[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2002138275A - Cerium oxide abrasive agent and method for abrading base - Google Patents

Cerium oxide abrasive agent and method for abrading base

Info

Publication number
JP2002138275A
JP2002138275A JP2001275530A JP2001275530A JP2002138275A JP 2002138275 A JP2002138275 A JP 2002138275A JP 2001275530 A JP2001275530 A JP 2001275530A JP 2001275530 A JP2001275530 A JP 2001275530A JP 2002138275 A JP2002138275 A JP 2002138275A
Authority
JP
Japan
Prior art keywords
cerium oxide
particles
slurry
polishing
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001275530A
Other languages
Japanese (ja)
Inventor
Masato Yoshida
誠人 吉田
Toranosuke Ashizawa
寅之助 芦沢
Hiroki Terasaki
裕樹 寺崎
Yasushi Kurata
靖 倉田
Jun Matsuzawa
純 松沢
Kiyohito Tanno
清仁 丹野
Hiroto Otsuki
裕人 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27478488&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2002138275(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2001275530A priority Critical patent/JP2002138275A/en
Publication of JP2002138275A publication Critical patent/JP2002138275A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cerium oxide abrading agent capable of abrading a face to be abraded of a silicon dioxide insulating film, or the like, with flaw-free and at a high speed. SOLUTION: An abrading method of a base comprises abrading a silicon wafer formed with a silicon dioxide insulating film prepared by a TEOS-CVD method with a slurry abrading agent obtained by dispersing a cerium oxide particle in a medium, the cerium oxide particle having a Y value of 0.01-0.70, wherein the Y value is a structural parameter expressing an isotropic micro- strain in an analysis by a powder X-ray Rietbert method (RIETAN-94).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化セリウム研磨
剤及び基板の研磨法に関する。
The present invention relates to a cerium oxide abrasive and a method for polishing a substrate.

【0002】[0002]

【従来の技術】従来、半導体装置の製造工程において、
プラズマ−CVD、低圧−CVD等の方法で形成される
SiO絶縁膜等無機絶縁膜層を平坦化するための化学
機械研磨剤としてコロイダルシリカ系の研磨剤が一般的
に検討されている。コロイダルシリカ系の研磨剤は、シ
リカ粒子を四塩化珪酸を熱分解する等の方法で粒成長さ
せ、アンモニア等のアルカリ金属を含まないアルカリ溶
液でpH調整を行って製造している。しかしながら、こ
の様な研磨剤は無機絶縁膜の研磨速度が充分な速度を持
たず、実用化には低研磨速度という技術課題がある。
2. Description of the Related Art Conventionally, in the manufacturing process of a semiconductor device,
Colloidal silica-based polishing agents are generally studied as chemical mechanical polishing agents for planarizing an inorganic insulating film layer such as an SiO 2 insulating film formed by a method such as plasma-CVD or low-pressure-CVD. Colloidal silica-based abrasives are produced by growing silica particles by a method such as thermal decomposition of silicic acid tetrachloride and adjusting the pH with an alkali solution containing no alkali metal such as ammonia. However, such a polishing agent does not have a sufficient polishing rate for the inorganic insulating film, and there is a technical problem of a low polishing rate for practical use.

【0003】一方、フォトマスク用ガラス表面研磨とし
て、酸化セリウム研磨剤が用いられている。酸化セリウ
ム粒子はシリカ粒子やアルミナ粒子に比べ硬度が低く、
したがって研磨表面に傷が入りにくいことから仕上げ鏡
面研磨に有用である。また、酸化セリウムは強い酸化剤
として知られるように化学的活性な性質を有している。
この利点を活かし、絶縁膜用化学機械研磨剤への適用が
有用である。しかしながら、フォトマスク用ガラス表面
研磨用酸化セリウム研磨剤をそのまま無機絶縁膜研磨に
適用すると、1次粒子径が大きく、そのため絶縁膜表面
に目視で観察できる研磨傷が入ってしまう。
On the other hand, cerium oxide abrasives have been used for polishing the glass surface for photomasks. Cerium oxide particles have lower hardness than silica particles and alumina particles,
Therefore, it is useful for finish mirror polishing because the polishing surface is hardly damaged. Also, cerium oxide has chemically active properties as known as strong oxidizing agents.
Taking advantage of this advantage, application to a chemical mechanical polishing agent for an insulating film is useful. However, when a cerium oxide abrasive for polishing a glass surface for a photomask is directly applied to polishing of an inorganic insulating film, the primary particle diameter is large, so that a visually observable polishing scratch is formed on the insulating film surface.

【0004】[0004]

【発明が解決しようとする課題】本発明は、SiO
縁膜等の被研磨面を傷なく高速に研磨することが可能な
酸化セリウム研磨剤及び基板の研磨法を提供するもので
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a cerium oxide abrasive and a substrate polishing method capable of polishing a surface to be polished such as a SiO 2 insulating film at a high speed without damage.

