにより当該N無保護C保護ペプチドを精製する工程。
(A)N末端アミノ基およびC末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているN保護C保護ペプチド(N保護C保護ペプチド)を含む反応液を、フロー・リアクター中で水および/または親水性有機溶媒により連続的流れで洗浄後、連続的流れで油水分離手段により分液して、当該N保護C保護ペプチドを含有する有機層を分層することにより当該N保護C保護ペプチドを精製する工程、
(B)N末端アミノ基が保護されておらず、C末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているC保護ペプチド(N無保護C保護ペプチド)を含む反応液を、フロー・リアクター中で水および/または親水性有機溶媒により連続的流れで洗浄後、連続的流れで油水分離手段により分液して、当該N無保護C保護ペプチドを含有する有機層を分層することにより当該N無保護C保護ペプチドを精製する工程。
[2]下記工程(1)、(A)、(2)、および(B)を含む、ペプチドの製造方法。
(1)C末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているC保護アミノ酸(C保護アミノ酸)、またはC末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているC保護ペプチド(C保護ペプチド);
C末端が保護されておらず、N末端アミノ基が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよいN保護アミノ酸(N保護アミノ酸)、またはC末端が保護されておらず、N末端アミノ基が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよいN保護ペプチド(N保護ペプチド);
縮合剤;
および可溶性有機溶媒を、
フロー・リアクター中に導入し、フロー・リアクター中での連続的流れで縮合反応を行い、N末端の伸長により、N末端アミノ基およびC末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているN保護C保護ペプチド(N保護C保護ペプチド)を得る工程、
(A)N保護C保護ペプチドを含む反応液を、フロー・リアクター中で水および/または親水性有機溶媒により連続的流れで洗浄後、連続的流れで油水分離手段により分液して、当該N保護C保護ペプチドを含有する有機層を分層することにより当該N保護C保護ペプチドを精製する工程、
(2)N保護C保護ペプチドを含有する有機層を、連続的流れでフロー・リアクター中に導入し、フロー・リアクター中での連続的流れで、N末端アミノ基の保護基を除去し、N末端アミノ基が保護されておらず、C末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているC保護ペプチド(N無保護C保護ペプチド)を得る工程、
(B)N無保護C保護ペプチドを含む反応液を、フロー・リアクター中で水および/または親水性有機溶媒により連続的流れで洗浄後、連続的流れで油水分離手段により分液して、当該N無保護C保護ペプチドを含有する有機層を分層することにより当該N無保護C保護ペプチドを精製する工程。
[3]工程(1)、(A)、(2)、および(B)の順に行う、上記[2]に記載のペプチドの製造方法。
[4]工程(2)、(B)、(1)、および(A)の順に行う、上記[2]に記載のペプチドの製造方法。
[5]フロー・リアクター中での水および/または親水性有機溶媒による洗浄時に、反応液がスラグ流を形成している、上記[1]~[4]のいずれかに記載のペプチドの製造方法。
[6]油水分離手段が、フィルターを含む構成からなる連続的分層手段、Gravityタイプの連続的分層手段のいずれかである、上記[1]~[5]のいずれかに記載のペプチドの製造方法。
[7]アミノ基の保護基が、9-フルオレニルメチルオキシカルボニル基、tert-ブトキシカルボニル基またはベンジルオキシカルボニル基である[1]~[6]のいずれかに記載のペプチドの製造方法。
[8]アミノ基の保護基が、9-フルオレニルメチルオキシカルボニル基である[7]に記載のペプチドの製造方法。
[9]工程(A)で得られたN保護C保護ペプチド、または工程(B)で得られたN無保護C保護ペプチドを含有する有機層を取得した後、全ての保護基を除去する工程をさらに含む[1]~[8]のいずれかに記載のペプチドの製造方法。
[10]アミノ酸残基数が5以上100以下(より好ましくは、5以上50以下)であるペプチドが製造される[1]~[9]のいずれかに記載のペプチドの製造方法。
[11]擬似固相保護基が、
(4’、4’-ビス(2,3-ジヒドロフィチルオキシ)フェニル)メチルアミン);
3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
2-[3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルオキシ]-4-メトキシベンジルアルコール;
3,4,5-トリ(オクタデシルオキシ)シクロヘキサンメタノール;
[ビス-(4-ドコソキシ-フェニル)-メチル]-アミン;
3,4,5-トリ(オクタデシルオキシ)ベンジルアルコール;
4-メトキシ-2-[3’,4’,5’-トリス(オクタデシルオキシ)ベンジルオキシ)ベンジルアルコール;
4-メトキシ-2-[3’,4’,5’-トリス(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール;
2-ドコシロキシ-9-(4-クロロフェニル)-9-フルオレノール;
2-ドコシロキシ-9-(4-クロロフェニル)-9-ブロモフルオレン;
2,7-ジドコシロキシ-9-(4-クロロフェニル)-9-ブロモフルオレン;
2-(12-ドコシロキシ-ドデカノキシ)-9-(3-フルオロフェニル)-9-ブロモフルオレン;
1,12-ビス-[12-(2’-O-9-(4-クロロフェニル)-9-フルオレノール)-ドデシロキシ]-ドデカン;
1,12-ビス-[12-(2’-O-9-(4-クロロフェニル)-9-ブロモフルオレン)-ドデシロキシ]-ドデカン;
2-(3-オクタデシロキシ-2,2-ビス-オクタデシロキシメチル-プロポキシ)-9-(4-クロロフェニル)-9-フルオレノール;
2-(3-オクタデシロキシ-2,2-ビス-オクタデシロキシメチル-プロポキシ)-9-(4-クロロフェニル)-9-ブロモフルオレン;
9-(4-クロロフェニル)-2-(3,4,5-トリス(オクタデシロキシ)シクロヘキシルメトキシ)-9-フルオレノール;
9-(4-クロロフェニル)-2-(3,4,5-トリス(オクタデシロキシ)シクロヘキシルメトキシ)-9-ブロモフルオレン;
3,5-ジドコシロキシベンジルアルコール;
2,4-ジドコシロキシベンジルアルコール;
2,4-ビスオクタデシロキシベンジルアルコール;
3-ジドコシルアミノベンジルアルコール;
3-ジフィチルアミノベンジルアルコール;
N-(2’,3’-ジヒドロフィチル)-N-(3-ヒドロキシメチルフェニル)アセトアミド;
N-トリアコンチル-N-(3-ヒドロキシメチルフェニル)アセトアミド;
3-(アミノメチル)-N,N-ジドコシルアニリン;
(1)C末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているC保護アミノ酸(C保護アミノ酸)、またはC末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているC保護ペプチド(C保護ペプチド);
C末端が保護されておらず、N末端アミノ基が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよいN保護アミノ酸(N保護アミノ酸)、またはC末端が保護されておらず、N末端アミノ基が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよいN保護ペプチド(N保護ペプチド);
縮合剤;
および可溶性有機溶媒を、
フロー・リアクター中に導入し、フロー・リアクター中での連続的流れで縮合反応を行い、N末端の伸長により、N末端アミノ基およびC末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているN保護C保護ペプチド(N保護C保護ペプチド)を得る工程、
(A)N保護C保護ペプチドを含む反応液を、フロー・リアクター中で水および/または親水性有機溶媒により連続的流れで洗浄後、連続的流れで油水分離手段により分液して、当該N保護C保護ペプチドを含有する有機層を分層することにより当該N保護C保護ペプチドを精製する工程、
(2)N保護C保護ペプチドを含有する有機層を、連続的流れでフロー・リアクター中に導入し、フロー・リアクター中での連続的流れで、N末端アミノ基の保護基を除去し、N末端アミノ基が保護されておらず、C末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているC保護ペプチド(N無保護C保護ペプチド)を得る工程、
(B)N無保護C保護ペプチドを含む反応液を、フロー・リアクター中で水および/または親水性有機溶媒により連続的流れで洗浄後、連続的流れで油水分離手段により分液して、当該N無保護C保護ペプチドを含有する有機層を分層することにより当該N無保護C保護ペプチドを精製する工程。
[3]工程(1)、(A)、(2)、および(B)の順に行う、上記[2]に記載のペプチドの製造方法。
[4]工程(2)、(B)、(1)、および(A)の順に行う、上記[2]に記載のペプチドの製造方法。
[5]フロー・リアクター中での水および/または親水性有機溶媒による洗浄時に、反応液がスラグ流を形成している、上記[1]~[4]のいずれかに記載のペプチドの製造方法。
[6]油水分離手段が、フィルターを含む構成からなる連続的分層手段、Gravityタイプの連続的分層手段のいずれかである、上記[1]~[5]のいずれかに記載のペプチドの製造方法。
[7]アミノ基の保護基が、9-フルオレニルメチルオキシカルボニル基、tert-ブトキシカルボニル基またはベンジルオキシカルボニル基である[1]~[6]のいずれかに記載のペプチドの製造方法。
[8]アミノ基の保護基が、9-フルオレニルメチルオキシカルボニル基である[7]に記載のペプチドの製造方法。
[9]工程(A)で得られたN保護C保護ペプチド、または工程(B)で得られたN無保護C保護ペプチドを含有する有機層を取得した後、全ての保護基を除去する工程をさらに含む[1]~[8]のいずれかに記載のペプチドの製造方法。
[10]アミノ酸残基数が5以上100以下(より好ましくは、5以上50以下)であるペプチドが製造される[1]~[9]のいずれかに記載のペプチドの製造方法。
[11]擬似固相保護基が、
(4’、4’-ビス(2,3-ジヒドロフィチルオキシ)フェニル)メチルアミン);
3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
2-[3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルオキシ]-4-メトキシベンジルアルコール;
3,4,5-トリ(オクタデシルオキシ)シクロヘキサンメタノール;
[ビス-(4-ドコソキシ-フェニル)-メチル]-アミン;
3,4,5-トリ(オクタデシルオキシ)ベンジルアルコール;
4-メトキシ-2-[3’,4’,5’-トリス(オクタデシルオキシ)ベンジルオキシ)ベンジルアルコール;
4-メトキシ-2-[3’,4’,5’-トリス(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール;
2-ドコシロキシ-9-(4-クロロフェニル)-9-フルオレノール;
2-ドコシロキシ-9-(4-クロロフェニル)-9-ブロモフルオレン;
2,7-ジドコシロキシ-9-(4-クロロフェニル)-9-ブロモフルオレン;
2-(12-ドコシロキシ-ドデカノキシ)-9-(3-フルオロフェニル)-9-ブロモフルオレン;
1,12-ビス-[12-(2’-O-9-(4-クロロフェニル)-9-フルオレノール)-ドデシロキシ]-ドデカン;
1,12-ビス-[12-(2’-O-9-(4-クロロフェニル)-9-ブロモフルオレン)-ドデシロキシ]-ドデカン;
2-(3-オクタデシロキシ-2,2-ビス-オクタデシロキシメチル-プロポキシ)-9-(4-クロロフェニル)-9-フルオレノール;
2-(3-オクタデシロキシ-2,2-ビス-オクタデシロキシメチル-プロポキシ)-9-(4-クロロフェニル)-9-ブロモフルオレン;
9-(4-クロロフェニル)-2-(3,4,5-トリス(オクタデシロキシ)シクロヘキシルメトキシ)-9-フルオレノール;
9-(4-クロロフェニル)-2-(3,4,5-トリス(オクタデシロキシ)シクロヘキシルメトキシ)-9-ブロモフルオレン;
3,5-ジドコシロキシベンジルアルコール;
2,4-ジドコシロキシベンジルアルコール;
2,4-ビスオクタデシロキシベンジルアルコール;
3-ジドコシルアミノベンジルアルコール;
3-ジフィチルアミノベンジルアルコール;
N-(2’,3’-ジヒドロフィチル)-N-(3-ヒドロキシメチルフェニル)アセトアミド;
N-トリアコンチル-N-(3-ヒドロキシメチルフェニル)アセトアミド;
3-(アミノメチル)-N,N-ジドコシルアニリン;
および
(上記式中、TIPSは、トリイソプロピルシリル基、および
TBDPSは、tert-ブチルジフェニルシリル基を示す)
から選択される、[1]~[10]のいずれかに記載のペプチドの製造方法。
[12]擬似固相保護基が、
(4’、4’-ビス(2,3-ジヒドロフィチルオキシ)フェニル)メチルアミン);
3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
2-[3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルオキシ]-4-メトキシベンジルアルコール;および
3,4,5-トリ(オクタデシルオキシ)シクロヘキサンメタノールから選択される、[1]~[10]のいずれかに記載のペプチドの製造方法。
TBDPSは、tert-ブチルジフェニルシリル基を示す)
から選択される、[1]~[10]のいずれかに記載のペプチドの製造方法。
[12]擬似固相保護基が、
(4’、4’-ビス(2,3-ジヒドロフィチルオキシ)フェニル)メチルアミン);
3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
2-[3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルオキシ]-4-メトキシベンジルアルコール;および
3,4,5-トリ(オクタデシルオキシ)シクロヘキサンメタノールから選択される、[1]~[10]のいずれかに記載のペプチドの製造方法。
本発明により、擬似固相保護基で保護されたペプチド鎖を用いることで、ペプチドが長鎖になっても溶媒への溶解性を保ち、かつ、反応夾雑物等の除去を簡易に行えるようにできる。また、連続的流れで、フロー・リアクター中でのペプチド鎖の伸長と、各工程での生成物のフロー・リアクター中での未反応物や副生物を除去するための洗浄と、油水分離手段による分液とを組み合わせて活用することにより、液相法でのペプチド合成方法の課題とされていた精製・単離プロセスを大幅に簡便化し、ペプチドの製造フロー全体として、合成と精製を連続的にすることができる。また、本発明により、生成物を油水分離により容易に精製・単離できるという擬似固相法によるペプチド合成の利点を活かしつつ、ペプチド伸長段階(すなわち、縮合工程および/または脱保護工程)での後処理操作時間の短縮化を図ることができる。以上、本発明は、従来法の欠点を改良した新たなペプチドの製造方法を提供するものである。
本発明により製造されるペプチドの構成単位となるアミノ酸は、同一分子内にアミノ基とカルボキシ基を有する化合物であって、天然アミノ酸でも、非天然アミノ酸でもよく、またL体でも、D体でも、あるいはラセミ体でもよい。また、構成単位は、アミノ酸に限定されず、その他のペプチド合成に適用できる化合物(以下、アミノ酸類似体という)であってもよい。当業者であれば、適宜そのようなアミノ酸類似体を選択し、自体公知の方法またはこれらに準じる方法に従って製造あるいは購入することができる。
以下に、本発明の上記[1]および[2]における、工程(1)、(A)、(2)、および(B)について以下に詳述する。
[フロー・リアクターについて]
本発明の工程(1)、(A)、(2)、および(B)で使用されるフロー・リアクターは、特に限定はされないが、目的とする反応(機能)に応じて適宜選択することができる。また、適宜、1または2以上のフロー・リアクターを連結して反応を行うこともできる。
また、フロー・リアクターとしては、マイクロ効果を必要とするフロー・マイクロリアクターが好ましいが、マイクロ効果を必要としないフロー・リアクターも含まれる。
本発明の工程(1)、(A)、(2)、および(B)で使用されるフロー・リアクターは、特に限定はされないが、目的とする反応(機能)に応じて適宜選択することができる。また、適宜、1または2以上のフロー・リアクターを連結して反応を行うこともできる。
また、フロー・リアクターとしては、マイクロ効果を必要とするフロー・マイクロリアクターが好ましいが、マイクロ効果を必要としないフロー・リアクターも含まれる。
反応時に用いるフロー・リアクターの材質は、例えば、金属製、テフロン製、ガラス製、シリコン製が挙げられる。試薬との適合性、熱伝導率、価格等の観点から、金属製、テフロン製が好ましい。
反応時の試薬量、反応温度、滞留時間は、反応に応じ、適宜、適当な条件を選択できる。
フロー・リアクターに用いられるポンプやミキサーは、当業界で知られているものであれば限定されず、使用することができる。
[工程(1)について]
本工程は、1)C末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているC保護アミノ酸(C保護アミノ酸)、またはC末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているC保護ペプチド(C保護ペプチド)を含む可溶性有機溶媒中溶液、2)C末端が保護されておらず、N末端アミノ基が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよいN保護アミノ酸(N保護アミノ酸)、またはC末端が保護されておらず、N末端アミノ基が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよいN保護ペプチド(N保護ペプチド)を含む可溶性有機溶媒中溶液、3)縮合剤を含む可溶性有機溶媒中溶液を、それぞれ別個に、同時に、もしくは任意の2以上の溶液を適宜混合した後に、フロー・リアクター中に導入し、フロー・リアクター中の連続的流れで混合し、縮合反応を進行させることにより行うことができる。さらに、縮合促進剤を含む可溶性有機溶媒中溶液を適宜、混合してもよい。
本工程は、1)C末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているC保護アミノ酸(C保護アミノ酸)、またはC末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているC保護ペプチド(C保護ペプチド)を含む可溶性有機溶媒中溶液、2)C末端が保護されておらず、N末端アミノ基が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよいN保護アミノ酸(N保護アミノ酸)、またはC末端が保護されておらず、N末端アミノ基が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよいN保護ペプチド(N保護ペプチド)を含む可溶性有機溶媒中溶液、3)縮合剤を含む可溶性有機溶媒中溶液を、それぞれ別個に、同時に、もしくは任意の2以上の溶液を適宜混合した後に、フロー・リアクター中に導入し、フロー・リアクター中の連続的流れで混合し、縮合反応を進行させることにより行うことができる。さらに、縮合促進剤を含む可溶性有機溶媒中溶液を適宜、混合してもよい。
ここで、C保護アミノ酸は、非連続的なバッチ合成によって得たものでもよく、また、別途、他の方法によって購入・入手したものであってもよい。
また、C保護ペプチドは、本発明の工程(B)の実施により得たものであってもよく、また、非連続的なバッチ合成によって得たものでもよく、更には、別途、他の方法によって購入・入手したものであってもよい。なかでも、本発明の工程(B)の実施により得たものである場合が好ましい。
また、C保護ペプチドは、本発明の工程(B)の実施により得たものであってもよく、また、非連続的なバッチ合成によって得たものでもよく、更には、別途、他の方法によって購入・入手したものであってもよい。なかでも、本発明の工程(B)の実施により得たものである場合が好ましい。
また、ここで、C保護アミノ酸またはC保護ペプチドのN末端アミノ基は、N保護アミノ酸またはN保護ペプチドと反応できさえすればよく、N末端アミノ基が無保護の場合に加え、N末端アミノ基が1以上の置換基で置換されていてもよい。その場合の置換基としては、アミノ基において一般的に用いられる置換基(炭素数1~6のアルキル基等)、N保護アミノ酸またはN保護ペプチドとの反応を活性化する置換基等が挙げられる。C保護アミノ酸またはC保護ペプチドのN末端アミノ基は保護されていない場合が好ましい。
(工程(1)の反応条件について)
本工程(1)は、上記の通り、1)C保護アミノ酸、またはC保護ペプチドを含む溶液、2)N保護アミノ酸、またはN保護ペプチドを含む溶液、3)縮合剤を含む溶液を、それぞれ別個に、同時に、もしくは任意の2以上の溶液を適宜混合した後に、フロー・リアクター中に導入し、フロー・リアクター中の連続的流れで混合し縮合反応を進行させることにより、行うことができる。
本工程(1)は、上記の通り、1)C保護アミノ酸、またはC保護ペプチドを含む溶液、2)N保護アミノ酸、またはN保護ペプチドを含む溶液、3)縮合剤を含む溶液を、それぞれ別個に、同時に、もしくは任意の2以上の溶液を適宜混合した後に、フロー・リアクター中に導入し、フロー・リアクター中の連続的流れで混合し縮合反応を進行させることにより、行うことができる。
(C保護アミノ酸/C保護ペプチドについて)
(擬似固相保護基)
C保護アミノ酸またはC保護ペプチドのC末端の保護(C保護)または必要により側鎖官能基の保護のために使用される擬似固相保護基は、「反応を均一な液相で行い、反応後に溶媒組成を変化させ生成物の単離・精製を油水分離だけで行える保護基」である。擬似固相保護基としては、当技術分野で当業者に知られているものも含めて、特に限定はされず、適宜これらの中から選択することができる。
C保護アミノ酸またはC保護ペプチドのC末端の保護(C保護)または必要により側鎖官能基の保護のために使用される擬似固相保護基は、「反応を均一な液相で行い、反応後に溶媒組成を変化させ生成物の単離・精製を油水分離だけで行える保護基」である。擬似固相保護基としては、当技術分野で当業者に知られているものも含めて、特に限定はされず、適宜これらの中から選択することができる。
これらの中で、好ましい擬似固相保護基としては、国際公開第2012/029794号に記載の分岐鎖含有芳香族化合物、更にはその分岐鎖含有飽和炭素環化合物が挙げられる。具体的には、下記式(I)で表され、特定のベンジル化合物(式(I)中、XとZが共に水素原子であり、かつR1が水素原子である);特定のジフェニルメタン化合物(式(I)中、Xが水素原子であり、R1が水素原子であり、kが1であり、かつZが式(a)(式中、R2が水素原子であり、mが0である。)で表される基である);および特定のフルオレン化合物(式(I)中、Xがフェニル基であり、kが1であり、Zが式(a)(式中、mが0である。)で表される基であり、かつR2がR1と一緒になって単結合を示して、環Aと共にフルオレン環を形成する)を包含する。
式(I):
式(I):
[式中、
環Aは、ベンゼン環またはシクロヘキサン環を示し、
k個のQは、独立してそれぞれ、単結合を示すか、あるいは-O-、-S-、-C(=O)O-、-C(=O)NH-、-NH-または-NRa-を示し;
k個のRaおよび-NRa-におけるRaは、独立してそれぞれ、分岐鎖を1以上有する脂肪族炭化水素基を少なくとも1つ有し、総分岐鎖数が3以上であって、かつ総炭素数14以上300以下である有機基、-C(0)Raaまたは-S(0)2Raa(式中、Raaは、水素原子、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素基または置換基を有していてもよい芳香族複素環基を示す)を示し;
kは、1~4の整数を示し;
R1は、水素原子であるか、あるいはZが下記式(a)で表される基である場合には、R2と一緒になって単結合を示して、環Bと共にフルオレン環を形成していてもよく;
環Aは、R1、k個のQRa、およびC(X)(Y)Zに加えて、さらにハロゲン原子、1個以上のハロゲン原子により置換されていてもよいC1-6アルキル基、および1個以上のハロゲン原子により置換されていてもよいC1-6アルコキシ基からなる群から選ばれる置換基を有していてもよく;
Xは、水素原子またはフェニル基を示し;
Yは、ヒドロキシル基または-NHR基(Rは水素原子、アルキル基またはアラルキル基を示す)を示し;かつ
Zは、水素原子または式(a):
環Aは、ベンゼン環またはシクロヘキサン環を示し、
k個のQは、独立してそれぞれ、単結合を示すか、あるいは-O-、-S-、-C(=O)O-、-C(=O)NH-、-NH-または-NRa-を示し;
k個のRaおよび-NRa-におけるRaは、独立してそれぞれ、分岐鎖を1以上有する脂肪族炭化水素基を少なくとも1つ有し、総分岐鎖数が3以上であって、かつ総炭素数14以上300以下である有機基、-C(0)Raaまたは-S(0)2Raa(式中、Raaは、水素原子、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよい芳香族炭化水素基または置換基を有していてもよい芳香族複素環基を示す)を示し;
kは、1~4の整数を示し;
R1は、水素原子であるか、あるいはZが下記式(a)で表される基である場合には、R2と一緒になって単結合を示して、環Bと共にフルオレン環を形成していてもよく;
環Aは、R1、k個のQRa、およびC(X)(Y)Zに加えて、さらにハロゲン原子、1個以上のハロゲン原子により置換されていてもよいC1-6アルキル基、および1個以上のハロゲン原子により置換されていてもよいC1-6アルコキシ基からなる群から選ばれる置換基を有していてもよく;
Xは、水素原子またはフェニル基を示し;
Yは、ヒドロキシル基または-NHR基(Rは水素原子、アルキル基またはアラルキル基を示す)を示し;かつ
Zは、水素原子または式(a):
(式中、*は結合位置を示し;
環Bは、ベンゼン環またはシクロヘキサン環を示し、
mは、0~4の整数を示し;
m個のQは、独立してそれぞれ、単結合を示すか、あるいは-O-、-S-、-C(=O)O-、-C(=O)NH-、-NH-または-NRb-を示し;
m個のRbおよび-NRb-におけるRbは、独立してそれぞれ、分岐鎖を1以上有する脂肪族炭化水素基を少なくとも1つ有し、総分岐鎖数が3以上であって、かつ総炭素数14以上300以下である有機基を示し;
R2は、水素原子を示すか、またはR1と一緒になって単結合を示して、環Aと共にフルオレン環を形成していてもよく;かつ
環Bは、m個のQRb、およびR2に加えて、さらにハロゲン原子、1個以上のハロゲン原子により置換されていてもよいC1-6アルキル基、および1個以上のハロゲン原子により置換されていてもよいC1-6アルコキシ基からなる群から選ばれる置換基を有していてもよい。)で表される基を示し;
前記RaおよびRbにおける分岐鎖を1以上有する脂肪族炭化水素基を少なくとも1つ有し、総分岐鎖数が3以上であって、かつ総炭素数14以上300以下である有機基が、式(b):
環Bは、ベンゼン環またはシクロヘキサン環を示し、
mは、0~4の整数を示し;
m個のQは、独立してそれぞれ、単結合を示すか、あるいは-O-、-S-、-C(=O)O-、-C(=O)NH-、-NH-または-NRb-を示し;
m個のRbおよび-NRb-におけるRbは、独立してそれぞれ、分岐鎖を1以上有する脂肪族炭化水素基を少なくとも1つ有し、総分岐鎖数が3以上であって、かつ総炭素数14以上300以下である有機基を示し;
R2は、水素原子を示すか、またはR1と一緒になって単結合を示して、環Aと共にフルオレン環を形成していてもよく;かつ
環Bは、m個のQRb、およびR2に加えて、さらにハロゲン原子、1個以上のハロゲン原子により置換されていてもよいC1-6アルキル基、および1個以上のハロゲン原子により置換されていてもよいC1-6アルコキシ基からなる群から選ばれる置換基を有していてもよい。)で表される基を示し;
前記RaおよびRbにおける分岐鎖を1以上有する脂肪族炭化水素基を少なくとも1つ有し、総分岐鎖数が3以上であって、かつ総炭素数14以上300以下である有機基が、式(b):
(式中、*は、隣接原子との結合位置を示し;
R3およびR4は、独立してそれぞれ、水素原子またはC1-4アルキル基を示し;
X1は、単結合、C1-4アルキレン基または酸素原子を示す。
但し、R3およびR4が共に水素原子であることはない。)で表される同一または異なる2価の基を3以上有する基である。]で表される分岐鎖含有化合物が挙げられる。
R3およびR4は、独立してそれぞれ、水素原子またはC1-4アルキル基を示し;
X1は、単結合、C1-4アルキレン基または酸素原子を示す。
但し、R3およびR4が共に水素原子であることはない。)で表される同一または異なる2価の基を3以上有する基である。]で表される分岐鎖含有化合物が挙げられる。
本発明の式(I)で表される化合物と保護化を意図する化合物とは、Y基であるヒドロキシル基、またはNHR基と、保護化を意図する化合物のC末端のカルボキシル基等との縮合反応によって、結合する。
本明細書中、上記式(I)中のRで示される「アルキル基」としては、C1-30アルキル基が挙げられ、好ましくはC1-10アルキル基、より好ましくはC1-6アルキル基である。好適な具体例としては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル等が挙げられ、特にメチル、エチルが好ましい。
本明細書中、上記式(I)中のRで示される「アラルキル基」としては、C7-30アラルキル基が挙げられ、好ましくはC7-20アラルキル基、より好ましくはC7-16アラルキル基(C6-10アリール-C1-6アルキル基)である。好適な具体例としては、ベンジル、1-フェニルエチル、2-フェニルエチル、1-フェニルプロピル、α-ナフチルメチル、1-(α-ナフチル)エチル、2-(α-ナフチル)エチル、1-(α-ナフチル)プロピル、β-ナフチルメチル、1-(β-ナフチル)エチル、2-(β-ナフチル)エチル、1-(β-ナフチル)プロピル等が挙げられ、特にベンジルが好ましい。
Rとしては、水素原子、C1-6アルキル基またはC7-16アラルキル基が好ましく、水素原子、メチル、エチルまたはベンジルがより好ましく、水素原子が特に好ましい。
本明細書中、上記式(I)中の「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子またはヨウ素原子である。
本明細書中、上記式(I)中の「環A」としては、ベンゼン環またはシクロヘキサン環を示し、いずれも好ましい。
本明細書中上記式(I)中の、「環B」としては、ベンゼン環またはシクロヘキサン環を示し、いずれも好ましい。
本明細書中、上記式(I)中のRa、Rbとして示される「分岐鎖を1以上有する脂肪族炭化水素基を少なくとも1つ有し、総分岐鎖数が3以上であって、かつ総炭素数14以上300以下である有機基」とは、その分子構造中に分岐鎖を1以上有する脂肪族炭化水素基を少なくとも1つ有し、総分岐鎖数が3以上であって、かつ総炭素数14以上300以下である有機基である。
「分岐鎖を1以上有する脂肪族炭化水素基」における「分岐鎖」としては、直鎖または分岐状の飽和脂肪族炭化水素基であり、C1-6アルキル基が好ましく、C1-4アルキル基がより好ましく、メチル基またはエチル基が一層好ましい。また、該「分岐鎖」は、1個以上のハロゲン原子で置換されていてもよい。
「分岐鎖を1以上有する脂肪族炭化水素基」における「脂肪族炭化水素基」とは、直鎖状の飽和または不飽和の脂肪族炭化水素基であり、C2-C300アルキル基(好ましくは、C3-C100アルキル基、より好ましくは、C3-C60アルキル基)、C2-C300アルケニル基(好ましくは、C3-C100アルケニル基、より好ましくは、C3-C60アルケニル基)またはC2-C300アルキニル基(好ましくは、C3-C100アルキニル基、より好ましくは、C3-C60アルキニル基)である。
「分岐鎖を1以上有する脂肪族炭化水素基を少なくとも1つ有し、総分岐鎖数が3以上であって、かつ総炭素数14以上300以下である有機基」における「分岐鎖を1以上有する脂肪族炭化水素基」の部位は、特に限定されず、末端に存在しても(1価基)、それ以外の部位に存在してもよい(例えば2価基)。
「分岐鎖を1以上有する脂肪族炭化水素基」としては、具体的には、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基(ラウリル基)、トリデシル基、ミリスチル基、セチル基、ステアリル基、アラキル基、ベヘニル基、オレイル基、リノリル基、リグノセリル基等の分岐異性体であって、1以上の分岐鎖を有する1価基およびそれらから誘導される2価基が挙げられ、好ましくは、3,7,11-トリメチルドデシル基、3,7,11,15-テトラメチルヘキサデシル基(以下、2,3-ジヒドロフィチル基ということもある。)、2,2,4,8,10,10-ヘキサメチルウンデカン-5-イル基、式:
「分岐鎖を1以上有する脂肪族炭化水素基」における「分岐鎖」としては、直鎖または分岐状の飽和脂肪族炭化水素基であり、C1-6アルキル基が好ましく、C1-4アルキル基がより好ましく、メチル基またはエチル基が一層好ましい。また、該「分岐鎖」は、1個以上のハロゲン原子で置換されていてもよい。
「分岐鎖を1以上有する脂肪族炭化水素基」における「脂肪族炭化水素基」とは、直鎖状の飽和または不飽和の脂肪族炭化水素基であり、C2-C300アルキル基(好ましくは、C3-C100アルキル基、より好ましくは、C3-C60アルキル基)、C2-C300アルケニル基(好ましくは、C3-C100アルケニル基、より好ましくは、C3-C60アルケニル基)またはC2-C300アルキニル基(好ましくは、C3-C100アルキニル基、より好ましくは、C3-C60アルキニル基)である。
「分岐鎖を1以上有する脂肪族炭化水素基を少なくとも1つ有し、総分岐鎖数が3以上であって、かつ総炭素数14以上300以下である有機基」における「分岐鎖を1以上有する脂肪族炭化水素基」の部位は、特に限定されず、末端に存在しても(1価基)、それ以外の部位に存在してもよい(例えば2価基)。
「分岐鎖を1以上有する脂肪族炭化水素基」としては、具体的には、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基(ラウリル基)、トリデシル基、ミリスチル基、セチル基、ステアリル基、アラキル基、ベヘニル基、オレイル基、リノリル基、リグノセリル基等の分岐異性体であって、1以上の分岐鎖を有する1価基およびそれらから誘導される2価基が挙げられ、好ましくは、3,7,11-トリメチルドデシル基、3,7,11,15-テトラメチルヘキサデシル基(以下、2,3-ジヒドロフィチル基ということもある。)、2,2,4,8,10,10-ヘキサメチルウンデカン-5-イル基、式:
(式中、*は、Qとの結合位置を示す。)で表される基等である。
「分岐鎖を1以上有する脂肪族炭化水素基を少なくとも1つ有し、総分岐鎖数が3以上であって、かつ総炭素数14以上300以下である有機基」中に「分岐鎖を1以上有する脂肪族炭化水素基」が複数存在する場合には、その各々は同一のものであっても異なるものであってもよい。
「分岐鎖を1以上有する脂肪族炭化水素基を少なくとも1つ有し、総分岐鎖数が3以上であって、かつ総炭素数14以上300以下である有機基」中の「分岐鎖を1以上有する脂肪族炭化水素基」以外の部位は任意に設定することができる。例えば-O-、-S-、-CO-、-NH-、-COO-、-OCONH-、-CONH-、-NHCO-、炭化水素基(1価基または2価基)等の部位を有していてもよい。「炭化水素基」としては、例えば、脂肪族炭化水素基、芳香脂肪族炭化水素基、単環式飽和炭化水素基および芳香族炭化水素基等が挙げられ、具体的には、例えば、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基等の1価基およびそれらから誘導される2価基が用いられる。「アルキル基」としては、例えば、C1-6アルキル基等が好ましく、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル等が挙げられる。「アルケニル基」としては、例えば、C2-6アルケニル基等が好ましく、例えば、ビニル、1-プロペニル、アリル、イソプロペニル、ブテニル、イソブテニル等が挙げられる。「アルキニル基」としては、例えば、C2-6アルキニル基等が好ましく、例えば、エチニル、プロパルギル、1-プロピニル等が挙げられる。「シクロアルキル基」としては、例えば、C3-6シクロアルキル基等が好ましく、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルが挙げられる。「アリール基」は、例えば、C6-14アリール基等が好ましく、例えば、フェニル、1-ナフチル、2-ナフチル、ビフェニリル、2-アンスリル等が挙げられる。中でもC6-10アリール基がより好ましく、フェニルが特に好ましい。「アラルキル基」としては、例えば、C7-20アラルキル基が好ましく、例えば、ベンジル、1-フェニルエチル、2-フェニルエチル、1-フェニルプロピル、ナフチルメチル、1-ナフチルエチル、1-ナフチルプロピル等が挙げられる。中でも、C7-16アラルキル基(C6-10アリール-C1-6アルキル基)がより好ましく、ベンジルが特に好ましい。当該「炭化水素基」は、ハロゲン原子(塩素原子、臭素原子、フッ素原子、ヨウ素原子)、オキソ基等から選択される置換基で置換されていてもよい。
式(I)で表される化合物は、k個のQRa基を有する。ここで、Qは、単結合であるか、あるいは-O-、-S-、-C(=O)O-、-C(=O)NH-または-NH-であり、好ましくは-O-である。k個のQRa基は、それぞれ同一のものであっても異なるものであってもよい。
