JP2003056995A - Heat exchanger - Google Patents
Heat exchangerInfo
- Publication number
- JP2003056995A JP2003056995A JP2001249138A JP2001249138A JP2003056995A JP 2003056995 A JP2003056995 A JP 2003056995A JP 2001249138 A JP2001249138 A JP 2001249138A JP 2001249138 A JP2001249138 A JP 2001249138A JP 2003056995 A JP2003056995 A JP 2003056995A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- heat transfer
- heat
- flow
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012530 fluid Substances 0.000 claims abstract description 59
- 230000001939 inductive effect Effects 0.000 claims abstract description 21
- 238000000926 separation method Methods 0.000 claims abstract description 20
- 238000012546 transfer Methods 0.000 abstract description 73
- 238000010438 heat treatment Methods 0.000 abstract description 9
- 230000001737 promoting effect Effects 0.000 abstract description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 37
- 238000001816 cooling Methods 0.000 description 32
- 238000005304 joining Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000005679 Peltier effect Effects 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/40—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Geometry (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、流路内を流れる流
体と流路壁面との間で熱交換を行う熱交換器に関し、特
に、流路内に二次流れを誘起させ流体と流路内壁面間の
熱伝達性能を促進させるための流路及び流路内形状の改
良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger for exchanging heat between a fluid flowing in a flow passage and a wall surface of the flow passage, and particularly to a fluid and the flow passage by inducing a secondary flow in the flow passage. The present invention relates to improvement of a flow passage and a shape inside the flow passage for promoting heat transfer performance between inner wall surfaces.
【0002】[0002]
【従来の技術】管内の流れと壁面との間に伝熱がある
と、管壁面近傍の流体温度は管中央部の流体温度よりも
必ず高い(流体を加熱する場合)あるいは必ず低い(流
体を冷却する場合)、言い換えると、壁面に沿って必ず
温度境界層が形成される。伝熱促進の基本原理はこの温
度境界層を可能な限り薄くすることに有る。2. Description of the Related Art When heat is transferred between a flow in a pipe and a wall surface, the fluid temperature in the vicinity of the pipe wall surface is always higher (when heating the fluid) or lower (when the fluid is heated) than the fluid temperature in the central portion of the tube. In the case of cooling), in other words, the temperature boundary layer is always formed along the wall surface. The basic principle of promoting heat transfer is to make this temperature boundary layer as thin as possible.
【0003】まっすぐな管路内の伝熱を促進するための
従来の技術は、もっぱら次の三つの手法に大別される。Conventional techniques for promoting heat transfer in straight pipes are roughly classified into the following three methods.
【0004】(1)壁面近傍の流れをかく乱する。(例
えば、壁面に粗さを設ける。)
(2)壁面近傍の流れに剥離・再付着を生じしめる。
[壁面にリブなどの突起を設ける、あるいはワイヤーコ
イルを挿入する。図13(a),(b)]
(3)管内の流れに旋回流を生じしめる。[ねじりテー
プなどを挿入する。図13(c)]
上記の三つの方法は先に述べた基本原理に沿うものでは
あるが、このうち(1)は、壁面近傍の流体の挙動を制
御することにより伝熱促進を狙い、(2)は、流れの剥
離・再付着による再付着点近傍での境界層の薄膜化によ
る伝熱促進効果に依存し、また、(3)は、軸対称な旋
回流を生じしめて温度境界層を薄くすることを狙ったも
のである。しかし、いずれも、管の中央部にある流体を
積極的に管壁近くに運び、管壁近傍の流体を管中央部へ
戻すという、管路断面全域に渡る大きなスケールでの流
体の運動を生じしめるものではない。もしも、これが実
現できれば伝熱は大幅に促進される。このような、本来
の管軸方向の平均流の他に、管軸に直角な断面内に速度
成分を持つ流れを二次流れというが、従来このような二
次流れを積極的に利用して直線流路の伝熱促進を図ろう
とする試みは殆どなされていない。(1) The flow near the wall is disturbed. (For example, the wall surface is provided with roughness.) (2) The flow near the wall surface causes separation and reattachment.
[Provide a protrusion such as a rib on the wall surface or insert a wire coil. 13 (a), (b)] (3) A swirl flow is generated in the flow in the pipe. [Insert twisting tape, etc. FIG. 13 (c)] The above three methods are in accordance with the basic principle described above. Among them, (1) aims at promoting heat transfer by controlling the behavior of the fluid near the wall surface, 2) depends on the effect of heat transfer promotion by thinning the boundary layer near the reattachment point due to flow separation / reattachment, and (3) produces an axially symmetric swirl flow to form a temperature boundary layer. It is intended to be thin. However, in both cases, the fluid in the central part of the pipe is positively transported to the vicinity of the pipe wall, and the fluid near the pipe wall is returned to the central part of the pipe, causing a large-scale fluid movement over the entire cross section of the pipe. It's not a tie. If this could be achieved, heat transfer would be greatly enhanced. In addition to such an original average flow in the pipe axis direction, a flow having a velocity component in a cross section perpendicular to the pipe axis is called a secondary flow. Conventionally, such a secondary flow is positively used. Few attempts have been made to enhance heat transfer in a straight flow path.
【0005】二次流れが生ずると、その二次流れの流動
形態(回転方向)に応じて、管壁の周方向に熱伝達率分
布が生ずる。すなわち、周方向の壁面のうち、二次流れ
が向かってくる側の伝熱は大幅に促進される。このよう
な指向性の存在は、流路の外側に用いる伝熱システムに
よっては、極めて望ましくかつ有用なものとなる。When the secondary flow is generated, a heat transfer coefficient distribution is generated in the circumferential direction of the pipe wall according to the flow form (rotational direction) of the secondary flow. That is, the heat transfer on the side of the wall surface in the circumferential direction on which the secondary flow is directed is greatly promoted. The presence of such directivity can be extremely desirable and useful depending on the heat transfer system used outside the flow path.
【0006】[0006]
【発明が解決しようとする課題】従来、管内の伝熱促進
に用いられていた方法は、先に述べた(1)、(2)お
よび(3)に集約されるが、それらはいずれも管壁近傍
の流体の挙動を制御して伝熱を促進しようとするもの
で、いずれの伝熱促進効果も、流路断面内全体に渡る混
合効果による伝熱促進に比べると、それほど大きくな
い。また、それらはいずれも管内壁面の全周に渡る伝熱
促進を意図している。The methods conventionally used for promoting heat transfer in a tube are summarized in the above (1), (2) and (3), but all of them are Since the behavior of the fluid near the wall is controlled to promote heat transfer, any heat transfer promotion effect is not so large as compared to the heat transfer promotion by the mixing effect over the entire channel cross section. All of them are intended to promote heat transfer over the entire circumference of the inner wall surface of the pipe.
【0007】これに対し、本発明は、二次流れを利用し
て全体の平均的な熱伝達を促進するだけではなく、管壁
周方向の与えられた或る一定部分の伝熱を集中的に上昇
させることができる流路伝熱面形状を新たに構築し、高
い伝熱性能と指向性を有する熱交換器流路の提供を目的
とするものである。On the other hand, the present invention not only utilizes the secondary flow to promote the average heat transfer of the whole, but also concentrates the heat transfer of a given certain portion in the circumferential direction of the pipe wall. The purpose of the present invention is to provide a heat exchanger flow path having a high heat transfer performance and directivity by newly constructing a flow path heat transfer surface shape that can be raised.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明は、円管内部の流路を流れる流体を
介して熱交換を行う熱交換器において、前記円管内に、
楕円環状の剥離・二次流れ誘起部材を前記円管の管軸に
対して傾斜させて設けたことを特徴とする。In order to achieve the above-mentioned object, the invention of claim 1 is a heat exchanger for exchanging heat via a fluid flowing through a flow path inside a circular pipe,
An elliptical annular separation / secondary flow inducing member is provided so as to be inclined with respect to the tube axis of the circular tube.