【0005】[0005]

【課題を解決するための手段】本発明の酸化セリウム研
磨剤は、一次粒子径の中央値が30〜250nmであり
粒子径の中央値が150〜600nmである酸化セリウ
ム粒子を媒体に分散させたスラリーを含むものである。
また本発明の酸化セリウム研磨剤は、一次粒子径の中央
値が100〜250nmであり粒子径の中央値が150
〜350nmである酸化セリウム粒子を媒体に分散させ
たスラリーを含むものであることができる。上記の酸化
セリウム粒子では、一次粒子の最大径は600nm以下
が好ましく、一次粒子径は10〜600nmであること
が好ましい。
According to the cerium oxide abrasive of the present invention, cerium oxide particles having a median primary particle diameter of 30 to 250 nm and a median particle diameter of 150 to 600 nm are dispersed in a medium. It contains slurry.
The cerium oxide abrasive of the present invention has a median primary particle size of 100 to 250 nm and a median particle size of 150 to 150 nm.
It may include a slurry in which cerium oxide particles having a size of about 350 nm are dispersed in a medium. In the above cerium oxide particles, the maximum diameter of the primary particles is preferably 600 nm or less, and the primary particle diameter is preferably 10 to 600 nm.

【0006】また本発明の酸化セリウム研磨剤は、一次
粒子径の中央値が30〜70nmであり粒子径の中央値
が250〜600nmである酸化セリウム粒子を媒体に
分散させたスラリーを含むものであることができる。上
記の酸化セリウム粒子では、一次粒子径は10〜100
nmであることが好ましい。本発明の酸化セリウム研磨
剤では、酸化セリウム粒子の最大径は3000nm以下
であることが好ましい。
Further, the cerium oxide abrasive of the present invention contains a slurry in which cerium oxide particles having a median primary particle size of 30 to 70 nm and a median particle size of 250 to 600 nm are dispersed in a medium. Can be. In the above cerium oxide particles, the primary particle diameter is 10 to 100.
It is preferably nm. In the cerium oxide abrasive of the present invention, the maximum diameter of the cerium oxide particles is preferably 3000 nm or less.

【0007】媒体として水を使用することができ、例え
ば水溶性有機高分子、水溶性陰イオン界面活性剤、水溶
性非イオン性界面活性剤及び水溶性アミンから選ばれる
少なくとも1種である分散剤が使用され、ポリアクリル
酸アンモニウム塩が好ましい。酸化セリウム粒子は炭酸
セリウムを焼成した酸化セリウムが好ましく使用され
る。本発明の酸化セリウム研磨剤で、例えばシリカ膜が
形成された半導体チップ等の所定の基板を研磨すること
ができる。
Water can be used as a medium, and for example, a dispersant which is at least one selected from a water-soluble organic polymer, a water-soluble anionic surfactant, a water-soluble nonionic surfactant and a water-soluble amine. Is used, and ammonium polyacrylate is preferred. As the cerium oxide particles, cerium oxide obtained by firing cerium carbonate is preferably used. The cerium oxide abrasive of the present invention can polish a predetermined substrate such as a semiconductor chip on which a silica film is formed.

【0008】[0008]

【発明の実施の形態】一般に酸化セリウムは、炭酸塩、
硫酸塩、蓚酸塩等のセリウム化合物を焼成することによ
って得られる。TEOS−CVD法等で形成されるSi
絶縁膜は1次粒子径が大きく、かつ結晶歪が少ない
ほど、すなわち結晶性がよいほど高速研磨が可能である
が、研磨傷が入りやすい傾向がある。そこで、本発明で
用いる酸化セリウム粒子は、あまり結晶性を上げないで
作製される。また、半導体チップ研磨に使用することか
ら、アルカリ金属およびハロゲン類の含有率は1ppm
以下に抑えることが好ましい。本発明の研磨剤は高純度
のもので、Na、K、Si、Mg、Ca、Zr、Ti、
Ni、Cr、Feはそれぞれ1ppm以下、Alは10
ppm以下である。
DETAILED DESCRIPTION OF THE INVENTION Generally, cerium oxide is a carbonate,
It is obtained by calcining cerium compounds such as sulfates and oxalates. Si formed by a TEOS-CVD method or the like
The O 2 insulating film can be polished at a high speed as the primary particle diameter is large and the crystal distortion is small, that is, the crystallinity is good, but the polishing scratch tends to be formed. Therefore, the cerium oxide particles used in the present invention are produced without increasing crystallinity. Further, since it is used for polishing semiconductor chips, the content of alkali metals and halogens is 1 ppm.
It is preferable to suppress it to the following. The abrasive of the present invention is of high purity, and contains Na, K, Si, Mg, Ca, Zr, Ti,
Ni, Cr and Fe are each 1 ppm or less, and Al is 10 ppm or less.
ppm or less.