式(I)で表される化合物においては、Ra、Rbとして示される「分岐鎖を1以上有する脂肪族炭化水素基を少なくとも1つ有し、総分岐鎖数が3以上であって、かつ総炭素数14以上300以下である有機基」における、炭素数合計は、14以上であり、16以上が好ましく、18以上がより好ましい。一方、Ra、Rbとして示される「分岐鎖を1以上有する脂肪族炭化水素基を少なくとも1つ有し、総分岐鎖数が3以上である脂肪族炭化水素基を有する有機基」における、炭素数合計は、300以下であり、200以下が好ましく、160以下がより好ましい。また、本発明化合物においては、Ra、Rbとして示される「分岐鎖を1以上有する脂肪族炭化水素基を少なくとも1つ有し、総分岐鎖数が3以上である脂肪族炭化水素基を有する有機基」における、総分岐鎖数は3以上であり、4以上が好ましく、8以上がより好ましく、10以上が更に好ましい。当該総分岐鎖数が多いほど、ペプチド鎖が長鎖になった場合でも本発明化合物により保護された化合物は、各種有機溶媒に対する溶解性が良好な油状物となる。
Ra、Rbとして示される「分岐鎖を1以上有する脂肪族炭化水素基を少なくとも1つ有し、総分岐鎖数が3以上であって、かつ総炭素数14以上300以下である有機基」としては、式(b):
(式中、*は、隣接原子との結合位置を示し;
R3およびR4は、独立してそれぞれ、水素原子またはC1-4アルキル基を示し;
X1は、単結合、C1-4アルキレン基または酸素原子を示す。
但し、R3およびR4が共に水素原子であることはない。)で表される同一または異なる2価の基を3以上有する基が好ましく、例えば、下記式(c)~(e)のいずれかで表される基が挙げられる。
R3およびR4は、独立してそれぞれ、水素原子またはC1-4アルキル基を示し;
X1は、単結合、C1-4アルキレン基または酸素原子を示す。
但し、R3およびR4が共に水素原子であることはない。)で表される同一または異なる2価の基を3以上有する基が好ましく、例えば、下記式(c)~(e)のいずれかで表される基が挙げられる。
なお、式(c)~(e)における各記号の定義中の炭素数、繰り返し単位の数(m1、n0~n9)等は便宜上示されたものであって、総炭素数が14以上(好ましくは16以上、より好ましくは18以上)、300以下(好ましくは200以下、より好ましくは160以下)になるよう上記した定義の範囲内で適宜変更することができる。以下、式(c)~(e)について、順に説明する。
式(c)は、以下の通りである。
[式中、*は、Qとの結合位置を示し;
R5およびR6は、共に水素原子を示すか、または一緒になって=Oを示し;
n0は、2~40の整数を示し;
n0個のR7およびR8は、独立してそれぞれ、水素原子またはC1-4アルキル基を示し;
n0個のX2は、独立してそれぞれ、単結合またはC1-4アルキレン基を示し;かつ
R9は、水素原子またはC1-4アルキル基を示し;
R10は、C1-4アルキル基または式(I’):
R5およびR6は、共に水素原子を示すか、または一緒になって=Oを示し;
n0は、2~40の整数を示し;
n0個のR7およびR8は、独立してそれぞれ、水素原子またはC1-4アルキル基を示し;
n0個のX2は、独立してそれぞれ、単結合またはC1-4アルキレン基を示し;かつ
R9は、水素原子またはC1-4アルキル基を示し;
R10は、C1-4アルキル基または式(I’):
(式中、*は、結合位置を示し;
環A’は、ベンゼン環またはシクロヘキサン環を示し;
他の記号は、前記と同意義を示す。ここで、環A’は、R1、Q、およびC(X)(Y)Zに加えて、さらにハロゲン原子、1個以上のハロゲン原子により置換されていてもよいC1-6アルキル基、および1個以上のハロゲン原子により置換されていてもよいC1-6アルコキシ基からなる群から選ばれる置換基を有していてもよい。)を示す。
但し、R7およびR8が共に水素原子であることはなく、かつn0が2の場合には、R9はC1-4アルキル基を示す。]
環A’は、ベンゼン環またはシクロヘキサン環を示し;
他の記号は、前記と同意義を示す。ここで、環A’は、R1、Q、およびC(X)(Y)Zに加えて、さらにハロゲン原子、1個以上のハロゲン原子により置換されていてもよいC1-6アルキル基、および1個以上のハロゲン原子により置換されていてもよいC1-6アルコキシ基からなる群から選ばれる置換基を有していてもよい。)を示す。
但し、R7およびR8が共に水素原子であることはなく、かつn0が2の場合には、R9はC1-4アルキル基を示す。]
式(c)の基において、
R5およびR6は、共に水素原子であり;
n0は、2~40の整数であり;
n0個のR7およびR8は、独立してそれぞれ、水素原子、メチル基またはエチル基であり;
n0個のX2は、独立してそれぞれ、単結合、メチレン基またはエチレン基であり;かつR9は、水素原子、メチル基またはエチル基である基が好ましい(但し、R7およびR8が共に水素原子であることはなく、かつn0が2の場合には、R9はメチルまたはエチル基を示す)。
R5およびR6は、共に水素原子であり;
n0は、2~40の整数であり;
n0個のR7およびR8は、独立してそれぞれ、水素原子、メチル基またはエチル基であり;
n0個のX2は、独立してそれぞれ、単結合、メチレン基またはエチレン基であり;かつR9は、水素原子、メチル基またはエチル基である基が好ましい(但し、R7およびR8が共に水素原子であることはなく、かつn0が2の場合には、R9はメチルまたはエチル基を示す)。
より好適な式(c)の基は、ミリスチル基、セチル基、ステアリル基、アラキル基、ベヘニル基等の炭素数14~160の分岐異性体であって、総分岐鎖数が3以上である基であり、中でも2,3-ジヒドロフィチル基、3,7,11-トリメチルドデシル基、2,2,4,8,10,10-ヘキサメチル-5-ドデカノイル基が特に好ましい。
式(d)は、以下の通りである。
(式中、*は、Qとの結合位置を示し;
m1個のOR11は、式(c’)で表される基により置換されたヒドロキシル基または総分岐鎖数が3以上であるポリアルキレングリコール基を有する基(例えば、ポリプロピレングリコール基、ポリネオペンチルグリコール基)により置換されたヒドロキシル基を示し;
m1は、1~3の整数を示す。)
なお、上記式(c’)で表される基の説明は、*が、Qとの結合位置ではなく、Oとの結合位置を示すこと以外は、上記式(c)で表される基の説明と同じである。
m1個のOR11は、式(c’)で表される基により置換されたヒドロキシル基または総分岐鎖数が3以上であるポリアルキレングリコール基を有する基(例えば、ポリプロピレングリコール基、ポリネオペンチルグリコール基)により置換されたヒドロキシル基を示し;
m1は、1~3の整数を示す。)
なお、上記式(c’)で表される基の説明は、*が、Qとの結合位置ではなく、Oとの結合位置を示すこと以外は、上記式(c)で表される基の説明と同じである。
式(d)の基において、R11は、ミリスチル基、セチル基、ステアリル基、アラキル基、ベヘニル基等の炭素数14~30の分岐異性体であって、総分岐鎖数が3以上である基がより好ましく、中でも2,3-ジヒドロフィチル基、3,7,11-トリメチルドデシル基が特に好ましい。
式(e)は、以下の通りである。
(式中、*は、Qとの結合位置を示し;
n1は、1~10の整数を示し;
n2は、1~10の整数を示し;
n1個のR15およびR16は、独立してそれぞれ、水素原子またはC1-4アルキル基を示し;
n1個のX3は、単結合またはC1-4アルキレン基を示し;
n2個のR17およびR18は、独立してそれぞれ、水素原子またはC1-4アルキル基を示し;
n2個のX5は、単結合またはC1-4アルキレン基を示し;
X4は、単結合またはC1-4アルキレン基を示し;かつ
R12、R13、R14、R19、R20およびR21は、独立してそれぞれ、水素原子またはC1-4アルキル基を示す。
但し、R15およびR16、および/またはR17およびR18が共に水素原子であることはなく、かつn1+n2が2の場合には、R12、R13およびR14の2個以上が独立してそれぞれ、C1-4アルキル基を示すか、またはR19、R20およびR21の2個以上が独立してそれぞれ、C1-4アルキル基を示す。)
n1は、1~10の整数を示し;
n2は、1~10の整数を示し;
n1個のR15およびR16は、独立してそれぞれ、水素原子またはC1-4アルキル基を示し;
n1個のX3は、単結合またはC1-4アルキレン基を示し;
n2個のR17およびR18は、独立してそれぞれ、水素原子またはC1-4アルキル基を示し;
n2個のX5は、単結合またはC1-4アルキレン基を示し;
X4は、単結合またはC1-4アルキレン基を示し;かつ
R12、R13、R14、R19、R20およびR21は、独立してそれぞれ、水素原子またはC1-4アルキル基を示す。
但し、R15およびR16、および/またはR17およびR18が共に水素原子であることはなく、かつn1+n2が2の場合には、R12、R13およびR14の2個以上が独立してそれぞれ、C1-4アルキル基を示すか、またはR19、R20およびR21の2個以上が独立してそれぞれ、C1-4アルキル基を示す。)
式(e)の基において、
n1は、1~5の整数であり;
n2は、1~5の整数であり;
n1個のR15およびR16は、独立してそれぞれ、水素原子、メチル基またはエチル基であり;
n1個のX3は、単結合、メチレン基またはエチレン基であり;
n2個のR17およびR18は、独立してそれぞれ、水素原子、メチル基またはエチル基であり;
n2個のX5は、単結合、メチレン基またはエチレン基であり;
X4は、単結合、メチレン基またはエチレン基であり;かつ
R12、R13、R14、R19、R20およびR21は、独立してそれぞれ、水素原子またはC1-4アルキル基である基がより好ましい(但し、R15およびR16、および/またはR17およびR18が共に水素原子であることはなく、かつn1+n2が2の場合には、R12、R13およびR14の2個以上が独立してそれぞれ、C1-4アルキル基を示すか、またはR19、R20およびR21の2個以上が独立してそれぞれ、C1-4アルキル基を示す)。
n1は、1~5の整数であり;
n2は、1~5の整数であり;
n1個のR15およびR16は、独立してそれぞれ、水素原子、メチル基またはエチル基であり;
n1個のX3は、単結合、メチレン基またはエチレン基であり;
n2個のR17およびR18は、独立してそれぞれ、水素原子、メチル基またはエチル基であり;
n2個のX5は、単結合、メチレン基またはエチレン基であり;
X4は、単結合、メチレン基またはエチレン基であり;かつ
R12、R13、R14、R19、R20およびR21は、独立してそれぞれ、水素原子またはC1-4アルキル基である基がより好ましい(但し、R15およびR16、および/またはR17およびR18が共に水素原子であることはなく、かつn1+n2が2の場合には、R12、R13およびR14の2個以上が独立してそれぞれ、C1-4アルキル基を示すか、またはR19、R20およびR21の2個以上が独立してそれぞれ、C1-4アルキル基を示す)。
特に好適な式(e)の基としては、
n1は、1~5の整数であり;
n2は、1~5の整数であり;
n1個のR15およびR16は、独立してそれぞれ、水素原子またはメチル基であり;
n1個のX3は、単結合またはメチレン基であり;
n2個のR17およびR18は、独立してそれぞれ、水素原子またはメチル基であり;
n2個のX5は、単結合またはメチレン基であり;
X4は、単結合またはメチレン基であり;かつ
R12、R13、R14、R19、R20およびR21は、メチル基である基が挙げられる(但し、R15およびR16、および/またはR17およびR18が、共に水素原子であることはない)。
n1は、1~5の整数であり;
n2は、1~5の整数であり;
n1個のR15およびR16は、独立してそれぞれ、水素原子またはメチル基であり;
n1個のX3は、単結合またはメチレン基であり;
n2個のR17およびR18は、独立してそれぞれ、水素原子またはメチル基であり;
n2個のX5は、単結合またはメチレン基であり;
X4は、単結合またはメチレン基であり;かつ
R12、R13、R14、R19、R20およびR21は、メチル基である基が挙げられる(但し、R15およびR16、および/またはR17およびR18が、共に水素原子であることはない)。
Ra、Rbとして示される「分岐鎖を1以上有する脂肪族炭化水素基を少なくとも1つ有し、総分岐鎖数が3以上であって、かつ総炭素数14以上300以下である有機基」としては、上記式(c)~(e)のいずれかで表される基の他、上記式(b)におけるX1が酸素原子である基を3以上有する基、すなわち、総分岐鎖数が3以上であるポリプロピレングリコール基、ポリネオペンチルグリコール基等のポリアルキレングリコール基を含有する基であってもよい。
Ra、Rbとして示される「分岐鎖を1以上有する脂肪族炭化水素基を少なくとも1つ有し、総分岐鎖数が3以上であって、かつ総炭素数14以上300以下である有機基」の具体例として、以下の基が挙げられる。各基中の*は結合位置を示し、式中のn3は、3以上の整数を示し、n4は、該基の総炭素数が14以上300以下になるように適宜設定され得る。
また、Ra、Rbとして示される「分岐鎖を1以上有する脂肪族炭化水素基を少なくとも1つ有し、総分岐鎖数が3以上であって、かつ総炭素数14以上300以下である有機基」の別の態様として、以下の基が挙げられる。各基中の*は結合位置を示す。
式中、n5~n9は、各基の総炭素数が14以上、300以下になるよう適宜設定し得る。
Ra、Rbとして示される「分岐鎖を1以上有する脂肪族炭化水素基を少なくとも1つ有し、総分岐鎖数が3以上であって、かつ総炭素数14以上300以下である有機基」の好ましい具体例として、以下の基が挙げられる:
3,7,11,15-テトラメチルヘキサデシル基;
3,7,11-トリメチルドデシル基;
2,2,4,8,10,10-ヘキサメチル-5-ドデカノイル基;
3,4,5-トリ(3’,7’,11’,15’-テトラメチルヘキサデシルオキシ)ベンジル基;
3,5-ジ(3’,7’,11’,15’-テトラメチルヘキサデシルオキシ)ベンジル基;
式(f):
3,7,11,15-テトラメチルヘキサデシル基;
3,7,11-トリメチルドデシル基;
2,2,4,8,10,10-ヘキサメチル-5-ドデカノイル基;
3,4,5-トリ(3’,7’,11’,15’-テトラメチルヘキサデシルオキシ)ベンジル基;
3,5-ジ(3’,7’,11’,15’-テトラメチルヘキサデシルオキシ)ベンジル基;
式(f):
(式中、*は、Qとの結合位置であり、n10は、23~34であり、R10は、式(I’)で表される基である。)で表される基;
式(g):
式(g):
(式中、*は、Qとの結合位置であり、n11は、1~10である。)で表される基;
式(h):
式(h):
(式中、*は、Qとの結合位置であり、n12は、2~10である。)で表される基;
式(i):
式(i):
(式中、*は、Qとの結合位置であり、n13およびn14は、独立してそれぞれ、1~10である。)で表される基;および
式(j):
式(j):
(式中、*は、Qとの結合位置であり、n15は、2~20である。)で表される基。
より好ましくは、以下の化合物が挙げられる。
2,4-ジ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
3,5-ジ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
4-(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
1-[(2-クロロ-5-(2’,3’-ジヒドロフィチルオキシ)フェニル)]-1-フェニルメタンアミン;
3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアミン;
4-(2’,3’-ジヒドロフィチルオキシ)ベンジルアミン;
2-[3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルオキシ]-4-メトキシベンジルアルコール(MTBPhy-OH);
4-(2’,3’-ジヒドロフィチルオキシ)-2-メトキシベンジルアルコール;
4-(2’,3’-ジヒドロフィチルオキシ)-2-メトキシベンジルアミン;
4-(2’,3’-ジヒドロフィチルオキシ)-2-メチルベンジルアルコール;
4-(2’,3’-ジヒドロフィチルオキシ)-2-メチルベンジルアミン;
2,2,4,8,10,10-ヘキサメチル-5-ドデカン酸(4-ヒドロキシメチル)フェニルアミド;
4-(3,7,11-トリメチルドデシルオキシ)ベンジルアルコール;
2-(3,7,11-トリメチルドデシルオキシ)-9-フェニルフルオレン-9-オール;
式:
2,4-ジ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
3,5-ジ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
4-(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
1-[(2-クロロ-5-(2’,3’-ジヒドロフィチルオキシ)フェニル)]-1-フェニルメタンアミン;
3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアミン;
4-(2’,3’-ジヒドロフィチルオキシ)ベンジルアミン;
2-[3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルオキシ]-4-メトキシベンジルアルコール(MTBPhy-OH);
4-(2’,3’-ジヒドロフィチルオキシ)-2-メトキシベンジルアルコール;
4-(2’,3’-ジヒドロフィチルオキシ)-2-メトキシベンジルアミン;
4-(2’,3’-ジヒドロフィチルオキシ)-2-メチルベンジルアルコール;
4-(2’,3’-ジヒドロフィチルオキシ)-2-メチルベンジルアミン;
2,2,4,8,10,10-ヘキサメチル-5-ドデカン酸(4-ヒドロキシメチル)フェニルアミド;
4-(3,7,11-トリメチルドデシルオキシ)ベンジルアルコール;
2-(3,7,11-トリメチルドデシルオキシ)-9-フェニルフルオレン-9-オール;
式:
(式中、n16は、23または34を示す。)で表される化合物;
式:
式:
(式中、n17は、23または34を示す。)で表される化合物;
式:
式:
(式中、n18は、5~7を示す。)で表される化合物;および
式:
式:
前記擬似固相保護基の製造方法としては、特に限定されないが、自体公知の方法(国際公開第2012/029794号の[0128]~[0154]を参照)またはこれらに準ずる方法に従って原料化合物から製造することができる。なお、原料化合物として使用する化合物、例えば、式(I)の基R2またはR4に対応するハロゲン化物等は、市販品として入手可能であるか、あるいは、自体公知の方法またはこれらに準ずる方法に従って製造することができる。
他に、本発明で好ましい擬似固相保護基として、国際公開第2016/140232号、国際公開第2003/018188号、国際公開第2017/038650号、国際公開第2019/009317号のいずれかに記載の擬似固相保護基が挙げられる。このうち、国際公開第2017/038650号には末端がシリル系保護基で修飾されたベンジル化合物が擬似固相保護基として記載されており、これら擬似固相保護基も本発明に含まれる。
本発明で使用することができる擬似固相保護基としては、上記以外に、特開2000-44493号公報、国際公開第2006/104166号、国際公開第2007/034812号、国際公開第2007/122847号、国際公開第2010/113939号、国際公開第2010/104169号、国際公開第2011/078295号等に記載の擬似固相保護基も挙げられる。
より具体的には、上記記載の疑似固相保護基の一例として、ハロゲン系溶媒またはエーテル系溶媒に可溶で、かつ極性溶媒に不溶な分子量が300以上の擬似固相保護基(例えば、ベンジル化合物、ジフェニルメタン化合物、またはフルオレン化合物、および、それらの飽和炭素環化合物)を含む基であって、C末端のカルボキシ基と縮合できる基が挙げられる。
上記のハロゲン系溶媒またはエーテル系溶媒に可溶で、かつ極性溶媒に不溶な分子量が300以上の擬似固相保護基の一実施態様は、下記式(II)で表される化合物である。これらの中でも、分子量400以上のものが好ましい。式(II):
[式中、
環Aは、ベンゼン環またはシクロヘキサン環を示し、
R1は、水素原子であるか、あるいはRbが下記式(a’)で表される基である場合には、R3と一緒になって単結合を示して、環Aおよび環Bと共にフルオレン環を形成していてもよく;
p個のR2は、独立してそれぞれ脂肪族炭化水素基を有する有機基を示し;
pは、1~4の整数を示し;
環Aは、p個のOR2に加えて、さらにハロゲン原子、ハロゲン原子で置換されていてもよいC1-6アルキル基、およびハロゲン原子で置換されていてもよいC1-6アルコキシ基からなる群から選択される置換基を有していてもよく;
Raは、水素原子、またはハロゲン原子により置換されていてもよいフェニル基を示し;
かつ
Rbは、水素原子、または式(a’):
環Aは、ベンゼン環またはシクロヘキサン環を示し、
R1は、水素原子であるか、あるいはRbが下記式(a’)で表される基である場合には、R3と一緒になって単結合を示して、環Aおよび環Bと共にフルオレン環を形成していてもよく;
p個のR2は、独立してそれぞれ脂肪族炭化水素基を有する有機基を示し;
pは、1~4の整数を示し;
環Aは、p個のOR2に加えて、さらにハロゲン原子、ハロゲン原子で置換されていてもよいC1-6アルキル基、およびハロゲン原子で置換されていてもよいC1-6アルコキシ基からなる群から選択される置換基を有していてもよく;
Raは、水素原子、またはハロゲン原子により置換されていてもよいフェニル基を示し;
かつ
Rbは、水素原子、または式(a’):
(式中、*は結合位置を示し;
環Bは、ベンゼン環またはシクロヘキサン環を示し、
rは、0~4の整数を示し;
r個のR4は、独立してそれぞれ脂肪族炭化水素基を有する有機基を示し;
R3は、水素原子を示すか、またはR1と一緒になって単結合を示して、環Aおよび環Bと共にフルオレン環を形成していてもよく;かつ
環Bは、r個のOR4に加えて、さらにハロゲン原子、ハロゲン原子で置換されていてもよいC1-6アルキル基、およびハロゲン原子で置換されていてもよいC1-6アルコキシ基からなる群から選択される置換基を有していてもよい。)で表される基を示し;かつ
Yは、ヒドロキシ基、NHR(Rは水素原子、アルキル基またはアラルキル基を示す。)、またはハロゲン原子を示す。]
環Bは、ベンゼン環またはシクロヘキサン環を示し、
rは、0~4の整数を示し;
r個のR4は、独立してそれぞれ脂肪族炭化水素基を有する有機基を示し;
R3は、水素原子を示すか、またはR1と一緒になって単結合を示して、環Aおよび環Bと共にフルオレン環を形成していてもよく;かつ
環Bは、r個のOR4に加えて、さらにハロゲン原子、ハロゲン原子で置換されていてもよいC1-6アルキル基、およびハロゲン原子で置換されていてもよいC1-6アルコキシ基からなる群から選択される置換基を有していてもよい。)で表される基を示し;かつ
Yは、ヒドロキシ基、NHR(Rは水素原子、アルキル基またはアラルキル基を示す。)、またはハロゲン原子を示す。]
上記式(II)で表される擬似固相保護基は、保護化を意図する化合物と結合する。すなわち、Yが、ヒドロキシ基、-NHR基、またはハロゲン原子である擬似固相保護基は、アミノ酸またはペプチドのC末端等と縮合することにより、化合物を保護化する。
本明細書中、上記式(II)中のRで示される「アルキル基」としては、直鎖または分岐鎖のC1-30アルキル基が挙げられ、好ましくはC1-10アルキル基、より好ましくはC1-6アルキル基である。好適な具体例としては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル等が挙げられ、特にメチル、エチルが好ましい。
本明細書中、上記式(II)中のRで示される「アラルキル基」としては、C7-30アラルキル基が挙げられ、好ましくはC7-20アラルキル基、より好ましくはC7-16アラルキル基(C6-10アリール-C1-6アルキル基)である。好適な具体例としては、ベンジル、1-フェニルエチル、2-フェニルエチル、1-フェニルプロピル、ナフチルメチル、1-ナフチルエチル、1-ナフチルプロピル等が挙げられ、特にベンジルが好ましい。
Rとしては、水素原子、C1-6アルキル基またはC7-16アラルキル基が好ましく、水素原子、メチル、エチルまたはベンジルがより好ましく、水素原子が特に好ましい。
本明細書中、上記式(II)中の「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、またはヨウ素原子である。本明細書中、Yで示される「ハロゲン原子」としては、塩素原子、臭素原子、ヨウ素原子が好ましく、臭素原子がより好ましい。
本明細書中、上記式(II)中の「環A」としては、ベンゼン環またはシクロヘキサン環を示し、いずれも好ましい。
本明細書中、上記式(II)中の「環B」としては、ベンゼン環またはシクロヘキサン環を示し、いずれも好ましい。
本明細書中、上記式(II)中のR2またはR4として示される「脂肪族炭化水素基を有する有機基」とは、その分子構造中に脂肪族炭化水素基を有する1価の有機基である。
「脂肪族炭化水素基を有する有機基」における「脂肪族炭化水素基」とは、直鎖または分岐状の飽和または不飽和の脂肪族炭化水素基であり、炭素数5以上の脂肪族炭化水素基が好ましく、炭素数5~60の脂肪族炭化水素基がより好ましく、炭素数5~30の脂肪族炭化水素基がさらに好ましく、炭素数10~30の脂肪族炭化水素基が特に好ましい。「脂肪族炭化水素基を有する有機基」における「脂肪族炭化水素基」の部位は、特に限定されず、末端に存在しても(1価基)、それ以外の部位に存在してもよい(例えば2価基)。
「脂肪族炭化水素基」としては、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基等の1価基およびそれらから誘導される2価基が挙げられ、好ましくは、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、ラウリル基、トリデシル基、ミリスチル基、セチル基、ステアリル基、アラキル基、ベヘニル基、オレイル基、イソステアリル基等の1価基およびそれらから誘導される2価基が挙げられる。
「脂肪族炭化水素基を有する有機基」中の「脂肪族炭化水素基」以外の部位は任意に設定することができる。例えば、リンカーとして-O-、-S-、-COO-、-OCONH-、および-CONH-、並びに、炭化水素基(1価基または2価基)等の部位を有していてもよい。「炭化水素基」としては、例えば、脂肪族炭化水素基、芳香脂肪族炭化水素基、単環式飽和炭化水素基および芳香族炭化水素基等が挙げられ、具体的には、例えば、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基、アラルキル基等の1価基およびそれらから誘導される2価基が用いられる。「アルキル基」としては、例えば、C1-6アルキル基等が好ましく、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル等が挙げられる。「アルケニル基」としては、例えば、C2-6アルケニル基等が好ましく、例えば、ビニル、1-プロペニル、アリル、イソプロペニル、ブテニル、イソブテニル等が挙げられる。「アルキニル基」としては、例えば、C2-6アルキニル基等が好ましく、例えば、エチニル、プロパルギル、1-プロピニル等が挙げられる。「シクロアルキル基」としては、例えば、C3-6 シクロアルキル基等が好ましく、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル等が挙げられる。「アリール基」は、例えば、C6-14アリール基等が好ましく、例えば、フェニル、1-ナフチル、2-ナフチル、ビフェニリル、2-アンスリル等が挙げられる。中でもC6-10アリール基がより好ましく、フェニルが特に好ましい。「アラルキル基」としては、例えば、C7-20アラルキル基が好ましく、例えば、ベンジル、1-フェニルエチル、2-フェニルエチル、1-フェニルプロピル、ナフチルメチル、1-ナフチルエチル、1-ナフチルプロピル等が挙げられる。中でも、C7-16アラルキル基(C6-10アリール-C1-6アルキル基)がより好ましく、ベンジルが特に好ましい。当該「炭化水素基」は、ハロゲン原子(塩素原子、臭素原子、フッ素原子、ヨウ素原子)、1個以上のハロゲン原子により置換されていてもよい炭素数1~6のアルキル基、オキソ基等から選択される置換基で置換されていてもよい。
上記式(II)中のOR2基またはOR4基を構成する「脂肪族炭化水素基を有する有機基」は、分岐等によって複数の「脂肪族炭化水素基」が存在してもよい。「脂肪族炭化水素基を有する有機基」中に「脂肪族炭化水素基」が複数存在する場合には、その各々は同一のものであっても異なるものであってもよい。
上記式(II)中のR2またはR4として示される「脂肪族炭化水素基を有する有機基」における、炭素数合計の下限は5が好ましく、10がより好ましく、12が更に好ましく、14が更に一層好ましく、16が殊更好ましく、20が特に好ましい。一方、R2またはR4として示される「脂肪族炭化水素基を有する有機基」における、炭素数合計の上限は、200が好ましく、150がより好ましく、120が更に好ましく、100が更に一層好ましく、80が殊更好ましく、60が特に好ましく、40が特に一層好ましく、30が最も好ましい。ペプチド鎖が長鎖になった場合でも本発明化合物により保護された化合物は、各種有機溶媒に対する溶解性が良好な油状物となる。
「OR2」基または「OR4」基の好適な具体例として、ドデシルオキシ、セチルオキシ、オクタデシルオキシ、ドコシルオキシ、ドコシルオキシ-ドデシルオキシ、トリアコンチルオキシ等が挙げられる。「OR2」基または「OR4」基は合計でpまたはr個存在し(pは1~4の整数であり、rは0~4の整数である。)、pは好ましくは2または3であり、rは好ましくは0~2の整数である。
上記式(II)中の環Aまたは環B中に有していてもよい置換基の好適な具体例としては、C1-6アルコキシ基(例、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシ等のC1-4アルコキシ基)、1個以上のハロゲンで置換されていてもよいC1-6アルキル基(例、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル等のC1-6アルキル基、トリフルオロメチル、トリクロロメチル等のハロゲン置換されたC1-6アルキル基)、またはハロゲン原子が挙げられ、中でもC1-6アルコキシ基が好ましい。
上記式(II)で表される擬似固相保護基の好ましい態様としては、式(II)中、Yがヒドロキシ基であり;
R1が水素原子であり;
R2および/またはR4が炭素数5~60の脂肪族炭化水素基であり;
pが1~3の整数であり;
rが0~2の整数である化合物である。
R1が水素原子であり;
R2および/またはR4が炭素数5~60の脂肪族炭化水素基であり;
pが1~3の整数であり;
rが0~2の整数である化合物である。
上記式(II)で表される擬似固相保護基の別の好ましい態様としては、式(II)中、
Yがヒドロキシ基であり;
Ra、Rb、およびR1が共に水素原子であり;
R2が炭素数5~60の脂肪族炭化水素基であり;
pが1~3の整数である化合物である。
Yがヒドロキシ基であり;
Ra、Rb、およびR1が共に水素原子であり;
R2が炭素数5~60の脂肪族炭化水素基であり;
pが1~3の整数である化合物である。
上記式(II)で表される擬似固相保護基の別の好ましい態様としては、式(II)中、
Yがヒドロキシ基であり;
Ra、Rb、およびR1が共に水素原子であり;
R2が炭素数10~40のアルキル基であり;
pが2または3である化合物である。
Yがヒドロキシ基であり;
Ra、Rb、およびR1が共に水素原子であり;
R2が炭素数10~40のアルキル基であり;
pが2または3である化合物である。
上記式(II)で表される擬似固相保護基の別の好ましい態様としては、式(II)中、
Yがヒドロキシ基であり;
Ra、Rb、およびR1が共に水素原子であり;
R2が炭素数12~30のアルキル基であり;
pが2または3である化合物である。
Yがヒドロキシ基であり;
Ra、Rb、およびR1が共に水素原子であり;
R2が炭素数12~30のアルキル基であり;
pが2または3である化合物である。
上記式(II)で表される擬似固相保護基の別の好ましい態様としては、式(II)中、
Yがヒドロキシ基であり;
Ra、Rb、およびR1が共に水素原子であり;
R2が炭素数12~30のアルコキシ基を1~3個有するベンジル基であり;
pが1~3の整数である化合物である。
Yがヒドロキシ基であり;
Ra、Rb、およびR1が共に水素原子であり;
R2が炭素数12~30のアルコキシ基を1~3個有するベンジル基であり;
pが1~3の整数である化合物である。
上記式(II)で表される擬似固相保護基の別の好ましい態様としては、式(II)中、
Yがヒドロキシ基であり;
Ra、Rb、およびR1が共に水素原子であり;
R2が炭素数12~30のアルコキシ基を1~3個有するシクロヘキシルメチル基であり;
pが1~3の整数である化合物である。
Yがヒドロキシ基であり;
Ra、Rb、およびR1が共に水素原子であり;
R2が炭素数12~30のアルコキシ基を1~3個有するシクロヘキシルメチル基であり;
pが1~3の整数である化合物である。
以上詳述された本発明におけるハロゲン系溶媒またはエーテル系溶媒に可溶で、かつ極性溶媒に不溶な分子量が300以上の擬似固相保護基の好ましい例としては、以下の擬似固相保護基が挙げられる。
2,3,4-トリオクタデカノキシベンゾヒドロール;
[フェニル(2,3,4-トリオクタデカノキシフェニル)メチル]アミン;
4,4’-ジドコソキシベンゾヒドロール;
ジ(4-ドコソキシフェニル)メチルアミン;
4,4-ジ(12-ドコソキシドデシルオキシ)ベンゾヒドロール;
アミノ-ビス[4-(12-ドコソキシドデシルオキシ)フェニル]メタン;
N-ベンジル-[ビス(4-ドコシルオキシフェニル)]メチルアミン;
(4-メトキシ-フェニル)-[4-(3,4,5-トリス-オクタデシロキシ-シクロヘキシルメトキシ)-フェニル]-メタノール;
{(4-メトキシ-フェニル)-[4-(3,4,5-トリス-オクタデシロキシ-シクロヘキシルメトキシ)-フェニル]-メチル}-アミン;
[ビス-(4-ドコソキシ-フェニル)-メチル]-アミン、および
(4’,4’-ビス(2,3-ジヒドロフィチルオキシ)フェニル)メチルアミン)(NH2-Dpm(OPhy));
[フェニル(2,3,4-トリオクタデカノキシフェニル)メチル]アミン;
4,4’-ジドコソキシベンゾヒドロール;
ジ(4-ドコソキシフェニル)メチルアミン;
4,4-ジ(12-ドコソキシドデシルオキシ)ベンゾヒドロール;
アミノ-ビス[4-(12-ドコソキシドデシルオキシ)フェニル]メタン;
N-ベンジル-[ビス(4-ドコシルオキシフェニル)]メチルアミン;
(4-メトキシ-フェニル)-[4-(3,4,5-トリス-オクタデシロキシ-シクロヘキシルメトキシ)-フェニル]-メタノール;
{(4-メトキシ-フェニル)-[4-(3,4,5-トリス-オクタデシロキシ-シクロヘキシルメトキシ)-フェニル]-メチル}-アミン;
[ビス-(4-ドコソキシ-フェニル)-メチル]-アミン、および
(4’,4’-ビス(2,3-ジヒドロフィチルオキシ)フェニル)メチルアミン)(NH2-Dpm(OPhy));
4-(12’-ドコシルオキシ-1’-ドデシルオキシ)ベンジルアルコール;
4-(12’-ドコシルオキシ-1’-ドデシルオキシ)-2-メトキシベンジルアルコール;
4-(12’-ドコシルオキシ-1’-ドデシルオキシ)-2-メトキシベンジルアミン;
2-(12’-ドコシルオキシ-1’-ドデシルオキシ)-4-メトキシベンジルアルコール;
2-(12’-ドコシルオキシ-1’-ドデシルオキシ)-4-メトキシベンジルアミン;
2-ドコシルオキシ-4-メトキシベンジルアルコール;
4-メトキシ-2-[3’,4’,5’-トリス(オクタデシルオキシ)ベンジルオキシ)ベンジルアルコール;
2-[3’,5’-ジ(ドコシルオキシ)ベンジルオキシ]-4-メトキシベンジルアルコール;
2-メトキシ-4-[2’,2’,2’-トリス(オクタデシルオキシメチル)エトキシ)ベンジルアルコール;
2-メトキシ-4-[2’,2’,2’-トリス(オクタデシルオキシメチル)エトキシ]ベンジルアミン;
4-メトキシ-2-[3’,4’,5’-トリス(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール;
2-メトキシ-4-[3’,4’,5’-トリス(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール;
4-[3’,4’,5’-トリス(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール;
3,5-ジメトキシ-4-[3’,4’,5’-トリス(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール;
N-(4-ヒドロキシメチル-3-メトキシフェニル)-3,4,5-トリス(オクタデシルオキシ)シクロヘキシルカルボキサミド;
N-(5-ヒドロキシメチル-2-メトキシフェニル)-3,4,5-トリス(オクタデシルオキシ)シクロヘキシルカルボキサミド;
N-(4-ヒドロキシメチルフェニル)-3,4,5-トリス(オクタデシルオキシ)シクロヘキシルカルボキサミド;
1,22-ビス[12-(4-ヒドロキシメチル-3-メトキシフェノキシ)ドデシルオキシ]ドコサン;または
1,22-ビス[12-(2-ヒドロキシメチル-5-メトキシフェノキシ)ドデシルオキシ]ドコサン;
4-(12’-ドコシルオキシ-1’-ドデシルオキシ)-2-メトキシベンジルアルコール;
4-(12’-ドコシルオキシ-1’-ドデシルオキシ)-2-メトキシベンジルアミン;
2-(12’-ドコシルオキシ-1’-ドデシルオキシ)-4-メトキシベンジルアルコール;
2-(12’-ドコシルオキシ-1’-ドデシルオキシ)-4-メトキシベンジルアミン;
2-ドコシルオキシ-4-メトキシベンジルアルコール;