【0009】また、請求項2の発明は、断面が円形状の
流路内部を流れる流体を介して熱交換を行う熱交換板を
熱電モジュールの上下両面に対向配置して成る熱交換器
において、前記熱交換板の流路内に、楕円環状の剥離・
二次流れ誘起部材を前記流路の管軸に対して傾斜させて
設けたことを特徴とする。Further, the invention of claim 2 is a heat exchanger in which heat exchanging plates for exchanging heat through a fluid flowing through a channel having a circular cross section are arranged to face each other on the upper and lower surfaces of a thermoelectric module. In the flow path of the heat exchange plate, an elliptical ring-shaped peeling
The secondary flow inducing member is provided so as to be inclined with respect to the tube axis of the flow path.
【0010】また、請求項3の発明は、請求項1または
2いずれかの発明において、前記剥離・二次流れ誘起部
材は、前記流路の直線部分に、管軸方向に一定間隔毎に
複数個連続して配置されることを特徴とする。The invention according to claim 3 is the invention according to claim 1 or 2, wherein a plurality of the separation / secondary flow inducing members are provided in a straight line portion of the flow path at regular intervals in the pipe axis direction. The feature is that they are arranged consecutively.
【0011】また、請求項4の発明は、請求項3の発明
において、前記一定間隔(L)は、前記流路の内直径
(d)に対し、L/d=1〜2の関係を有することを特
徴する。Further, in the invention of claim 4 according to the invention of claim 3, the constant interval (L) has a relationship of L / d = 1 to 2 with respect to the inner diameter (d) of the flow path. Characterize that.
【0012】また、請求項5の発明は、請求項1または
2いずれかの発明において、前記剥離・二次流れ誘起部
材は、管軸方向に対して45〜60°後傾斜状態に傾け
て配置されることを特徴とする。The invention according to claim 5 is the invention according to any one of claims 1 and 2, wherein the separation / secondary flow inducing member is arranged at an angle of 45 to 60 ° with respect to the pipe axis direction. It is characterized by being done.
【0013】また、請求項6の発明は、請求項1または
2いずれかの発明において、前記剥離・二次流れ誘起部
材の高さ(h)および厚さ(t)は、前記流路の内直径
(d)に対し、h/d=0.1〜0.2、t/d=0.
1〜0.2の関係を有することを特徴とする。The invention according to claim 6 is the invention according to claim 1 or 2, wherein the height (h) and the thickness (t) of the separation / secondary flow inducing member are within the flow path. With respect to the diameter (d), h / d = 0.1 to 0.2, t / d = 0.
It is characterized by having a relationship of 1 to 0.2.
【0014】また、請求項7の発明は、請求項2の発明
において、前記熱交換板の熱電モジュールに接する側の
流路面を底面とし、前記剥離・二次流れ誘起部材を、前
記底面を基点として流体の流れ方向に対して後傾状態に
傾斜させて配置したことを特徴とする。According to the invention of claim 7, in the invention of claim 2, the flow passage surface of the heat exchange plate on the side in contact with the thermoelectric module is the bottom surface, and the separation / secondary flow inducing member is based on the bottom surface. Is arranged so as to be inclined rearward with respect to the flow direction of the fluid.
【0015】[0015]
【発明の実施の形態】以下、本発明の実施形態について
添付図面を参照して詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
【0016】図1は、本発明に係わる熱交換器に用いら
れる冷却或いは加熱対象の流体(熱交換媒体)を通す円管
の概略構成を示す図であり、この場合、後述する剥離・
二次流れ誘起部材(以下、単に「リブ」という。)10
の作用により生じる二次流れの概要を示している。FIG. 1 is a view showing a schematic structure of a circular pipe for passing a fluid (heat exchange medium) to be cooled or heated used in the heat exchanger according to the present invention.
Secondary flow inducing member (hereinafter, simply referred to as "rib") 10
The outline of the secondary flow generated by the action of is shown.
【0017】図1に示すように、この円管1の内部に
は、二次流れの誘起により、伝熱面付近の流体と流路中
央部の流体2を混合させるために、楕円環状のリブ10
を流体2の流れる方向(管軸)に対して傾斜させて配置
する。As shown in FIG. 1, an elliptical ring-shaped rib is provided inside the circular tube 1 in order to mix the fluid near the heat transfer surface and the fluid 2 at the center of the flow path by inducing a secondary flow. 10
Are inclined with respect to the flowing direction of the fluid 2 (tube axis).
【0018】これにより、リブ10に沿って流れが誘起
され、その結果、底面壁近傍にあった流体は天井(To
p)壁側へ、また、円管中心部の流体は底面(Bottom)側
に運ばれるため、流体と円管内壁面の間の熱伝達性能が
促進される。As a result, a flow is induced along the ribs 10, and as a result, the fluid near the bottom wall is exposed to the ceiling (To
p) Since the fluid at the center of the circular pipe is transported to the bottom side, the heat transfer performance between the fluid and the inner wall surface of the circular pipe is promoted.
【0019】図2は、上記図1に示した円管1を用いて
熱伝達実験によりリブの傾斜角度の違いによる伝熱促進
効果を測定するためのテストセクション(実験装置)を示
す図である。FIG. 2 is a view showing a test section (experimental apparatus) for measuring the heat transfer promotion effect due to the difference in the inclination angle of the rib by a heat transfer experiment using the circular tube 1 shown in FIG. .
【0020】図2において、この熱伝達実験用に用いら
れた円管1は、内直径(d)=31mm、外直径(D)
=38mm、長さ(L)=372mmの耐熱性硬化塩化
ビニール製である。In FIG. 2, the circular tube 1 used for this heat transfer experiment has an inner diameter (d) = 31 mm and an outer diameter (D).
= 38 mm, length (L) = 372 mm, made of heat-resistant cured vinyl chloride.
【0021】管内壁には、導電性プラスティックヒータ
ーが貼り付けてあり、これを通電加熱することにより、
一様熱流束条件を得るものである。A conductive plastic heater is adhered to the inner wall of the tube, and by heating it electrically,
This is to obtain a uniform heat flux condition.
【0022】また、リブ部10は、円管1と同じ材質で
厚さ3mm、流れ方向に対して垂直方向高さ3mmのリ
ング状である。The rib portion 10 is made of the same material as the circular tube 1 and has a ring shape with a thickness of 3 mm and a height of 3 mm in the direction perpendicular to the flow direction.
【0023】そして、測定においては、リブ取り付け角
度を、後傾状態でθ=90°、75°、60°、45°
に変化させた。いずれの場合にもリブは、加熱開始点か
ら流れ方向に30mm間隔で計11個取り付けられてい
る。In the measurement, the rib attachment angle is θ = 90 °, 75 °, 60 °, 45 ° in the backward tilted state.
Changed to. In each case, a total of 11 ribs were attached at intervals of 30 mm in the flow direction from the heating start point.
【0024】図2中の点線は温度測定用熱電対取付の管
軸方向位置を示し、同図中の丸印は熱電対を示す。熱電
対は、加熱開始点からの距離zを管直径dで除した無次
元流路位置z/d=5.5以降において、軸方向に特に
密に設置され、また、周方向には、上部から45°間隔
で8点取り付け、流れ方向および周方向の詳細な熱伝達
率分布が調査できる。The dotted line in FIG. 2 indicates the position of the thermocouple for temperature measurement in the axial direction of the tube, and the circles in the figure indicate the thermocouple. The thermocouples are installed particularly densely in the axial direction after the dimensionless flow path position z / d = 5.5 after dividing the distance z from the heating start point by the tube diameter d, and in the circumferential direction, the upper part It is possible to investigate the detailed heat transfer coefficient distribution in the flow direction and the circumferential direction by attaching 8 points at 45 ° intervals.