【0009】本発明において、酸化セリウム粒子を作製
する方法として焼成法が使用できる。ただし、研磨傷が
入らない粒子を作製するためにできるだけ結晶性を上げ
ない低温焼成が好ましい。セリウム化合物の酸化温度が
300℃であることから、焼成温度は600℃以上90
0℃以下が好ましい。炭酸セリウムを600℃以上90
0℃以下で5〜300分、酸素ガス等の酸化雰囲気で焼
成すること好ましい。焼成された酸化セリウムは、ジェ
ットミル等の乾式粉砕、ビ−ズミル等の湿式粉砕で粉砕
することができる。ジェットミルは例えば化学工業論文
集第6巻第5号(1980)527〜532頁に説明さ
れている。焼成された酸化セリウムをジェットミル等の
乾式粉砕で粉砕すると粉砕残りの発生が観察された。
In the present invention, a firing method can be used as a method for producing cerium oxide particles. However, low-temperature sintering that does not increase the crystallinity as much as possible is preferable in order to produce particles that do not cause polishing scratches. Since the oxidation temperature of the cerium compound is 300 ° C., the firing temperature is 600 ° C. or more and 90 ° C.
0 ° C. or lower is preferred. Cerium carbonate over 600 ° C 90
It is preferable to fire at 0 ° C. or lower for 5 to 300 minutes in an oxidizing atmosphere such as oxygen gas. The calcined cerium oxide can be pulverized by dry pulverization such as a jet mill or wet pulverization such as a bead mill. The jet mill is described in, for example, Chemical Industry Transactions, Vol. 6, No. 5, (1980), pp. 527-532. When the calcined cerium oxide was pulverized by dry pulverization such as a jet mill, generation of residual pulverization was observed.

【0010】本発明における酸化セリウムスラリーは、
上記の方法により製造された酸化セリウム粒子を含有す
る水溶液又はこの水溶液から回収した酸化セリウム粒
子、水及び必要に応じて分散剤からなる組成物を分散さ
せることによって得られる。ここで酸化セリウム粒子の
濃度には制限は無いが、懸濁液の取り扱い易さから0.
1〜10重量%の範囲が好ましい。また分散剤として
は、金属イオン類を含まないものとして、アクリル酸重
合体及びそのアンモニウム塩、メタクリル酸重合体及び
そのアンモニウム塩、ポリビニルアルコール等の水溶性
有機高分子類、ラウリル硫酸アンモニウム、ポリオキシ
エチレンラウリルエーテル硫酸アンモニウム等の水溶性
陰イオン性界面活性剤、ポリオキシエチレンラウリルエ
ーテル、ポリエチレングリコールモノステアレート等の
水溶性非イオン性界面活性剤、モノエタノールアミン、
ジエタノールアミン等の水溶性アミン類などが挙げられ
る。
[0010] The cerium oxide slurry in the present invention comprises:
It is obtained by dispersing an aqueous solution containing cerium oxide particles produced by the above method or a composition comprising cerium oxide particles recovered from this aqueous solution, water and, if necessary, a dispersant. Here, the concentration of the cerium oxide particles is not limited, but is preferably 0. 1 for ease of handling the suspension.
A range of 1 to 10% by weight is preferred. As the dispersant, those containing no metal ions include acrylic acid polymers and their ammonium salts, methacrylic acid polymers and their ammonium salts, water-soluble organic polymers such as polyvinyl alcohol, ammonium lauryl sulfate, and polyoxyethylene. Water-soluble anionic surfactants such as ammonium lauryl ether sulfate, polyoxyethylene lauryl ether, water-soluble nonionic surfactants such as polyethylene glycol monostearate, monoethanolamine,
And water-soluble amines such as diethanolamine.

【0011】ポリアクリル酸アンモニウム塩、特に重量
平均分子量5000〜20000のポリアクリル酸アン
モニウム塩が好ましい。これらの分散剤の添加量は、ス
ラリー中の粒子の分散性及び沈降防止性などから酸化セ
リウム粒子100重量部に対して0.01重量部から5
重量部の範囲が好ましく、その分散効果を高めるために
は分散処理時に分散機の中に粒子と同時に入れることが
好ましい。
[0011] Ammonium polyacrylate, particularly ammonium polyacrylate having a weight average molecular weight of 5,000 to 20,000, is preferred. The addition amount of these dispersants is from 0.01 part by weight to 5 parts by weight based on 100 parts by weight of the cerium oxide particles in view of the dispersibility of the particles in the slurry and the anti-settling property.
The range of parts by weight is preferable, and in order to enhance the dispersing effect, it is preferable to put the particles in a disperser at the same time as the particles during the dispersion treatment.

【0012】これらの酸化セリウム粒子を水中に分散さ
せる方法としては、通常の撹拌機による分散処理の他
に、ホモジナイザー、超音波分散機、ボールミルなどを
用いることができる。特に酸化セリウム粒子を1μm以
下の微粒子として分散させるためには、ボールミル、振
動ボールミル、遊星ボールミル、媒体撹拌式ミルなどの
湿式分散機を用いることが好ましい。また、スラリーの
アルカリ性を高めたい場合には、分散処理時又は処理後
にアンモニア水などの金属イオンを含まないアルカリ性
物質を添加することができる。
As a method for dispersing these cerium oxide particles in water, a homogenizer, an ultrasonic disperser, a ball mill, or the like can be used in addition to the usual dispersion treatment using a stirrer. In particular, in order to disperse cerium oxide particles as fine particles of 1 μm or less, it is preferable to use a wet disperser such as a ball mill, a vibrating ball mill, a planetary ball mill, and a medium stirring mill. When it is desired to increase the alkalinity of the slurry, an alkaline substance not containing metal ions, such as aqueous ammonia, can be added during or after the dispersion treatment.