4-メトキシ-2-[3’,4’,5’-トリス(オクタデシルオキシ)ベンジルオキシ)ベンジルアルコール;
2-[3’,5’-ジ(ドコシルオキシ)ベンジルオキシ]-4-メトキシベンジルアルコール;
2-メトキシ-4-[2’,2’,2’-トリス(オクタデシルオキシメチル)エトキシ)ベンジルアルコール;
2-メトキシ-4-[2’,2’,2’-トリス(オクタデシルオキシメチル)エトキシ]ベンジルアミン;
4-メトキシ-2-[3’,4’,5’-トリス(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール;
2-メトキシ-4-[3’,4’,5’-トリス(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール;
4-[3’,4’,5’-トリス(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール;
3,5-ジメトキシ-4-[3’,4’,5’-トリス(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール;
N-(4-ヒドロキシメチル-3-メトキシフェニル)-3,4,5-トリス(オクタデシルオキシ)シクロヘキシルカルボキサミド;
N-(5-ヒドロキシメチル-2-メトキシフェニル)-3,4,5-トリス(オクタデシルオキシ)シクロヘキシルカルボキサミド;
N-(4-ヒドロキシメチルフェニル)-3,4,5-トリス(オクタデシルオキシ)シクロヘキシルカルボキサミド;
1,22-ビス[12-(4-ヒドロキシメチル-3-メトキシフェノキシ)ドデシルオキシ]ドコサン;または
1,22-ビス[12-(2-ヒドロキシメチル-5-メトキシフェノキシ)ドデシルオキシ]ドコサン;
2,4-ジ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
3,5-ジ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
4-(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
1-[(2-クロロ-5-(2’,3’-ジヒドロフィチルオキシ)フェニル)]-1-フェニルメタンアミン;
3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール(TOBPhy-OH);
3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアミン;
4-(2’,3’-ジヒドロフィチルオキシ)ベンジルアミン;
2-[3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルオキシ]-4-メトキシベンジルアルコール(MTBPhy-OH);
4-(2’,3’-ジヒドロフィチルオキシ)-2-メトキシベンジルアルコール;
4-(2’,3’-ジヒドロフィチルオキシ)-2-メトキシベンジルアミン;
4-(2’,3’-ジヒドロフィチルオキシ)-2-メチルベンジルアルコール;
4-(2’,3’-ジヒドロフィチルオキシ)-2-メチルベンジルアミン;
2,2,4,8,10,10-ヘキサメチル-5-ドデカン酸(4-ヒドロキシメチル)フェニルアミド;
4-(3,7,11-トリメチルドデシルオキシ)ベンジルアルコール;
2-(3,7,11-トリメチルドデシルオキシ)-9-フェニルフルオレン-9-オール;
3,5-ジ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
4-(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
1-[(2-クロロ-5-(2’,3’-ジヒドロフィチルオキシ)フェニル)]-1-フェニルメタンアミン;
3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール(TOBPhy-OH);
3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアミン;
4-(2’,3’-ジヒドロフィチルオキシ)ベンジルアミン;
2-[3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルオキシ]-4-メトキシベンジルアルコール(MTBPhy-OH);
4-(2’,3’-ジヒドロフィチルオキシ)-2-メトキシベンジルアルコール;
4-(2’,3’-ジヒドロフィチルオキシ)-2-メトキシベンジルアミン;
4-(2’,3’-ジヒドロフィチルオキシ)-2-メチルベンジルアルコール;
4-(2’,3’-ジヒドロフィチルオキシ)-2-メチルベンジルアミン;
2,2,4,8,10,10-ヘキサメチル-5-ドデカン酸(4-ヒドロキシメチル)フェニルアミド;
4-(3,7,11-トリメチルドデシルオキシ)ベンジルアルコール;
2-(3,7,11-トリメチルドデシルオキシ)-9-フェニルフルオレン-9-オール;
3,4,5-トリ(オクタデシルオキシ)ベンジルアルコール;
3,4,5-トリ(オクタデシルオキシ)シクロヘキサンメタノール(TOC-OH);
2,4-ジ(ドコシルオキシ)ベンジルアルコール;
4-メトキシ-2-[3’,4’,5’-トリ(オクタデシルオキシ)ベンジルオキシ]ベンジルアルコール;
4-メトキシ-2-[3’,4’,5’-トリ(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール;
2-メトキシ-4-[3’,4’,5’-トリ(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール;
4-[3’,4’,5’-トリ(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール;
3,5-ジメトキシ-4-[3’,4’,5’-トリ(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール;
2,4-ジ(ドデシルオキシ)ベンジルアルコール;
3,4,5-トリ(オクタデシルオキシ)ベンジルアミン;
ビス(4-ドコシルオキシフェニル)メタノール;
ビス(4-ドコシルオキシフェニル)メチルアミン;
2-(12-ドコシルオキシ-ドデシルオキシ)-9-(3-フルオロフェニル)-9-ブロモフルオレン。
3,4,5-トリ(オクタデシルオキシ)シクロヘキサンメタノール(TOC-OH);
2,4-ジ(ドコシルオキシ)ベンジルアルコール;
4-メトキシ-2-[3’,4’,5’-トリ(オクタデシルオキシ)ベンジルオキシ]ベンジルアルコール;
4-メトキシ-2-[3’,4’,5’-トリ(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール;
2-メトキシ-4-[3’,4’,5’-トリ(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール;
4-[3’,4’,5’-トリ(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール;
3,5-ジメトキシ-4-[3’,4’,5’-トリ(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール;
2,4-ジ(ドデシルオキシ)ベンジルアルコール;
3,4,5-トリ(オクタデシルオキシ)ベンジルアミン;
ビス(4-ドコシルオキシフェニル)メタノール;
ビス(4-ドコシルオキシフェニル)メチルアミン;
2-(12-ドコシルオキシ-ドデシルオキシ)-9-(3-フルオロフェニル)-9-ブロモフルオレン。
[ビス-(4-ドコソキシ-フェニル)-メチル]-アミン;
3,4,5-トリ(オクタデシルオキシ)ベンジルアルコール;
4-メトキシ-2-[3’,4’,5’-トリス(オクタデシルオキシ)ベンジルオキシ)ベンジルアルコール;および
4-メトキシ-2-[3’,4’,5’-トリス(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール。
3,4,5-トリ(オクタデシルオキシ)ベンジルアルコール;
4-メトキシ-2-[3’,4’,5’-トリス(オクタデシルオキシ)ベンジルオキシ)ベンジルアルコール;および
4-メトキシ-2-[3’,4’,5’-トリス(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール。
上記の内より好ましいものとして、以下の擬似固相保護基が挙げられる。
(4’、4’-ビス(2,3-ジヒドロフィチルオキシ)フェニル)メチルアミン)(NH2-Dpm(OPhy));
3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール(TOBPhy-OH);
2-[3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルオキシ]-4-メトキシベンジルアルコール(MTBPhy-OH);
3,4,5-トリ(オクタデシルオキシ)シクロヘキサンメタノール(TOC-OH);
[ビス-(4-ドコソキシ-フェニル)-メチル]-アミン;
3,4,5-トリ(オクタデシルオキシ)ベンジルアルコール;
4-メトキシ-2-[3’,4’,5’-トリス(オクタデシルオキシ)ベンジルオキシ)ベンジルアルコール;および
4-メトキシ-2-[3’,4’,5’-トリス(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール。
(4’、4’-ビス(2,3-ジヒドロフィチルオキシ)フェニル)メチルアミン)(NH2-Dpm(OPhy));
3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール(TOBPhy-OH);
2-[3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルオキシ]-4-メトキシベンジルアルコール(MTBPhy-OH);
3,4,5-トリ(オクタデシルオキシ)シクロヘキサンメタノール(TOC-OH);
[ビス-(4-ドコソキシ-フェニル)-メチル]-アミン;
3,4,5-トリ(オクタデシルオキシ)ベンジルアルコール;
4-メトキシ-2-[3’,4’,5’-トリス(オクタデシルオキシ)ベンジルオキシ)ベンジルアルコール;および
4-メトキシ-2-[3’,4’,5’-トリス(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール。
上記に加えて、さらに以下の疑似固相保護基もその他の好ましいものとして挙げられる。
(国際公開第2010/104169号に記載の擬似固相保護基)
2-ドコシロキシ-9-(4-クロロフェニル)-9-フルオレノール;
2-ドコシロキシ-9-(4-クロロフェニル)-9-ブロモフルオレン;
2,7-ジドコシロキシ-9-(4-クロロフェニル)-9-ブロモフルオレン;
2-(12-ドコシロキシ-ドデカノキシ)-9-(3-フルオロフェニル)-9-ブロモフルオレン;
1,12-ビス-[12-(2’-O-9-(4-クロロフェニル)-9-フルオレノール)-ドデシロキシ]-ドデカン;
1,12-ビス-[12-(2’-O-9-(4-クロロフェニル)-9-ブロモフルオレン)-ドデシロキシ]-ドデカン;
2-(3-オクタデシロキシ-2,2-ビス-オクタデシロキシメチル-プロポキシ)-9-(4-クロロフェニル)-9-フルオレノール;
2-(3-オクタデシロキシ-2,2-ビス-オクタデシロキシメチル-プロポキシ)-9-(4-クロロフェニル)-9-ブロモフルオレン;
9-(4-クロロフェニル)-2-(3,4,5-トリス(オクタデシロキシ)シクロヘキシルメトキシ)-9-フルオレノール;
9-(4-クロロフェニル)-2-(3,4,5-トリス(オクタデシロキシ)シクロヘキシルメトキシ)-9-ブロモフルオレン。
(国際公開第2010/104169号に記載の擬似固相保護基)
2-ドコシロキシ-9-(4-クロロフェニル)-9-フルオレノール;
2-ドコシロキシ-9-(4-クロロフェニル)-9-ブロモフルオレン;
2,7-ジドコシロキシ-9-(4-クロロフェニル)-9-ブロモフルオレン;
2-(12-ドコシロキシ-ドデカノキシ)-9-(3-フルオロフェニル)-9-ブロモフルオレン;
1,12-ビス-[12-(2’-O-9-(4-クロロフェニル)-9-フルオレノール)-ドデシロキシ]-ドデカン;
1,12-ビス-[12-(2’-O-9-(4-クロロフェニル)-9-ブロモフルオレン)-ドデシロキシ]-ドデカン;
2-(3-オクタデシロキシ-2,2-ビス-オクタデシロキシメチル-プロポキシ)-9-(4-クロロフェニル)-9-フルオレノール;
2-(3-オクタデシロキシ-2,2-ビス-オクタデシロキシメチル-プロポキシ)-9-(4-クロロフェニル)-9-ブロモフルオレン;
9-(4-クロロフェニル)-2-(3,4,5-トリス(オクタデシロキシ)シクロヘキシルメトキシ)-9-フルオレノール;
9-(4-クロロフェニル)-2-(3,4,5-トリス(オクタデシロキシ)シクロヘキシルメトキシ)-9-ブロモフルオレン。
(国際公開第2010/104169号に記載の以下の擬似固相保護基)
2-ドコシロキシ-9-(4-クロロフェニル)-9-フルオレノール;
2-ドコシロキシ-9-(4-クロロフェニル)-9-ブロモフルオレン;
2,7-ジドコシロキシ-9-(4-クロロフェニル)-9-ブロモフルオレン;
2-(12-ドコシロキシ-ドデカノキシ)-9-(3-フルオロフェニル)-9-ブロモフルオレン;
1,12-ビス-[12-(2’-O-9-(4-クロロフェニル)-9-フルオレノール)-ドデシロキシ]-ドデカン;
1,12-ビス-[12-(2’-O-9-(4-クロロフェニル)-9-ブロモフルオレン)-ドデシロキシ]-ドデカン;
2-(3-オクタデシロキシ-2,2-ビス-オクタデシロキシメチル-プロポキシ)-9-(4-クロロフェニル)-9-フルオレノール;
2-(3-オクタデシロキシ-2,2-ビス-オクタデシロキシメチル-プロポキシ)-9-(4-クロロフェニル)-9-ブロモフルオレン;
9-(4-クロロフェニル)-2-(3,4,5-トリス(オクタデシロキシ)シクロヘキシルメトキシ)-9-フルオレノール;
9-(4-クロロフェニル)-2-(3,4,5-トリス(オクタデシロキシ)シクロヘキシルメトキシ)-9-ブロモフルオレン。
2-ドコシロキシ-9-(4-クロロフェニル)-9-フルオレノール;
2-ドコシロキシ-9-(4-クロロフェニル)-9-ブロモフルオレン;
2,7-ジドコシロキシ-9-(4-クロロフェニル)-9-ブロモフルオレン;
2-(12-ドコシロキシ-ドデカノキシ)-9-(3-フルオロフェニル)-9-ブロモフルオレン;
1,12-ビス-[12-(2’-O-9-(4-クロロフェニル)-9-フルオレノール)-ドデシロキシ]-ドデカン;
1,12-ビス-[12-(2’-O-9-(4-クロロフェニル)-9-ブロモフルオレン)-ドデシロキシ]-ドデカン;
2-(3-オクタデシロキシ-2,2-ビス-オクタデシロキシメチル-プロポキシ)-9-(4-クロロフェニル)-9-フルオレノール;
2-(3-オクタデシロキシ-2,2-ビス-オクタデシロキシメチル-プロポキシ)-9-(4-クロロフェニル)-9-ブロモフルオレン;
9-(4-クロロフェニル)-2-(3,4,5-トリス(オクタデシロキシ)シクロヘキシルメトキシ)-9-フルオレノール;
9-(4-クロロフェニル)-2-(3,4,5-トリス(オクタデシロキシ)シクロヘキシルメトキシ)-9-ブロモフルオレン。
(国際公開第2007/122847号に記載の擬似固相保護基)
3,5-ジドコシロキシベンジルアルコール;
2,4-ジドコシロキシベンジルアルコール。
3,5-ジドコシロキシベンジルアルコール;
2,4-ジドコシロキシベンジルアルコール。
(国際公開第2007/034812号に記載の擬似固相保護基)
2,4-ビスオクタデシロキシベンジルアルコール。
2,4-ビスオクタデシロキシベンジルアルコール。
(国際公開第2016/140232号に記載の以下の擬似固相保護基)
3-ジドコシルアミノベンジルアルコール;
3-ジフィチルアミノベンジルアルコール;
N-(2’,3’-ジヒドロフィチル)-N-(3-ヒドロキシメチルフェニル)アセトアミド;
N-トリアコンチル-N-(3-ヒドロキシメチルフェニル)アセトアミド;
3-(アミノメチル)-N,N-ジドコシルアニリン。
3-ジドコシルアミノベンジルアルコール;
3-ジフィチルアミノベンジルアルコール;
N-(2’,3’-ジヒドロフィチル)-N-(3-ヒドロキシメチルフェニル)アセトアミド;
N-トリアコンチル-N-(3-ヒドロキシメチルフェニル)アセトアミド;
3-(アミノメチル)-N,N-ジドコシルアニリン。
(国際公開第2019/009317号に記載の擬似固相保護基)
上記に説明された擬似固相保護基において、特に好ましい例としては、以下の擬似固相保護基が挙げられる。
(4’、4’-ビス(2,3-ジヒドロフィチルオキシ)フェニル)メチルアミン)(NH2-Dpm(OPhy));
3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール(TOBPhy-OH);
2-[3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルオキシ]-4-メトキシベンジルアルコール(MTBPhy-OH);および
3,4,5-トリ(オクタデシルオキシ)シクロヘキサンメタノール(TOC-OH)。
(4’、4’-ビス(2,3-ジヒドロフィチルオキシ)フェニル)メチルアミン)(NH2-Dpm(OPhy));
3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール(TOBPhy-OH);
2-[3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルオキシ]-4-メトキシベンジルアルコール(MTBPhy-OH);および
3,4,5-トリ(オクタデシルオキシ)シクロヘキサンメタノール(TOC-OH)。
それら、擬似固相保護基の製造方法としては、特に限定されないが、自体公知の方法(特開2000-44493号公報、国際公開第2006/104166号、国際公開第2007/034812号、国際公開第2007/122847号、国際公開第2010/113939号、国際公開第2010/104169号、国際公開第2011/078295号等を参照)またはこれらに準ずる方法に従って原料化合物から製造することができる。
(C末端の保護基)
C末端の保護基としては、上述した擬似固相保護基以外では、エステル型保護基、アミド型保護基、ヒドラジド型保護基等を挙げることができる。
C末端の保護基としては、上述した擬似固相保護基以外では、エステル型保護基、アミド型保護基、ヒドラジド型保護基等を挙げることができる。
エステル型保護基としては、置換若しくは無置換のアルキルエステル、置換若しくは無置換のアラルキルエステルが好ましく用いられる。置換若しくは無置換のアルキルエステルとしては、メチルエステル、エチルエステル、tert-ブチルエステル、シクロヘキシルエステル、トリクロロエチルエステル、フェナシルエステル等が好ましく用いられる。置換若しくは無置換のアラルキルエステルとしては、ベンジルエステル、p-ニトロベンジルエステル、p-メトキシベンジルエステル、ジフェニルメチルエステル、9-フルオレニルメチル(Fm)エステル、4-ピコリル(Pic)エステル等が好ましく用いられる。
アミド型保護基としては、無置換のアミド、N-メチルアミド、N-エチルアミド、N-ベンジルアミド等の1級アミド、N,N-ジメチルアミド、ピロリジニルアミド、ピペリジニルアミド等の2級アミド等が好ましく用いられる。
ヒドラジド型保護基としては、無置換のヒドラジド、N-フェニルヒドラジド、N,N’-ジイソプロピルヒドラジド等が好ましく用いられる。
中でも、N末端アミノ基の保護基の脱保護条件下で安定なt-ブチルエステル、置換若しくは無置換のベンジルエステル等のエステル型保護基が好ましく用いられ、置換若しくは無置換のベンジルエステルが、比較的合成が容易であることから、特に好ましく用いられる。
(側鎖官能基の保護基)
本発明に使用するアミノ酸またはペプチドは、ペプチド結合の形成に関与するアミノ基またはカルボキシ基に加えて、アミノ基、カルボキシ基、ヒドロキシ基等の脱水縮合反応に供される官能基を有する場合が多い。これらの官能基を、主鎖のペプチド結合を形成するアミノ基およびカルボキシ基と区別して、側鎖官能基と称する。側鎖官能基は、本発明の本質を損なわない限り、必ずしも保護する必要はないが、脱水縮合反応によるペプチド結合の形成、ならびにN末端アミノ基の脱保護反応時に、望ましくない副反応を防ぐために、適切な保護基により保護するのが好ましい。
本発明に使用するアミノ酸またはペプチドは、ペプチド結合の形成に関与するアミノ基またはカルボキシ基に加えて、アミノ基、カルボキシ基、ヒドロキシ基等の脱水縮合反応に供される官能基を有する場合が多い。これらの官能基を、主鎖のペプチド結合を形成するアミノ基およびカルボキシ基と区別して、側鎖官能基と称する。側鎖官能基は、本発明の本質を損なわない限り、必ずしも保護する必要はないが、脱水縮合反応によるペプチド結合の形成、ならびにN末端アミノ基の脱保護反応時に、望ましくない副反応を防ぐために、適切な保護基により保護するのが好ましい。
側鎖官能基の保護基は、前述のC末端の保護基と同様に、N末端アミノ基の保護基との組み合わせにおいて、一定の制約を受ける。すなわち、側鎖官能基の保護基は、N末端アミノ基の保護基(例えば、Fmoc基)の除去条件においても除去されることなく、所望のアミノ酸配列が完成するまで保持される必要がある。尚、当該保護基は、脱水縮合反応によるペプチド結合の形成、並びに、N末端アミノ基の脱保護反応時に、側鎖官能基が望ましくない副反応を引き起こさなければ特に限定されない。
側鎖官能基の保護基としては、N末端アミノ基の保護基(一時保護基)の脱保護条件において安定であれば、特に限定されず、例えば、ペプチド合成の基礎と実験、丸善株式会社出版(1985年)や、プロテクティブ・グループス・イン・オーガニック・シンセシス(PROTECTIVE GROUPS IN ORGANIC SYNTHESIS)、第3版、ジョン・ウィリー・アンド・サンズ(JOHN WILLY&SONS)出版(1999年)等に記載されている保護基を挙げることができる。
側鎖官能基がカルボキシ基である場合は、C末端の保護基として上述したものと同じ保護基を挙げることができる。
なお、側鎖官能基がカルボキシ基である場合には、上記した擬似固相保護基によって保護されていてもよく、この態様も本発明の範囲に包含される。
側鎖官能基がアミノ基である場合は、ウレタン型保護基、アシル型保護基、スルホニル型保護基、等を挙げることができる。
ウレタン型保護基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、tert-ブトキシカルボニル(Boc)基、ベンジルオキシカルボニル(Cbz)基等が用いられ、好ましくは、メトキシカルボニル基、エトキシカルボニル基、Boc基等である。中でもBoc基は、穏和な酸性条件下で選択的に脱保護ができることから、特に好ましく用いられる。
アシル型保護基としては、例えば、ホルミル基、アセチル基、トリフルオロアセチル基等が好ましく用いられる。
スルホニル型保護基としては、例えば、p-トルエンスルホニル(Ts)基、p-トリルメタンスルホニル基、4-メトキシ-2,3,6-トリメチルベンゼンスルホニル基等が好ましく用いられる。
上記以外の側鎖官能基についても、同様にN末端アミノ基の保護基(一時保護基)(例えば、Fmoc基、など)の脱保護条件において安定なものを選んで用いることができる。
例えば、ペプチド上の官能基がヒドロキシ基である場合(フェノール性ヒドロキシ基を含む)は、アルキル型保護基、アルコキシアルキル型保護基、アシル型保護基、アルキルシリル型保護基等を挙げることできる。
アルキル型保護基としては、例えば、メチル基、エチル基、tert-ブチル基等が挙げられる。
アルコキシアルキル型保護基としては、例えば、メトキシメチル基(MOM基)、2-テトラヒドロピラニル基(THP基)、エトキシエチル基(EE基)、等が挙げられる。
アシル型保護基としては、例えば、アセチル基、ピバロイル基、ベンゾイル基、等が挙げられる。
アルキルシリル型保護基としては、例えば、トリメチルシリル基(TMS基)、トリエチルシリル基(TES基)、tert-ブチルジメチルシリル基(TBS基またはTBDMS基)、トリイソプロピルシリル基(TIPS基)、tert-ブチルジフェニルシリル基(TBDPS基)、等が挙げられる。
その他の官能基についても、当技術分野で慣用の保護基により保護することができる。例えば、アルギニンのグアニジノ基は、p-トルエンスルホニル基、2,2,4,6,7-ペンタメチルジヒドロベンゾフラン-5-スルホニル基(Pbf)基等により保護することができる。アスパラギンやグルタミンのアミド基、およびヒスチジンのイミダゾール基は、トリチル基、ベンジルオキシメチル基、等により保護することができる。システインのSH基はトリチル基により保護することができる。また、トリプトファンのインドール基は、Boc基、ホルミル基等により保護することができる。
ペプチド上の官能基の保護基について上述したが、当業者であれば本発明を実施するに際しての全体的な合成戦略に沿って選択される当技術分野における保護スキーム(例えば、Fmoc/tBuストラテジー、tBu/Bzlストラテジー、Bzl/tBuストラテジー、等)に応じて、適宜選択して本工程を実施することができる。中でも、Fmoc/tBuストラテジーが好ましい。
側鎖官能基は目的のペプチド結合を形成した後に、必要に応じて脱保護すればよい。
(N保護アミノ酸/N保護ペプチドについて)
(N末端アミノ基の保護基)
本発明における縮合工程に使用される酸成分のN末端アミノ基の保護基(一時保護基)は、例えば、9-フルオレニルメチルオキシカルボニル基(以下、Fmoc基ともいう。)、tert-ブトキシカルボニル基(以下、Boc基ともいう。)またはベンジルオキシカルボニル基(以下、Cbz基(またはZ基)ともいう。)であり、好ましくはFmoc基またはBoc基である。もっとも好ましくは、Fmoc基である。
なお、Cbz基もペプチド合成において使用される場合があるが、脱保護の際、接触還元を行うにあたり、金属粉末を用いて水素ガスを吹込むことはフロー・リアクターで手間を要することから、より長鎖ペプチドを合成する場合を考えると、Fmoc基やBoc基の方がより好ましい。このうち、Boc基はCysやMetなどを含まない配列においては好ましい場合があるが、Fmoc基は、ペプチド合成において配列によらず、汎用的に使用できることから特に好ましく、また、脱保護時に生成するFmoc基由来の反応残渣の除去が必須である中、本発明においては、本擬似固相保護基の使用によってこの残渣を簡便に除去できる観点からもFmoc基が特に好ましい。
本発明における縮合工程に使用される酸成分のN末端アミノ基の保護基(一時保護基)は、例えば、9-フルオレニルメチルオキシカルボニル基(以下、Fmoc基ともいう。)、tert-ブトキシカルボニル基(以下、Boc基ともいう。)またはベンジルオキシカルボニル基(以下、Cbz基(またはZ基)ともいう。)であり、好ましくはFmoc基またはBoc基である。もっとも好ましくは、Fmoc基である。
なお、Cbz基もペプチド合成において使用される場合があるが、脱保護の際、接触還元を行うにあたり、金属粉末を用いて水素ガスを吹込むことはフロー・リアクターで手間を要することから、より長鎖ペプチドを合成する場合を考えると、Fmoc基やBoc基の方がより好ましい。このうち、Boc基はCysやMetなどを含まない配列においては好ましい場合があるが、Fmoc基は、ペプチド合成において配列によらず、汎用的に使用できることから特に好ましく、また、脱保護時に生成するFmoc基由来の反応残渣の除去が必須である中、本発明においては、本擬似固相保護基の使用によってこの残渣を簡便に除去できる観点からもFmoc基が特に好ましい。
好適な側鎖官能基としては、C保護アミノ酸/C保護ペプチドについて上記したものと同じ保護基が挙げられる。
本工程で使用されるC保護アミノ酸、C保護ペプチド、N保護アミノ酸、N保護ペプチドは、公知化合物から出発して、当技術分野で公知の方法や本明細書に記載された方法に準じて当業者であれば適宜合成することができる。
(縮合剤等について)
本工程は、縮合剤、縮合促進剤等を使用し、ペプチド化学の分野において一般的に用いられるペプチド合成条件下で行われる。
縮合剤としては、ジシクロヘキシルカルボジイミド(DCC)、ジイソプロピルカルボジイミド(DIC)、N-エチル-N’-3-ジメチルアミノプロピルカルボジイミドおよびその塩酸塩(EDC・HCl)、ヘキサフルオロリン酸(ベンゾトリアゾール-1-イルオキシ)トリピロリジノホスホニウム(PyBop)、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボレート(TBTU)、[O-(7-アゾベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウム ヘキサフルオロホスフェート](HATU)、1-[ビス(ジメチルアミノ)メチレン]-5-クロロ-1H-ベンゾトリアゾリウム3-オキシド ヘキサフルオロホスフェート(HCTU)、O-ベンゾトリアゾール-N,N,N’,N’-テトラメチルウロニウム ヘキサフルオロホスフェート(HBTU)、2-クロロ-4,6-ジメトキシ-1,3,5-トリアジン-N-メチルモルホリン(DMT-MM)、N’-シクロオクチル-N,N-ジメチル尿素(COMU)等が挙げられ、中でも好ましくは、水溶性の縮合剤であり、より好ましくは、2-クロロ-4,6-ジメトキシ-1,3,5-トリアジン-N-メチルモルホリン(DMT-MM)またはN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC・HCl)である。
縮合剤の使用量は、C保護アミノ酸またはC保護ペプチド1モルに対して、例えば1~10モルであり、好ましくは1~5モルである。
縮合促進剤としては、1-ヒドロキシベンゾトリアゾール(HOBt)、1-ヒドロキシ-1H-1,2,3-トリアゾール-5-カルボン酸エチルエステル(HOCt)、1-ヒドロキシ-7-アザベンゾトリアゾール(HOAt)、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム ヘキサフルオロホスフェート(HBTU)、[O-(7-アゾベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウム ヘキサフルオロホスフェート](HATU)、O-(6-クロロベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム ヘキサフルオロホスフェート(HCTU)、エチル 2-シアノ-2-ヒドロキシイミノアセテート(Oxyma)等が挙げられ、好ましくは、HOBtおよびOxymaである。
縮合促進剤の使用量は、前記C保護アミノ酸またはC保護ペプチド1モルに対して、好ましくは0.05モル以上、より好ましくは0.9モル以上であり、好ましくは1.5モル以下、より好ましくは1.1モル以下である。
本工程において、特に好ましい縮合剤、および縮合促進剤の組合せは、N-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC・HCl)および1-ヒドロキシベンゾトリアゾール(HOBt)またはエチル 2-シアノ-2-ヒドロキシイミノアセテート(Oxyma)である。
上記縮合剤、および、縮合促進剤には、C末端活性化のためのものに加え、N末端活性化のためのものも含まれる。
(溶媒について)
使用される溶媒は、可溶性有機溶媒であり、各反応成分を溶解できるものであれば特に限定されない。反応に影響を及ぼさない溶媒が好ましい。当該溶媒における溶解度が高い程、優れた反応性が期待できるため、各反応成分の溶解度の高い溶媒を選択することが好ましい。また、後の工程で、油水分離手段により分液することから、水と混じり合わない溶媒が好ましい。具体的には、ジエチルエーテル、テトラヒドロフラン(THF)、1,4-ジオキサン、メチル-t-ブチルエーテル、シクロペンチルメチルエーテル(CPME)等のエーテル類;酢酸エチル、酢酸イソプロピル等の酢酸エステル類;クロロホルム、ジクロロメタン等のハロゲン化炭化水素類;トルエン、キシレン等の芳香族炭化水素類;ヘキサン、ヘプタン、シクロヘキサン等の炭化水素類が挙げられる。これらの溶媒は2種以上を適宜の割合で混合して用いてもよい。良好な抽出操作が期待でき、工業的に使用可能であるという観点から、テトラヒドロフラン(THF)、酢酸エチル、酢酸イソプロピル、クロロホルム、ジクロロメタン、シクロペンチルメチルエーテル(CPME)、トルエンが好ましく、テトラヒドロフラン(THF)、酢酸エチル、酢酸イソプロピル、シクロペンチルメチルエーテル(CPME)、トルエンがより好ましく、テトラヒドロフラン(THF)、酢酸エチル、酢酸イソプロピル、シクロペンチルメチルエーテル(CPME)が更に好ましく、テトラヒドロフラン(THF)、クロロホルム、酢酸イソプロピル、シクロペンチルメチルエーテル(CPME)が更に一層好ましい。これら溶媒に、極性有機溶媒(ジメチルホルムアミド(DMF)等)を加えた混合溶媒も許容される。
C保護アミノ酸またはC保護ペプチドを含む溶液、N保護アミノ酸、またはN保護ペプチドを含む溶液の好ましい濃度としては、3~1000倍希釈の溶媒量が挙げられる。
(反応条件について)
工程(1)におけるフロー・リアクターを使用した場合の各溶液の混合条件、流量(流速)、温度管理条件は適宜、適当な条件を選択できる。溶液の混合条件は、T字型ミキサー、十字型ミキサーを使用することが好ましい。
流量(流速)は、配管により異なり、適宜、適当な条件を選択できる。
温度管理条件は、5~50℃が好ましい。
流量(流速)は、配管により異なり、適宜、適当な条件を選択できる。
温度管理条件は、5~50℃が好ましい。
[工程(A)について]
本工程は、N保護C保護ペプチドを含む反応液と水および/または親水性有機溶媒を、それぞれ別個に、同時に、もしくは混合した後に、フロー・リアクター中に導入し、連続的流れで洗浄後、連続的流れで油水分離手段に付して「水層または親水性有機溶媒層」と有機層とを分液して、当該N保護C保護ペプチドを含有する有機層を分層することにより行われる。これにより当該N保護C保護ペプチドの精製と単離とを後続する工程に向けて効率的に行うことができる。
本工程は、N保護C保護ペプチドを含む反応液と水および/または親水性有機溶媒を、それぞれ別個に、同時に、もしくは混合した後に、フロー・リアクター中に導入し、連続的流れで洗浄後、連続的流れで油水分離手段に付して「水層または親水性有機溶媒層」と有機層とを分液して、当該N保護C保護ペプチドを含有する有機層を分層することにより行われる。これにより当該N保護C保護ペプチドの精製と単離とを後続する工程に向けて効率的に行うことができる。
ここで、N保護C保護ペプチドは、本発明の工程(1)の実施により得たものであってもよく、また、非連続的なバッチ合成によって得たものでもよく、更には、別途、他の方法によって購入・入手したものであってもよい。なかでも、本発明の工程(1)の実施により得たものである場合が好ましい。
抽出時点で未反応物や副生物を除去・洗浄するために、水および/または親水性有機溶媒を使用することができる。水の代わりに、親水性有機溶媒を使用しても構わない。
水としては、水と食塩との混合溶液も含まれる。中性が好ましい。
親水性有機溶媒としては、具体的には、アセトニトリル、プロピオニトリル等のニトリル類;アセトン、メチルエチルケトン、2-ブタノン等のケトン類;N,N-ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)等のアミド類;ジメチルスルホキシド(DMSO)等のスルホキシド類が挙げられる。溶解性を補助しつつ、分層性に影響を与えないという観点から、アセトニトリル、N,N-ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)が好ましい。
親水性有機溶媒のみを使用する場合、例えば、アセトニトリル、プロピオニトリル等のニトリル類、N,N-ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)等のアミド類が好ましく、特に、アセトニトリル、N,N-ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)が好ましい。この場合、親水性有機溶媒と混じり合わない有機溶媒(例えば、ヘキサン、ヘプタン、シクロヘキサン等の炭化水素類等;トルエン、キシレン等の芳香族炭化水素類;クロロホルム、ジクロロメタン等のハロゲン化炭化水素類)を反応溶媒に使用することで、親水性有機溶媒と有機層とを分液し、有機層を分層することができる。
水および親水性有機溶媒としては、水と親水性有機溶媒(アセトニトリル、N,N-ジメチルホルムアミド(DMF)、またはN-メチルピロリドン(NMP))との混合溶媒、「水と食塩との混合溶液」および親水性有機溶媒(アセトニトリル、N,N-ジメチルホルムアミド(DMF)、またはN-メチルピロリドン(NMP))との混合溶媒が好ましい。
親水性有機溶媒としては、具体的には、アセトニトリル、プロピオニトリル等のニトリル類;アセトン、メチルエチルケトン、2-ブタノン等のケトン類;N,N-ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)等のアミド類;ジメチルスルホキシド(DMSO)等のスルホキシド類が挙げられる。溶解性を補助しつつ、分層性に影響を与えないという観点から、アセトニトリル、N,N-ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)が好ましい。
親水性有機溶媒のみを使用する場合、例えば、アセトニトリル、プロピオニトリル等のニトリル類、N,N-ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)等のアミド類が好ましく、特に、アセトニトリル、N,N-ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)が好ましい。この場合、親水性有機溶媒と混じり合わない有機溶媒(例えば、ヘキサン、ヘプタン、シクロヘキサン等の炭化水素類等;トルエン、キシレン等の芳香族炭化水素類;クロロホルム、ジクロロメタン等のハロゲン化炭化水素類)を反応溶媒に使用することで、親水性有機溶媒と有機層とを分液し、有機層を分層することができる。