【0025】図3は、図2に示す熱伝達実験の態様によ
るレイノルズ数(Re)=10000、リブ取り付け角度θ=45
°における熱伝達実験結果を示す図である。図中、横軸
は伝熱管入り口からの無次元距離z/dであり、縦軸
は、伝熱性能を示すヌセルト数Nuを、平滑管の十分下
流でのヌセルト数Nu∞で割った値である。FIG. 3 shows the Reynolds number (Re) = 10000 and the rib mounting angle θ = 45 according to the mode of the heat transfer experiment shown in FIG.
It is a figure which shows the heat transfer experiment result in (degree). In the figure, the horizontal axis is the dimensionless distance z / d from the heat transfer tube inlet, and the vertical axis is the value obtained by dividing the Nusselt number Nu indicating heat transfer performance by the Nusselt number Nu∞ sufficiently downstream of the smooth tube. is there.
【0026】図3において、実線はリブなどを取り付け
ない平滑管の場合の性能である。この図からリブを傾斜
して取り付けた場合には平滑管に比べ伝熱性能が大幅に
向上することがわかる。In FIG. 3, the solid line shows the performance in the case of a smooth tube without ribs or the like. From this figure, it can be seen that the heat transfer performance is significantly improved when the ribs are installed with an inclination, as compared with the smooth tube.
【0027】図3に示すように、管軸に対して傾斜して
設置されたリブの流体の流れに対し前方部分となるボト
ム(Bottom)での局所ヌセルト数比(Nu/Nu∞)は、リブ
の流体の流れに対し後方部分となるトップ(Top)に比べ
て高い値を示しているのがわかる。As shown in FIG. 3, the local Nusselt number ratio (Nu / Nu∞) at the bottom (Bottom), which is the front part with respect to the fluid flow of the rib installed at an inclination with respect to the tube axis, is It can be seen that the rib shows a higher value than the top, which is the rear part of the fluid flow.
【0028】このように、傾斜リブが著しい伝熱促進効
果をもたらす理由は、傾斜リブによって誘起された二次
流れにより、流路中心部の冷たい流体がボトム(Bottom)
壁側へ運ばれ、ボトム壁近傍の暖められた流体は左右の
管壁に沿ってトップ側へ持ち去られるためである。As described above, the reason why the inclined ribs bring about a remarkable effect of promoting heat transfer is that the cold fluid in the center of the flow path is bottomed by the secondary flow induced by the inclined ribs.
This is because the fluid carried to the wall side and heated near the bottom wall is carried away to the top side along the left and right pipe walls.
【0029】また、管壁全周の中ではトップ(Top)で
のヌセルト数比が最も低い値を示しているが、これは、
ボトムからトップに向かって周方向に温度境界層が発達
するためである。The Nusselt number ratio at the top is the lowest of all the circumferences of the pipe wall.
This is because the thermal boundary layer develops in the circumferential direction from the bottom to the top.
【0030】なお、図3において、TopからBottomにい
たる周方向のいずれの位置においても、管軸方向にヌセ
ルト数比が周期的に変動するのは、個々のリブによる流
れの剥離・再付着効果による。いずれの場合にもヌセル
ト数比がピークを示すのは、流れの再付着位置である。
すなわち、図3の場合には、二次流れの効果のほかに、
流れの剥離・再付着効果も共存している。In FIG. 3, the Nusselt number ratio periodically fluctuates in the pipe axis direction at any position in the circumferential direction from Top to Bottom because of the effect of separation and reattachment of the flow by the individual ribs. by. In each case, the Nusselt number ratio shows a peak at the flow reattachment position.
That is, in the case of FIG. 3, in addition to the effect of the secondary flow,
Flow separation and reattachment effects also coexist.
【0031】図4は、z/d=7〜9(約3リブ間)にお
ける周方向各位置の平均ヌセルト数比Num/Nu∞の分
布を示す図である。図中の横軸は、円管壁の周方向位置
を示す。0°はTopを、また、180°はBottomに相当
する。FIG. 4 is a diagram showing the distribution of the average Nusselt number ratio Num / Nu∞ at each position in the circumferential direction at z / d = 7 to 9 (between about 3 ribs). The horizontal axis in the figure indicates the circumferential position of the circular pipe wall. 0 ° corresponds to Top and 180 ° corresponds to Bottom.
【0032】図4に示すように、平滑管(Smooth)に比
べてリブ付き管の伝熱性能は押し並べて高いことがわか
るが、リブ付き管のうちでも、90°リブ付き管に比
べ、傾斜リブ付き管のヌセルト数比はさらに高い値を示
していることがわかる。リブの傾斜角が90°の場合
は、従来多く用いられているいわゆる「リブ付き管」に
相当するが、図4の結果からわかるように、同じ断面形
状および寸法を有する環状のリブでも、それを傾斜させ
て配置すると、傾斜させない従来のリブに比べ、格段と
高い伝熱性能を示すことが確認される。As shown in FIG. 4, it can be seen that the heat transfer performance of the ribbed tube is higher than the smooth tube (Smooth), but even among the ribbed tubes, the inclination angle is higher than that of the 90 ° ribbed tube. It can be seen that the Nusselt number ratio of the ribbed tube shows a higher value. A rib inclination angle of 90 ° corresponds to a so-called “ribbed tube” that has been widely used in the past, but as can be seen from the results of FIG. 4, even annular ribs having the same cross-sectional shape and dimensions can be It is confirmed that the heat transfer performance is remarkably higher than that of the conventional rib that is not tilted when the is inclined.
【0033】傾斜リブによる伝熱促進の程度は、平滑管
(smooth)におけるヌセルト数比の2.5〜3.5倍の値
を示している、図4からは、傾斜角が45°〜60°の
リブ付き管における平均ヌセルト数比がリブのない場合
(Smooth)や直角リブ(90deg)の場合よりも高い値を
示していることから、45°〜60°の場合にリブに沿
う二次元流れが強く、熱伝達性能が促進されると考えら
れる。The degree of promotion of heat transfer by the inclined ribs depends on the smooth tube.
(smooth) shows a value of 2.5 to 3.5 times the Nusselt number ratio. From FIG. 4, when the average Nusselt number ratio in a ribbed tube with an inclination angle of 45 ° to 60 ° is no rib. (Smooth) and right-angled ribs (90 deg) show higher values, so that in the case of 45 ° to 60 °, the two-dimensional flow along the ribs is strong and the heat transfer performance is considered to be promoted.
【0034】さらに図4から、円管の周方向には伝熱性
能の分布が生じていることがわかる。この例の場合に
は、Bottom(180°)の伝熱性能は、Top(0°)に
比べ30〜40%も高い。Further, it can be seen from FIG. 4 that the heat transfer performance is distributed in the circumferential direction of the circular pipe. In the case of this example, the heat transfer performance of Bottom (180 °) is 30 to 40% higher than that of Top (0 °).
【0035】熱交換器を構成する場合に、もう一方の側
の流路形態によっては、円周方向に伝熱性能が高いとこ
ろと低いところがあることが望ましい場合もある。その
ような場合には、このような傾斜リブ付き流路を用いて
円周の一方の側の伝熱性能を上げ、他方の伝熱性能を下
げることが可能となる。換言すれば、傾斜リブを用いる
ことにより、伝熱性能の周方向分布に指向性を持たせる
ことが可能となる。When constructing the heat exchanger, it may be desirable that there is a portion with high heat transfer performance or a portion with low heat transfer performance in the circumferential direction depending on the flow path configuration on the other side. In such a case, it is possible to improve the heat transfer performance on one side of the circumference and decrease the heat transfer performance on the other side by using such a flow path with inclined ribs. In other words, by using the inclined ribs, it becomes possible to give directivity to the circumferential distribution of the heat transfer performance.
