JPS60200095A - Heat transfer pipe - Google Patents
Heat transfer pipeInfo
- Publication number
- JPS60200095A JPS60200095A JP5351684A JP5351684A JPS60200095A JP S60200095 A JPS60200095 A JP S60200095A JP 5351684 A JP5351684 A JP 5351684A JP 5351684 A JP5351684 A JP 5351684A JP S60200095 A JPS60200095 A JP S60200095A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- heat transfer
- tube
- pitch
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/40—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Geometry (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は伝熱管に係シ、主として、原子力発電プラント
においての熱交換器などにあって、管外部に存在する水
蒸気を凝縮、液化させるために用いられる伝熱管に関す
る。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to heat exchanger tubes, and is mainly used in heat exchangers in nuclear power plants to condense and liquefy water vapor existing outside the tubes. It relates to the heat exchanger tube used.
従来から、原子力発電プラントにおける熱交換器などに
あっては、例えば、管内部に冷却水を流し、管外部に存
在するタービン排気の如き水蒸気を凝縮、液化させるた
めに伝熱管が使用されている。そして、伝熱管内部には
、管内流体側の熱伝達係数を向上させるために、乱流形
成用の突起を管内周面に突設することで形成させである
。Conventionally, heat transfer tubes have been used in heat exchangers in nuclear power plants, for example, to flow cooling water inside the tubes and condense and liquefy water vapor such as turbine exhaust existing outside the tubes. . In order to improve the heat transfer coefficient of the fluid in the tube, protrusions for forming turbulent flow are formed inside the tube by protruding from the inner peripheral surface of the tube.
このように、乱流促進手段として形成した突起によって
管内側流体の熱伝達係数は向上する反面、一方では、管
内側流体の圧力損失は増大するものであった。すなわち
、乱流促進手段を形成した従来の伝熱管は、熱貫流率の
向上によって得られるメリット以上に、冷却水循環ポン
プの設備費及び動力費を増大させる可能性が大きく、改
善の余地があった。As described above, while the protrusions formed as turbulence promoting means improve the heat transfer coefficient of the fluid inside the tube, on the other hand, the pressure loss of the fluid inside the tube increases. In other words, the conventional heat exchanger tubes that formed the turbulence promotion means had a large possibility of increasing the equipment cost and power cost of the cooling water circulation pump more than the benefit obtained by improving the heat transmission coefficient, and there was room for improvement. .
そこで、本発明は斜上の従来存した問題点に鑑み創出さ
れたもので、熱貫流率が高く、かつ圧力損失が小さい伝
熱管を提供することを目的とするものである。SUMMARY OF THE INVENTION The present invention was created in view of the conventional problems of slanted tubes, and an object of the present invention is to provide a heat exchanger tube that has a high heat transmission coefficient and a low pressure loss.
上述した目的を達成するため、本発明にあっては、管本
体の内周面に、管内流体の流れ方向の上流側では管本体
内周面から垂直に起立した起立面と、同じくF流側では
起立面上端から流れ方向に沿ってなだらかに下降する傾
斜面とを有する突条を、管本体の管軸に対し傾斜させて
所要ピッチでa数繊成したことを特徴とするものである
。In order to achieve the above-mentioned object, the present invention has an upright surface on the inner circumferential surface of the tube body that stands vertically from the inner circumferential surface of the tube body on the upstream side in the flow direction of the fluid in the tube, and also has an upright surface on the F flow side. This is characterized in that a number of protrusions are formed at a required pitch, each having a sloped surface that gently descends from the upper end of the upright surface along the flow direction, and are inclined with respect to the tube axis of the tube body.
以下、図面を参照して本発明の一実施例を説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.
図において示される符号10は管本体であり、この管本
体lOの内周面には管軸Oに沿って所定の間隔で突条1
1が繊成されていて、突条11自体は管軸0に対し所定
の傾斜角度θにて傾斜されている。The reference numeral 10 shown in the figure is a tube body, and the inner peripheral surface of this tube body 10 is provided with protrusions 1 at predetermined intervals along the tube axis O.
1 is made of fiber, and the protrusion 11 itself is inclined at a predetermined inclination angle θ with respect to the tube axis 0.
この突条11の断面形状は、管本体10内部を流れる冷
却水の如き管内流体の流れ方向の手前である上流側では
管本体10内局面から垂直に起立した起立面11mと、
同じく管内流体の流れ方向の上流側では起立面11a上
端から流れ方向に沿ってなだらかに下降する傾斜面11
bとを有する直角三角形を呈するものとしである。The cross-sectional shape of the protrusion 11 includes an upright surface 11m that stands up perpendicularly from the inner surface of the tube body 10 on the upstream side, which is the front side in the flow direction of the tube fluid such as cooling water flowing inside the tube body 10;
Similarly, on the upstream side in the flow direction of the fluid in the pipe, there is an inclined surface 11 that gently descends from the upper end of the upright surface 11a along the flow direction.