【0013】本発明の酸化セリウム研磨剤は、上記スラ
リ−をそのまま使用してもよいが、N,N−ジエチルエ
タノ−ルアミン、N,N−ジメチルエタノ−ルアミン、
アミノエチルエタノ−ルアミン等の添加剤を添加して研
磨剤とすることができる。
In the cerium oxide abrasive of the present invention, the above slurry may be used as it is, but N, N-diethylethanolamine, N, N-dimethylethanolamine,
Additives such as aminoethylethanolamine can be added to make an abrasive.

【0014】本発明のスラリーに分散される酸化セリウ
ム粒子を構成する一次粒子径の中央値は30〜250n
mであり、粒子径の中央値は150〜600nmであ
る。一次粒子径の中央値が30nm未満又は粒子径の中
央値が150nm未満であればSiO絶縁膜等の被研
磨面を高速に研磨することができず、一次粒子径の中央
値が250nmを越える又は粒子径の中央値が600n
mを越えるとSiO絶縁膜等の被研磨面に傷が発生す
る。
The median primary particle size of the cerium oxide particles dispersed in the slurry of the present invention is 30 to 250 n.
m, and the median particle size is 150 to 600 nm. If the median primary particle diameter is less than 30 nm or the median particle diameter is less than 150 nm, the surface to be polished such as a SiO 2 insulating film cannot be polished at high speed, and the median primary particle diameter exceeds 250 nm. Or the median particle size is 600n
If it exceeds m, scratches occur on the surface to be polished such as a SiO 2 insulating film.

【0015】また一次粒子径の中央値が100〜250
nmであり粒子径の中央値が150〜350nmである
酸化セリウム粒子が好ましく、それぞれの中央値が上記
下限値未満であると研磨速度が小さくなり、上限値を越
えると傷が発生しやすい。上記の酸化セリウム粒子で
は、一次粒子の最大径は600nm以下が好ましく、一
次粒子径は10〜600nmであることが好ましい。一
次粒子が600nmを上限値を越えると傷が発生しやす
く、10nm未満であると研磨速度が小さくなる。
The median primary particle diameter is 100 to 250.
Cerium oxide particles having a diameter of 150 nm and a median particle diameter of 150 to 350 nm are preferred. If the respective median values are less than the above lower limit, the polishing rate is reduced, and if the median value exceeds the upper limit, scratches are likely to occur. In the above cerium oxide particles, the maximum diameter of the primary particles is preferably 600 nm or less, and the primary particle diameter is preferably 10 to 600 nm. If the primary particles exceed the upper limit of 600 nm, scratches are likely to occur, and if it is less than 10 nm, the polishing rate will decrease.

【0016】また一次粒子径の中央値が30〜70nm
であり粒子径の中央値が250〜600nmである酸化
セリウム粒子が好ましく、それぞれの中央値が上記下限
値未満であると研磨速度が小さくなり、上限値を越える
と傷が発生しやすい。
The median primary particle diameter is 30 to 70 nm.
And a cerium oxide particle having a median particle diameter of 250 to 600 nm is preferred. If the median value is less than the above lower limit, the polishing rate decreases, and if the median value exceeds the upper limit, scratches tend to occur.

【0017】上記の酸化セリウム粒子では、一次粒子径
は10〜100nmであることが好ましく、一次粒子が
10nm未満であると研磨速度が小さくなり、100n
mを上限値を越えると傷が発生しやすくなる。
In the above-mentioned cerium oxide particles, the primary particle diameter is preferably from 10 to 100 nm, and if the primary particles are less than 10 nm, the polishing rate is reduced, and
If m exceeds the upper limit, scratches are likely to occur.

【0018】本発明の酸化セリウム研磨剤では、酸化セ
リウム粒子の最大径は3000nm以下であることが好
ましい。酸化セリウム粒子の最大径が3000nmを越
えると傷が発生しやすい。
In the cerium oxide abrasive of the present invention, the maximum diameter of the cerium oxide particles is preferably 3000 nm or less. If the maximum diameter of the cerium oxide particles exceeds 3000 nm, scratches are likely to occur.

【0019】焼成酸化セリウムをジェットミル等の乾式
粉砕で粉砕した酸化セリウム粒子には粉砕残りが含ま
れ、この粉砕残り粒子は一次粒子が再凝集した凝集体と
は異なっており、研磨時の応力により破壊され活性面を
発生すると推定され、SiO絶縁膜等の被研磨面を傷
なく高速に研磨することに寄与していると考えられる。
本発明のスラリ−には、3000nm以下の粉砕残り粒
子を含むことができる。
The cerium oxide particles obtained by pulverizing the calcined cerium oxide by dry pulverization such as a jet mill include pulverized residues, which are different from the aggregates in which the primary particles are re-agglomerated. It is presumed that the active surface is destroyed due to the formation of an active surface, which is considered to contribute to the high-speed polishing of the surface to be polished such as the SiO 2 insulating film without any damage.
The slurry of the present invention may contain unmilled particles of 3000 nm or less.