【0036】すなわち、結論として、リブを管軸に対し
て傾けて設置すると、リブが二次流れを誘起し、流路中
央部の流体と伝熱壁面近傍の流体の入れ替えが生じ伝熱
が著しく促進される。本実験条件範囲内では、リブ傾斜
角が45°〜60°のリブ付き管の二次流れが最も強
く、流路全体での熱伝達性能が最も良いことがわかる。
更に、リブを円管直線部分に一定間隔毎に複数個連続し
て配置すると、個々のリブによって誘起される二次流れ
が次第に強くなるため、熱伝達性能は更に向上する。That is, in conclusion, when the ribs are installed so as to be inclined with respect to the tube axis, the ribs induce a secondary flow, and the fluid in the central portion of the flow path is exchanged with the fluid in the vicinity of the heat transfer wall surface, resulting in remarkable heat transfer. Be promoted. It is understood that, within the range of the experimental conditions, the secondary flow of the ribbed tube having the rib inclination angle of 45 ° to 60 ° is the strongest, and the heat transfer performance in the entire flow path is the best.
Further, when a plurality of ribs are continuously arranged on the straight portion of the circular tube at regular intervals, the secondary flow induced by the individual ribs gradually becomes stronger, so that the heat transfer performance is further improved.
【0037】また、TopとBottom側の伝熱性能の違いを
利用して、熱交換器を構成することができる。Further, the heat exchanger can be constructed by utilizing the difference in heat transfer performance between the Top side and the Bottom side.
【0038】次に、本発明を、断面円形状の内部流路を
流れる流体を介して熱交換を行う熱交換板を熱電モジュ
ールの上下両面に対向配置して成る熱交換器に適用する
場合について説明する。Next, the case where the present invention is applied to a heat exchanger in which heat exchange plates for exchanging heat through a fluid flowing through an internal flow path having a circular cross section are arranged opposite to each other on both upper and lower surfaces of a thermoelectric module explain.
【0039】尚、この種の熱交換器としては、半導体製
造ラインにおけるシリコンウェハの洗浄等に用いられる
各種薬液、あるいは同ラインにおける半導体基板エッチ
ング用のレジストパターン剥離に使用する有機溶剤等の
各種流体を冷却あるいは加熱して一定温度の流体を得る
ために、ペルチェ効果を利用して冷却、加熱を行う電子
冷熱素子(サーモモジュール)を利用した熱交換器が知ら
れており、この種の熱電素子モジュールを利用した熱交
換器では、その熱電素子モジュールの冷却および発熱作
用により、薬液等の流体を目標温度まで冷却或いは加熱
する目的に使用される。As this type of heat exchanger, various chemicals used for cleaning silicon wafers in a semiconductor manufacturing line, or various fluids such as organic solvents used for peeling a resist pattern for etching a semiconductor substrate in the same line are used. A heat exchanger using an electronic cooling element (thermomodule) that cools and heats by using the Peltier effect is known in order to cool or heat a fluid to obtain a fluid of a constant temperature. A heat exchanger using a module is used for the purpose of cooling or heating a fluid such as a chemical solution to a target temperature by the action of cooling and heat generation of the thermoelectric element module.
【0040】図5は、上述のサーモモジュールを用いた
熱交換器(熱交換ユニット)100の上面図であり、図6
は、図5における熱交換ユニット100の右側面図であ
る。FIG. 5 is a top view of a heat exchanger (heat exchange unit) 100 using the above thermo module, and FIG.
[Fig. 6] is a right side view of the heat exchange unit 100 in Fig. 5.
【0041】図5及び図6に示すように、この熱交換ユ
ニット100は、熱交換器(水冷板)110aと熱交換器
(熱交換板)110bとの間にサーモモジュール50と該
サーモモジュール50の外周全周を包囲するOリング6
0とを狭持した構造を有する。As shown in FIGS. 5 and 6, the heat exchange unit 100 includes a heat exchanger (water cooling plate) 110a and a heat exchanger.
Between the (heat exchange plate) 110b, the thermo-module 50 and the O-ring 6 that surrounds the entire outer circumference of the thermo-module 50.
It has a structure in which 0 is sandwiched.
【0042】熱交換板110bにはボルト貫通孔111
b、112b、113b、114b、115b、116
b、117b、118b、119bが設けられる。これ
らボルト貫通孔111b、112b、113b、114
b、115b、116b、117b、118b、119
bからそれぞれ貫通させた各締付ボルトを対向する水冷
板110aに設けられたねじ孔111a、112a、1
13a、114a、115a、116a、117a、1
18a、119a(図7参照)にねじ込むことで、水冷板
110aと熱交換板110bとを所定の締付力で固定す
ることができる。Bolt through holes 111 are formed in the heat exchange plate 110b.
b, 112b, 113b, 114b, 115b, 116
b, 117b, 118b, 119b are provided. These bolt through holes 111b, 112b, 113b, 114
b, 115b, 116b, 117b, 118b, 119
The screw holes 111a, 112a, 1 provided in the water cooling plate 110a facing the respective tightening bolts penetrating from b
13a, 114a, 115a, 116a, 117a, 1
By screwing into 18a and 119a (see FIG. 7), the water cooling plate 110a and the heat exchange plate 110b can be fixed with a predetermined tightening force.
【0043】なお、水冷板110aと熱交換板110b
を上述の如く固定するには、他に、締付ボルトとナット
を用いて締め付ける方法もある。The water cooling plate 110a and the heat exchange plate 110b
In order to fix the above as described above, there is another method of tightening with a tightening bolt and a nut.
【0044】この締め付け固定により、水冷板110
a、熱交換板110b、Oリング60及び後述する内側
Oリング61の4者間による気密スペースが形成され、
該スペ一ス中にサーモモジュール50が封入されること
となる。By this tightening and fixing, the water cooling plate 110
a, a heat exchange plate 110b, an O-ring 60, and an inner O-ring 61 described later form an airtight space between the four members,
The thermo module 50 is enclosed in the space.
【0045】サーモモジュール50を気密封入するの
は、熱交換ユニット100稼働時の水冷板110a側ま
たは熱交換板110b側が雰囲気空気の露点以下に下が
った場合に生じた結露が当該モジュール50に流れ込ま
ないように、また、湿った雰囲気がサーモモジュール5
0の周囲に連続的に浸入しないようにするための対策あ
る。The thermo-module 50 is hermetically sealed so that dew condensation generated when the water-cooling plate 110a side or the heat-exchange plate 110b side when the heat exchange unit 100 is operating falls below the dew point of atmospheric air does not flow into the module 50. So that the moist atmosphere is also thermo module 5
There is a measure to prevent continuous invasion around 0.
【0046】本実施形態の熱交換ユニット100におい
て、水冷板110aは銅製のいわゆる銅ジャケット式熱
交換器、熱交換板110bは、ステンレス又は銅パイプ
をアルミで鋳込んだ方式の熱交換器で内部に各々放熱水
及び循環水を流す流路125a及び125bを持つ。In the heat exchange unit 100 of the present embodiment, the water cooling plate 110a is a so-called copper jacket type heat exchanger made of copper, and the heat exchange plate 110b is a heat exchanger of a type in which stainless steel or a copper pipe is cast with aluminum. Have flow passages 125a and 125b through which facility water and circulating water flow, respectively.
【0047】水冷板110a及び熱交換板110bの流
路125a及び125bの端部には、それぞれ、流体入
口121a、流体出口122a、流体入口121b、流
体出口122bが形成される。A fluid inlet 121a, a fluid outlet 122a, a fluid inlet 121b, and a fluid outlet 122b are formed at the ends of the channels 125a and 125b of the water cooling plate 110a and the heat exchange plate 110b, respectively.
【0048】熱交換板110bの流体入口121b、流
体出口122bには、それぞれ、冷却対象の循環水の流
入管、流出管(図示せず)が連結され、流入管より流体入
口121bに流入する循環水は熱交換板110b内の流
路125bを通り、流体出口122bから流出管に流出
される。The fluid inlet 121b and the fluid outlet 122b of the heat exchange plate 110b are connected to an inflow pipe and an outflow pipe (not shown) of the circulating water to be cooled, respectively. Water passes through the flow path 125b in the heat exchange plate 110b and flows out from the fluid outlet 122b to the outflow pipe.