Assume that it is a right triangle with b.
管本体lO及び突条11は、チタンあるいはステンレス
鋼を素材として製造される。その製造法の一例は、第3
図に示すように、成形ロールを用いた圧延加工によって
板材に、圧延方向に対[7所定の傾斜角度θで突条11
t−形成した後、この板材を造管加工して管状に構成す
るものである。The tube body lO and the protrusion 11 are manufactured from titanium or stainless steel. An example of the manufacturing method is the third
As shown in the figure, the protrusions 11 are formed on the plate by rolling using forming rolls at a predetermined inclination angle
After T-forming, this plate material is formed into a tube shape.
このようにして構成した本発明に係る伝熱管の特性を得
るために、圧力損失、熱伝達係数を測定した結果は以下
の通シであった。In order to obtain the characteristics of the heat exchanger tube according to the present invention constructed as described above, pressure loss and heat transfer coefficient were measured, and the results were as follows.
すなわち、圧力損失は、管内流速を0.5〜4.0卯4
に変化させることによって得られ、熱伝達係数代流速及
び熱負荷を変化させることによって得られ、この圧力損
失と熱伝達係数の測定結果によって、圧力損失を一定と
した、平滑管に対する本発明伝熱管の特性値をめた。In other words, the pressure loss is 0.5 to 4.0 m4
The heat transfer coefficient is obtained by changing the flow rate and heat load, and the heat transfer tube of the present invention is obtained by changing the pressure loss and heat transfer coefficient, and the pressure loss is kept constant based on the measurement results of the heat transfer coefficient. The characteristic value of was calculated.
第4図は、突条11同士のピッチptを12 、5mm
。In Figure 4, the pitch pt between the protrusions 11 is 12.5 mm.
.
管内流体の流速を2.0m/sと固定した場合の熱伝達
係数と突条11の傾斜角度θとの関係を示すグラフであ
る。このグラフにおいて、縦軸にはポンプ動力(圧力損
失)、熱負荷一定の拘束条件のもとにおける本発明伝熱
管の熱伝達係数α′と、平滑管の熱伝達係数αBとの比
(熱伝達係数比)αA8をとり、横軸には突条11の傾
斜角度θをとったものである。It is a graph showing the relationship between the heat transfer coefficient and the inclination angle θ of the protrusion 11 when the flow velocity of the fluid in the pipe is fixed at 2.0 m/s. In this graph, the vertical axis shows the pump power (pressure loss) and the ratio of the heat transfer coefficient α' of the heat transfer tube of the present invention to the heat transfer coefficient αB of the smooth tube under the constraint condition of constant heat load (heat transfer The coefficient ratio) αA8 is taken, and the horizontal axis is the inclination angle θ of the protrusion 11.
この第4図によって明らかな゛ように、突条11におけ
る起立面11aの高さeが0 、2〜0 、7 mmで
、傾斜角度θが40〜90°であるときが優れた熱伝達
係数を示すものである。起立面11aの高さeが高くな
るに従い熱伝達係数比α′汐6は増加し、起立面11a
の鳥さeが約0 、5 mmのとき最も高い値を示し、
傾斜角度θが60’付近で最大値1.58を示した。更
に、起立面11aの高さeが高くなると、熱伝達係数比
α′A1Bはかえって減少した。したがって、起立面1
1mの高さのは0.2〜0.7mmが好ましく、傾斜角
度θは40〜90°が好ましいものである。As is clear from FIG. 4, when the height e of the upright surface 11a of the protrusion 11 is 0, 2 to 0, 7 mm and the inclination angle θ is 40 to 90 degrees, the heat transfer coefficient is excellent. This shows that. As the height e of the upright surface 11a increases, the heat transfer coefficient ratio α' 6 increases;
It shows the highest value when the height e is about 0.5 mm,
The maximum value was 1.58 when the inclination angle θ was around 60'. Furthermore, as the height e of the upright surface 11a increased, the heat transfer coefficient ratio α'A1B actually decreased. Therefore, the upright surface 1
The height of 1 m is preferably 0.2 to 0.7 mm, and the inclination angle θ is preferably 40 to 90 degrees.