【0020】本発明で、一次粒子径は走査型電子顕微鏡
(例えば(株)日立製作所製 S−900型)による観
察で測定する。スラリ−粒子である酸化セリウム粒子径
はレ−ザ回折法(例えばマルバーンインスツルメンツ社
製 Master Sizermicroplus、屈折
率:1.9285、光源:He−Neレーザー、吸収
0)によって測定する。
In the present invention, the primary particle size is measured by observation with a scanning electron microscope (for example, Model S-900 manufactured by Hitachi, Ltd.). The particle diameter of the cerium oxide, which is a slurry particle, is measured by a laser diffraction method (for example, Master Sizermicroplus, manufactured by Malvern Instruments, refractive index: 1.9285, light source: He-Ne laser, absorption 0).

【0021】本発明のスラリ−に分散された酸化セリウ
ム粒子を構成する一次粒子のアスペクト比は1〜2、中
央値1.3が好ましい。アスペクト比は走査型電子顕微
鏡(例えば(株)日立製作所製 S−900型)による
観察で測定する。
The primary particles constituting the cerium oxide particles dispersed in the slurry of the present invention preferably have an aspect ratio of 1-2 and a median value of 1.3. The aspect ratio is measured by observation with a scanning electron microscope (for example, Model S-900 manufactured by Hitachi, Ltd.).

【0022】本発明のスラリ−に分散された酸化セリウ
ム粒子として、粉末X線リートベルト法(RIETAN
−94)による解析で等方的微小歪を表わす構造パラメ
ーター:Yの値が0.01以上0.70以下である酸化
セリウム粒子を使用することができる。このような結晶
歪みを有する酸化セリウム粒子を使用することにより、
被研磨表面に傷をつけることなく、かつ高速に研磨する
ことができる。
As the cerium oxide particles dispersed in the slurry of the present invention, a powder X-ray Rietveld method (RIETAN) is used.
Cerium oxide particles having a value of Y of 0.01 to 0.70, which is a structural parameter representing isotropic small strain in the analysis according to -94), can be used. By using cerium oxide particles having such crystal distortion,
Polishing can be performed at high speed without damaging the surface to be polished.

【0023】本発明のスラリ−に分散された酸化セリウ
ム粒子の比表面積は7〜45m/gが好ましい。比表
面積が7m/g未満だと被研磨表面に傷をつけるやす
くなり、45m/gを越えると研磨速度が遅くなる傾
向にある。スラリ−の酸化セリウム粒子の比表面積は分
散される酸化セリウム粒子の比表面積と同じである。
The specific surface area of the cerium oxide particles dispersed in the slurry of the present invention is preferably from 7 to 45 m 2 / g. If the specific surface area is less than 7 m 2 / g, the surface to be polished tends to be damaged, and if it exceeds 45 m 2 / g, the polishing rate tends to be slow. The specific surface area of the cerium oxide particles of the slurry is the same as the specific surface area of the dispersed cerium oxide particles.

【0024】本発明のスラリ−中の酸化セリウム粒子の
ゼ−タ電位は−100mV以上−10mVが好ましい。
これにより酸化セリウム粒子の分散性を良好にし被研磨
表面に傷をつけることなく、かつ高速に研磨することが
できる。
The zeta potential of the cerium oxide particles in the slurry of the present invention is preferably from -100 mV to -10 mV.
This makes it possible to improve the dispersibility of the cerium oxide particles and to perform high-speed polishing without damaging the surface to be polished.

【0025】本発明のスラリ−に分散された酸化セリウ
ム粒子は平均粒径が200nm以上400nm以下で粒
度分布の半値幅が300nm以下とすることができる。
本発明のスラリ−のpHは7以上10以下が好ましく、
8以上9以下がより好ましい。
The cerium oxide particles dispersed in the slurry of the present invention can have an average particle size of 200 nm or more and 400 nm or less, and a half value width of the particle size distribution of 300 nm or less.
The pH of the slurry of the present invention is preferably 7 or more and 10 or less,
8 or more and 9 or less are more preferable.

【0026】スラリ−調整後、ポリエチレン等の容器に
入れ5〜55℃で7日以上、より好ましくは30日以上
放置して使用すれば傷の発生が少なくなる。
After the slurry is prepared, it is placed in a container made of polyethylene or the like and left at 5 to 55 ° C. for 7 days or more, more preferably 30 days or more, to reduce the occurrence of scratches.

【0027】本発明のスラリ−は分散性に優れ沈降速度
が遅く、直径10cm高さ1mの円中のどの高さの位置
でも2時間放置濃度変化率が10%未満である。
The slurry of the present invention is excellent in dispersibility, has a low sedimentation speed, and has a concentration change of less than 10% for 2 hours at any height in a circle having a diameter of 10 cm and a height of 1 m.