【0049】また、水冷板110aの流体入口121
a、流体出口122aには、それぞれ、放熱水の流入
管、流出管(図示せず)が連結され、流入管より流体入口
121aに流入する放熱水は水冷板110a内の流路1
25aを通り、流体出口122aから流出管に流出され
る。Further, the fluid inlet 121 of the water cooling plate 110a
a and a fluid outlet 122a are connected to an inflow pipe and an outflow pipe (not shown) of the facility water, respectively, and the facility water flowing from the inlet pipe to the fluid inlet 121a receives the flow passage 1 in the water cooling plate 110a.
25a, and is discharged from the fluid outlet 122a to the outlet pipe.
【0050】熱交換板110bは、水冷板110aの流
体入口121a、流体出口122aへの流入管、流出管
の配管スペース分だけ当該水冷板110aからオフセッ
トされた状態に取り付けられている。The heat exchange plate 110b is attached in such a state that it is offset from the water cooling plate 110a by the piping space of the inflow pipe and the outflow pipe to the fluid inlet 121a and the fluid outlet 122a of the water cooling plate 110a.
【0051】図7は、図6のA−A線による断面図であ
り、図8は同B−B線による断面図である。FIG. 7 is a sectional view taken along line AA of FIG. 6, and FIG. 8 is a sectional view taken along line BB of FIG.
【0052】図7及び図8からも分かるように、水冷板
110aと熱交換板110bとの間には、外側のOリン
グ60の他、内側のOリング61も介在する。As can be seen from FIGS. 7 and 8, an outer O-ring 60 and an inner O-ring 61 are interposed between the water cooling plate 110a and the heat exchange plate 110b.
【0053】外側のOリング60は、水冷板110aの
ねじ孔112a、113a、114a、115a、11
6a、117a、118a、119a、及び熱交換板1
10bのボルト貫通孔112b、113b、114b、
115b、116b、117b、118b、119bの
内側ぎりぎりに納まる大きさで、かつこれら各孔を避け
るように(塞がないように)要所が蛇行された形状のもの
から成る。The outer O-ring 60 is provided with screw holes 112a, 113a, 114a, 115a, 11 of the water cooling plate 110a.
6a, 117a, 118a, 119a, and the heat exchange plate 1
10b bolt through holes 112b, 113b, 114b,
It has a size that fits just inside the inside of 115b, 116b, 117b, 118b, and 119b, and has a meandering shape so as to avoid (not block) each of these holes.
【0054】内側のOリング61は熱交換板110bの
ボルト貫通孔111bより大きな径を持ち、該ボルト貫
通孔111b及び水冷板110aのねじ孔111aを同
心円状に包囲するように配置される。The inner O-ring 61 has a larger diameter than the bolt through hole 111b of the heat exchange plate 110b, and is arranged so as to concentrically surround the bolt through hole 111b and the screw hole 111a of the water cooling plate 110a.
【0055】この外側のOリング60と内側のOリング
61との間のエリア内にサーモモジュール50が取り付
けられる。The thermomodule 50 is mounted in the area between the outer O-ring 60 and the inner O-ring 61.
【0056】サーモモジュール50は、P型熱電素子、
N型熱電素子とこれらを接合する電極板とにより構成さ
れる熱電素子対を複数備えて成るものであり、具体的に
は、N型熱電素子とP型熱電素子を縦及び横方向に交互
に複数対並べたうえで、隣接する素子同士を上側の接合
板(電極板)と下側の接合板とで電気的に直列接続となる
よう相互に接合したものである。The thermo module 50 includes a P-type thermoelectric element,
A plurality of thermoelectric element pairs each including an N-type thermoelectric element and an electrode plate that joins these elements are provided. Specifically, the N-type thermoelectric element and the P-type thermoelectric element are alternately arranged in the vertical and horizontal directions. A plurality of pairs of elements are arranged side by side, and adjacent elements are joined to each other so that the upper joining plate (electrode plate) and the lower joining plate are electrically connected in series.
【0057】上側の各接合板と下側の各接合板は、それ
ぞれ、上記熱電素子の配列エリアに対応した平面(以
下、上側接合板面、下側接合板面という)を構成する。The upper joint plates and the lower joint plates respectively form planes (hereinafter, referred to as upper joint plate surfaces and lower joint plate surfaces) corresponding to the arrangement areas of the thermoelectric elements.
【0058】図7において、水冷板110aの伝熱面表
面には、サーモモジュール50の例えば下側接合板面を
構成する複数の接合板501aが上述したOリング60
とOリング61との間のエリア全域(Oリング60、6
1の配設位置を避けて)に等密度で配置されている。In FIG. 7, on the surface of the heat transfer surface of the water cooling plate 110a, a plurality of bonding plates 501a constituting, for example, the lower bonding plate surface of the thermo module 50 are provided with the above-mentioned O-ring 60.
Area between O-ring 61 and O-ring 61 (O-rings 60, 6
(Avoid the position 1) and are arranged at a uniform density.
【0059】水冷板110aの伝熱面表面に配置される
各接合板501aには、1つにつきそれぞれ一対ずつの
N型熱電素子502とP型熱電素子503が立設されて
おり、対向する側(上側)の接合板面の各接合板501b
につながっている。A pair of N-type thermoelectric elements 502 and a pair of P-type thermoelectric elements 503 are erected on each of the joining plates 501a arranged on the surface of the heat transfer surface of the water cooling plate 110a. Each joining plate 501b on the (upper) joining plate surface
Connected to.
【0060】同様に、図8において、熱交換板110b
の伝熱面表面には、サーモモジュール50の上側接合板
面を構成する複数の接合板501bがOリング60とO
リング61との間のエリア全域(Oリング60、Oリン
グ61の配設位置を避けて)に等密度で配置されてい
る。Similarly, in FIG. 8, the heat exchange plate 110b.
On the surface of the heat transfer surface of the O-ring 60 and the O-rings 60, a plurality of joint plates 501b constituting the upper joint plate surface of the thermo module 50 are formed.
They are arranged at the same density in the entire area between the ring 61 and the ring 61 (avoid the positions where the O-ring 60 and the O-ring 61 are arranged).
【0061】熱交換板110bの伝熱面表面に配置され
る各接合板501bには、1つにつきそれぞれ一対のN
型熱電素子502とP型熱電素子503が立設されてお
り、対向する側(下側)の接合板面の各接合板501aに
つながっている。Each of the joining plates 501b arranged on the surface of the heat transfer surface of the heat exchange plate 110b has a pair of Ns.
A type thermoelectric element 502 and a P-type thermoelectric element 503 are provided upright, and are connected to the respective joining plates 501a on the opposite (lower) joining plate surfaces.
【0062】なお、水冷板110aの伝熱面表面への複
数の接合板501aの配置、熱交換板110bの伝熱面
表面への複数の接合板501bの配置に関しては、それ
ぞれ、複数対の接合板501aまたは接合板501bで
構成される単位サーモモジュールを複数用意し、該複数
対単位のサーモモジュールを伝熱面表面に敷き並べるこ
とによっても可能である。Regarding the arrangement of the plurality of joining plates 501a on the surface of the heat transfer surface of the water cooling plate 110a and the arrangement of the plurality of joining plates 501b on the surface of the heat transfer surface of the heat exchange plate 110b, a plurality of pairs of joints are used. It is also possible to prepare a plurality of unit thermomodules composed of the plate 501a or the joining plate 501b, and to lay out the thermomodules of a plurality of pairs on the surface of the heat transfer surface.
【0063】上記構造を有するサーモモジュール50の
末端部の2つの接合板501L(リード電極用:図7参
照)には、それぞれ、例えば正電極の電極棒131と負
電極の電極棒132が接続される。For example, a positive electrode electrode rod 131 and a negative electrode electrode rod 132 are connected to the two joining plates 501L (for lead electrodes: see FIG. 7) at the end of the thermomodule 50 having the above structure. It
【0064】この電極棒131、132間に直流電流を
流すことにより、熱交換板110b側の各接合板501
bが冷却され、これにより熱交換板110bが冷やさ
れ、当該熱交換板110b内の流路125bを流れる循
環水が冷却される。By passing a direct current between the electrode rods 131 and 132, each joining plate 501 on the heat exchange plate 110b side
b is cooled, whereby the heat exchange plate 110b is cooled, and the circulating water flowing through the flow path 125b in the heat exchange plate 110b is cooled.