次に、突条11のピッチptと起立面11aの高さeと
の比Pt/eと熱伝達係数比Cl’/(Lmとの関係を
第5図に示した。この第5図に示したグラフにおいて、
縦軸に熱伝達係数比α’/(imをとり、横軸に傾斜角
度θをとったものである。Next, the relationship between the ratio Pt/e of the pitch pt of the protrusions 11 and the height e of the upright surface 11a and the heat transfer coefficient ratio Cl'/(Lm is shown in FIG. 5. In the graph,
The vertical axis represents the heat transfer coefficient ratio α'/(im, and the horizontal axis represents the inclination angle θ.
この第5図から明らかなように、Pt/eの値が加〜閏
で、傾斜角度θが狗〜90°である場合に優れた熱伝達
性能を示す。すなわち、Pt/eが増加するに従い熱伝
達係数比α/dsは増加し、Pt/eの値が40付近で
最大を示し、傾斜角度θがω0で最大値1.58を示し
た。更に、Pt/eの値が大きくなると、熱伝達係数比
α7αBは次第に減少していく。したがって、突条11
同士の管軸に沿うピッチptは、起立面11mの高さe
の加〜(資)倍が好ましいものである。As is clear from FIG. 5, excellent heat transfer performance is exhibited when the value of Pt/e is between + and 90° and the inclination angle θ is between 90° and 90°. That is, as Pt/e increases, the heat transfer coefficient ratio α/ds increases, reaching a maximum value when the value of Pt/e is around 40, and a maximum value of 1.58 when the inclination angle θ is ω0. Furthermore, as the value of Pt/e increases, the heat transfer coefficient ratio α7αB gradually decreases. Therefore, the protrusion 11
The pitch pt along the pipe axis is the height e of the standing surface 11m.
It is preferable that the amount be increased to (equity) times.
今、ここで起立面11aの高さeを0.3mm、突条1
1同士のピッチptを12.5mm、傾斜角度θを55
゜として構成した本発明伝熱管を、熱交換器において、
内部に冷却水を流し、管外部に存在する水蒸気を凝縮、
液化する場合に使用した結果は、熱伝達係数比α′/α
Sとして1.58が得られた。Now, the height e of the upright surface 11a is 0.3 mm, and the protrusion 1
1 pitch pt of 12.5 mm, inclination angle θ 55
The heat exchanger tube of the present invention configured as ゜ is used in a heat exchanger,
Cooling water flows inside the pipe and condenses water vapor that exists outside the pipe.
The result used in the case of liquefaction is the heat transfer coefficient ratio α′/α
An S value of 1.58 was obtained.
また、起立面11aの高さを0.5mm、突条11同士
のピッチptを12.5mm、傾斜角度をω0として構
成した本発明伝熱管にあっては、同じく、その熱伝達係
数比α7αBは1.43であった。Further, in the heat transfer tube of the present invention in which the height of the upright surface 11a is 0.5 mm, the pitch pt between the protrusions 11 is 12.5 mm, and the inclination angle is ω0, the heat transfer coefficient ratio α7αB is It was 1.43.
したがって、本発明は、管本体の内周面に、管内流体の
流れ方向の上流側では管本体内周面から垂直に起立した
起立面と、同じく下流側では起立面上端から流れ方向に
沿ってなだらかにド降する傾斜面とを有する突条を、管
本体の管軸に対し傾斜させて所要ピッチで複数構成した
から、熱貫流率を高く、かつ圧力損失を小さいものとす
ることができる優れた効果を奏するものである。Therefore, the present invention provides an upright surface that stands up perpendicularly from the inner peripheral surface of the tube body on the upstream side in the flow direction of the fluid in the tube, and a raised surface that extends vertically from the upper end of the upright surface along the flow direction on the downstream side. A plurality of protrusions with gently descending slopes are arranged at a required pitch and are inclined with respect to the tube axis of the tube body, making it possible to achieve high heat transfer coefficient and low pressure loss. It has the following effects.
第1図は本発明に係る伝熱管の横断面図、第2図は管軸
に沿った方向である縦断面図、第3図は造管前の圧延状
態においての突条を表わす斜視図、第4図及び第5図は
性能試験の結果を表わすグラフである。
10・・・管本体、11・・・突条、lla・・・起立
面、llb・・・傾斜面。
代理人弁理士 則 近 憲 佑 (ほか1名)第 !
@
第 2 図
43 図FIG. 1 is a cross-sectional view of a heat exchanger tube according to the present invention, FIG. 2 is a longitudinal cross-sectional view along the tube axis, and FIG. 3 is a perspective view showing the protrusions in a rolled state before pipe formation. FIGS. 4 and 5 are graphs showing the results of the performance test. DESCRIPTION OF SYMBOLS 10... Pipe body, 11... Projection, lla... Upright surface, llb... Inclined surface. Representative Patent Attorney Kensuke Chika (and 1 other person) No. 1!