水および親水性有機溶媒としては、水と親水性有機溶媒(アセトニトリル、N,N-ジメチルホルムアミド(DMF)、またはN-メチルピロリドン(NMP))との混合溶媒、「水と食塩との混合溶液」および親水性有機溶媒(アセトニトリル、N,N-ジメチルホルムアミド(DMF)、またはN-メチルピロリドン(NMP))との混合溶媒が好ましい。
濃度条件としては、基質(N保護C保護ペプチド)に対して5倍~100倍希釈が好ましい。
洗浄については、ミキシング方法や洗浄時間に関し、適宜、適当な条件を選択できるが、中性での洗浄が好ましく、「水と食塩との混合溶液」が好ましい。
油水分離手段は、フィルターを含む構成からなる連続的分層手段やGravityタイプの連続的分層手段が挙げられる。ここで、フィルターは適宜、任意のものを選択でき、例えば、メンブランフィルターなどのフィルターを含む構成からなる手段が挙げられる。例えば、Zaiput社の液-液セパレータシステム等を用いることができる。
また、Gravityタイプの連続的分層手段は、重力を利用した分層手段であり、分液ロートを連続的にしたもので、分層した最下層と最上層から少しずつ液を抜いていく手段が挙げられる。Gravity Settlerを含む構成からなる手段、傾斜板を含む構成からなる手段等も挙げられる。例えば、Parkson社のLamella Gravity Settler等が挙げられる。
また、Gravityタイプの連続的分層手段は、重力を利用した分層手段であり、分液ロートを連続的にしたもので、分層した最下層と最上層から少しずつ液を抜いていく手段が挙げられる。Gravity Settlerを含む構成からなる手段、傾斜板を含む構成からなる手段等も挙げられる。例えば、Parkson社のLamella Gravity Settler等が挙げられる。
工程(A)におけるフロー・リアクターを使用した場合の各溶液の混合条件、流量(流速)、温度管理条件は、適宜、適当な条件を選択できる。限定される訳ではないが、N保護C保護ペプチドを含む反応液と水および/または親水性有機溶媒のフロー・リアクター中への導入後に、スラグ流(有機層と水層が交互に繰り返される流れ)が形成される条件が特に好ましい。当該条件は、当業者であれば適宜決定することができる。
[工程(2)について]
本工程は、N保護C保護ペプチドを含有する有機層を、連続的流れでフロー・リアクター中に導入し、フロー・リアクター中での連続的流れで、N末端アミノ基の保護基を除去し、N末端アミノ基が保護されておらず、C末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているC保護ペプチド(N無保護C保護ペプチド)を得ることにより行われる。
本工程は、N保護C保護ペプチドを含有する有機層を、連続的流れでフロー・リアクター中に導入し、フロー・リアクター中での連続的流れで、N末端アミノ基の保護基を除去し、N末端アミノ基が保護されておらず、C末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているC保護ペプチド(N無保護C保護ペプチド)を得ることにより行われる。
N無保護C保護ペプチドは、本発明の工程(A)の実施により得たものであってもよく、また、非連続的なバッチ合成によって得たものでもよく、更には、別途、他の方法によって購入・入手したものであってもよい。なかでも、本発明の工程(A)の実施により得たものである場合が好ましい。
N保護C保護ペプチドのN末端保護基の除去(脱保護)は、ペプチド合成の分野で公知の方法に従い行うことができる。例えば、脱保護は、保護基がFmoc基の場合には、塩基で処理することにより行われ、保護基がBoc基の場合には、酸で処理することにより行われ、保護基がCbz基の場合には接触還元、等により行うことができる。
脱保護は、その反応に影響を及ぼさない溶媒中にN保護C保護ペプチドを溶解した溶液を適宜フロー・リアクター中へ導入することにより行われる。除去されるべき保護基の種類に応じて好適な脱保護のための試薬(有機塩基、酸、接触還元のための触媒、など)を反応に影響を及ぼさない溶媒中に溶解した溶液、もしくは、反応に影響を及ぼさない溶媒中に懸濁した懸濁液が、併せてフロー・リアクター中へ導入される。接触還元を行う場合には、水素ガスがさらにフロー・リアクター中へ導入される。
各反応成分のフロー・リアクター中への導入は、それぞれ別個に、同時に、もしくは任意の2以上の反応成分を適宜混合した後に、フロー・リアクター中に導入し、フロー・リアクター中の連続的流れで混合し、脱保護反応を進行させることにより行うことができる。
脱保護は、その反応に影響を及ぼさない溶媒中にN保護C保護ペプチドを溶解した溶液を適宜フロー・リアクター中へ導入することにより行われる。除去されるべき保護基の種類に応じて好適な脱保護のための試薬(有機塩基、酸、接触還元のための触媒、など)を反応に影響を及ぼさない溶媒中に溶解した溶液、もしくは、反応に影響を及ぼさない溶媒中に懸濁した懸濁液が、併せてフロー・リアクター中へ導入される。接触還元を行う場合には、水素ガスがさらにフロー・リアクター中へ導入される。
各反応成分のフロー・リアクター中への導入は、それぞれ別個に、同時に、もしくは任意の2以上の反応成分を適宜混合した後に、フロー・リアクター中に導入し、フロー・リアクター中の連続的流れで混合し、脱保護反応を進行させることにより行うことができる。
Fmoc基の除去に使用し得る有機塩基としては特に限定されないが、ジエチルアミン、ピペリジン、モルホリン等の2級アミン類、ジイソプロピルエチルアミン、ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN)等の3級アミン類が挙げられる。有機塩基の使用量は、前記N保護C保護ペプチド1モルに対し、例えば1~100モル、好ましくは1~10モルである。
より好ましくは、Fmoc基の除去は、ハロゲン系溶媒またはエーテル系溶媒中で、求核性のない有機塩基で処理することにより行われる。脱保護は、その反応に影響を及ぼさない溶媒中で行われる。
求核性のない塩基としては、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、および1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN)等が挙げられ、DBUおよびDBNが好ましく、DBUがより好ましい。求核性のない塩基の使用量は、反応基質(N-Fmoc保護C保護アミノ酸またはN-Fmoc保護C保護ペプチド)に対して、好ましくは0.8当量以上、より好ましくは1当量以上であり、好ましくは5当量以下、より好ましくは3当量以下である。
ハロゲン系溶媒またはエーテル系溶媒は、いずれも、2種以上の混合溶媒であってもよい。ハロゲン系溶媒またはエーテル系溶媒は、好ましくはクロロホルム、ジクロロメタン、テトラヒドロフラン(THF)またはシクロペンチルメチルエーテル(CPME)である。これらは、N,N-ジメチルホルムアミド(DMF)と混合して使用することができる。他に、溶媒として、炭酸プロピレンを使用することができ、炭酸プロピレンを使用する場合、N,N-ジメチルホルムアミド(DMF)やN-メチルピロリドン(NMP)との混合溶媒が好ましい。
上記のFmoc基の除去反応は、3-メルカプトプロピオン酸、チオリンゴ酸、システインの共存下に行うことがより好ましい。特に、チオリンゴ酸の共存下に行うことが好ましい。
N末端の一時保護基がFmoc基である場合には、脱保護に使用した過剰量の有機塩基が、場合により溶媒留去等の後処理中に反応生成物に対して悪影響を及ぼす可能性があるため、次の工程の前に、酸の添加による中和工程を組み込んでもよい。
Boc基の除去に使用し得る酸としては特に限定されないが、塩化水素、硫酸、硝酸等の鉱酸類、ギ酸、トリフルオロ酢酸(TFA)等のカルボン酸類、メタンスルホン酸、p-トルエンスルホン酸等のスルホン酸類等、またはこれらの混合物を用いることができる。混合物としては、例えば、臭化水素/酢酸、塩化水素/ジオキサン、塩化水素/酢酸等を挙げることができる。なかでも、水溶液ではない酸、例えば、非水系でギ酸またはメタンスルホン酸等を用いた場合には、例えば酸性条件下で加水分解を受けるカルボキシ基の保護基である擬似固相保護基を残しながら、選択的にBoc基を除去することも可能である。特に、メタンスルホン酸等の常温で液体であり、かつ水溶性のスルホン酸類は、非水系で用いた場合に、室温下で比較的少ない使用量で速やかに反応を進行させることができるため、好適である。酸の使用量は、前記N保護C保護アミノ酸またはN保護C保護ペプチド1モルに対し、例えば1~100モル、好ましくは1~10モルである。
Cbz基の除去に使用し得る触媒としては特に限定されないが、例えばパラジウムなどが挙げられる。触媒の使用量は、前記N保護C保護ペプチド100重量部に対し、例えば1重量部以上、好ましくは5重量部以上であり、例えば50重量部以下、好ましくは30重量部である。
反応に影響を及ぼさない溶媒としては、例えば、クロロホルム、ジクロロメタン、1,2-ジクロロエタン等のハロゲン系溶媒;トルエン、キシレン等の芳香族炭化水素類;ジエチルエーテル、シクロペンチルメチルエーテル(CPME)、テトラヒドロフラン(THF)、1,4-ジオキサン等のエーテル系溶媒;など、あるいはそれらの混合物が挙げられ、好ましくはクロロホルム、ジクロロメタンまたはテトラヒドロフラン(THF)である。
工程(2)におけるフロー・リアクターを使用した場合の各溶液の混合条件、流量(流速)、温度管理条件は適宜、適当な条件を選択できる。
溶液の混合条件は、T字型ミキサー、十字型ミキサーを使用することが好ましい。
流量(流速)は、配管により異なり、適宜、適当な条件を選択できる。
温度管理条件は、5~50℃が好ましい。
溶液の混合条件は、T字型ミキサー、十字型ミキサーを使用することが好ましい。
流量(流速)は、配管により異なり、適宜、適当な条件を選択できる。
温度管理条件は、5~50℃が好ましい。
[工程(B)について]
本工程は、N無保護C保護ペプチドを含む反応液と水および/または親水性有機溶媒を、それぞれ別個に、同時に、もしくは混合した後に、フロー・リアクター中に導入し、連続的流れで洗浄後、連続的流れで油水分離手段に付して「水層または親水性有機溶媒層」と有機層とを分液して、当該N無保護C保護ペプチドを含有する有機層を分層することにより行われる。これにより当該N無保護C保護ペプチドの精製と単離とを後続する工程に向けて効率的に行うことができる。
本工程は、N無保護C保護ペプチドを含む反応液と水および/または親水性有機溶媒を、それぞれ別個に、同時に、もしくは混合した後に、フロー・リアクター中に導入し、連続的流れで洗浄後、連続的流れで油水分離手段に付して「水層または親水性有機溶媒層」と有機層とを分液して、当該N無保護C保護ペプチドを含有する有機層を分層することにより行われる。これにより当該N無保護C保護ペプチドの精製と単離とを後続する工程に向けて効率的に行うことができる。
ここで、N無保護C保護ペプチドは、本発明の工程(2)の実施により得たものであってもよく、また、非連続的なバッチ合成によって得たものでもよく、更には、別途、他の方法によって購入・入手したものであってもよい。なかでも、本発明の工程(2)の実施により得たものである場合が好ましい。
抽出時点で未反応物や副生物を除去・洗浄するために、水および/親水性有機溶媒を使用することができる。水の代わりに、各種親水性有機溶媒を使用しても構わない。
水としては、水と炭酸ナトリウムもしくは炭酸カリウムとの混合溶液、または水と食塩との混合溶液も含まれる。
親水性有機溶媒としては、具体的には、アセトニトリル、プロピオニトリル等のニトリル類;アセトン、メチルエチルケトン、2-ブタノン等のケトン類;N,N-ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)等のアミド類;ジメチルスルホキシド(DMSO)等のスルホキシド類が挙げられる。溶解性を補助しつつ、分層性に影響を与えないという観点から、アセトニトリル、N,N-ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)が好ましい。
親水性有機溶媒のみを使用する場合、例えば、アセトニトリル、プロピオニトリル等のニトリル類、N,N-ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)等のアミド類が好ましく、特に、アセトニトリル、N,N-ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)が好ましい。この場合、親水性有機溶媒と混じり合わない有機溶媒(例えば、ヘキサン、ヘプタン、シクロヘキサン等の炭化水素類等;トルエン、キシレン等の芳香族炭化水素類;クロロホルム、ジクロロメタン等のハロゲン化炭化水素類)を反応溶媒に使用することで、親水性有機溶媒と有機層とを分液し、有機層を分層することができる。
水および親水性有機溶媒としては、水と親水性有機溶媒(アセトニトリル、N,N-ジメチルホルムアミド(DMF)、またはN-メチルピロリドン(NMP))との混合溶媒、「水と炭酸ナトリウムとの混合溶液」、「水と炭酸カリウムとの混合溶液」、もしくは「水と食塩との混合溶液」のいずれか、および親水性有機溶媒(アセトニトリル、N,N-ジメチルホルムアミド(DMF)、またはN-メチルピロリドン(NMP))との混合溶媒が好ましい。
親水性有機溶媒としては、具体的には、アセトニトリル、プロピオニトリル等のニトリル類;アセトン、メチルエチルケトン、2-ブタノン等のケトン類;N,N-ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)等のアミド類;ジメチルスルホキシド(DMSO)等のスルホキシド類が挙げられる。溶解性を補助しつつ、分層性に影響を与えないという観点から、アセトニトリル、N,N-ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)が好ましい。
親水性有機溶媒のみを使用する場合、例えば、アセトニトリル、プロピオニトリル等のニトリル類、N,N-ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)等のアミド類が好ましく、特に、アセトニトリル、N,N-ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)が好ましい。この場合、親水性有機溶媒と混じり合わない有機溶媒(例えば、ヘキサン、ヘプタン、シクロヘキサン等の炭化水素類等;トルエン、キシレン等の芳香族炭化水素類;クロロホルム、ジクロロメタン等のハロゲン化炭化水素類)を反応溶媒に使用することで、親水性有機溶媒と有機層とを分液し、有機層を分層することができる。
水および親水性有機溶媒としては、水と親水性有機溶媒(アセトニトリル、N,N-ジメチルホルムアミド(DMF)、またはN-メチルピロリドン(NMP))との混合溶媒、「水と炭酸ナトリウムとの混合溶液」、「水と炭酸カリウムとの混合溶液」、もしくは「水と食塩との混合溶液」のいずれか、および親水性有機溶媒(アセトニトリル、N,N-ジメチルホルムアミド(DMF)、またはN-メチルピロリドン(NMP))との混合溶媒が好ましい。
濃度条件としては、基質(N無保護C保護ペプチド)に対して2倍~100倍希釈が好ましい。
洗浄については、ミキシング方法や洗浄時間に関し、適宜、適当な条件を選択できる。塩基性での洗浄が好ましい。
本工程では、その洗浄効果を高めるために、複数回(例えば、2回)の洗浄を行うことができる。例えば、第一回の洗浄として、例えば、炭酸ナトリウム水溶液のような塩基性溶媒で洗浄を行った後、第二回の洗浄として、例えば、食塩水のような中性溶媒で洗浄を行うことできる。当業者は、製造されたペプチドの種類、使用された試薬の種類等に応じて、洗浄回数、洗浄溶媒等の洗浄条件を適宜選択することができる。
Fmoc基の除去、Boc基の除去またはCbz基の除去の後、塩基処理を行うことは、次工程の縮合反応が進行しやすくするため、好ましい。塩基処理としては、ペプチドのN末端アミノ基をフリーにできればよく、具体的には、炭酸ナトリウム水溶液や有機塩基での洗浄が挙げられる。
油水分離手段は、フィルターを含む構成からなる連続的分層手段やGravityタイプの連続的分層手段が挙げられる。ここで、フィルターは適宜、任意のものを選択でき、例えば、メンブランフィルターなどのフィルターを含む構成からなる手段が挙げられる。例えば、Zaiput社の液-液セパレータシステム等を用いることができる。また、Gravityタイプの連続的分層手段は、重力を利用した分層手段であり、分液ロートを連続的にしたもので、分層した最下層と最上層から少しずつ液を抜いていく手段が挙げられる。Gravity Settlerを含む構成からなる手段、傾斜板を含む構成からなる手段等も挙げられる。例えば、Parkson社のLamella Gravity Settler等が挙げられる。
工程(B)におけるフロー・リアクターを使用した場合の各溶液の混合条件、流量(流速)、温度管理条件は適宜、適当な条件を選択できる。限定される訳ではないが、N無保護C保護ペプチドを含む反応液と水および/または親水性有機溶媒のフロー・リアクター中への導入後に、スラグ流(有機層と水層が交互に繰り返される流れ)が形成される条件が特に好ましい。当該条件は、当業者であれば適宜決定することができる。
工程(B)で得られたN無保護C保護ペプチドは、さらに工程(1)での「C末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、当該保護基の少なくとも一つが擬似固相保護基であるC保護ペプチド(C保護ペプチド)」として用いて、本発明の工程(1)、(A)、(2)および(B)のサイクルに付し、このサイクルを適宜繰り返すことによりそのペプチド鎖を伸長することができる。また、工程(B)で得られたN無保護C保護ペプチドが目的とするペプチド配列を持つ場合には、C保護基や側鎖官能基の保護基をさらに除去することにより、最終産物であるペプチドを得ることができる。これらのいずれの実施態様も、本発明の範囲に包含されるものである。この脱保護の工程は、自体公知の方法、もしくは本明細書中で記載された保護基の除去方法を参照することにより適宜実施することができる。
本発明を適用する場合、その目的とするペプチド鎖長(アミノ酸残基数)に特に上限はないが、このアミノ酸残基数は、好ましくは100以下、より好ましくは50以下、さらに好ましくは30以下、とりわけ好ましくは20以下である。また、下限も特にないが、このアミノ酸残基数は5以上が好ましく、より好ましくは6以上である。
以上、本発明の工程(1)、(A)、(2)および(B)の各実施態様について詳述した。工程(1)、(A)、(2)および(B)は、フロー・リアクターを用いて連続的に(連続的流れで)実施することができる。このような態様が、好ましい実施態様のひとつである。但し、必ずしも工程(1)→工程(A)→工程(2)→工程(B)の順に実施する必要はなく、用いられる原料化合物に応じて適宜中間の工程(例えば、工程(2))から開始することも可能である。この場合、当該原料化合物は、例えば、バッチ合成により得たものであってもよく、必ずしも本発明の工程の実施により入手されたものでなくてもよい。このような別の実施態様も本発明の範囲内に包含される。
(擬似固相保護基の除去)
擬似固相保護基の除去は、上記工程(A)または上記工程(B)の後に行われる。これによりペプチドのC末端が-COOH(例えば、前記式(I)または式(II)のYが、ヒドロキシ基またはハロゲン原子の場合)、または-CONHR(例えば、前記式(I)または式(II)のYがNHR基の場合)である最終目的物であるペプチドが得られる。
擬似固相保護基の除去は、上記工程(A)または上記工程(B)の後に行われる。これによりペプチドのC末端が-COOH(例えば、前記式(I)または式(II)のYが、ヒドロキシ基またはハロゲン原子の場合)、または-CONHR(例えば、前記式(I)または式(II)のYがNHR基の場合)である最終目的物であるペプチドが得られる。
特開2000-44493号公報、国際公開第2006/104166号、国際公開第2007/034812号、国際公開第2007/122847号、国際公開第2010/113939号、国際公開第2010/104169号、国際公開第2011/078295号、国際公開第2012/029794号、国際公開第2016/140232号、国際公開第2003/018188号、国際公開第2017/038650号、国際公開第2019/009317号等に記載される擬似固相保護基のうち、2,4-O-アルキル型又は2,4,6-O-アルキル型の擬似固相保護基は、擬似固相保護基のみを選択的に除去することができる。
擬似固相保護基の選択的な脱保護に使用する試薬としては、酸(例えば、トリフルオロ酢酸(以下、TFAという。)、塩酸、硫酸、メタンスルホン酸、p-トルエンスルホン酸)、フッ素置換アルコール(例えば、トリフルオロエタノール(以下、TFEという。)、ヘキサフルオロイソプロパノール(以下、HFIPという。))等が挙げられ、中でも、TFA、TFE、HFIPが好ましい。脱保護に使用する溶媒としては、例えば、クロロホルム、ジクロロメタン、1,2-ジクロロエタンまたはこれらの混合溶媒等が挙げられる。擬似固相保護基の脱保護に使用する酸の濃度は、弱酸処理となる、例えば、0.1w/v%~5w/v%であり、擬似固相保護基の脱保護に使用するフッ素置換アルコールの濃度は、例えば、10w/v%~100w/v%である。
擬似固相保護基の選択的な脱保護に使用する試薬としては、酸(例えば、トリフルオロ酢酸(以下、TFAという。)、塩酸、硫酸、メタンスルホン酸、p-トルエンスルホン酸)、フッ素置換アルコール(例えば、トリフルオロエタノール(以下、TFEという。)、ヘキサフルオロイソプロパノール(以下、HFIPという。))等が挙げられ、中でも、TFA、TFE、HFIPが好ましい。脱保護に使用する溶媒としては、例えば、クロロホルム、ジクロロメタン、1,2-ジクロロエタンまたはこれらの混合溶媒等が挙げられる。擬似固相保護基の脱保護に使用する酸の濃度は、弱酸処理となる、例えば、0.1w/v%~5w/v%であり、擬似固相保護基の脱保護に使用するフッ素置換アルコールの濃度は、例えば、10w/v%~100w/v%である。
一方、前記式(I)または前記式(II)のYが、ヒドロキシ基、-NHR基、またはハロゲン原子である芳香族化合物(擬似固相保護基を有する化合物)由来の擬似固相保護基を、ペプチド中の他の側鎖の保護基と同時に除去することも可能である。その場合には、当該分野、特にペプチド合成、において行われている慣用の方法が用いられるが、酸などを加える方法が好適に採用される。酸として、TFA、塩酸、硫酸、メタンスルホン酸、p-トルエンスルホン酸、等が使用される。中でもTFAが特に好ましい。酸の使用量は、用いる酸の種類によって適宜設定され、擬似固相保護基を除去するのに適当な量が用いられる。酸の使用量は、N保護C保護ペプチドまたはN無保護C保護ペプチド1モルに対して、好ましくは3モル以上、より好ましくは5モル以上であり、好ましくは100モル以下、より好ましくは50モル以下である。これらの使用とともに、更なる強酸源として、トリフルオロメタンスルホン酸や、トリフルオロメタンスルホン酸トリメチルシリル、BF3・エーテラートなどを加えることもできる。
側鎖官能基の保護基は、その種類に応じて、当技術分野で通常行われる方法もしくは本明細書に記載された保護基の除去方法に準じて適宜除去することができる。
反応温度は、反応が進行しさえすれば特に限定されないが、0℃~50℃が好ましく、0℃~30℃がより好ましい。反応時間は、例えば0.5~24時間である。
[工程(A)/工程(B)の独立した活用について]
本発明は、上記で詳述された工程(1)、(A)、(2)および(B)を実施することを含むペプチドの製造方法であるが、必要により、工程(1)に対応する縮合工程や工程(2)に対応する脱保護工程を従来のバッチ法条件下で行った後、得られた生成物を含む反応液の精製/分液工程を本発明の工程(A)や工程(B)の手法に付して行うことにより、N保護C保護ペプチドまたはN無保護C保護ペプチドを効率的に精製・単離することができ、別の反応工程に効率よく付すことができる。このように本発明の工程(A)および/または工程(B)を独立して活用することを含むペプチドの製造方法も、本発明の範囲に包含されるものである。
本発明は、上記で詳述された工程(1)、(A)、(2)および(B)を実施することを含むペプチドの製造方法であるが、必要により、工程(1)に対応する縮合工程や工程(2)に対応する脱保護工程を従来のバッチ法条件下で行った後、得られた生成物を含む反応液の精製/分液工程を本発明の工程(A)や工程(B)の手法に付して行うことにより、N保護C保護ペプチドまたはN無保護C保護ペプチドを効率的に精製・単離することができ、別の反応工程に効率よく付すことができる。このように本発明の工程(A)および/または工程(B)を独立して活用することを含むペプチドの製造方法も、本発明の範囲に包含されるものである。
以下、実施例に沿って本発明をさらに詳細に説明するが、これら実施例は本発明の範囲を何ら限定するものではない。また、本発明において使用する試薬や装置、材料は特に言及されない限り、商業的に入手可能である。また、本明細書において、アミノ酸等を略号で表示する場合、各表示は、IUPAC-IUB Commission on Biochemical Nomenclatureによる略号あるいは当該分野における慣用略号に基づくものである。
製造例1:擬似固相保護基との反応
Fmoc-Leu-OHを原料として用い、4’、4’-ビス(2,3-ジヒドロフィチルオキシ)フェニル)メチルアミン(以下、NH2-Dpm(OPhy)と表記する)を擬似固相保護基として用い、常法(国際公開第2010/113939号、国際公開第2012/029794号参照)に従って、Fmoc-Leu-NH-Dpm(OPhy)を合成し、さらに、塩基を用いて脱Fmoc化反応を行い、H-Leu-NH-Dpm(OPhy)を得た。
Fmoc-Leu-OHを原料として用い、4’、4’-ビス(2,3-ジヒドロフィチルオキシ)フェニル)メチルアミン(以下、NH2-Dpm(OPhy)と表記する)を擬似固相保護基として用い、常法(国際公開第2010/113939号、国際公開第2012/029794号参照)に従って、Fmoc-Leu-NH-Dpm(OPhy)を合成し、さらに、塩基を用いて脱Fmoc化反応を行い、H-Leu-NH-Dpm(OPhy)を得た。
実施例1: 2残基ペプチド(H-Tyr(tBu)-Leu-NH-Dpm(OPhy))の合成
使用装置(フロー・リアクター、ミキサー、ポンプ、油水分離手段)
フロー・リアクター: PFA/PTFEチューブ(内径 1.0mmもしくは1.6mm) [Swagelok社]
ミキサー: T字型ミキサー ユニオンティー SS-100-3 (外径1/16インチ)もしくはSS-200-3 (外径1/8インチ) [Swagelok社]
ポンプ: プランジャーポンプ YMCU-22[YMC社]、シリンジポンプ YSP-301[YMC社]、またはダイヤフラムポンプ Q-10-6T-P-M49 [タクミナ社]
油水分離膜装置: SEP-10 [Zaiput社]
油水分離膜: OB-2000-S-10(孔径1.0μmの疎水性膜)[Zaiput社]
フロー・リアクター: PFA/PTFEチューブ(内径 1.0mmもしくは1.6mm) [Swagelok社]
ミキサー: T字型ミキサー ユニオンティー SS-100-3 (外径1/16インチ)もしくはSS-200-3 (外径1/8インチ) [Swagelok社]
ポンプ: プランジャーポンプ YMCU-22[YMC社]、シリンジポンプ YSP-301[YMC社]、またはダイヤフラムポンプ Q-10-6T-P-M49 [タクミナ社]
油水分離膜装置: SEP-10 [Zaiput社]
油水分離膜: OB-2000-S-10(孔径1.0μmの疎水性膜)[Zaiput社]
工程(1):縮合反応
製造例1で得られた0.10mmol/mlのH-Leu-NH-Dpm(OPhy)を含むクロロホルム溶液(溶液-1)と、0.11mmol/mlのFmoc-Tyr(tBu)-OHと0.04mmol/mlの1-ヒドロキシベンゾトリアゾール(HOBt)無水物を含むジメチルホルムアミド(DMF)溶液(溶液-2)を、ポンプ(プランジャーポンプYMCU-22(シリンジポンプYSP-301やダイヤフラムポンプQ-10-6T-P-M49でも可))を用いてそれぞれ0.20ml/minの流速で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した。0.05mmol/mlのN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC・HCl)を含むクロロホルム溶液(溶液-3)を0.40ml/minの流速で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて溶液-1,2の混合溶液と混合させた後、PFAチューブ(内径1.0mm,長さ10m)中で10min反応させ、Fmoc-Tyr(tBu)-Leu-NH-Dpm(OPhy)溶液を得た。
製造例1で得られた0.10mmol/mlのH-Leu-NH-Dpm(OPhy)を含むクロロホルム溶液(溶液-1)と、0.11mmol/mlのFmoc-Tyr(tBu)-OHと0.04mmol/mlの1-ヒドロキシベンゾトリアゾール(HOBt)無水物を含むジメチルホルムアミド(DMF)溶液(溶液-2)を、ポンプ(プランジャーポンプYMCU-22(シリンジポンプYSP-301やダイヤフラムポンプQ-10-6T-P-M49でも可))を用いてそれぞれ0.20ml/minの流速で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した。0.05mmol/mlのN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC・HCl)を含むクロロホルム溶液(溶液-3)を0.40ml/minの流速で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて溶液-1,2の混合溶液と混合させた後、PFAチューブ(内径1.0mm,長さ10m)中で10min反応させ、Fmoc-Tyr(tBu)-Leu-NH-Dpm(OPhy)溶液を得た。
工程(A):縮合反応後の抽出
上記工程(1)で得られたFmoc-Tyr(tBu)-Leu-NH-Dpm(OPhy)溶液を流速0.25ml/min、20wt%NaCl水溶液を流速0.17ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ2m)中を10min通液させて縮合反応で残存したEDC・HClを失活、水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
上記工程(1)で得られたFmoc-Tyr(tBu)-Leu-NH-Dpm(OPhy)溶液を流速0.25ml/min、20wt%NaCl水溶液を流速0.17ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ2m)中を10min通液させて縮合反応で残存したEDC・HClを失活、水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
工程(2):脱Fmoc化反応
上記工程(A)で得られたFmoc-Tyr(tBu)-Leu-NH-Dpm(OPhy)を0.10mmol/ml含む有機層(溶液-1)を流速0.56ml/min、チオリンゴ酸を1.10mmol/ml,1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を3.30mmol/ml含むDMF溶液(溶液-2)を流速0.20ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合させた。混合後の溶液をPFAチューブ(内径1.0mm,長さ10m)中で10min反応させ、H-Tyr(tBu)-Leu-NH-Dpm(OPhy)溶液を得た。反応に際し生じるジベンゾフルベン(DBF)については、チオリンゴ酸と反応させてフルベン付加体へと変換させた。
上記工程(A)で得られたFmoc-Tyr(tBu)-Leu-NH-Dpm(OPhy)を0.10mmol/ml含む有機層(溶液-1)を流速0.56ml/min、チオリンゴ酸を1.10mmol/ml,1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を3.30mmol/ml含むDMF溶液(溶液-2)を流速0.20ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合させた。混合後の溶液をPFAチューブ(内径1.0mm,長さ10m)中で10min反応させ、H-Tyr(tBu)-Leu-NH-Dpm(OPhy)溶液を得た。反応に際し生じるジベンゾフルベン(DBF)については、チオリンゴ酸と反応させてフルベン付加体へと変換させた。
工程(B)-1:脱Fmoc化反応後の炭酸ナトリウム水溶液による洗浄
上記工程(2)で得られたH-Tyr(tBu)-Leu-NH-Dpm(OPhy)を0.10mmol/ml含むクロロホルム溶液(溶液-1)を流速0.34ml/min、酢酸を0.33mmol/ml含む5.0wt%Na2CO3水溶液(溶液-2)を流速0.37ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ2m)中を6min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
上記工程(2)で得られたH-Tyr(tBu)-Leu-NH-Dpm(OPhy)を0.10mmol/ml含むクロロホルム溶液(溶液-1)を流速0.34ml/min、酢酸を0.33mmol/ml含む5.0wt%Na2CO3水溶液(溶液-2)を流速0.37ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ2m)中を6min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
工程(B)-2:炭酸ナトリウム水溶液洗浄後の塩化ナトリウム水溶液による洗浄
上記工程(B)-1で得られたH-Tyr(tBu)-Leu-NH-Dpm(OPhy)溶液(溶液-1)を流速0.40ml/min、20wt%NaCl水溶液(溶液-2)を流速0.27ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ2m)中を6min通液させて上記工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
上記工程(B)-1で得られたH-Tyr(tBu)-Leu-NH-Dpm(OPhy)溶液(溶液-1)を流速0.40ml/min、20wt%NaCl水溶液(溶液-2)を流速0.27ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ2m)中を6min通液させて上記工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
実施例2: 6残基ペプチド(H-Ile-Pro-Glu(OtBu)-Glu(OtBu)-Tyr(tBu)-Leu-NH-Dpm(OPhy))の合成
使用装置(フロー・マイクロリアクター、コイルチューブリアクター、チューブ、ミキサー、油水分離手段)
フロー・マイクロリアクター: R2 Plus [Vapourtec社]
コイルチューブリアクター: コイルチューブリアクター(PFA素材、外径1/8インチ、内径1/16インチ、容量5mlもしくは10ml) [Vapourtec社]もしくはコイルチューブリアクター(PFA素材、外径1/8インチ、内径1/16インチ、容量5mlもしくは10ml)[Idex社]
チューブ: チューブ(PFA素材、外径1/8インチ、内径0.020インチ)[Idex社]もしくはチューブ(PFA素材、外径1/8インチ、内径1/16インチ)[Idex社]
ミキサー: T字型ミキサー(ETFE(エチレンとテトラフルオロエチレンの共重合体)素材、内径0.020インチ)[Idex社]、十字型ミキサー(ETFE素材、内径0.020インチ)[Idex社]、もしくはT字型ミキサー(ステンレス素材、外径1/8インチ) [Swagelok社]
油水分離膜装置: SEP-10[Zaiput社]
油水分離膜: 孔径1.0μmもしくは0.5μmの疎水性膜[Zaiput社]
使用装置(フロー・マイクロリアクター、コイルチューブリアクター、チューブ、ミキサー、油水分離手段)
フロー・マイクロリアクター: R2 Plus [Vapourtec社]
コイルチューブリアクター: コイルチューブリアクター(PFA素材、外径1/8インチ、内径1/16インチ、容量5mlもしくは10ml) [Vapourtec社]もしくはコイルチューブリアクター(PFA素材、外径1/8インチ、内径1/16インチ、容量5mlもしくは10ml)[Idex社]
チューブ: チューブ(PFA素材、外径1/8インチ、内径0.020インチ)[Idex社]もしくはチューブ(PFA素材、外径1/8インチ、内径1/16インチ)[Idex社]
ミキサー: T字型ミキサー(ETFE(エチレンとテトラフルオロエチレンの共重合体)素材、内径0.020インチ)[Idex社]、十字型ミキサー(ETFE素材、内径0.020インチ)[Idex社]、もしくはT字型ミキサー(ステンレス素材、外径1/8インチ) [Swagelok社]
油水分離膜装置: SEP-10[Zaiput社]
油水分離膜: 孔径1.0μmもしくは0.5μmの疎水性膜[Zaiput社]
工程(2):脱Fmoc化反応
製造例1で得られたFmoc-Leu-NH-Dpm(OPhy)2.2gをクロロホルム37mlに溶解させた溶液を流速0.83ml/minでT字型ミキサー(Idex社製、ETFE素材、内径0.020インチ)の一方から導入させると同時に、DMFにDBUとチオリンゴ酸をともに溶解した溶液(それぞれ2.4mol/l、0.79mol/l)をT字型ミキサーのもう一方から流速0.28ml/minで導入して2液を室温にて混合させた後、T字型ミキサーの出口よりコイルチューブリアクター(Vapourtec社製、PFA素材、容量10ml)に室温にて通して脱Fmoc化反応を行った。反応混合液はコイルチューブリアクター出口から次のT字型ミキサー(Idex社製、ETFE素材、内径0.020インチ)の一方に導入されると同時に、もう一方から酢酸のクロロホルム溶液(2.1mol/l)を流速0.093ml/minで導入し、室温にて2液を混合させた後、T字型ミキサーの出口よりコイルチューブリアクター(Vapourtec社製、PFA素材、容量5ml)に室温にて通して脱Fmoc反応のクエンチを行った。