【0065】他方、水冷板110a側の各接合板501
aが発熱し、この熱が水冷板110aに伝わり、その中
の流路125aを流れる放熱水と熱交換され放熱され
る。On the other hand, each joining plate 501 on the water cooling plate 110a side
a generates heat, and this heat is transmitted to the water cooling plate 110a and is exchanged with the facility water flowing in the flow passage 125a therein to be radiated.
【0066】また、電流方向を逆にすることで、発熱と
放熱が逆転するので、循環水の加熱も容易に行うことが
できる。Further, since the heat generation and the heat radiation are reversed by reversing the current direction, the circulating water can be easily heated.
【0067】この熱交換ユニット100では、水冷板1
10a、熱交換板110bでの熱交換効率を高めるべ
く、上述した熱電素子502、503の配置構造に合わ
せてこれら水冷板110a、熱交換板110bの流路形
状にも工夫を凝らしている。In this heat exchange unit 100, the water cooling plate 1
In order to improve the heat exchange efficiency in the heat exchange plate 110a and the heat exchange plate 110b, the flow passage shapes of the water cooling plate 110a and the heat exchange plate 110b are also devised in accordance with the arrangement structure of the thermoelectric elements 502 and 503 described above.
【0068】図9は、本発明に係わる熱交換ユニット1
00の水冷板110aの流路125aの構造を示す図で
ある。FIG. 9 shows a heat exchange unit 1 according to the present invention.
It is a figure which shows the structure of the flow path 125a of the water cooling plate 110a of 00.
【0069】なお、図9は、熱交換板bの内部流路の状
態を示したものである。FIG. 9 shows the state of the internal flow path of the heat exchange plate b.
【0070】ここで、本発明では、図9に示されるよう
に、上述した熱交換ユニット100において、熱交換板
110bの流路125b内に複数のリブ部10を設ける
ようにする。Here, in the present invention, as shown in FIG. 9, in the heat exchange unit 100 described above, a plurality of rib portions 10 are provided in the flow passage 125b of the heat exchange plate 110b.
【0071】図9におけるリブ部10は、直線部分を含
む蛇行した形状の流路125b中、直線部分が連続する
個所に、各直線流路に一定間隔毎に連続して配置された
ものである。The rib portion 10 shown in FIG. 9 is arranged in the meandering flow passage 125b including the straight line portion at a position where the straight line portion is continuous and is continuously arranged in each straight flow passage at a constant interval. .
【0072】このリブ部10は、流路125bを流れる
流体(この例では、循環水)に対し、流路壁面に沿った境
界層の発達を抑え、リブの下流部に二次流れを誘起さ
せ、かつ伝熱面付近と伝熱面から離れた領域の流体を入
れ替え混合させる効果がある。The rib portion 10 suppresses the development of the boundary layer along the wall surface of the flow passage for the fluid (circulation water in this example) flowing through the flow passage 125b and induces the secondary flow in the downstream portion of the rib. Moreover, there is an effect that the fluid in the vicinity of the heat transfer surface and the fluid in the area away from the heat transfer surface are exchanged and mixed.
【0073】また、図10は、図9に示す熱交換板11
0bの流路125b内の直線流路に一定間隔毎に連続し
て配置されるリブ部10を立体的に把握するのに役立つ
透視斜視図である。FIG. 10 shows a heat exchange plate 11 shown in FIG.
It is a perspective perspective view useful for grasping three-dimensionally the rib part 10 continuously arranged at regular intervals in the straight flow path in the flow path 125b of 0b.
【0074】同図10に示すように、流路内には、流れ
方向に対して所定の角度傾けられたリブ部が一定間隔毎
に配置されている。As shown in FIG. 10, rib portions inclined by a predetermined angle with respect to the flow direction are arranged at regular intervals in the flow path.
【0075】すなわち、熱交換板110bのサーモモジ
ュールに接する側の流路面を底面とし、リブ部10(剥
離・二次流れ誘起部材)を、上記底面を基点として流体
の流れ方向に対して後傾状態に傾斜させて配置してい
る。その際、サーモモジュールが取り付けられた側の熱
伝達性能が促進されるように、すなわち図2で示したBo
ttom側がサーモモジュール側となるようにリブ10の傾
斜方向を決めることが重要である。That is, the flow passage surface on the side of the heat exchange plate 110b in contact with the thermo module is the bottom surface, and the rib portion 10 (separation / secondary flow inducing member) is tilted backward with respect to the flow direction of the fluid with the bottom surface as the base point. It is arranged to be tilted to the state. At this time, the heat transfer performance of the side on which the thermo module is attached is promoted, that is, the Bo shown in FIG.
It is important to determine the inclination direction of the rib 10 so that the ttom side is the thermomodule side.
【0076】最後に、このような形態の流路に配置され
るリブ部10の形成方法としては、例えば、熱交換板1
10bに形成された断面円形状の流路の直線部分に、こ
れら板部材とは別に製造された楕円環状のリブ部材を流
れ方向に対して所定角度傾けた形態で配置する方法があ
る。Finally, as a method of forming the rib portion 10 arranged in the flow path of such a form, for example, the heat exchange plate 1
There is a method of arranging an elliptic ring-shaped rib member, which is manufactured separately from these plate members, in a straight line portion of the channel having a circular cross section formed in 10b in a form inclined at a predetermined angle with respect to the flow direction.
【0077】図11は、図9の円管状流路125bの配
置形状が異なる場合の例である。FIG. 11 shows an example in which the circular tubular flow channels 125b of FIG. 9 have different arrangement shapes.
【0078】流路の直線部分に一定間隔毎に連続してリ
ブ10を配置することにより同等の効果が得られる。The same effect can be obtained by arranging the ribs 10 continuously in a straight line portion of the flow path at regular intervals.
【0079】また、図12は、上述のような熱電素子モ
ジュールを用いない他の熱交換器の拡大伝熱面と円管状
流路部分を抽出した図であるが、本発明は、このような
流路(円管)部分に上述の実施例で述べてきたリブ部10
を設けても同様の効果を得れるものである。なお、この
図の例では、空冷等の熱交換器の拡大伝熱面と流路(円
管)部分を示している。FIG. 12 is a diagram in which the enlarged heat transfer surface and the circular tubular flow path portion of another heat exchanger that does not use the thermoelectric element module as described above are extracted, but the present invention is as follows. The rib portion 10 described in the above embodiment is provided in the flow path (circular pipe) portion.
It is possible to obtain the same effect by providing. In the example of this figure, an enlarged heat transfer surface and a flow path (circular pipe) portion of a heat exchanger for air cooling or the like are shown.
【0080】[0080]
【発明の効果】以上説明したように、本発明によれば、
円管内部の流路を流れる流体を介して熱交換を行う熱交
換器において、円管内に、楕円環状の剥離・二次流れ誘
起部材(リブ)を管軸に対して傾斜させて設けることによ
り、リブの下流で二次流れが生じ、これが伝熱面表面付
近の境界層を薄くし、伝熱面上の熱伝達性能を促進させ
ることが可能となる。As described above, according to the present invention,
In a heat exchanger that exchanges heat via a fluid flowing through a flow path inside a circular pipe, by providing an elliptical annular separation / secondary flow inducing member (rib) inclining with respect to the pipe axis in the circular pipe. A secondary flow is generated downstream of the ribs, which thins the boundary layer near the surface of the heat transfer surface and promotes heat transfer performance on the heat transfer surface.