@Figure 2 Figure 43
Claims (1)
は管本体内周面から垂直に起立した起立面と、同じく下
流側では上記起立面上端から流れ方向に沿ってなだらか
に下降する傾斜面とを有する突条を、管本体の・U軸に
対し傾斜させて所要ピッチで複数隆成したことを特徴と
する伝熱管。 2、突条は、起立面筒さが0.2〜0.7mmである特
許請求の範囲第1項記載の伝fA管。 3、突条は、管軸に対し40〜90’に傾斜させである
特許請求の範囲第1項または第2項記載の伝熱管。 4、w:mに沿う突条同士のピッチは、起立面高さの2
0〜80倍である特許請求の範囲第1項ないし第3項の
いずれか記載の伝熱管。[Claims] 1. g On the inner circumferential surface of the main body, on the upstream side in the flow direction of the fluid in the tube, there is an upright surface that stands up perpendicularly from the inner circumferential surface of the tube body, and on the downstream side, there is a raised surface that stands up vertically from the upper end of the upright surface in the flow direction. A heat exchanger tube characterized in that a plurality of protrusions having sloped surfaces gently descending along the ridges are inclined with respect to the U-axis of the tube body and are formed at a required pitch. 2. The transmission fA tube according to claim 1, wherein the protrusion has an upright surface diameter of 0.2 to 0.7 mm. 3. The heat exchanger tube according to claim 1 or 2, wherein the protrusions are inclined at an angle of 40 to 90' with respect to the tube axis. 4. The pitch between the protrusions along w: m is 2 of the height of the upright surface.
The heat exchanger tube according to any one of claims 1 to 3, which is 0 to 80 times larger.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5351684A JPS60200095A (en) | 1984-03-22 | 1984-03-22 | Heat transfer pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5351684A JPS60200095A (en) | 1984-03-22 | 1984-03-22 | Heat transfer pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60200095A true JPS60200095A (en) | 1985-10-09 |
Family
ID=12944983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5351684A Pending JPS60200095A (en) | 1984-03-22 | 1984-03-22 | Heat transfer pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60200095A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04122965U (en) * | 1991-04-18 | 1992-11-05 | 日立電線株式会社 | Heat absorption pipes for heat exchangers for water heaters |
JP2001296096A (en) * | 2000-02-09 | 2001-10-26 | Japan Atom Energy Res Inst | Screw cooling pipe |
JP2003056995A (en) * | 2001-08-20 | 2003-02-26 | Komatsu Electronics Inc | Heat exchanger |
-
1984
- 1984-03-22 JP JP5351684A patent/JPS60200095A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04122965U (en) * | 1991-04-18 | 1992-11-05 | 日立電線株式会社 | Heat absorption pipes for heat exchangers for water heaters |
JP2001296096A (en) * | 2000-02-09 | 2001-10-26 | Japan Atom Energy Res Inst | Screw cooling pipe |
JP2003056995A (en) * | 2001-08-20 | 2003-02-26 | Komatsu Electronics Inc | Heat exchanger |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100220724B1 (en) | Heat exchanger for air conditioner | |
EP0206640B1 (en) | Improved heat transfer tube having internal ridges | |
US20040251016A1 (en) | Heat exchanger | |
EP0660062A1 (en) | Heat exchanger using finned tubes | |
JPH08291988A (en) | Structure of heat exchanger | |
US20160273840A1 (en) | Tube heat exchanger with optimized thermo-hydraulic characteristics | |
JPS60200095A (en) | Heat transfer pipe | |
CN202614060U (en) | Condenser pipe with pyramidal fins | |
US7418848B2 (en) | High-performance and high-efficiency rolled fin tube and forming disk therefor | |
JPS61265499A (en) | Heat transfer tube | |
JPH0579918B2 (en) | ||
CN102654372B (en) | Pyramid-shaped finned condensing tube | |
JP2960828B2 (en) | Heat transfer tube for absorber | |
CN205090857U (en) | Internal thread evaporation heat exchange tube with two sections different spiral flute profile structures | |
US4549999A (en) | Cooling tower | |
CN115648904A (en) | Liquid drainage structure and heat exchanger | |
US11397059B2 (en) | Asymmetric flow path topology | |
JPH0579783A (en) | Heat transfer tube with inner surface groove | |
JPH10238983A (en) | Heat-exchanger | |
CN109446745B (en) | Design method for one-dimensional pneumatics of helium compressor | |
JPS633185A (en) | Finned heat exchanger | |
JPS6069493A (en) | Heat transfer pipe | |
JP2010112565A (en) | Heat exchanger | |
JP3606284B2 (en) | Boiling type heat transfer tube | |
CN220153350U (en) | Heat exchange tube and heat exchanger using same |