製造例1で得られたFmoc-Leu-NH-Dpm(OPhy)2.2gをクロロホルム37mlに溶解させた溶液を流速0.83ml/minでT字型ミキサー(Idex社製、ETFE素材、内径0.020インチ)の一方から導入させると同時に、DMFにDBUとチオリンゴ酸をともに溶解した溶液(それぞれ2.4mol/l、0.79mol/l)をT字型ミキサーのもう一方から流速0.28ml/minで導入して2液を室温にて混合させた後、T字型ミキサーの出口よりコイルチューブリアクター(Vapourtec社製、PFA素材、容量10ml)に室温にて通して脱Fmoc化反応を行った。反応混合液はコイルチューブリアクター出口から次のT字型ミキサー(Idex社製、ETFE素材、内径0.020インチ)の一方に導入されると同時に、もう一方から酢酸のクロロホルム溶液(2.1mol/l)を流速0.093ml/minで導入し、室温にて2液を混合させた後、T字型ミキサーの出口よりコイルチューブリアクター(Vapourtec社製、PFA素材、容量5ml)に室温にて通して脱Fmoc反応のクエンチを行った。
工程(B)-1:脱Fmoc化反応後の炭酸ナトリウム水溶液による洗浄
上記工程(2)で得られたクエンチされた混合液はコイルチューブリアクター出口からT字型ミキサー(Swagelok社製、ステンレス素材、外径1/8インチ)の一方に導入されると同時に、もう一方から7.5w/w%のNa2CO3溶液を流速0.80ml/minで導入し、室温にて2液を混合させた後、T字型ミキサーの出口よりコイルチューブリアクター(Idex社製のチューブ、PFA素材、外径1/16インチ、内径0.020インチ、容量10ml)に室温にて通して洗浄操作を行った。コイルチューブリアクターの出口にZaiput社製SEP-10にZaiput社製の疎水性膜(孔径1.0μm)を設置した分液装置を設け、洗浄混合液を通液させた。分液装置からの排出液は有機層と水層に分離しており、水層はメスシリンダーに採取した(54ml)。
上記工程(2)で得られたクエンチされた混合液はコイルチューブリアクター出口からT字型ミキサー(Swagelok社製、ステンレス素材、外径1/8インチ)の一方に導入されると同時に、もう一方から7.5w/w%のNa2CO3溶液を流速0.80ml/minで導入し、室温にて2液を混合させた後、T字型ミキサーの出口よりコイルチューブリアクター(Idex社製のチューブ、PFA素材、外径1/16インチ、内径0.020インチ、容量10ml)に室温にて通して洗浄操作を行った。コイルチューブリアクターの出口にZaiput社製SEP-10にZaiput社製の疎水性膜(孔径1.0μm)を設置した分液装置を設け、洗浄混合液を通液させた。分液装置からの排出液は有機層と水層に分離しており、水層はメスシリンダーに採取した(54ml)。
工程(B)-2:炭酸ナトリウム水溶液洗浄後の塩化ナトリウム水溶液による洗浄
上記工程(B)-1で得られた有機層はT字型ミキサー(Swagelok社製、ステンレス素材、外径1/8インチ)の一方に導入させた。T字型ミキサーのもう一方からは20w/w%NaCl水溶液とDMFを6:4で混合した溶液を流速0.88ml/minで導入し、室温にて2液を混合させた後、T字型ミキサーの出口よりコイルチューブリアクター(Idex社製のチューブ、PFA素材、外径1/16インチ、内径0.020インチ、容量5ml)に室温にて通して洗浄操作を行った。コイルチューブリアクターの出口にZaiput社製SEP-10にZaiput社製の疎水性膜(孔径0.5μm)を設置した分液装置を設け、洗浄混合液を通液させた。分液装置からの排出液は有機層と水層に分離しており、それぞれをメスシリンダーに採取し、H-Leu-NH-Dpm(OPhy)が含まれた有機層を68mlと水層46mlを取得した。
上記工程(B)-1で得られた有機層はT字型ミキサー(Swagelok社製、ステンレス素材、外径1/8インチ)の一方に導入させた。T字型ミキサーのもう一方からは20w/w%NaCl水溶液とDMFを6:4で混合した溶液を流速0.88ml/minで導入し、室温にて2液を混合させた後、T字型ミキサーの出口よりコイルチューブリアクター(Idex社製のチューブ、PFA素材、外径1/16インチ、内径0.020インチ、容量5ml)に室温にて通して洗浄操作を行った。コイルチューブリアクターの出口にZaiput社製SEP-10にZaiput社製の疎水性膜(孔径0.5μm)を設置した分液装置を設け、洗浄混合液を通液させた。分液装置からの排出液は有機層と水層に分離しており、それぞれをメスシリンダーに採取し、H-Leu-NH-Dpm(OPhy)が含まれた有機層を68mlと水層46mlを取得した。
工程(1):縮合反応
上記工程(B)-2で得られたH-Leu-NH-Dpm(OPhy)有機層25mlを流速0.68ml/minで十字型ミキサー(Idex社製、ETFE素材、内径0.020インチ)の一方から導入させると同時に、DMFにFmoc-Tyr(tBu)-OHとHOBtをともに溶解した溶液(それぞれ0.50mol/l、0.10mol/l)を流速0.065ml/minでもう一方から導入させ、さらにEDC・HClのクロロホルム溶液(0.033mol/l)を流速0.042ml/minで残る一方から導入させ3液を室温にて混合させた後、十字型ミキサーの出口より40℃に加熱したコイルチューブリアクター(Vapourtec社製、PFA素材、容量10ml)に通して縮合反応を行った。
上記工程(B)-2で得られたH-Leu-NH-Dpm(OPhy)有機層25mlを流速0.68ml/minで十字型ミキサー(Idex社製、ETFE素材、内径0.020インチ)の一方から導入させると同時に、DMFにFmoc-Tyr(tBu)-OHとHOBtをともに溶解した溶液(それぞれ0.50mol/l、0.10mol/l)を流速0.065ml/minでもう一方から導入させ、さらにEDC・HClのクロロホルム溶液(0.033mol/l)を流速0.042ml/minで残る一方から導入させ3液を室温にて混合させた後、十字型ミキサーの出口より40℃に加熱したコイルチューブリアクター(Vapourtec社製、PFA素材、容量10ml)に通して縮合反応を行った。
工程(A):縮合反応後の抽出
上記工程(1)で得られた反応混合液はコイルチューブリアクターの出口から次のT字型ミキサー(Idex社製、ETFE素材、内径0.020インチ)の一方に導入されると同時に、もう一方から20w/w%NaCl水溶液を流速0.12ml/minで導入し、室温にて2液を混合させた後、T字型ミキサーの出口よりコイルチューブリアクター(Vapourtec社製、PFA素材、容量5ml)に室温にて通して洗浄操作を行った。コイルチューブリアクターの出口にZaiput社製SEP-10にZaiput社製の疎水性膜(孔径1.0μm)を設置した分液装置を設け、洗浄混合液を通液させた。分液装置からの排出液は有機層と水層に分離しており、それぞれをメスシリンダーに採取し、Fmoc-Tyr(tBu)-Leu-NH-Dpm(OPhy)が含まれた有機層を44mlと水層45mlを取得した。
上記工程(1)で得られた反応混合液はコイルチューブリアクターの出口から次のT字型ミキサー(Idex社製、ETFE素材、内径0.020インチ)の一方に導入されると同時に、もう一方から20w/w%NaCl水溶液を流速0.12ml/minで導入し、室温にて2液を混合させた後、T字型ミキサーの出口よりコイルチューブリアクター(Vapourtec社製、PFA素材、容量5ml)に室温にて通して洗浄操作を行った。コイルチューブリアクターの出口にZaiput社製SEP-10にZaiput社製の疎水性膜(孔径1.0μm)を設置した分液装置を設け、洗浄混合液を通液させた。分液装置からの排出液は有機層と水層に分離しており、それぞれをメスシリンダーに採取し、Fmoc-Tyr(tBu)-Leu-NH-Dpm(OPhy)が含まれた有機層を44mlと水層45mlを取得した。
上記で得られたFmoc-Tyr(tBu)-Leu-NH-Dpm(OPhy)に対し、更に、脱Fmoc化反応の工程(2)および工程(B)-1、工程(B)-2を行い、H-Tyr(tBu)-Leu-NH-Dpm(OPhy)を取得し、さらに、上記工程(1)、(A)、(2)、(B)-1および(B)-2を繰り返し、その際、N保護アミノ酸として、Fmoc-Glu(OtBu)-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Pro-OH、Fmoc-Ile-OHを順次使用して、H-Ile-Pro-Glu(OtBu)-Glu(OtBu)-Tyr(tBu)-Leu-NH-Dpm(OPhy)の保護ペプチドを得た。
LC/MS M+ m/z 1688.3
LC/MS M+ m/z 1688.3
実施例3: 5残基ペプチド(H-Glu(OtBu)-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy))の合成
使用装置(フロー・リアクター、ミキサー、ポンプ、油水分離手段)
実施例1と同じ装置を使用した。
実施例1と同じ装置を使用した。
工程(1):縮合反応(2残基ペプチド)
製造例1で得られた0.10mmol/mlのH-Leu-NH-Dpm(OPhy)を含むクロロホルム溶液(溶液-1)と0.35mmol/mlのFmoc-Lys(Boc)-OHと0.09mmol/mlの1-ヒドロキシベンゾトリアゾール(HOBt)無水物を含むDMF溶液(溶液-2)を、ポンプ(プランジャーポンプ YMCU-22(シリンジポンプ YSP-301やダイヤフラムポンプ Q-10-6T-P-M49でも可))を用いてそれぞれ0.50ml/min,0.21ml/minの流速で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した。0.54mmol/mlのN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC・HCl)を含むクロロホルム溶液(溶液-3)を0.13ml/minの流速で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて溶液-1,2の混合溶液と混合させた後、PFAチューブ(内径1.0mm)中で反応させ、Fmoc-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液を得た。
製造例1で得られた0.10mmol/mlのH-Leu-NH-Dpm(OPhy)を含むクロロホルム溶液(溶液-1)と0.35mmol/mlのFmoc-Lys(Boc)-OHと0.09mmol/mlの1-ヒドロキシベンゾトリアゾール(HOBt)無水物を含むDMF溶液(溶液-2)を、ポンプ(プランジャーポンプ YMCU-22(シリンジポンプ YSP-301やダイヤフラムポンプ Q-10-6T-P-M49でも可))を用いてそれぞれ0.50ml/min,0.21ml/minの流速で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した。0.54mmol/mlのN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC・HCl)を含むクロロホルム溶液(溶液-3)を0.13ml/minの流速で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて溶液-1,2の混合溶液と混合させた後、PFAチューブ(内径1.0mm)中で反応させ、Fmoc-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液を得た。
工程(A):縮合反応後の抽出(2残基ペプチド)
上記工程(1)で得られたFmoc-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液を流速0.84ml/min、20wt%NaCl水溶液を流速0.56ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm)中を通液させて縮合反応で残存したN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC・HCl)を失活、水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
上記工程(1)で得られたFmoc-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液を流速0.84ml/min、20wt%NaCl水溶液を流速0.56ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm)中を通液させて縮合反応で残存したN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC・HCl)を失活、水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
工程(2):脱Fmoc化反応(2残基ペプチド)
上記工程(A)で得られたFmoc-Lys(Boc)-Leu-NH-Dpm(OPhy)を0.06mmol/ml含む有機層(溶液-1)を流速0.73ml/min、チオリンゴ酸を0.67mmol/ml,1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を2.02mmol/ml含むDMF溶液(溶液-2)を流速0.35ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合させた。混合後の溶液をPFAチューブ(内径1.0mm)中で反応させ、H-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液を得た。
上記工程(A)で得られたFmoc-Lys(Boc)-Leu-NH-Dpm(OPhy)を0.06mmol/ml含む有機層(溶液-1)を流速0.73ml/min、チオリンゴ酸を0.67mmol/ml,1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を2.02mmol/ml含むDMF溶液(溶液-2)を流速0.35ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合させた。混合後の溶液をPFAチューブ(内径1.0mm)中で反応させ、H-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液を得た。
工程(B)-1:脱Fmoc化反応後の炭酸ナトリウム水溶液による洗浄(2残基ペプチド)
上記工程(2)で得られたH-Lys(Boc)-Leu-NH-Dpm(OPhy)を含むクロロホルム溶液(溶液-1)を流速1.08ml/min、酢酸を0.26mmol/ml含む5.0wt%Na2CO3水溶液(溶液-2)を流速0.80ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm)中を通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
上記工程(2)で得られたH-Lys(Boc)-Leu-NH-Dpm(OPhy)を含むクロロホルム溶液(溶液-1)を流速1.08ml/min、酢酸を0.26mmol/ml含む5.0wt%Na2CO3水溶液(溶液-2)を流速0.80ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm)中を通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
工程(B)-2:炭酸ナトリウム水溶液洗浄後の塩化ナトリウム水溶液による洗浄(2残基ペプチド)
上記工程(B)-1で得られたH-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液(溶液-1)を流速1.08ml/min、20wt%NaCl水溶液(溶液-2)を流速0.88ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm)中を通液させて上記工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
上記工程(B)-1で得られたH-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液(溶液-1)を流速1.08ml/min、20wt%NaCl水溶液(溶液-2)を流速0.88ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm)中を通液させて上記工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
工程(1):縮合反応(3残基ペプチド)
上記工程(B)-2で得られた0.05mmol/mlのH-Lys(Boc)-Leu-NH-Dpm(OPhy)を含むクロロホルム溶液(溶液-1)と、0.18mmol/mlのFmoc-Glu(OtBu)-OHと0.05mmol/mlの1-ヒドロキシベンゾトリアゾール(HOBt)無水物を含むジメチルホルムアミド(DMF)溶液(溶液-2)を、ポンプ(プランジャーポンプ YMCU-22(シリンジポンプ YSP-301やダイヤフラムポンプ Q-10-6T-P-M49でも可))を用いてそれぞれ0.50ml/min,0.21ml/minの流速で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した。0.27mmol/mlのN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC・HCl)を含むクロロホルム溶液(溶液-3)を0.13ml/minの流速で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて溶液-1,2の混合溶液と混合させた後、PFAチューブ(内径1.0mm)中で反応させ、Fmoc-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液を得た。
上記工程(B)-2で得られた0.05mmol/mlのH-Lys(Boc)-Leu-NH-Dpm(OPhy)を含むクロロホルム溶液(溶液-1)と、0.18mmol/mlのFmoc-Glu(OtBu)-OHと0.05mmol/mlの1-ヒドロキシベンゾトリアゾール(HOBt)無水物を含むジメチルホルムアミド(DMF)溶液(溶液-2)を、ポンプ(プランジャーポンプ YMCU-22(シリンジポンプ YSP-301やダイヤフラムポンプ Q-10-6T-P-M49でも可))を用いてそれぞれ0.50ml/min,0.21ml/minの流速で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した。0.27mmol/mlのN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC・HCl)を含むクロロホルム溶液(溶液-3)を0.13ml/minの流速で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて溶液-1,2の混合溶液と混合させた後、PFAチューブ(内径1.0mm)中で反応させ、Fmoc-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液を得た。
工程(A):縮合反応後の抽出(3残基ペプチド)
上記工程(1)で得られたFmoc-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液を流速0.84ml/min、20wt%NaCl水溶液を流速0.56ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm)中を通液させて縮合反応で残存したEDC・HClを失活、水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
上記工程(1)で得られたFmoc-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液を流速0.84ml/min、20wt%NaCl水溶液を流速0.56ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm)中を通液させて縮合反応で残存したEDC・HClを失活、水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
工程(2):脱Fmoc化反応(3残基ペプチド)
上記工程(A)で得られたFmoc-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)を0.03mmol/ml含む有機層(溶液-1)を流速0.73ml/min、チオリンゴ酸を0.26mmol/ml,1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を0.79mmol/ml含むDMF溶液(溶液-2)を流速0.35ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合させた。混合後の溶液をPFAチューブ(内径1.0mm)中で反応させ、H-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液を得た。
上記工程(A)で得られたFmoc-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)を0.03mmol/ml含む有機層(溶液-1)を流速0.73ml/min、チオリンゴ酸を0.26mmol/ml,1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を0.79mmol/ml含むDMF溶液(溶液-2)を流速0.35ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合させた。混合後の溶液をPFAチューブ(内径1.0mm)中で反応させ、H-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液を得た。
工程(B)-1:脱Fmoc化反応後の炭酸ナトリウム水溶液による洗浄(3残基ペプチド)
上記工程(2)で得られたH-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)を含むクロロホルム溶液(溶液-1)を流速1.08ml/min、酢酸を0.10mmol/ml含む5.0wt%Na2CO3水溶液(溶液-2)を流速0.80ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm)中を通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
上記工程(2)で得られたH-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)を含むクロロホルム溶液(溶液-1)を流速1.08ml/min、酢酸を0.10mmol/ml含む5.0wt%Na2CO3水溶液(溶液-2)を流速0.80ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm)中を通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
工程(B)-2:炭酸ナトリウム水溶液洗浄後の塩化ナトリウム水溶液による洗浄(3残基ペプチド)
上記工程(B)-1で得られたH-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液(溶液-1)を流速1.08ml/min、20wt%NaCl水溶液(溶液-2)を流速0.88ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm)中を通液させて上記工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収し以下を得た。
H-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)
LC-MS M+ m/z 1303.3
上記工程(B)-1で得られたH-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液(溶液-1)を流速1.08ml/min、20wt%NaCl水溶液(溶液-2)を流速0.88ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm)中を通液させて上記工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収し以下を得た。
H-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)
LC-MS M+ m/z 1303.3
工程(1):縮合反応(4残基ペプチド)
上記工程(B)-2で得られた0.04mmol/mlのH-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)を含むクロロホルム溶液(溶液-1)と、0.15mmol/mlのFmoc-Ala-OH・H2Oと0.04mmol/mlの1-ヒドロキシベンゾトリアゾール(HOBt)無水物を含むジメチルホルムアミド(DMF)溶液(溶液-2)を、ポンプ(プランジャーポンプ YMCU-22(シリンジポンプ YSP-301やダイヤフラムポンプ Q-10-6T-P-M49でも可))を用いてそれぞれ0.50ml/min、0.21ml/minの流速で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した。0.23mmol/mlのN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC・HCl)を含むクロロホルム溶液(溶液-3)を0.13ml/minの流速で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて溶液-1,2の混合溶液と混合させた後、PFAチューブ(内径1.0mm)中で反応させ、Fmoc-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液を得た。
上記工程(B)-2で得られた0.04mmol/mlのH-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)を含むクロロホルム溶液(溶液-1)と、0.15mmol/mlのFmoc-Ala-OH・H2Oと0.04mmol/mlの1-ヒドロキシベンゾトリアゾール(HOBt)無水物を含むジメチルホルムアミド(DMF)溶液(溶液-2)を、ポンプ(プランジャーポンプ YMCU-22(シリンジポンプ YSP-301やダイヤフラムポンプ Q-10-6T-P-M49でも可))を用いてそれぞれ0.50ml/min、0.21ml/minの流速で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した。0.23mmol/mlのN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC・HCl)を含むクロロホルム溶液(溶液-3)を0.13ml/minの流速で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて溶液-1,2の混合溶液と混合させた後、PFAチューブ(内径1.0mm)中で反応させ、Fmoc-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液を得た。
工程(A):縮合反応後の抽出(4残基ペプチド)
上記工程(1)で得られたFmoc-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液を流速0.84ml/min、20wt%NaCl水溶液を流速0.56ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm)中を通液させて縮合反応で残存したEDC・HClを失活、水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
上記工程(1)で得られたFmoc-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液を流速0.84ml/min、20wt%NaCl水溶液を流速0.56ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm)中を通液させて縮合反応で残存したEDC・HClを失活、水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
工程(2):脱Fmoc化反応(4残基ペプチド)
上記工程(A)で得られたFmoc-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)を0.03mmol/ml含む有機層(溶液-1)を流速0.73ml/min、チオリンゴ酸を0.27mmol/ml,1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を0.82mmol/ml含むDMF溶液(溶液-2)を流速0.35ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合させた。混合後の溶液をPFAチューブ(内径1.0mm)中で反応させ、H-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液を得た。
上記工程(A)で得られたFmoc-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)を0.03mmol/ml含む有機層(溶液-1)を流速0.73ml/min、チオリンゴ酸を0.27mmol/ml,1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を0.82mmol/ml含むDMF溶液(溶液-2)を流速0.35ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合させた。混合後の溶液をPFAチューブ(内径1.0mm)中で反応させ、H-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液を得た。
工程(B)-1:脱Fmoc化反応後の炭酸ナトリウム水溶液による洗浄(4残基ペプチド)
上記工程(2)で得られたH-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)を含むクロロホルム溶液(溶液-1)を流速1.08ml/min、酢酸を0.11mmol/ml含む5.0wt%Na2CO3水溶液(溶液-2)を流速0.80ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm)中を通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
上記工程(2)で得られたH-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)を含むクロロホルム溶液(溶液-1)を流速1.08ml/min、酢酸を0.11mmol/ml含む5.0wt%Na2CO3水溶液(溶液-2)を流速0.80ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm)中を通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
工程(B)-2:炭酸ナトリウム水溶液洗浄後の塩化ナトリウム水溶液による洗浄(4残基ペプチド)
上記工程(B)-1で得られたH-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液(溶液-1)を流速1.08ml/min、20wt%NaCl水溶液(溶液-2)を流速0.88ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm)中を通液させて上記工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収し以下を得た。
H-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)LC-MS M+ m/z 1374.4
上記工程(B)-1で得られたH-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液(溶液-1)を流速1.08ml/min、20wt%NaCl水溶液(溶液-2)を流速0.88ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm)中を通液させて上記工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収し以下を得た。
H-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)LC-MS M+ m/z 1374.4
工程(1):縮合反応(5残基ペプチド)
上記工程(B)-2で得られた0.02mmol/mlのH-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)を含むクロロホルム溶液(溶液-1)と、0.06mmol/mlのFmoc-Glu(OtBu)-OHと0.02mmol/mlの1-ヒドロキシベンゾトリアゾール(HOBt)無水物を含むジメチルホルムアミド(DMF)溶液(溶液-2)を、ポンプ(プランジャーポンプ YMCU-22(シリンジポンプ YSP-301やダイヤフラムポンプ Q-10-6T-P-M49でも可))を用いてそれぞれ0.50ml/min、0.21ml/minの流速で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した。0.10mmol/mlのN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC・HCl)を含むクロロホルム溶液(溶液-3)を0.13ml/minの流速で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて溶液-1,2の混合溶液と混合させた後、PFAチューブ(内径1.0mm)中で反応させ、Fmoc-Glu(OtBu)-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液を得た。
上記工程(B)-2で得られた0.02mmol/mlのH-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)を含むクロロホルム溶液(溶液-1)と、0.06mmol/mlのFmoc-Glu(OtBu)-OHと0.02mmol/mlの1-ヒドロキシベンゾトリアゾール(HOBt)無水物を含むジメチルホルムアミド(DMF)溶液(溶液-2)を、ポンプ(プランジャーポンプ YMCU-22(シリンジポンプ YSP-301やダイヤフラムポンプ Q-10-6T-P-M49でも可))を用いてそれぞれ0.50ml/min、0.21ml/minの流速で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した。0.10mmol/mlのN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC・HCl)を含むクロロホルム溶液(溶液-3)を0.13ml/minの流速で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて溶液-1,2の混合溶液と混合させた後、PFAチューブ(内径1.0mm)中で反応させ、Fmoc-Glu(OtBu)-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液を得た。
工程(A):縮合反応後の抽出(5残基ペプチド)
上記工程(1)で得られたFmoc-Glu(OtBu)-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液を流速0.84ml/min、20wt%NaCl水溶液を流速0.56ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm)中を通液させて縮合反応で残存したEDC・HClを失活、水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
上記工程(1)で得られたFmoc-Glu(OtBu)-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液を流速0.84ml/min、20wt%NaCl水溶液を流速0.56ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm)中を通液させて縮合反応で残存したEDC・HClを失活、水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
工程(2):脱Fmoc化反応(5残基ペプチド)
上記工程(A)で得られたFmoc-Glu(OtBu)-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)を0.10mmol/ml含む有機層(溶液-1)を流速0.73ml/min、チオリンゴ酸を0.08mmol/ml,1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を0.25mmol/ml含むDMF溶液(溶液-2)を流速0.35ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合させた。混合後の溶液をPFAチューブ(内径1.0mm)中で反応させ、H-Glu(OtBu)-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液を得た。