【0081】また、本発明によれば、断面円形状の内部
流路を流れる流体を介して熱交換を行う熱交換板を熱電
モジュールの上下両面に対向配置して成る熱交換器にお
いて、熱交換板の流路内に、二次流れを誘起せしめる円
環状の剥離・二次流れ誘起部材を前記流路の管軸に対し
て傾斜させて設け、特に、熱交換板の熱電モジュールに
接する側の流路面を底面(ボトム側)とし、剥離・二次流
れ誘起部材を、上記底面(ボトム側)を基点として流体の
流れ方向に対して後傾状態に傾斜させて配置することに
より、底面(ボトム側)に貼り付けられた熱電モジュール
の冷却や加熱において、顕著に熱移動を促進させること
ができる。Further, according to the present invention, in the heat exchanger in which the heat exchanging plates for exchanging heat via the fluid flowing through the internal flow passage having the circular cross section are arranged opposite to each other on the upper and lower surfaces of the thermoelectric module. In the flow path of the plate, an annular separation / secondary flow inducing member for inducing a secondary flow is provided to be inclined with respect to the tube axis of the flow path, and particularly, on the side of the heat exchange plate that is in contact with the thermoelectric module. The flow path surface is the bottom surface (bottom side), and the separation / secondary flow inducing member is arranged with the bottom surface (bottom side) as the base point and is inclined rearward with respect to the flow direction of the fluid. In the cooling and heating of the thermoelectric module attached to the (side), heat transfer can be remarkably promoted.
【0082】また、このように、熱伝達性能が促進され
ることにより、熱交換器の小型・高性能化を図ることが
できる。Further, since the heat transfer performance is promoted in this way, the heat exchanger can be made smaller and have higher performance.
【図1】本発明に係わる熱交換器に用いられる冷却或い
は加熱対象の流体を通す円管の概略構成を示す図。FIG. 1 is a diagram showing a schematic configuration of a circular pipe through which a fluid to be cooled or heated used in a heat exchanger according to the present invention is passed.
【図2】図1に示した円管を用いてリブの傾斜角度の違
いによる熱伝達性能の促進効果を把握するための熱伝達
実験を示す図。FIG. 2 is a diagram showing a heat transfer experiment using the circular tube shown in FIG. 1 for grasping an effect of promoting heat transfer performance due to a difference in inclination angle of ribs.
【図3】図2に示す熱伝達実験の態様によるレイノルズ
数(Re)=10000、θ=45°における熱伝達実
験結果を示す図。FIG. 3 is a diagram showing a heat transfer experiment result at Reynolds number (Re) = 10000 and θ = 45 ° according to the mode of the heat transfer experiment shown in FIG. 2;
【図4】z/d=7〜9(約3リブ間)における周方向
各位置の平均ヌセルト数比Num/Nu∞分布を示す
図。FIG. 4 is a diagram showing an average Nusselt number ratio Num / Nu∞ distribution at each position in the circumferential direction at z / d = 7 to 9 (between about 3 ribs).
【図5】本発明に係わる熱交換ユニットの上面図。FIG. 5 is a top view of the heat exchange unit according to the present invention.
【図6】図5における熱交換ユニットの右側面図。6 is a right side view of the heat exchange unit in FIG.
【図7】図6のA−A線による断面図。7 is a sectional view taken along the line AA of FIG.
【図8】図6のB−B線による断面図。8 is a sectional view taken along line BB of FIG.
【図9】本発明に係わる熱交換ユニットの水冷板の流路
へのリブの適用を示す図。FIG. 9 is a diagram showing application of ribs to the flow paths of the water cooling plate of the heat exchange unit according to the present invention.
【図10】図9に示す水冷板の流路内の直線流路に一定
間隔毎に連続して配置されるリブ部を立体的に把握する
のに役立つ透視斜視図。10 is a perspective perspective view useful for three-dimensionally grasping rib portions continuously arranged at regular intervals in a straight flow passage in the flow passage of the water cooling plate shown in FIG.
【図11】図9の流路の配置形状が異なる場合の例を示
す図。FIG. 11 is a diagram showing an example in which the arrangement shapes of the flow paths in FIG. 9 are different.
【図12】熱電素子モジュールを用いない他の熱交換器
を示す図。FIG. 12 is a view showing another heat exchanger not using the thermoelectric element module.
【図13】従来の流路内流の熱伝達を促進する方策(促
進法)を示す図。FIG. 13 is a diagram showing a conventional measure (acceleration method) for promoting heat transfer of a flow in a flow path.
100 熱交換ユニット
110,110B,110C,110D 熱交換器
110−1,110−2 素材基板
110a 熱交換器(水冷板)
110b 熱交換器(熱交換板)
105,105a,105b 蓋板
111a,112a,113a,114a,115a,
116a,117a,118a,119a ねじ孔
111b,112b,113b,114b,115b,
116b,117b,118b,119b ボルト貫通
孔
121a,121b 流体入口
122a,122b 流体出口
125 流路
125a 放熱水の流路
125b 循環水の流路
1251 仕切板
1252 スリット
131,132 電極棒
50 サーモモジュール
501a,501b 接合板
501L リード電極用接合板
502,503 熱電素子
505 熱電素子配列域
60,61 Oリング100 heat exchange unit 110, 110B, 110C, 110D heat exchanger 110-1, 110-2 material substrate 110a heat exchanger (water cooling plate) 110b heat exchanger (heat exchange plate) 105, 105a, 105b cover plate 111a, 112a , 113a, 114a, 115a,
116a, 117a, 118a, 119a Screw holes 111b, 112b, 113b, 114b, 115b,
116b, 117b, 118b, 119b Bolt through holes 121a, 121b Fluid inlet 122a, 122b Fluid outlet 125 Flow passage 125a Facility water flow passage 125b Circulating water flow passage 1251 Partition plate 1252 Slit 131, 132 Electrode rod 50 Thermo module 501a, 501b Bonding plate 501L Lead electrode bonding plates 502, 503 Thermoelectric element 505 Thermoelectric element array area 60, 61 O-ring
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 35/32 H01L 35/32 A (72)発明者 望月 貞成 東京都新宿区下落合4−23−6─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 35/32 H01L 35/32 A (72) Inventor Mochizuki Sadanari 4-23-6 Shimochiai, Shinjuku-ku, Tokyo
Claims (7)
交換を行う熱交換器において、 前記円管内に、楕円環状の剥離・二次流れ誘起部材を前
記円管の管軸に対して傾斜させて設けたことを特徴とす
る熱交換器。1. A heat exchanger for exchanging heat via a fluid flowing through a flow path inside a circular pipe, wherein an elliptical annular separation / secondary flow inducing member is provided in the circular pipe with respect to a pipe axis of the circular pipe. A heat exchanger characterized by being installed with a tilt.
介して熱交換を行う熱交換板を熱電モジュールの上下両
面に対向配置して成る熱交換器において、 前記熱交換板の流路内に、楕円環状の剥離・二次流れ誘
起部材を前記流路の管軸に対して傾斜させて設けたこと
を特徴とする熱交換器。2. A heat exchanger in which heat exchange plates for exchanging heat via a fluid having a circular cross section are arranged on both upper and lower surfaces of a thermoelectric module so as to face each other. A heat exchanger, characterized in that an elliptical annular separation / secondary flow inducing member is provided therein with being inclined with respect to the pipe axis of the flow path.
連続して配置されることを特徴とする請求項1または2
のいずれか記載の熱交換器。3. A plurality of the separation / secondary flow inducing members are continuously arranged in a straight line portion of the flow path at regular intervals in a pipe axis direction.
The heat exchanger according to any one of 1.
を有することを特徴する請求項3記載の熱交換器。4. The heat exchanger according to claim 3, wherein the constant interval (L) has a relationship of L / d = 1 to 2 with respect to an inner diameter (d) of the flow passage.
されることを特徴とする請求項1または2のいずれか記
載の熱交換器。5. The heat according to claim 1, wherein the separation / secondary flow inducing member is arranged so as to be inclined at a rear angle of 45 to 60 ° with respect to the tube axis direction. Exchanger.