【0028】本発明の酸化セリウム研磨剤が使用される
無機絶縁膜の作製方法として、低圧CVD法、プラズマ
CVD法等が挙げられる。低圧CVD法によるSiO
絶縁膜形成は、Si源としてモノシラン:SiH、酸
素源として酸素:Oを用いる。このSiH−O
酸化反応を400℃程度以下の低温で行わせることによ
り得られる。高温リフローによる表面平坦化を図るため
にリン:Pをドープするときには、SiH−O−P
系反応ガスを用いることが好ましい。プラズマCV
D法は、通常の熱平衡下では高温を必要とする化学反応
が低温でできる利点を有する。プラズマ発生法には、容
量結合型と誘導結合型の2つが挙げられる。反応ガスと
しては、Si源としてSiH、酸素源としてNOを
用いたSiH−NO系ガスとテトラエトキシシラン
(TEOS)をSi源に用いたTEOS−O系ガス
(TEOS−プラズマCVD法)が挙げられる。基板温
度は250℃〜400℃、反応圧力は67〜400Pa
の範囲が好ましい。このように、本発明のSiO絶縁
膜にはリン、ホウ素等の元素がド−プされていても良
い。
As a method of forming an inorganic insulating film using the cerium oxide abrasive of the present invention, a low-pressure CVD method, a plasma CVD method, and the like can be mentioned. SiO 2 by low pressure CVD
In forming the insulating film, monosilane: SiH 4 is used as a Si source, and oxygen: O 2 is used as an oxygen source. This is obtained by performing the SiH 4 —O 2 -based oxidation reaction at a low temperature of about 400 ° C. or less. When doping phosphorus: P for planarizing the surface by high temperature reflow, SiH 4 —O 2 —P
It is preferable to use of H 3 based reaction gas. Plasma CV
The method D has an advantage that a chemical reaction requiring a high temperature can be performed at a low temperature under ordinary thermal equilibrium. The plasma generation method includes two types, a capacitive coupling type and an inductive coupling type. As a reaction gas, a SiH 4 -N 2 O-based gas using SiH 4 as a Si source and N 2 O as an oxygen source and a TEOS-O 2 -based gas (TEOS-) using tetraethoxysilane (TEOS) as a Si source are used. Plasma CVD). Substrate temperature is 250-400 ° C, reaction pressure is 67-400Pa
Is preferable. Thus, the elements such as phosphorus and boron may be doped in the SiO 2 insulating film of the present invention.

【0029】所定の基板として、半導体基板すなわち回
路素子と配線パターンが形成された段階の半導体基板、
回路素子が形成された段階の半導体基板等の半導体基板
上にSiO絶縁膜層が形成された基板が使用できる。
このような半導体基板上に形成されたSiO絶縁膜層
を上記酸化セリウム研磨剤で研磨することによって、S
iO絶縁膜層表面の凹凸を解消し、半導体基板全面に
渡って平滑な面とする。ここで、研磨する装置として
は、半導体基板を保持するホルダーと研磨布(パッド)
を貼り付けた(回転数が変更可能なモータ等を取り付け
てある)定盤を有する一般的な研磨装置が使用できる。
研磨布としては、一般的な不織布、発泡ポリウレタン、
多孔質フッ素樹脂などが使用でき、特に制限がない。ま
た、研磨布にはスラリーが溜まる様な溝加工を施すこと
が好ましい。研磨条件には制限はないが、定盤の回転速
度は半導体が飛び出さない様に100rpm以下の低回
転が好ましく、半導体基板にかける圧力は研磨後に傷が
発生しない様に1kg/cm 以下が好ましい。研磨し
ている間、研磨布にはスラリーをポンプ等で連続的に供
給する。この供給量には制限はないが、研磨布の表面が
常にスラリーで覆われていることが好ましい。
As a predetermined substrate, a semiconductor substrate, that is, a semiconductor substrate
Semiconductor substrate at the stage where the circuit element and the wiring pattern are formed,
A semiconductor substrate such as a semiconductor substrate in which circuit elements have been formed
SiO on top2A substrate provided with an insulating film layer can be used.
SiO formed on such a semiconductor substrate2Insulating film layer
Is polished with the above cerium oxide abrasive to obtain S
iO2Eliminates irregularities on the insulating film layer surface and covers the entire surface of the semiconductor substrate
Make the surface smooth across. Here, as a polishing device
Is a holder and polishing cloth (pad) for holding the semiconductor substrate
(Mount a motor whose rotation speed can be changed.)
A general polishing apparatus having a platen can be used.
As a polishing cloth, general non-woven fabric, foamed polyurethane,
A porous fluororesin or the like can be used, and there is no particular limitation. Ma
In addition, the polishing cloth must be grooved so that the slurry will collect.
Is preferred. The polishing conditions are not limited, but the rotation speed of the surface plate
Low speed of 100 rpm or less so that the semiconductor does not jump out
Is preferable, and the pressure applied to the semiconductor substrate may cause scratches after polishing.
1kg / cm to prevent generation 2The following is preferred. Polishing
While polishing, the slurry is continuously supplied to the polishing cloth with a pump or the like.
Pay. The supply amount is not limited, but the surface of the polishing cloth is
Preferably, it is always covered with the slurry.

【0030】研磨終了後の半導体基板は、流水中で良く
洗浄後、スピンドライヤ等を用いて半導体基板上に付着
した水滴を払い落としてから乾燥させることが好まし
い。このようにして平坦化されたSiO絶縁膜層の上
に、第2層目のアルミニウム配線を形成し、その配線間
および配線上に再度上記方法によりSiO絶縁膜を形
成後、上記酸化セリウム研磨剤を用いて研磨することに
よって、絶縁膜表面の凹凸を解消し、半導体基板全面に
渡って平滑な面とする。この工程を所定数繰り返すこと
により、所望の層数の半導体を製造する。
It is preferable that the semiconductor substrate after polishing is thoroughly washed in running water, and then water drops adhering to the semiconductor substrate are wiped off using a spin drier or the like, and then dried. On the planarized SiO 2 insulating film layer, a second-layer aluminum wiring is formed, and between the wirings and on the wiring, an SiO 2 insulating film is formed again by the above-described method. By polishing using an abrasive, unevenness on the surface of the insulating film is eliminated, and a smooth surface is formed over the entire surface of the semiconductor substrate. By repeating this process a predetermined number of times, a semiconductor having a desired number of layers is manufactured.