上記工程(A)で得られたFmoc-Glu(OtBu)-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)を0.10mmol/ml含む有機層(溶液-1)を流速0.73ml/min、チオリンゴ酸を0.08mmol/ml,1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を0.25mmol/ml含むDMF溶液(溶液-2)を流速0.35ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合させた。混合後の溶液をPFAチューブ(内径1.0mm)中で反応させ、H-Glu(OtBu)-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液を得た。
工程(B)-1:脱Fmoc化反応後の炭酸ナトリウム水溶液による洗浄(5残基ペプチド)
上記工程(2)で得られたH-Glu(OtBu)-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)を含むクロロホルム溶液(溶液-1)を流速1.08ml/min、酢酸を0.03mmol/ml含む5.0wt%Na2CO3水溶液(溶液-2)を流速0.80ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm)中を通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
上記工程(2)で得られたH-Glu(OtBu)-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)を含むクロロホルム溶液(溶液-1)を流速1.08ml/min、酢酸を0.03mmol/ml含む5.0wt%Na2CO3水溶液(溶液-2)を流速0.80ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm)中を通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
工程(B)-2:炭酸ナトリウム水溶液洗浄後の塩化ナトリウム水溶液による洗浄(5残基ペプチド)
上記工程(B)-1で得られたH-Glu(OtBu)-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液(溶液-1)を流速1.08ml/min、20wt%NaCl水溶液(溶液-2)を流速0.88ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm)中を通液させて上記工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
LC/MS M+ m/z 1559.2
上記工程(B)-1で得られたH-Glu(OtBu)-Ala-Glu(OtBu)-Lys(Boc)-Leu-NH-Dpm(OPhy)溶液(溶液-1)を流速1.08ml/min、20wt%NaCl水溶液(溶液-2)を流速0.88ml/minでそれぞれポンプを用いて送液し、T字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm)中を通液させて上記工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離し、透過した有機層を回収した。
LC/MS M+ m/z 1559.2
以下の実施例4~11で使用された装置は、以下の通りである。
使用装置(フロー・リアクター、ミキサー、ポンプ、油水分離手段)
ポンプ: プランジャーポンプYMCU-22[YMC社]、シリンジポンプYSP-301[YMC社]、ダイヤフラムポンプQ-10-6T-P-M49[タクミナ社]
フロー・リアクター: PFA/PTFEチューブ(内径1.0mmもしくは1.6mm)[Swagelok社、YMC社等から購入可);SUS配管(内径1.0mm)[ジーエルサイエンス社]
ミキサー: T字型ミキサー: ユニオンティーSS-100-3(外径1/16インチ)もしくはSS-200-3(外径1/8インチ)[Swagelok社]、T字型マイクロミキサー(内径1.0mm)[三幸精機工業]
油水分離膜装置: SEP-10[Zaiput社]
油水分離膜: OB-2000-S-10(孔径1.0μmの疎水性膜)、OB-900-S-10(孔径0.5μmの疎水性膜)[Zaiput社]
使用装置(フロー・リアクター、ミキサー、ポンプ、油水分離手段)
ポンプ: プランジャーポンプYMCU-22[YMC社]、シリンジポンプYSP-301[YMC社]、ダイヤフラムポンプQ-10-6T-P-M49[タクミナ社]
フロー・リアクター: PFA/PTFEチューブ(内径1.0mmもしくは1.6mm)[Swagelok社、YMC社等から購入可);SUS配管(内径1.0mm)[ジーエルサイエンス社]
ミキサー: T字型ミキサー: ユニオンティーSS-100-3(外径1/16インチ)もしくはSS-200-3(外径1/8インチ)[Swagelok社]、T字型マイクロミキサー(内径1.0mm)[三幸精機工業]
油水分離膜装置: SEP-10[Zaiput社]
油水分離膜: OB-2000-S-10(孔径1.0μmの疎水性膜)、OB-900-S-10(孔径0.5μmの疎水性膜)[Zaiput社]
実施例4: 15残基ペプチド(D-アミノ酸を含む)(H-Glu(OtBu)-Ala-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhy)の合成
工程(B)-1:脱Fmoc化反応後の炭酸ナトリウム水溶液による洗浄/工程(B)-2:炭酸ナトリウム水溶液洗浄後の塩化ナトリウム水溶液による洗浄
バッチ法により調製した0.08mmol/mlのH-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含むクロロホルム溶液(溶液-1)に5.0wt%Na2CO3水溶液とジメチルホルムアミド(DMF)を容量比8:2で混合した液(溶液-2)を、ダイヤフラムポンプを用いて0.80ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ10.0m)中で11min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離した。さらにここで生じた有機層に20.0wt%NaCl水溶液とジメチルホルムアミド(DMF)を容量比6:4で混合した液(溶液-3)を、ダイヤフラムポンプを用いて0.88ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で5min通液させて工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、油水分離膜(OB-900-S-10;孔径0.5μmの疎水性膜)を用いて分離し、H-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む有機層を回収した。
LC/MS M+ m/z 2734.1
*)TOBPhyは、3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジル基を示す。
バッチ法により調製した0.08mmol/mlのH-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含むクロロホルム溶液(溶液-1)に5.0wt%Na2CO3水溶液とジメチルホルムアミド(DMF)を容量比8:2で混合した液(溶液-2)を、ダイヤフラムポンプを用いて0.80ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ10.0m)中で11min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離した。さらにここで生じた有機層に20.0wt%NaCl水溶液とジメチルホルムアミド(DMF)を容量比6:4で混合した液(溶液-3)を、ダイヤフラムポンプを用いて0.88ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で5min通液させて工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、油水分離膜(OB-900-S-10;孔径0.5μmの疎水性膜)を用いて分離し、H-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む有機層を回収した。
LC/MS M+ m/z 2734.1
*)TOBPhyは、3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジル基を示す。
工程(1):縮合反応/工程(A):縮合反応後の抽出
上記工程(B)-1、工程(B)-2の連続実施により得られた0.04mmol/mlのH-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含むクロロホルム溶液(溶液-1)と0.14mmol/mlのFmoc-Ala-OHと0.04mmol/mlの1-ヒドロキシベンゾトリアゾール(HOBt)無水物を含むジメチルホルムアミド(DMF)溶液(溶液-2)を、プランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.500、0.208ml/minの流量で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した。0.23mmol/mlのN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)を含むクロロホルム溶液(溶液-3)を0.133ml/minの流量で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて溶液-1、2の混合溶液と混合させた後、PFAチューブ(内径1.6mm,長さ7.5m)中で18min反応させ、さらに、20wt%NaCl水溶液(溶液-4)を、ダイヤフラムポンプを用いて0.56ml/minで送液して溶液-1、2、および3の混合液にT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で7min通液させて縮合反応で残存したEDC.HClを失活、水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離してFmoc-Ala-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む有機層を回収した。
上記工程(B)-1、工程(B)-2の連続実施により得られた0.04mmol/mlのH-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含むクロロホルム溶液(溶液-1)と0.14mmol/mlのFmoc-Ala-OHと0.04mmol/mlの1-ヒドロキシベンゾトリアゾール(HOBt)無水物を含むジメチルホルムアミド(DMF)溶液(溶液-2)を、プランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.500、0.208ml/minの流量で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した。0.23mmol/mlのN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)を含むクロロホルム溶液(溶液-3)を0.133ml/minの流量で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて溶液-1、2の混合溶液と混合させた後、PFAチューブ(内径1.6mm,長さ7.5m)中で18min反応させ、さらに、20wt%NaCl水溶液(溶液-4)を、ダイヤフラムポンプを用いて0.56ml/minで送液して溶液-1、2、および3の混合液にT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で7min通液させて縮合反応で残存したEDC.HClを失活、水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離してFmoc-Ala-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む有機層を回収した。
工程(2):脱Fmoc化反応/工程(B)-1:脱Fmoc化反応後の炭酸ナトリウム水溶液による洗浄/工程(B)-2:炭酸ナトリウム水溶液洗浄後の塩化ナトリウム水溶液による洗浄
上記工程(1)および(A)の連続実施により得られたFmoc-Ala-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを0.03mmol/含む有機層(溶液-1)と0.33mmol/mlのチオリンゴ酸と0.98mmol/mlの1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を含むジメチルホルムアミド(DMF)溶液(溶液-2)をプランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.732、0.346ml/minの流速で送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した後、PFAチューブ(内径1.0mm,長さ10.0m)中で7min反応させた。反応に際し生じるジベンゾフルベン(DBF)については、チオリンゴ酸と反応させてフルベン付加体へと変換させた。この脱Fmoc化反応液に5.0wt%Na2CO3水溶液とジメチルホルムアミド(DMF)を容量比8:2で混合した液(溶液-3)を、ダイヤフラムポンプを用いて0.80ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ10.0m)中で11min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離した。さらにここで生じた有機層に20.0wt%NaCl水溶液とジメチルホルムアミド(DMF)を容量比6:4で混合した液(溶液-4)を、ダイヤフラムポンプを用いて0.88ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で5min通液させて工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、油水分離膜(OB-900-S-10;孔径0.5μmの疎水性膜)を用いて分離し、H-Ala-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む有機層を回収した。
LC/MS M+ m/z 2804.9
上記工程(1)および(A)の連続実施により得られたFmoc-Ala-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを0.03mmol/含む有機層(溶液-1)と0.33mmol/mlのチオリンゴ酸と0.98mmol/mlの1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を含むジメチルホルムアミド(DMF)溶液(溶液-2)をプランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.732、0.346ml/minの流速で送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した後、PFAチューブ(内径1.0mm,長さ10.0m)中で7min反応させた。反応に際し生じるジベンゾフルベン(DBF)については、チオリンゴ酸と反応させてフルベン付加体へと変換させた。この脱Fmoc化反応液に5.0wt%Na2CO3水溶液とジメチルホルムアミド(DMF)を容量比8:2で混合した液(溶液-3)を、ダイヤフラムポンプを用いて0.80ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ10.0m)中で11min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離した。さらにここで生じた有機層に20.0wt%NaCl水溶液とジメチルホルムアミド(DMF)を容量比6:4で混合した液(溶液-4)を、ダイヤフラムポンプを用いて0.88ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で5min通液させて工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、油水分離膜(OB-900-S-10;孔径0.5μmの疎水性膜)を用いて分離し、H-Ala-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む有機層を回収した。
LC/MS M+ m/z 2804.9
工程(1):縮合反応/工程(A):縮合反応後の抽出
上記工程(2)、工程(B)-1、工程(B)-2の連続実施により得られた0.03mmol/mlのH-Ala-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含むクロロホルム溶液(溶液-1)と0.11mmol/mlのFmoc-Glu(OtBu)-OHと0.03mmol/mlの1-ヒドロキシベンゾトリアゾール(HOBt)無水物を含むジメチルホルムアミド(DMF)溶液(溶液-2)を、プランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.500、0.208ml/minの流量で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した。0.23mmol/mlのN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)を含むクロロホルム溶液(溶液-3)を0.133ml/minの流量で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて溶液-1、2の混合溶液と混合させた後、PFAチューブ(内径1.6mm,長さ7.5m)中で18min反応させ、さらに、20wt%NaCl水溶液(溶液-4)を、ダイヤフラムポンプを用いて0.56ml/minで送液して溶液-1、2および3の混合液にT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で7min通液させて縮合反応で残存したEDC.HClを失活、水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離してFmoc-Glu(OtBu)-Ala-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む有機層を回収した。
上記工程(2)、工程(B)-1、工程(B)-2の連続実施により得られた0.03mmol/mlのH-Ala-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含むクロロホルム溶液(溶液-1)と0.11mmol/mlのFmoc-Glu(OtBu)-OHと0.03mmol/mlの1-ヒドロキシベンゾトリアゾール(HOBt)無水物を含むジメチルホルムアミド(DMF)溶液(溶液-2)を、プランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.500、0.208ml/minの流量で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した。0.23mmol/mlのN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)を含むクロロホルム溶液(溶液-3)を0.133ml/minの流量で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて溶液-1、2の混合溶液と混合させた後、PFAチューブ(内径1.6mm,長さ7.5m)中で18min反応させ、さらに、20wt%NaCl水溶液(溶液-4)を、ダイヤフラムポンプを用いて0.56ml/minで送液して溶液-1、2および3の混合液にT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で7min通液させて縮合反応で残存したEDC.HClを失活、水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離してFmoc-Glu(OtBu)-Ala-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む有機層を回収した。
工程(2):脱Fmoc化反応/工程(B)-1:脱Fmoc化反応後の炭酸ナトリウム水溶液による洗浄/工程(B)-2:炭酸ナトリウム水溶液洗浄後の塩化ナトリウム水溶液による洗浄
上記工程(1)、工程(A)の連続実施により得られたFmoc-Glu(OtBu)-Ala-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを0.02mmol/含む有機層(溶液-1)と0.26mmol/mlのチオリンゴ酸と0.78mmol/mlの1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を含むジメチルホルムアミド(DMF)溶液(溶液-2)をプランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.732、0.346ml/minの流速で送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した後、PFAチューブ(内径1.0mm,長さ10.0m)中で7min反応させた。反応に際し生じるジベンゾフルベン(DBF)については、チオリンゴ酸と反応させてフルベン付加体へと変換させた。この脱Fmoc化反応液に5.0wt%Na2CO3水溶液とジメチルホルムアミド(DMF)を容量比8:2で混合した液(溶液-3)を、ダイヤフラムポンプを用いて0.80ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ10.0m)中で11min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離した。さらにここで生じた有機層に20.0wt%NaCl水溶液とジメチルホルムアミド(DMF)を容量比6:4で混合した液(溶液-4)を、ダイヤフラムポンプを用いて0.88ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で5min通液させて工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、油水分離膜(OB-900-S-10;孔径0.5μmの疎水性膜)を用いて分離し、H-Glu(OtBu)-Ala-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む有機層を回収した。
LC/MS M+ m/z 2991.18
上記工程(1)、工程(A)の連続実施により得られたFmoc-Glu(OtBu)-Ala-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを0.02mmol/含む有機層(溶液-1)と0.26mmol/mlのチオリンゴ酸と0.78mmol/mlの1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を含むジメチルホルムアミド(DMF)溶液(溶液-2)をプランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.732、0.346ml/minの流速で送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した後、PFAチューブ(内径1.0mm,長さ10.0m)中で7min反応させた。反応に際し生じるジベンゾフルベン(DBF)については、チオリンゴ酸と反応させてフルベン付加体へと変換させた。この脱Fmoc化反応液に5.0wt%Na2CO3水溶液とジメチルホルムアミド(DMF)を容量比8:2で混合した液(溶液-3)を、ダイヤフラムポンプを用いて0.80ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ10.0m)中で11min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を用いて分離した。さらにここで生じた有機層に20.0wt%NaCl水溶液とジメチルホルムアミド(DMF)を容量比6:4で混合した液(溶液-4)を、ダイヤフラムポンプを用いて0.88ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で5min通液させて工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、油水分離膜(OB-900-S-10;孔径0.5μmの疎水性膜)を用いて分離し、H-Glu(OtBu)-Ala-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む有機層を回収した。
LC/MS M+ m/z 2991.18
実施例5: 2残基ペプチド(H-Asn(Trt)-Leu-NH-Dpm(OPhy))の合成
工程(1):縮合反応
製造例1により得られた0.03mmol/mlのH-Leu-NH-Dpm(OPhy)を含むクロロホルム溶液(溶液-1)にそれぞれ1.50eq.の1-ヒドロキシベンゾトリアゾール(HOBt)無水物、Fmoc-Asn(Trt)-OH、N-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)を添加し、Fmoc-Asn(Trt)-Leu-NH-Dpm(OPhy)を得た。その後、それぞれ1.50eq.のN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)とチオリンゴ酸を添加して過剰の活性エステルを失活させた。
製造例1により得られた0.03mmol/mlのH-Leu-NH-Dpm(OPhy)を含むクロロホルム溶液(溶液-1)にそれぞれ1.50eq.の1-ヒドロキシベンゾトリアゾール(HOBt)無水物、Fmoc-Asn(Trt)-OH、N-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)を添加し、Fmoc-Asn(Trt)-Leu-NH-Dpm(OPhy)を得た。その後、それぞれ1.50eq.のN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)とチオリンゴ酸を添加して過剰の活性エステルを失活させた。
工程(A):縮合反応後の抽出
上記工程(1)で得られた0.03mmol/mlのFmoc-Asn(Trt)-Leu-NH-Dpm(OPhy)を含む溶液(溶液-1)と20wt%NaCl水溶液(溶液-2)をそれぞれプランジャーポンプとダイヤフラムポンプを用いて1.500、1.50ml/minで送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ7.5m)中で5min通液させて縮合反応で残存したEDC.HClを失活、水層中に淘汰した後、分液漏斗で分離して有機層を回収した。
上記工程(1)で得られた0.03mmol/mlのFmoc-Asn(Trt)-Leu-NH-Dpm(OPhy)を含む溶液(溶液-1)と20wt%NaCl水溶液(溶液-2)をそれぞれプランジャーポンプとダイヤフラムポンプを用いて1.500、1.50ml/minで送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ7.5m)中で5min通液させて縮合反応で残存したEDC.HClを失活、水層中に淘汰した後、分液漏斗で分離して有機層を回収した。
工程(2):脱Fmoc化反応/工程(B)-3:脱Fmoc化反応後の塩化ナトリウム水溶液による洗浄
上記工程(A)で得られたFmoc-Asn(Trt)-Leu-NH-Dpm(OPhy)を0.04mmol/ml含む有機層(溶液-1)と0.44mmol/mlのチオリンゴ酸と1.60mmol/mlの1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を含むジメチルホルムアミド(DMF)溶液(溶液-2)をプランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.700、0.300ml/minの流速で送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した後、PFAチューブ(内径1.0mm,長さ10.0m)中で7min反応させた。反応に際し生じるジベンゾフルベン(DBF)については、チオリンゴ酸と反応させてフルベン付加体へと変換させた。この脱Fmoc化反応液に20.0wt%NaCl水溶液を、ダイヤフラムポンプを用いて0.50ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ2.0m)中で3min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、分液漏斗で分離してH-Asn(Trt)-Leu-NH-Dpm(OPhy)を含む有機層を回収した。
上記工程(A)で得られたFmoc-Asn(Trt)-Leu-NH-Dpm(OPhy)を0.04mmol/ml含む有機層(溶液-1)と0.44mmol/mlのチオリンゴ酸と1.60mmol/mlの1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を含むジメチルホルムアミド(DMF)溶液(溶液-2)をプランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.700、0.300ml/minの流速で送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した後、PFAチューブ(内径1.0mm,長さ10.0m)中で7min反応させた。反応に際し生じるジベンゾフルベン(DBF)については、チオリンゴ酸と反応させてフルベン付加体へと変換させた。この脱Fmoc化反応液に20.0wt%NaCl水溶液を、ダイヤフラムポンプを用いて0.50ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ2.0m)中で3min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、分液漏斗で分離してH-Asn(Trt)-Leu-NH-Dpm(OPhy)を含む有機層を回収した。
工程(2):脱Fmoc化反応/工程(B)-1:脱Fmoc化反応後の炭酸ナトリウム水溶液による洗浄
上記工程(A)で得られたFmoc-Asn(Trt)-Leu-NH-Dpm(OPhy)を0.04mmol/含む有機層(溶液-1)と0.44mmol/mlのチオリンゴ酸と1.60mmol/mlの1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を含むジメチルホルムアミド(DMF)溶液(溶液-2)をプランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.700、0.300ml/minの流速で送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した後、PFAチューブ(内径1.0mm,長さ10.0m)中で7min反応させた。反応に際し生じるジベンゾフルベン(DBF)については、チオリンゴ酸と反応させてフルベン付加体へと変換させた。この脱Fmoc化反応液に5.0wt%Na2CO3水溶液(溶液-3)を、ダイヤフラムポンプを用いて0.50ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ2.0m)中で3min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、分液漏斗で分離して有機層を回収した。
上記工程(A)で得られたFmoc-Asn(Trt)-Leu-NH-Dpm(OPhy)を0.04mmol/含む有機層(溶液-1)と0.44mmol/mlのチオリンゴ酸と1.60mmol/mlの1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を含むジメチルホルムアミド(DMF)溶液(溶液-2)をプランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.700、0.300ml/minの流速で送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した後、PFAチューブ(内径1.0mm,長さ10.0m)中で7min反応させた。反応に際し生じるジベンゾフルベン(DBF)については、チオリンゴ酸と反応させてフルベン付加体へと変換させた。この脱Fmoc化反応液に5.0wt%Na2CO3水溶液(溶液-3)を、ダイヤフラムポンプを用いて0.50ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ2.0m)中で3min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、分液漏斗で分離して有機層を回収した。
工程(B)-2:炭酸ナトリウム水溶液洗浄後の塩化ナトリウム水溶液による洗浄
工程(B)-1で得た有機層(溶液-1)と20.0wt%NaCl水溶液とジメチルホルムアミド(DMF)を容量比6:4で混合した液(溶液-2)をプランジャーポンプ、ダイヤフラムポンプを用いてそれぞれ1.500、1.50ml/minの流量でT字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ7.5m)中で5min通液させて工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、分液漏斗で分離してH-Asn(Trt)-Leu-NH-Dpm(OPhy)を含む有機層を回収した。
LC/MS M+ m/z 1245.9
工程(B)-1で得た有機層(溶液-1)と20.0wt%NaCl水溶液とジメチルホルムアミド(DMF)を容量比6:4で混合した液(溶液-2)をプランジャーポンプ、ダイヤフラムポンプを用いてそれぞれ1.500、1.50ml/minの流量でT字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ7.5m)中で5min通液させて工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、分液漏斗で分離してH-Asn(Trt)-Leu-NH-Dpm(OPhy)を含む有機層を回収した。
LC/MS M+ m/z 1245.9
実施例6: 2残基ペプチド(H-Asp(OtBu)-Leu-NH-Dpm(OPhy))の合成
工程(1):縮合反応/工程(A):縮合反応後の抽出
製造例1により得られた0.10mmol/mlのH-Leu-NH-Dpm(OPhy)を含むクロロホルム溶液(溶液-1)と0.35mmol/mlのFmoc-Asp(OtBu)-OHと0.09mmol/mlのエチル2-シアノ-2-ヒドロキシイミノアセテート(Oxyma)を含むジメチルホルムアミド(DMF)溶液(溶液-2)を、プランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.500、0.208ml/minの流量で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した。0.55mmol/mlのN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)を含むクロロホルム溶液(溶液-3)を0.133ml/minの流量で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて溶液-1、2の混合溶液と混合させた後、PFAチューブ(内径1.0mm,長さ10.0m)中で9min反応させ、さらに、20wt%NaCl水溶液(溶液-4)を、ダイヤフラムポンプを用いて0.56ml/minで送液して溶液-1、2、3の混合液にT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で7min通液させて縮合反応で残存したEDC.HClを失活、水層中に淘汰した後、分液漏斗で分離してFmoc-Asp(OtBu)-Leu-NH-Dpm(OPhy)を含む有機層を回収した。
製造例1により得られた0.10mmol/mlのH-Leu-NH-Dpm(OPhy)を含むクロロホルム溶液(溶液-1)と0.35mmol/mlのFmoc-Asp(OtBu)-OHと0.09mmol/mlのエチル2-シアノ-2-ヒドロキシイミノアセテート(Oxyma)を含むジメチルホルムアミド(DMF)溶液(溶液-2)を、プランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.500、0.208ml/minの流量で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した。0.55mmol/mlのN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)を含むクロロホルム溶液(溶液-3)を0.133ml/minの流量で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて溶液-1、2の混合溶液と混合させた後、PFAチューブ(内径1.0mm,長さ10.0m)中で9min反応させ、さらに、20wt%NaCl水溶液(溶液-4)を、ダイヤフラムポンプを用いて0.56ml/minで送液して溶液-1、2、3の混合液にT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で7min通液させて縮合反応で残存したEDC.HClを失活、水層中に淘汰した後、分液漏斗で分離してFmoc-Asp(OtBu)-Leu-NH-Dpm(OPhy)を含む有機層を回収した。