(h)および厚さ(t)は、 前記流路の内直径(d)に対し、h/d=0.1〜0.
2、t/d=0.1〜0.2の関係を有することを特徴
とする請求項1または2いずれか記載の熱交換器。6. The height (h) and the thickness (t) of the separation / secondary flow inducing member are such that h / d = 0.1 to 0.
2. The heat exchanger according to claim 1, wherein the heat exchanger has a relationship of t / d = 0.1 to 0.2.
側の流路面を底面とし、前記剥離・二次流れ誘起部材
を、前記底面を基点として流体の流れ方向に対して後傾
状態に傾斜させて配置したことを特徴とする請求項2記
載の熱交換器。7. The flow passage surface of the heat exchange plate on the side in contact with the thermoelectric module is used as a bottom surface, and the separation / secondary flow inducing member is inclined rearward with respect to the flow direction of the fluid with the bottom surface as a base point. The heat exchanger according to claim 2, wherein the heat exchanger is arranged as follows.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001249138A JP2003056995A (en) | 2001-08-20 | 2001-08-20 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001249138A JP2003056995A (en) | 2001-08-20 | 2001-08-20 | Heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003056995A true JP2003056995A (en) | 2003-02-26 |
Family
ID=19078186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001249138A Pending JP2003056995A (en) | 2001-08-20 | 2001-08-20 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003056995A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006216806A (en) * | 2005-02-04 | 2006-08-17 | Kyocera Corp | Heat transfer unit using thermoelectroc element and heat transfer device |
WO2006103788A1 (en) | 2005-03-25 | 2006-10-05 | Tsinghua University | Heat transfer tube for supplying hot water |
WO2008029639A1 (en) * | 2006-09-08 | 2008-03-13 | Tsinghua University | Corrugated heat exchanger tube for hot water supply |
JP2008249163A (en) * | 2007-03-29 | 2008-10-16 | Daikin Ind Ltd | Heat exchanger for supplying hot water |
EP2323144A1 (en) | 2002-10-31 | 2011-05-18 | Mitsubishi Chemical Corporation | Electrolytic capacitor |
WO2016017697A1 (en) * | 2014-07-29 | 2016-02-04 | 京セラ株式会社 | Heat exchanger |
JP2017125640A (en) * | 2016-01-13 | 2017-07-20 | 株式会社豊田中央研究所 | Inner wall surface structure for flow channel, and heat exchange system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5984093A (en) * | 1982-11-02 | 1984-05-15 | Toshiba Corp | Heat transfer tube and manufacture thereof |
JPS60200095A (en) * | 1984-03-22 | 1985-10-09 | Toshiba Corp | Heat transfer pipe |
JPH09330907A (en) * | 1996-06-10 | 1997-12-22 | Orion Mach Co Ltd | Heat exchanger for regulating temperature of liquid |
JPH11241602A (en) * | 1998-02-26 | 1999-09-07 | Toshiba Corp | Gas turbine blade |
-
2001
- 2001-08-20 JP JP2001249138A patent/JP2003056995A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5984093A (en) * | 1982-11-02 | 1984-05-15 | Toshiba Corp | Heat transfer tube and manufacture thereof |
JPS60200095A (en) * | 1984-03-22 | 1985-10-09 | Toshiba Corp | Heat transfer pipe |
JPH09330907A (en) * | 1996-06-10 | 1997-12-22 | Orion Mach Co Ltd | Heat exchanger for regulating temperature of liquid |
JPH11241602A (en) * | 1998-02-26 | 1999-09-07 | Toshiba Corp | Gas turbine blade |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2323145A1 (en) | 2002-10-31 | 2011-05-18 | Mitsubishi Chemical Corporation | Electrolytic solution for electrolytic capacitor and electrolytic capacitor as well as method for preparing an organic onium tetrafluoroaluminate |
EP2323144A1 (en) | 2002-10-31 | 2011-05-18 | Mitsubishi Chemical Corporation | Electrolytic capacitor |
JP2006216806A (en) * | 2005-02-04 | 2006-08-17 | Kyocera Corp | Heat transfer unit using thermoelectroc element and heat transfer device |
JP4542443B2 (en) * | 2005-02-04 | 2010-09-15 | 京セラ株式会社 | Heat transfer device |
CN100451531C (en) * | 2005-03-25 | 2009-01-14 | 清华大学 | Water heater heat exchange tube |
AU2005329849B2 (en) * | 2005-03-25 | 2009-09-03 | Daikin Industries, Ltd. | Hot water heat transfer pipe |
WO2006103788A1 (en) | 2005-03-25 | 2006-10-05 | Tsinghua University | Heat transfer tube for supplying hot water |
US8215380B2 (en) | 2005-03-25 | 2012-07-10 | Tsinghua University | Hot water heat transfer pipe |
JPWO2008029639A1 (en) * | 2006-09-08 | 2010-01-21 | 清華大学 | Corrugated heat transfer tube for hot water supply |
AU2007292663B2 (en) * | 2006-09-08 | 2010-08-12 | Daikin Industries, Ltd. | Hot water corrugated heat transfer tube |
WO2008029639A1 (en) * | 2006-09-08 | 2008-03-13 | Tsinghua University | Corrugated heat exchanger tube for hot water supply |
JP4768029B2 (en) * | 2006-09-08 | 2011-09-07 | 清華大学 | Corrugated heat transfer tube for hot water supply |
JP2008249163A (en) * | 2007-03-29 | 2008-10-16 | Daikin Ind Ltd | Heat exchanger for supplying hot water |
WO2016017697A1 (en) * | 2014-07-29 | 2016-02-04 | 京セラ株式会社 | Heat exchanger |
JPWO2016017697A1 (en) * | 2014-07-29 | 2017-04-27 | 京セラ株式会社 | Heat exchanger |
JP2017125640A (en) * | 2016-01-13 | 2017-07-20 | 株式会社豊田中央研究所 | Inner wall surface structure for flow channel, and heat exchange system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110572992B (en) | Immersed self-turbulent flow cooling system with four-corner tangential circles | |
US10627170B2 (en) | Fibonacci optimized radial heat transfer | |
CN110631301B (en) | Immersed self-turbulent-flow shell-and-tube heat exchanger | |
JP2005116815A (en) | Liquid-cooled jacket | |
JP2007096306A (en) | Heat sink | |
US9698332B2 (en) | Hybrid device comprising a thermoelectric module, notably intended to generate an electric current in a motor vehicle and a heat exchanger | |
JP2003056995A (en) | Heat exchanger | |
KR102094009B1 (en) | Temperature control apparatus for chemical liquid for manufacturing semiconductor | |
CN110470159B (en) | Heat pipe with gradually-changed length of condensation end and immersed self-turbulent flow cooling system | |
US9099942B2 (en) | Device for generating current and/or voltage based on a thermoelectric module placed in a flowing fluid | |
KR100768763B1 (en) | Fluid flow contouring apparatus for enhanced heat transfer and method for enhancing heat transfer | |
JP2002250572A (en) | Heat exchanger | |
JP2010210202A (en) | Heat exchange body | |
US20230160637A1 (en) | Heat Exchange System, and Fin Structure of Heat Exchanger | |
CN114639647A (en) | Micro-channel heat dissipation structure and microelectronic chip structure | |
JPH0334231B2 (en) | ||
JP3460865B2 (en) | Heat exchange equipment | |
JPH11337284A (en) | Heat exchanger | |
JP2003273412A (en) | Thermoelectric conversion device | |
RU2765789C1 (en) | Combined cooling system for electronic components | |
CN116723671A (en) | Liquid cooling plate of driving motor controller | |
KR200411669Y1 (en) | Heat exchanger | |
JP2000082769A (en) | Heat sink | |
JP3022296B2 (en) | Chemical resistant heat exchanger | |
KR20020045685A (en) | Heat exchanger with pin fin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A625 | Written request for application examination (by other person) |
Free format text: JAPANESE INTERMEDIATE CODE: A625 Effective date: 20071017 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100209 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100615 |