【0031】本発明の酸化セリウム研磨剤は、半導体基
板に形成されたSiO絶縁膜だけでなく、所定の配線
を有する配線板に形成されたSiO絶縁膜、ガラス、
窒化ケイ素等の無機絶縁膜、フォトマスク・レンズ・プ
リズムなどの光学ガラス、ITO等の無機導電膜、ガラ
ス及び結晶質材料で構成される光集積回路・光スイッチ
ング素子・光導波路、光ファイバ−の端面、シンチレ−
タ等の光学用単結晶、固体レ−ザ単結晶、青色レ−ザ用
LEDサファイア基板、SiC、GaP、GaAS等の
半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド
等を研磨するために使用される。
The cerium oxide abrasive of the present invention can be used not only for an SiO 2 insulating film formed on a semiconductor substrate but also for a SiO 2 insulating film formed on a wiring board having predetermined wiring, glass,
Inorganic insulating films such as silicon nitride, optical glasses such as photomasks, lenses, and prisms; inorganic conductive films such as ITO; optical integrated circuits, optical switching elements, optical waveguides, and optical fibers composed of glass and crystalline materials. End face, scintillation
Used for polishing optical single crystals such as lasers, solid laser single crystals, LED sapphire substrates for blue lasers, semiconductor single crystals such as SiC, GaP, GaAs, glass substrates for magnetic disks, magnetic heads, etc. Is done.

【0032】このように本発明において所定の基板と
は、SiO絶縁膜が形成された半導体基板、SiO
絶縁膜が形成された配線板、ガラス、窒化ケイ素等の無
機絶縁膜、フォトマスク・レンズ・プリズムなどの光学
ガラス、ITO等の無機導電膜、ガラス及び結晶質材料
で構成される光集積回路・光スイッチング素子・光導波
路、光ファイバ−の端面、シンチレ−タ等の光学用単結
晶、固体レ−ザ単結晶、青色レ−ザ用LEDサファイア
基板、SiC、GaP、GaAS等の半導体単結晶、磁
気ディスク用ガラス基板、磁気ヘッド等を含む。
[0032] The predetermined substrate in this way the present invention, a semiconductor substrate which SiO 2 insulating film is formed, SiO 2
Wiring board with insulating film formed, glass, inorganic insulating film such as silicon nitride, optical glass such as photomask, lens, prism, inorganic conductive film such as ITO, optical integrated circuit composed of glass and crystalline material. Optical switching element / optical waveguide, end face of optical fiber, optical single crystal such as scintillator, solid laser single crystal, LED sapphire substrate for blue laser, semiconductor single crystal such as SiC, GaP, GaAs, etc. Includes glass substrates for magnetic disks, magnetic heads, etc.

【0033】[0033]

【実施例】実施例1 (酸化セリウム粒子の作製1)炭酸セリウム水和物2k
gを白金製容器に入れ、800℃で2時間空気中で焼成
することにより黄白色の粉末を約1kg得た。この粉末
をX線回折法で相同定を行ったところ酸化セリウムであ
ることを確認した。焼成粉末粒子径は30〜100ミク
ロンであった。焼成粉末粒子表面を走査型電子顕微鏡で
観察したところ、酸化セリウムの粒界が観察された。粒
界に囲まれた酸化セリウム一次粒子径を測定したとこ
ろ、その分布の中央値が190nm、最大値が500n
mであった。焼成粉末についてX線回折精密測定を行
い、その結果についてリートベルト法(RIETAN−
94)による解析で、一次粒子径を表わす構造パラメー
タ−:Xの値が0.080、等方的微少歪みを表わす構
造パラメータ−:Yの値が0.223であった。酸化セ
リウム粉末1kgをジェットミルを用いて乾式粉砕を行
った。粉砕粒子について走査型電子顕微鏡で観察したと
ころ、一次粒子径と同等サイズの小さな粒子の他に、1
ミクロンから3ミクロンの大きな粉砕残り粒子と0.5
から1ミクロンの粉砕残り粒子が混在していた。粉砕残
り粒子は、一次粒子の凝集体ではない。粉砕粒子につい
てX線回折精密測定を行い、その結果についてリートベ
ルト法(RIETAN−94)による解析で、一次粒子
径を表わす構造パラメータ−:Xの値が0.085、等
方的微少歪みを表わす構造パラメータ−:Yの値が0.
264であった。この結果、粉砕による一次粒子径変量
はほとんどなく、また粉砕により粒子に歪みが導入され
ていた。さらにBET法による比表面積測定の結果、1
0m/gであることがわかった。
EXAMPLES Example 1 (Production of cerium oxide particles 1) Cerium carbonate hydrate 2k
g was placed in a platinum container and calcined at 800 ° C. for 2 hours in the air to obtain about 1 kg of a yellowish white powder. When this powder was subjected to phase identification by an X-ray diffraction method, it was confirmed that the powder was cerium oxide. The calcined powder particle size was 30-100 microns. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the primary particle diameter of cerium oxide surrounded by the grain boundaries was measured, the median of the distribution was 190 nm and the maximum was 500 n.
m. X-ray diffraction precision measurement was performed on the calcined powder, and the results were analyzed using the Rietveld method (Rietan-
In the analysis according to 94), the value of the structural parameter-: X representing the primary particle diameter was 0.080, and the value of the structural parameter -Y representing the isotropic micro-strain was 0.223. 1 kg of cerium oxide powder was dry-ground using a jet mill. Observation of the pulverized particles with a scanning electron microscope revealed that, in addition to small particles having the same size as the primary particle size, 1
0.5 to 3 micron large unmilled particles
To 1 micron remaining particles were mixed. The unmilled particles are not aggregates of primary particles. X-ray diffraction precision measurement is performed on the pulverized particles, and the result is analyzed by the Rietveld method (Rietan-94). The value of the structural parameter -X representing the primary particle diameter is 0.085, and the isotropic micro-strain is expressed. Structural parameter: The value of Y is 0.
264. As a result, there was almost no change in the primary particle diameter due to the pulverization, and distortion was introduced into the particles by the pulverization. Further, as a result of the specific surface area measurement by the BET method, 1
It was found to be 0 m 2 / g.