工程(2):脱Fmoc化反応/工程(B)-1:脱Fmoc化反応後の炭酸ナトリウム水溶液による洗浄
上記工程(1)、(A)の連続実施により得られたFmoc-Asp(OtBu)-Leu-NH-Dpm(OPhy)を0.09mmol/含む有機層(溶液-1)と0.91mmol/mlのチオリンゴ酸と2.74mmol/mlの1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を含むジメチルホルムアミド(DMF)溶液(溶液-2)をプランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.732、0.346ml/minの流速で送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した後、PFAチューブ(内径1.0mm,長さ10.0m)中で7min反応させた。反応に際し生じるジベンゾフルベン(DBF)については、チオリンゴ酸と反応させてフルベン付加体へと変換させた。この脱Fmoc化反応液に5.0wt%Na2CO3水溶液(溶液-3)を、ダイヤフラムポンプを用いて0.80ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で5min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、分液漏斗で分離して有機層を回収した。
上記工程(1)、(A)の連続実施により得られたFmoc-Asp(OtBu)-Leu-NH-Dpm(OPhy)を0.09mmol/含む有機層(溶液-1)と0.91mmol/mlのチオリンゴ酸と2.74mmol/mlの1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を含むジメチルホルムアミド(DMF)溶液(溶液-2)をプランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.732、0.346ml/minの流速で送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した後、PFAチューブ(内径1.0mm,長さ10.0m)中で7min反応させた。反応に際し生じるジベンゾフルベン(DBF)については、チオリンゴ酸と反応させてフルベン付加体へと変換させた。この脱Fmoc化反応液に5.0wt%Na2CO3水溶液(溶液-3)を、ダイヤフラムポンプを用いて0.80ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で5min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、分液漏斗で分離して有機層を回収した。
工程(B)-2:炭酸ナトリウム水溶液洗浄後の塩化ナトリウム水溶液による洗浄
工程(B)-1で得た有機層(溶液-1)と20.0wt%NaCl水溶液とジメチルホルムアミド(DMF)を容量比6:4で混合した液(溶液-2)をプランジャーポンプ、ダイヤフラムポンプを用いてそれぞれ1.500、1.50ml/minの流量でT字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で3min通液させて工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、分液漏斗で分離してH-Asp(OtBu)-Leu-NH-Dpm(OPhy)を含む有機層を回収した。
LC/MS 2M+ m/z 2120.7
工程(B)-1で得た有機層(溶液-1)と20.0wt%NaCl水溶液とジメチルホルムアミド(DMF)を容量比6:4で混合した液(溶液-2)をプランジャーポンプ、ダイヤフラムポンプを用いてそれぞれ1.500、1.50ml/minの流量でT字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で3min通液させて工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、分液漏斗で分離してH-Asp(OtBu)-Leu-NH-Dpm(OPhy)を含む有機層を回収した。
LC/MS 2M+ m/z 2120.7
実施例7: 2残基ペプチド(H-Ala-Leu-NH-Dpm(OPhy))の合成
工程(1):縮合反応/工程(A):縮合反応後の抽出
製造例1により得られた0.10mmol/mlのH-Leu-NH-Dpm(OPhy)を含むクロロホルム溶液(溶液-1)と0.35mmol/mlのFmoc-Ala-OHと0.09mmol/mlの1-ヒドロキシベンゾトリアゾール(HOBt)無水物を含むジメチルホルムアミド(DMF)溶液(溶液-2)を、プランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.500、0.208ml/minの流量で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した。0.55mmol/mlのN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)を含むクロロホルム溶液(溶液-3)を0.133ml/minの流量で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて溶液-1,2の混合溶液と混合させた後、43℃の水浴で保温しつつSUS配管(内径1.0mm,長さ10.0m)中で9min反応させた。さらに、20wt%NaCl水溶液(溶液-4)を、ダイヤフラムポンプを用いて0.56ml/minで送液して溶液-1、2、3の混合液にT字型ミキサー(三幸精機工業製マイクロミキサー;内径1.0mm)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、SUS配管(内径1.0mm,長さ7.0m)中で4min通液させて縮合反応で残存したEDC.HClを失活、水層中に淘汰した後、分液漏斗で分離してFmoc-Ala-Leu-NH-Dpm(OPhy)を含む有機層を回収した。
製造例1により得られた0.10mmol/mlのH-Leu-NH-Dpm(OPhy)を含むクロロホルム溶液(溶液-1)と0.35mmol/mlのFmoc-Ala-OHと0.09mmol/mlの1-ヒドロキシベンゾトリアゾール(HOBt)無水物を含むジメチルホルムアミド(DMF)溶液(溶液-2)を、プランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.500、0.208ml/minの流量で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した。0.55mmol/mlのN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)を含むクロロホルム溶液(溶液-3)を0.133ml/minの流量で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて溶液-1,2の混合溶液と混合させた後、43℃の水浴で保温しつつSUS配管(内径1.0mm,長さ10.0m)中で9min反応させた。さらに、20wt%NaCl水溶液(溶液-4)を、ダイヤフラムポンプを用いて0.56ml/minで送液して溶液-1、2、3の混合液にT字型ミキサー(三幸精機工業製マイクロミキサー;内径1.0mm)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、SUS配管(内径1.0mm,長さ7.0m)中で4min通液させて縮合反応で残存したEDC.HClを失活、水層中に淘汰した後、分液漏斗で分離してFmoc-Ala-Leu-NH-Dpm(OPhy)を含む有機層を回収した。
工程(2):脱Fmoc化反応/工程(B)-1:脱Fmoc化反応後の炭酸ナトリウム水溶液による洗浄
上記工程(1)、(A)の連続実施により得られたFmoc-Ala-Leu-NH-Dpm(OPhy)を0.09mmol/含む有機層(溶液-1)と0.92mmol/mlのチオリンゴ酸と2.75mmol/mlの1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を含むジメチルホルムアミド(DMF)溶液(溶液-2)をプランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.732、0.346ml/minの流速で送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した後、43℃の水浴で保温しつつSUS配管(内径1.0mm,長さ10.0m)中で7min反応させた。反応に際し生じるジベンゾフルベン(DBF)については、チオリンゴ酸と反応させてフルベン付加体へと変換させた。この脱Fmoc化反応液に5.0wt%K2CO3水溶液(溶液-3)を、ダイヤフラムポンプを用いて0.80ml/minの流量でT字型ミキサー(三幸精機工業製マイクロミキサー;内径1.0mm)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、SUS配管(内径1.0mm,長さ7.0m)中で3min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、分液漏斗で分離して有機層を回収した。
上記工程(1)、(A)の連続実施により得られたFmoc-Ala-Leu-NH-Dpm(OPhy)を0.09mmol/含む有機層(溶液-1)と0.92mmol/mlのチオリンゴ酸と2.75mmol/mlの1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を含むジメチルホルムアミド(DMF)溶液(溶液-2)をプランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.732、0.346ml/minの流速で送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した後、43℃の水浴で保温しつつSUS配管(内径1.0mm,長さ10.0m)中で7min反応させた。反応に際し生じるジベンゾフルベン(DBF)については、チオリンゴ酸と反応させてフルベン付加体へと変換させた。この脱Fmoc化反応液に5.0wt%K2CO3水溶液(溶液-3)を、ダイヤフラムポンプを用いて0.80ml/minの流量でT字型ミキサー(三幸精機工業製マイクロミキサー;内径1.0mm)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、SUS配管(内径1.0mm,長さ7.0m)中で3min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、分液漏斗で分離して有機層を回収した。
工程(B)-2:炭酸ナトリウム水溶液洗浄後の塩化ナトリウム水溶液による洗浄
工程(B)-1で得た有機層(溶液-1)と20.0wt%NaCl水溶液とジメチルホルムアミド(DMF)を容量比6:4で混合した液(溶液-2)をプランジャーポンプ、ダイヤフラムポンプを用いてそれぞれ1.000、1.00ml/minの流量でT字型ミキサー(三幸精機工業製マイクロミキサー;内径1.0mm)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、SUS配管(内径1.0mm,長さ7.0m)中で3min通液させて工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、分液漏斗で分離してH-Ala-Leu-NH-Dpm(OPhy)を含む有機層を回収した。
LC/MS 2M+ m/z 1920.6
工程(B)-1で得た有機層(溶液-1)と20.0wt%NaCl水溶液とジメチルホルムアミド(DMF)を容量比6:4で混合した液(溶液-2)をプランジャーポンプ、ダイヤフラムポンプを用いてそれぞれ1.000、1.00ml/minの流量でT字型ミキサー(三幸精機工業製マイクロミキサー;内径1.0mm)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、SUS配管(内径1.0mm,長さ7.0m)中で3min通液させて工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、分液漏斗で分離してH-Ala-Leu-NH-Dpm(OPhy)を含む有機層を回収した。
LC/MS 2M+ m/z 1920.6
実施例8: 2残基ペプチド(H-Cys(Trt)Lys(Boc)-NH-Dpm(OPhy))の合成
工程(1):縮合反応(バッチ法による調製)
製造例1と同様の方法で得られた0.06mmol/mlのH-Lys(Boc)-NH-Dpm(OPhy)を含むシクロペンチルメチルエーテル(CPME)溶液(溶液-1)にそれぞれ1.50eq.の1-ヒドロキシベンゾトリアゾール(HOBt)無水物、Fmoc-Cys(Trt)-OH、N-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)を添加し、Fmoc-Cys(Trt)-Leu-NH-Dpm(OPhy)を得た。その後、それぞれ1.50eq.のN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)とメルカプトプロピオン酸を添加して過剰の活性エステルを失活させた。
製造例1と同様の方法で得られた0.06mmol/mlのH-Lys(Boc)-NH-Dpm(OPhy)を含むシクロペンチルメチルエーテル(CPME)溶液(溶液-1)にそれぞれ1.50eq.の1-ヒドロキシベンゾトリアゾール(HOBt)無水物、Fmoc-Cys(Trt)-OH、N-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)を添加し、Fmoc-Cys(Trt)-Leu-NH-Dpm(OPhy)を得た。その後、それぞれ1.50eq.のN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)とメルカプトプロピオン酸を添加して過剰の活性エステルを失活させた。
工程(A):縮合反応後の抽出
上記工程(1)で得られた0.06mmol/mlのFmoc-Cys(Trt)-Lys(Boc)-NH-Dpm(OPhy)を含む溶液(溶液-1)と20wt%NaCl水溶液(溶液-2)をそれぞれプランジャーポンプとダイヤフラムポンプを用いて1.500、1.50ml/minで送液してT字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ7.5m)中で5min通液させて縮合反応で残存したEDC.HClを失活、水層中に淘汰した後、分液漏斗で分離して有機層を回収した。
上記工程(1)で得られた0.06mmol/mlのFmoc-Cys(Trt)-Lys(Boc)-NH-Dpm(OPhy)を含む溶液(溶液-1)と20wt%NaCl水溶液(溶液-2)をそれぞれプランジャーポンプとダイヤフラムポンプを用いて1.500、1.50ml/minで送液してT字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ7.5m)中で5min通液させて縮合反応で残存したEDC.HClを失活、水層中に淘汰した後、分液漏斗で分離して有機層を回収した。
工程(2):脱Fmoc化反応/工程(B)-3:脱Fmoc化反応後の塩化ナトリウム水溶液による洗浄
上記工程(A)で得られたFmoc-Cys(Trt)-Lys(Boc)-NH-Dpm(OPhy)を0.06mmol/含む有機層(溶液-1)と0.72mmol/mlのメルカプトプロピオン酸と1.44mmol/mlの1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を含むジメチルホルムアミド(DMF)溶液(溶液-2)をプランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.700、0.300ml/minの流速で送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した後、PFAチューブ(内径1.0mm,長さ10.0m)中で8min反応させた。反応に際し生じるジベンゾフルベン(DBF)については、メルカプトプロピオン酸と反応させてフルベン付加体へと変換させた。この脱Fmoc化反応液に20.0wt%NaCl水溶液を、ダイヤフラムポンプを用いて0.50ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で7min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、分液漏斗で分離してH-Cys(Trt)-Lys(Boc)-NH-Dpm(OPhy)を含む有機層を回収した。
LC/MS M+ m/z 1350.0
上記工程(A)で得られたFmoc-Cys(Trt)-Lys(Boc)-NH-Dpm(OPhy)を0.06mmol/含む有機層(溶液-1)と0.72mmol/mlのメルカプトプロピオン酸と1.44mmol/mlの1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を含むジメチルホルムアミド(DMF)溶液(溶液-2)をプランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.700、0.300ml/minの流速で送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した後、PFAチューブ(内径1.0mm,長さ10.0m)中で8min反応させた。反応に際し生じるジベンゾフルベン(DBF)については、メルカプトプロピオン酸と反応させてフルベン付加体へと変換させた。この脱Fmoc化反応液に20.0wt%NaCl水溶液を、ダイヤフラムポンプを用いて0.50ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で7min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、分液漏斗で分離してH-Cys(Trt)-Lys(Boc)-NH-Dpm(OPhy)を含む有機層を回収した。
LC/MS M+ m/z 1350.0
実施例9: 2残基ペプチド(H-Gly-Glu(OtBu)-OMTBPhy)の合成
工程(1):縮合反応/工程(A):縮合反応後の抽出
製造例1と同様の方法で得られた0.06mmol/mlのH-Glu(OtBu)-OMTBPhyを含むクロロホルム溶液(溶液-1)と0.21mmol/mlのFmoc-Gly-OHと0.05mmol/mlの1-ヒドロキシベンゾトリアゾール(HOBt)無水物を含むジメチルホルムアミド(DMF)溶液(溶液-2)を、プランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.500、0.208ml/minの流量で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した。0.32mmol/mlのN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)を含むクロロホルム溶液(溶液-3)を0.133ml/minの流量で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて溶液-1,2の混合溶液と混合させた後、PFAチューブ(内径1.0mm,長さ10.0m)中で9min反応させ、さらに、20wt%NaCl水溶液(溶液-4)を、ダイヤフラムポンプを用いて0.56ml/minで送液して溶液-1、2、3の混合液にT字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で7min通液させて縮合反応で残存したEDC.HClを失活、水層中に淘汰した後、分液漏斗で分離してFmoc-Gly-Glu(OtBu)-OMTBPhyを含む有機層を回収した。
*)MTBPhyは、2-(3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルオキシ)-4-メトキシベンジル基を示す。
製造例1と同様の方法で得られた0.06mmol/mlのH-Glu(OtBu)-OMTBPhyを含むクロロホルム溶液(溶液-1)と0.21mmol/mlのFmoc-Gly-OHと0.05mmol/mlの1-ヒドロキシベンゾトリアゾール(HOBt)無水物を含むジメチルホルムアミド(DMF)溶液(溶液-2)を、プランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.500、0.208ml/minの流量で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した。0.32mmol/mlのN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)を含むクロロホルム溶液(溶液-3)を0.133ml/minの流量で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて溶液-1,2の混合溶液と混合させた後、PFAチューブ(内径1.0mm,長さ10.0m)中で9min反応させ、さらに、20wt%NaCl水溶液(溶液-4)を、ダイヤフラムポンプを用いて0.56ml/minで送液して溶液-1、2、3の混合液にT字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で7min通液させて縮合反応で残存したEDC.HClを失活、水層中に淘汰した後、分液漏斗で分離してFmoc-Gly-Glu(OtBu)-OMTBPhyを含む有機層を回収した。
*)MTBPhyは、2-(3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルオキシ)-4-メトキシベンジル基を示す。
工程(2):脱Fmoc化反応/工程(B)-1:脱Fmoc化反応後の炭酸ナトリウム水溶液による洗浄
上記工程(1)、(A)の連続実施により得られたFmoc-Gly-Glu(OtBu)-OMTBPhyを0.05mmol/含む有機層(溶液-1)と0.52mmol/mlのチオリンゴ酸と1.57mmol/mlの1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を含むジメチルホルムアミド(DMF)溶液(溶液-2)をプランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.732、0.346ml/minの流速で送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した後、PFAチューブ(内径1.0mm,長さ10.0m)中で7min反応させた。反応に際し生じるジベンゾフルベン(DBF)については、チオリンゴ酸と反応させてフルベン付加体へと変換させた。この脱Fmoc化反応液に5.0wt%Na2CO3水溶液(溶液-3)を、ダイヤフラムポンプを用いて0.80ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で5min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、分液漏斗で分離して有機層を回収した。
上記工程(1)、(A)の連続実施により得られたFmoc-Gly-Glu(OtBu)-OMTBPhyを0.05mmol/含む有機層(溶液-1)と0.52mmol/mlのチオリンゴ酸と1.57mmol/mlの1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を含むジメチルホルムアミド(DMF)溶液(溶液-2)をプランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.732、0.346ml/minの流速で送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した後、PFAチューブ(内径1.0mm,長さ10.0m)中で7min反応させた。反応に際し生じるジベンゾフルベン(DBF)については、チオリンゴ酸と反応させてフルベン付加体へと変換させた。この脱Fmoc化反応液に5.0wt%Na2CO3水溶液(溶液-3)を、ダイヤフラムポンプを用いて0.80ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で5min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、分液漏斗で分離して有機層を回収した。
工程(B)-2:炭酸ナトリウム水溶液洗浄後の塩化ナトリウム水溶液による洗浄
工程(B)-1で得た有機層(溶液-1)と20.0wt%NaCl水溶液とジメチルホルムアミド(DMF)を容量比6:4で混合した液(溶液-2)をプランジャーポンプ、ダイヤフラムポンプを用いてそれぞれ1.500、1.50ml/minの流量でT字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で3min通液させて工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、分液漏斗で分離してH-Gly-Glu(OtBu)-OMTBPhyを含む有機層を回収した。
LC/MS M+ m/z 1376.1
工程(B)-1で得た有機層(溶液-1)と20.0wt%NaCl水溶液とジメチルホルムアミド(DMF)を容量比6:4で混合した液(溶液-2)をプランジャーポンプ、ダイヤフラムポンプを用いてそれぞれ1.500、1.50ml/minの流量でT字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で3min通液させて工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、分液漏斗で分離してH-Gly-Glu(OtBu)-OMTBPhyを含む有機層を回収した。
LC/MS M+ m/z 1376.1
実施例10: 2残基ペプチド(H-Tyr(tBu)-Phe-OTOC)の合成
工程(1):縮合反応/工程(A):縮合反応後の抽出
製造例1と同様の方法で得られた0.06mmol/mlのH-Phe-OTOCを含むクロロホルム溶液(溶液-1)と0.22mmol/mlのFmoc-Tyr(tBu)-OHと0.06mmol/mlの1-ヒドロキシベンゾトリアゾール(HOBt)無水物を含むジメチルホルムアミド(DMF)溶液(溶液-2)を、プランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.500、0.208ml/minの流量で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した。0.34mmol/mlのN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)を含むクロロホルム溶液(溶液-3)を0.133ml/minの流量で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて溶液-1,2の混合溶液と混合させた後、PFAチューブ(内径1.0mm,長さ10.0m)中で9min反応させ、さらに、20wt%NaCl水溶液(溶液-4)をダイヤフラムポンプを用いて0.56ml/minで送液して溶液-1、2、3の混合液にT字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で7min通液させて縮合反応で残存したEDC.HClを失活、水層中に淘汰した後、分液漏斗で分離してFmoc-Tyr(tBu)-Phe-OTOCを含む有機層を回収した。
*)TOCは、3,4,5-トリ(オクタデシルオキシ)シクロヘキシルメチル基を示す。
製造例1と同様の方法で得られた0.06mmol/mlのH-Phe-OTOCを含むクロロホルム溶液(溶液-1)と0.22mmol/mlのFmoc-Tyr(tBu)-OHと0.06mmol/mlの1-ヒドロキシベンゾトリアゾール(HOBt)無水物を含むジメチルホルムアミド(DMF)溶液(溶液-2)を、プランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.500、0.208ml/minの流量で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した。0.34mmol/mlのN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)を含むクロロホルム溶液(溶液-3)を0.133ml/minの流量で送液し、T字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて溶液-1,2の混合溶液と混合させた後、PFAチューブ(内径1.0mm,長さ10.0m)中で9min反応させ、さらに、20wt%NaCl水溶液(溶液-4)をダイヤフラムポンプを用いて0.56ml/minで送液して溶液-1、2、3の混合液にT字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で7min通液させて縮合反応で残存したEDC.HClを失活、水層中に淘汰した後、分液漏斗で分離してFmoc-Tyr(tBu)-Phe-OTOCを含む有機層を回収した。
*)TOCは、3,4,5-トリ(オクタデシルオキシ)シクロヘキシルメチル基を示す。
工程(2):脱Fmoc化反応/工程(B)-1:脱Fmoc化反応後の炭酸カリウム水溶液による洗浄
上記工程(1)、(A)の連続実施により得られたFmoc-Tyr(tBu)-Phe-OTOCを0.05mmol/含む有機層(溶液-1)と0.55mmol/mlのチオリンゴ酸と1.66mmol/mlの1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を含むジメチルホルムアミド(DMF)溶液(溶液-2)をプランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.732、0.346ml/minの流速で送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した後、PFAチューブ(内径1.0mm,長さ10.0m)中で7min反応させた。反応に際し生じるジベンゾフルベン(DBF)については、チオリンゴ酸と反応させてフルベン付加体へと変換させた。この脱Fmoc化反応液に5.0wt%K2CO3水溶液(溶液-3)を、ダイヤフラムポンプを用いて0.80ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で5min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、分液漏斗で分離して有機層を回収した。
上記工程(1)、(A)の連続実施により得られたFmoc-Tyr(tBu)-Phe-OTOCを0.05mmol/含む有機層(溶液-1)と0.55mmol/mlのチオリンゴ酸と1.66mmol/mlの1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を含むジメチルホルムアミド(DMF)溶液(溶液-2)をプランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.732、0.346ml/minの流速で送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した後、PFAチューブ(内径1.0mm,長さ10.0m)中で7min反応させた。反応に際し生じるジベンゾフルベン(DBF)については、チオリンゴ酸と反応させてフルベン付加体へと変換させた。この脱Fmoc化反応液に5.0wt%K2CO3水溶液(溶液-3)を、ダイヤフラムポンプを用いて0.80ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で5min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、分液漏斗で分離して有機層を回収した。
工程(B)-2:炭酸カリウム水溶液洗浄後の塩化ナトリウム水溶液による洗浄
工程(B)-1で得た有機層(溶液-1)と20.0wt%NaCl水溶液とジメチルホルムアミド(DMF)を容量比6:4で混合した液(溶液-2)をプランジャーポンプ、ダイヤフラムポンプを用いてそれぞれ1.500、1.50ml/minの流量でT字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で3min通液させて工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、分液漏斗で分離してH-Tyr(tBu)-Phe-OTOCを含む有機層を回収した。
LC/MS M+ m/z 1286.0
工程(B)-1で得た有機層(溶液-1)と20.0wt%NaCl水溶液とジメチルホルムアミド(DMF)を容量比6:4で混合した液(溶液-2)をプランジャーポンプ、ダイヤフラムポンプを用いてそれぞれ1.500、1.50ml/minの流量でT字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で3min通液させて工程(B)-1で完全に淘汰できなかったフルベン付加体を水層中に淘汰した後、分液漏斗で分離してH-Tyr(tBu)-Phe-OTOCを含む有機層を回収した。
LC/MS M+ m/z 1286.0
実施例11: 16残基ペプチド(D-アミノ酸を含む)(H-Leu-Lys(Boc)-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhy)の合成
工程(1):縮合反応
バッチ法により調製した0.03mmol/mlのH-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含むクロロホルム溶液(溶液-1)にそれぞれ1.50eq.の1-ヒドロキシベンゾトリアゾール(HOBt)無水物、Fmoc-Glu(OtBu)-OH、N-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)を添加し、Fmoc-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを得た。その後、それぞれ1.50eq.のN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)とチオリンゴ酸を添加して過剰の活性エステルを失活させた。
バッチ法により調製した0.03mmol/mlのH-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含むクロロホルム溶液(溶液-1)にそれぞれ1.50eq.の1-ヒドロキシベンゾトリアゾール(HOBt)無水物、Fmoc-Glu(OtBu)-OH、N-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)を添加し、Fmoc-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを得た。その後、それぞれ1.50eq.のN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)とチオリンゴ酸を添加して過剰の活性エステルを失活させた。
工程(A):縮合反応後の抽出
上記工程(1)で得られた0.03mmol/mlのFmoc-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む溶液(溶液-1)と20wt%NaCl水溶液(溶液-2)をそれぞれプランジャーポンプとダイヤフラムポンプを用いて1.500、1.50ml/minで送液してT字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ7.5m)中で5min通液させて縮合反応で残存したEDC.HClを失活、水層中に淘汰した後、油水分離膜(OB-900-S-10;孔径0.5μmの疎水性膜)を用いて分離してFmoc-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む有機層を回収した。
上記工程(1)で得られた0.03mmol/mlのFmoc-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む溶液(溶液-1)と20wt%NaCl水溶液(溶液-2)をそれぞれプランジャーポンプとダイヤフラムポンプを用いて1.500、1.50ml/minで送液してT字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ7.5m)中で5min通液させて縮合反応で残存したEDC.HClを失活、水層中に淘汰した後、油水分離膜(OB-900-S-10;孔径0.5μmの疎水性膜)を用いて分離してFmoc-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む有機層を回収した。
工程(2):脱Fmoc化反応/工程(B)-3:脱Fmoc化反応後の塩化ナトリウム水溶液による洗浄
上記工程(A)で得られたFmoc-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを0.03mmol/含む有機層(溶液-1)と0.40mmol/mlのチオリンゴ酸と1.45mmol/mlの1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を含むジメチルホルムアミド(DMF)溶液(溶液-2)をプランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.700、0.300ml/minの流速で送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した後、PFAチューブ(内径1.0mm,長さ10.0m)中で7min反応させた。反応に際し生じるジベンゾフルベン(DBF)については、チオリンゴ酸と反応させてフルベン付加体へと変換させた。この脱Fmoc化反応液に20.0wt%NaCl水溶液を、ダイヤフラムポンプを用いて0.50ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で7min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、分液漏斗で分離して有機層を回収した。さらに、得られた有機層を油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を通液させる事により有機層中にわずかに残存する水分を除去してH-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む有機層を得た。
LC/MS M2+ m/z 1460.0
上記工程(A)で得られたFmoc-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを0.03mmol/含む有機層(溶液-1)と0.40mmol/mlのチオリンゴ酸と1.45mmol/mlの1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を含むジメチルホルムアミド(DMF)溶液(溶液-2)をプランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.700、0.300ml/minの流速で送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した後、PFAチューブ(内径1.0mm,長さ10.0m)中で7min反応させた。反応に際し生じるジベンゾフルベン(DBF)については、チオリンゴ酸と反応させてフルベン付加体へと変換させた。この脱Fmoc化反応液に20.0wt%NaCl水溶液を、ダイヤフラムポンプを用いて0.50ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で7min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、分液漏斗で分離して有機層を回収した。さらに、得られた有機層を油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を通液させる事により有機層中にわずかに残存する水分を除去してH-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む有機層を得た。
LC/MS M2+ m/z 1460.0
工程(1):縮合反応
上記工程(2)、工程(B)-3の連続実施により得られた0.03mmol/mlのH-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含むクロロホルム溶液(溶液-1)にそれぞれ1.50eq.の1-ヒドロキシベンゾトリアゾール(HOBt)無水物、Fmoc-Lys(Boc)-OH、N-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)を添加し、Fmoc-Lys(Boc)-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを得た。その後、それぞれ1.50eq.のN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)とチオリンゴ酸を添加して過剰の活性エステルを失活させた。
上記工程(2)、工程(B)-3の連続実施により得られた0.03mmol/mlのH-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含むクロロホルム溶液(溶液-1)にそれぞれ1.50eq.の1-ヒドロキシベンゾトリアゾール(HOBt)無水物、Fmoc-Lys(Boc)-OH、N-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)を添加し、Fmoc-Lys(Boc)-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを得た。その後、それぞれ1.50eq.のN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)とチオリンゴ酸を添加して過剰の活性エステルを失活させた。
工程(A):縮合反応後の抽出
上記工程(1)で得られた0.03mmol/mlのFmoc-Lys(Boc)-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む溶液(溶液-1)と20wt%NaCl水溶液(溶液-2)をそれぞれプランジャーポンプとダイヤフラムポンプを用いて1.500、1.50ml/minで送液してT字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ7.5m)中で5min通液させて縮合反応で残存したEDC.HClを失活、水層中に淘汰した後、油水分離膜(OB-900-S-10;孔径0.5μmの疎水性膜)を用いて分離してFmoc-Lys(Boc)-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む有機層を回収した。
上記工程(1)で得られた0.03mmol/mlのFmoc-Lys(Boc)-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む溶液(溶液-1)と20wt%NaCl水溶液(溶液-2)をそれぞれプランジャーポンプとダイヤフラムポンプを用いて1.500、1.50ml/minで送液してT字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ7.5m)中で5min通液させて縮合反応で残存したEDC.HClを失活、水層中に淘汰した後、油水分離膜(OB-900-S-10;孔径0.5μmの疎水性膜)を用いて分離してFmoc-Lys(Boc)-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む有機層を回収した。
工程(2):脱Fmoc化反応/工程(B)-3:脱Fmoc化反応後の塩化ナトリウム水溶液による洗浄
上記工程(A)で得られたFmoc-Lys(Boc)-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを0.04mmol/含む有機層(溶液-1)と0.50mmol/mlのチオリンゴ酸と1.80mmol/mlの1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を含むジメチルホルムアミド(DMF)溶液(溶液-2)を、プランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.700、0.300ml/minの流速で送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した後、PFAチューブ(内径1.0mm,長さ10.0m)中で8min反応させた。反応に際し生じるジベンゾフルベン(DBF)については、チオリンゴ酸と反応させてフルベン付加体へと変換させた。この脱Fmoc化反応液に20.0wt%NaCl水溶液をダイヤフラムポンプを用いて0.50ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で7min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、分液漏斗で分離して有機層を回収した。さらに、得られた有機層を油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を通液させる事により有機層中にわずかに残存する水分を除去してH-Lys(Boc)-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む有機層を得た。
LC/MS M2+ m/z 1574.0
上記工程(A)で得られたFmoc-Lys(Boc)-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを0.04mmol/含む有機層(溶液-1)と0.50mmol/mlのチオリンゴ酸と1.80mmol/mlの1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を含むジメチルホルムアミド(DMF)溶液(溶液-2)を、プランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.700、0.300ml/minの流速で送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した後、PFAチューブ(内径1.0mm,長さ10.0m)中で8min反応させた。反応に際し生じるジベンゾフルベン(DBF)については、チオリンゴ酸と反応させてフルベン付加体へと変換させた。この脱Fmoc化反応液に20.0wt%NaCl水溶液をダイヤフラムポンプを用いて0.50ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で7min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、分液漏斗で分離して有機層を回収した。さらに、得られた有機層を油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を通液させる事により有機層中にわずかに残存する水分を除去してH-Lys(Boc)-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む有機層を得た。
LC/MS M2+ m/z 1574.0
工程(1):縮合反応
上記工程(2)、工程(B)-3の連続実施により得られた0.04mmol/mlのH-Lys(Boc)-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含むクロロホルム溶液(溶液-1)にそれぞれ1.50eq.の1-ヒドロキシベンゾトリアゾール(HOBt)無水物、Fmoc-Leu-OH、N-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)を添加し、Fmoc-Leu-Lys(Boc)-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを得た。その後、それぞれ1.50eq.のN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)とチオリンゴ酸を添加して過剰の活性エステルを失活させた。
上記工程(2)、工程(B)-3の連続実施により得られた0.04mmol/mlのH-Lys(Boc)-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含むクロロホルム溶液(溶液-1)にそれぞれ1.50eq.の1-ヒドロキシベンゾトリアゾール(HOBt)無水物、Fmoc-Leu-OH、N-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)を添加し、Fmoc-Leu-Lys(Boc)-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを得た。その後、それぞれ1.50eq.のN-エチル-N’-3-ジメチルアミノプロピルカルボジイミド塩酸塩(EDC.HCl)とチオリンゴ酸を添加して過剰の活性エステルを失活させた。
工程(A):縮合反応後の抽出
上記工程(1)で得られた0.03mmol/mlのFmoc-Leu-Lys(Boc)-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む溶液(溶液-1)と20wt%NaCl水溶液(溶液-2)をそれぞれプランジャーポンプとダイヤフラムポンプを用いて1.500、1.50ml/minで送液してT字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ7.5m)中で5min通液させて縮合反応で残存したEDC.HClを失活、水層中に淘汰した後、油水分離膜(OB-900-S-10;孔径0.5μmの疎水性膜)を用いて分離してFmoc-Leu-Lys(Boc)-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む有機層を回収した。
上記工程(1)で得られた0.03mmol/mlのFmoc-Leu-Lys(Boc)-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む溶液(溶液-1)と20wt%NaCl水溶液(溶液-2)をそれぞれプランジャーポンプとダイヤフラムポンプを用いて1.500、1.50ml/minで送液してT字型ミキサー(ユニオンティSS-200-3;外径1/8インチ)を用いて合流させた。合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ7.5m)中で5min通液させて縮合反応で残存したEDC.HClを失活、水層中に淘汰した後、油水分離膜(OB-900-S-10;孔径0.5μmの疎水性膜)を用いて分離してFmoc-Leu-Lys(Boc)-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む有機層を回収した。
工程(2):脱Fmoc化反応/工程(B)-3:脱Fmoc化反応後の塩化ナトリウム水溶液による洗浄
上記工程(A)で得られたFmoc-Leu-Lys(Boc)-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを0.05mmol/含む有機層(溶液-1)と0.63mmol/mlのチオリンゴ酸と2.26mmol/mlの1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を含むジメチルホルムアミド(DMF)溶液(溶液-2)をプランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.700、0.300ml/minの流速で送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した後、PFAチューブ(内径1.0mm,長さ10.0m)中で8min反応させた。反応に際し生じるジベンゾフルベン(DBF)については、チオリンゴ酸と反応させてフルベン付加体へと変換させた。この脱Fmoc化反応液に20.0wt%NaCl水溶液を、ダイヤフラムポンプを用いて0.50ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で7min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、分液漏斗で分離して有機層を回収した。さらに、得られた有機層を油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を通液させる事により有機層中にわずかに残存する水分を除去してH-Leu-Lys(Boc)-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む有機層を得た。
LC/MS M2+ m/z 1630.6
上記工程(A)で得られたFmoc-Leu-Lys(Boc)-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを0.05mmol/含む有機層(溶液-1)と0.63mmol/mlのチオリンゴ酸と2.26mmol/mlの1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)を含むジメチルホルムアミド(DMF)溶液(溶液-2)をプランジャーポンプ(シリンジポンプやダイヤフラムポンプの使用も可)を用いてそれぞれ0.700、0.300ml/minの流速で送液してT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて混合した後、PFAチューブ(内径1.0mm,長さ10.0m)中で8min反応させた。反応に際し生じるジベンゾフルベン(DBF)については、チオリンゴ酸と反応させてフルベン付加体へと変換させた。この脱Fmoc化反応液に20.0wt%NaCl水溶液を、ダイヤフラムポンプを用いて0.50ml/minの流量でT字型ミキサー(ユニオンティSS-100-3;外径1/16インチ)を用いて合流させた後、合流後にスラグ流(有機層-水層が交互に繰り返される流れ)となった液を、PFAチューブ(内径1.6mm,長さ5.0m)中で7min通液させて脱Fmoc化反応の際に生成したフルベン付加体を水層中に淘汰した後、分液漏斗で分離して有機層を回収した。さらに、得られた有機層を油水分離膜(OB-2000-S-10;孔径1.0μmの疎水性膜)を通液させる事により有機層中にわずかに残存する水分を除去してH-Leu-Lys(Boc)-Glu(OtBu)-(D)Pro-Pro-Gln(Trt)-Ala-Ala-(D)Pro-Pro-Ile-Pro-Gln(Trt)-Ala-Ala-Leu-OTOBPhyを含む有機層を得た。
LC/MS M2+ m/z 1630.6
本発明は、ペプチドの連続的製造方法に関するものであり、ペプチド合成の分野において有用である。
本出願は、日本で出願された特願2019-084652(出願日:2019年4月25日)を基礎としており、その内容は本明細書に全て包含されるものである。
Claims (11)
- 下記工程(A)および/または工程(B)を含む、ペプチドの製造方法。
(A)N末端アミノ基およびC末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているN保護C保護ペプチド(N保護C保護ペプチド)を含む反応液を、フロー・リアクター中で水および/または親水性有機溶媒により連続的流れで洗浄後、連続的流れで油水分離手段により分液して、当該N保護C保護ペプチドを含有する有機層を分層することにより当該N保護C保護ペプチドを精製する工程、
(B)N末端アミノ基が保護されておらず、C末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているC保護ペプチド(N無保護C保護ペプチド)を含む反応液を、フロー・リアクター中で水および/または親水性有機溶媒により連続的流れで洗浄後、連続的流れで油水分離手段により分液して、当該N無保護C保護ペプチドを含有する有機層を分層することにより当該N無保護C保護ペプチドを精製する工程。 - 下記工程(1)、(A)、(2)、および(B)を含む、ペプチドの製造方法。
(1)C末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているC保護アミノ酸(C保護アミノ酸)、またはC末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているC保護ペプチド(C保護ペプチド);
C末端が保護されておらず、N末端アミノ基が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよいN保護アミノ酸(N保護アミノ酸)、またはC末端が保護されておらず、N末端アミノ基が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよいN保護ペプチド(N保護ペプチド);
縮合剤;
および可溶性有機溶媒を、
フロー・リアクター中に導入し、フロー・リアクター中での連続的流れで縮合反応を行い、N末端の伸長により、N末端アミノ基およびC末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているN保護C保護ペプチド(N保護C保護ペプチド)を得る工程、
(A)N保護C保護ペプチドを含む反応液を、フロー・リアクター中で水および/または親水性有機溶媒により連続的流れで洗浄後、連続的流れで油水分離手段により分液して、当該N保護C保護ペプチドを含有する有機層を分層することにより当該N保護C保護ペプチドを精製する工程、
(2)N保護C保護ペプチドを含有する有機層を、連続的流れでフロー・リアクター中に導入し、フロー・リアクター中での連続的流れで、N末端アミノ基の保護基を除去し、N末端アミノ基が保護されておらず、C末端が保護基により保護され、側鎖官能基がさらに保護基により保護されていてもよく、C末端、または側鎖官能基の少なくとも一つが擬似固相保護基で保護されているC保護ペプチド(N無保護C保護ペプチド)を得る工程、
(B)N無保護C保護ペプチドを含む反応液を、フロー・リアクター中で水および/または親水性有機溶媒により連続的流れで洗浄後、連続的流れで油水分離手段により分液して、当該N無保護C保護ペプチドを含有する有機層を分層することにより当該N無保護C保護ペプチドを精製する工程。 - 工程(1)、(A)、(2)、および(B)の順に行う、請求項2に記載のペプチドの製造方法。
- 工程(2)、(B)、(1)、および(A)の順に行う、請求項2に記載のペプチドの製造方法。
- 油水分離手段が、フィルターを含む構成からなる連続的分層手段、Gravityタイプの連続的分層手段のいずれかである、請求項1~4のいずれか1項に記載のペプチドの製造方法。
- アミノ基の保護基が、9-フルオレニルメチルオキシカルボニル基、tert-ブトキシカルボニル基またはベンジルオキシカルボニル基である請求項1~5のいずれか1項に記載のペプチドの製造方法。
- アミノ基の保護基が、9-フルオレニルメチルオキシカルボニル基である請求項6に記載のペプチドの製造方法。
- 工程(A)で得られたN保護C保護ペプチド、または工程(B)で得られたN無保護C保護ペプチドを含有する有機層を取得した後、全ての保護基を除去する工程をさらに含む請求項1~7のいずれか1項に記載のペプチドの製造方法。
- アミノ酸残基数が5以上100以下であるペプチドが製造される請求項1~8のいずれか1項に記載のペプチドの製造方法。
- 擬似固相保護基が、
(4’、4’-ビス(2,3-ジヒドロフィチルオキシ)フェニル)メチルアミン);
3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
2-[3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルオキシ]-4-メトキシベンジルアルコール;
3,4,5-トリ(オクタデシルオキシ)シクロヘキサンメタノール;
[ビス-(4-ドコソキシ-フェニル)-メチル]-アミン;
3,4,5-トリ(オクタデシルオキシ)ベンジルアルコール;
4-メトキシ-2-[3’,4’,5’-トリス(オクタデシルオキシ)ベンジルオキシ)ベンジルアルコール;
4-メトキシ-2-[3’,4’,5’-トリス(オクタデシルオキシ)シクロヘキシルメチルオキシ]ベンジルアルコール;
2-ドコシロキシ-9-(4-クロロフェニル)-9-フルオレノール;
2-ドコシロキシ-9-(4-クロロフェニル)-9-ブロモフルオレン;
2,7-ジドコシロキシ-9-(4-クロロフェニル)-9-ブロモフルオレン;
2-(12-ドコシロキシ-ドデカノキシ)-9-(3-フルオロフェニル)-9-ブロモフルオレン;
1,12-ビス-[12-(2’-O-9-(4-クロロフェニル)-9-フルオレノール)-ドデシロキシ]-ドデカン;
1,12-ビス-[12-(2’-O-9-(4-クロロフェニル)-9-ブロモフルオレン)-ドデシロキシ]-ドデカン;
2-(3-オクタデシロキシ-2,2-ビス-オクタデシロキシメチル-プロポキシ)-9-(4-クロロフェニル)-9-フルオレノール;
2-(3-オクタデシロキシ-2,2-ビス-オクタデシロキシメチル-プロポキシ)-9-(4-クロロフェニル)-9-ブロモフルオレン;
9-(4-クロロフェニル)-2-(3,4,5-トリス(オクタデシロキシ)シクロヘキシルメトキシ)-9-フルオレノール;
9-(4-クロロフェニル)-2-(3,4,5-トリス(オクタデシロキシ)シクロヘキシルメトキシ)-9-ブロモフルオレン;
3,5-ジドコシロキシベンジルアルコール;
2,4-ジドコシロキシベンジルアルコール;
2,4-ビスオクタデシロキシベンジルアルコール;
3-ジドコシルアミノベンジルアルコール;
3-ジフィチルアミノベンジルアルコール;
N-(2’,3’-ジヒドロフィチル)-N-(3-ヒドロキシメチルフェニル)アセトアミド;
N-トリアコンチル-N-(3-ヒドロキシメチルフェニル)アセトアミド;
3-(アミノメチル)-N,N-ジドコシルアニリン;
TBDPSは、tert-ブチルジフェニルシリル基を示す)
から選択される、請求項1~9のいずれか1項に記載のペプチドの製造方法。 - 擬似固相保護基が、
(4’、4’-ビス(2,3-ジヒドロフィチルオキシ)フェニル)メチルアミン);
3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルアルコール;
2-[3,4,5-トリ(2’,3’-ジヒドロフィチルオキシ)ベンジルオキシ]-4-メトキシベンジルアルコール;および
3,4,5-トリ(オクタデシルオキシ)シクロヘキサンメタノール;
から選択される、請求項1~9のいずれか1項に記載のペプチドの製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021516254A JPWO2020218497A1 (ja) | 2019-04-25 | 2020-04-24 | |
US17/506,934 US20220041648A1 (en) | 2019-04-25 | 2021-10-21 | Method for producing peptide continuously |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-084652 | 2019-04-25 | ||
JP2019084652 | 2019-04-25 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/506,934 Continuation US20220041648A1 (en) | 2019-04-25 | 2021-10-21 | Method for producing peptide continuously |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020218497A1 true WO2020218497A1 (ja) | 2020-10-29 |
Family
ID=72942140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/017670 WO2020218497A1 (ja) | 2019-04-25 | 2020-04-24 | ペプチドの連続的製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220041648A1 (ja) |
JP (1) | JPWO2020218497A1 (ja) |
WO (1) | WO2020218497A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7493115B1 (ja) | 2023-01-13 | 2024-05-30 | 株式会社トクヤマ | アミノ基含有化合物の製造方法、およびアミノ基含有化合物の分離方法 |
WO2024150477A1 (ja) * | 2023-01-13 | 2024-07-18 | 株式会社トクヤマ | アミノ基含有化合物の製造方法、アミノ基含有化合物の分離方法、およびアミノ基含有化合物の製造装置 |
EP4458460A1 (en) | 2023-05-01 | 2024-11-06 | Yokogawa Electric Corporation | Method and apparatus for producing peptide |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004035521A (ja) * | 2002-07-08 | 2004-02-05 | Nokodai Tlo Kk | 液相ペプチド合成装置 |
JP2004059509A (ja) * | 2002-07-30 | 2004-02-26 | Nokodai Tlo Kk | 液相ペプチド合成用アミノ酸試薬 |
WO2007034812A1 (ja) * | 2005-09-20 | 2007-03-29 | National University Corporation, Tokyo University Of Agriculture And Technology | 分離用担体、化合物の分離方法、及びこれを用いたペプチド合成方法 |
WO2010113939A1 (ja) * | 2009-03-30 | 2010-10-07 | 味の素株式会社 | ジフェニルメタン化合物 |
WO2011078295A1 (ja) * | 2009-12-25 | 2011-06-30 | 味の素株式会社 | ベンジル化合物 |
WO2012029794A1 (ja) * | 2010-08-30 | 2012-03-08 | 味の素株式会社 | 分岐鎖含有芳香族化合物 |
WO2019198833A1 (ja) * | 2018-04-13 | 2019-10-17 | Jitsubo株式会社 | ペプチド合成方法 |
-
2020
- 2020-04-24 WO PCT/JP2020/017670 patent/WO2020218497A1/ja active Application Filing
- 2020-04-24 JP JP2021516254A patent/JPWO2020218497A1/ja active Pending
-
2021
- 2021-10-21 US US17/506,934 patent/US20220041648A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004035521A (ja) * | 2002-07-08 | 2004-02-05 | Nokodai Tlo Kk | 液相ペプチド合成装置 |
JP2004059509A (ja) * | 2002-07-30 | 2004-02-26 | Nokodai Tlo Kk | 液相ペプチド合成用アミノ酸試薬 |
WO2007034812A1 (ja) * | 2005-09-20 | 2007-03-29 | National University Corporation, Tokyo University Of Agriculture And Technology | 分離用担体、化合物の分離方法、及びこれを用いたペプチド合成方法 |
WO2010113939A1 (ja) * | 2009-03-30 | 2010-10-07 | 味の素株式会社 | ジフェニルメタン化合物 |
WO2011078295A1 (ja) * | 2009-12-25 | 2011-06-30 | 味の素株式会社 | ベンジル化合物 |
WO2012029794A1 (ja) * | 2010-08-30 | 2012-03-08 | 味の素株式会社 | 分岐鎖含有芳香族化合物 |
WO2019198833A1 (ja) * | 2018-04-13 | 2019-10-17 | Jitsubo株式会社 | ペプチド合成方法 |
Non-Patent Citations (3)
Title |
---|
BRITTON, JOSHUA ET AL.: "Multi-step continous-flow synthesis", CHEMICAL SOCIETY REVIEWS, vol. 46, 2017, pages 1250 - 1271, XP055750316, DOI: 10.1039/c6cs00830e * |
FUSE, SHINICHIRO ET AL.: "Peptide Synthesis Utilizing Micro-flow Technology", CHEMISTY, AN ASIAN JOURNAL, vol. 13, no. 24, 2018, pages 3818 - 3832, XP055759156, DOI: 10.1002/asia.201801488 * |
TAKUMI, MASAHIRO ET AL.: "Special issue, Nanotechnology supports chemical technology, Microreactor research development status and its perspectives", KAGAKU SOCHI, vol. 61, no. 3, 1 March 2019 (2019-03-01), pages 17 - 22 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7493115B1 (ja) | 2023-01-13 | 2024-05-30 | 株式会社トクヤマ | アミノ基含有化合物の製造方法、およびアミノ基含有化合物の分離方法 |
WO2024150477A1 (ja) * | 2023-01-13 | 2024-07-18 | 株式会社トクヤマ | アミノ基含有化合物の製造方法、アミノ基含有化合物の分離方法、およびアミノ基含有化合物の製造装置 |
EP4458460A1 (en) | 2023-05-01 | 2024-11-06 | Yokogawa Electric Corporation | Method and apparatus for producing peptide |
Also Published As
Publication number | Publication date |
---|---|
US20220041648A1 (en) | 2022-02-10 |
JPWO2020218497A1 (ja) | 2020-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6350632B2 (ja) | ペプチドの製造方法 | |
JP6092513B2 (ja) | フルオレン化合物 | |
JP6713983B2 (ja) | ペプチド合成方法 | |
US20220041648A1 (en) | Method for producing peptide continuously | |
EP2914256B1 (en) | Disubstituted amino acids and methods of preparation and use thereof | |
EP3398957B1 (en) | Method for synthesizing etelcalcetide | |
JP2002525376A (ja) | アミド結合形成のための補助基 | |
JPWO2012165545A1 (ja) | ペプチドの製造方法 | |
JP6136934B2 (ja) | Fmoc基の除去方法 | |
JP7476798B2 (ja) | 分子内s-s結合を有する環化ペプチドの製造方法 | |
Chung et al. | Cyclic peptide facial amphiphile preprogrammed to self-assemble into bioactive peptide capsules | |
WO2023033015A1 (ja) | Fmoc保護アミノ基含有化合物の製造法 | |
WO2023033017A1 (ja) | ガニレリクス又はその塩の製造法 | |
JP7154513B1 (ja) | 液相ペプチド製造方法 | |
JP7162853B1 (ja) | 液相ペプチド合成用担体結合ペプチドの分析方法 | |
DesMarteau et al. | A discovery tool at work: the unexpected properties of a two-carbon residue | |
EP3932933A1 (en) | Method for producing amide | |
WO2024214716A1 (ja) | アミノ酸n-カルボキシ無水物(nca)の製造方法 | |
WO2022149612A1 (ja) | ペプチドの製造方法 | |
CN108148113A (zh) | 一种nmda受体调控剂四肽衍生物的固相合成方法 | |
US20210261610A1 (en) | Method for producing amide | |
TW202328055A (zh) | 用於液相合成之化合物及方法 | |
JP2023097442A (ja) | ペプチド製造方法、及びベンジル化合物 | |
JPH06145195A (ja) | ペプチド合成における副反応防止法 | |
JPH0525196A (ja) | 環状ペプチドの合成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20796280 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021516254 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20796280 Country of ref document: EP Kind code of ref document: A1 |