【0034】(酸化セリウム粒子の作製2)炭酸セリウ
ム水和物2kgを白金製容器に入れ、750℃で2時間
空気中で焼成することにより黄白色の粉末を約1kg得
た。この粉末をX線回折法で相同定を行ったところ酸化
セリウムであることを確認した。焼成粉末粒子径は30
〜100ミクロンであった。焼成粉末粒子表面を走査型
電子顕微鏡で観察したところ、酸化セリウムの粒界が観
察された。粒界に囲まれた酸化セリウム一次粒子径を測
定したところ、その分布の中央値が141nm、最大値
が400nmであった。焼成粉末についてX線回折精密
測定を行い、その結果についてリートベルト法(RIE
TAN−94)による解析で、一次粒子径を表わす構造
パラメータ−:Xの値が0.101、等方的微少歪みを
表わす構造パラメータ−:Yの値が0.223であっ
た。酸化セリウム粉末1kgをジェットミルを用いて乾
式粉砕を行った。粉砕粒子について走査型電子顕微鏡で
観察したところ、一次粒子径と同等サイズの小さな粒子
の他に、1ミクロンから3ミクロンの大きな粉砕残り粒
子と0.5から1ミクロンの粉砕残り粒子が混在してい
た。粉砕残り粒子は、一次粒子の凝集体ではない。粉砕
粒子についてX線回折精密測定を行い、その結果につい
てリートベルト法(RIETAN−94)による解析
で、一次粒子径を表わす構造パラメータ−:Xの値が
0.104、等方的微少歪みを表わす構造パラメータ
−:Yの値が0.315であった。この結果、粉砕によ
る一次粒子径変量はほとんどなく、また粉砕により粒子
に歪みが導入されていた。さらにBET法による比表面
積測定の結果、16m/gであることがわかった。
(Preparation 2 of Cerium Oxide Particles) 2 kg of cerium carbonate hydrate was put in a platinum container and calcined at 750 ° C. for 2 hours in the air to obtain about 1 kg of yellowish white powder. When this powder was subjected to phase identification by an X-ray diffraction method, it was confirmed that the powder was cerium oxide. The calcined powder particle size is 30
100100 microns. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the primary particle diameter of cerium oxide surrounded by the grain boundaries was measured, the median of the distribution was 141 nm and the maximum was 400 nm. X-ray diffraction precision measurement was performed on the calcined powder, and the results were analyzed using the Rietveld method (RIE).
According to the analysis by TAN-94), the value of the structural parameter-: X indicating the primary particle diameter was 0.101, and the value of the structural parameter -Y indicating the isotropic micro-strain was 0.223. 1 kg of cerium oxide powder was dry-ground using a jet mill. Observation of the pulverized particles with a scanning electron microscope revealed that in addition to the small particles having the same size as the primary particle diameter, large pulverized residual particles of 1 to 3 microns and pulverized residual particles of 0.5 to 1 micron were mixed. Was. The unmilled particles are not aggregates of primary particles. X-ray diffraction precision measurement is performed on the pulverized particles, and the result is analyzed by the Rietveld method (Rietan-94). The value of the structural parameter representing the primary particle diameter: X is 0.104, and the isotropic fine distortion is represented. The value of structural parameter-: Y was 0.315. As a result, there was almost no change in the primary particle diameter due to the pulverization, and distortion was introduced into the particles by the pulverization. Furthermore, the specific surface area measured by the BET method was found to be 16 m 2 / g.

【0035】(酸化セリウムスラリーの作製)上記作製
1,2の酸化セリウム粒子1kgとポリアクリル酸アン
モニウム塩水溶液(40重量%)23gと脱イオン水8
977gを混合し、攪拌しながら超音波分散を10分間
施した。得られたスラリーを1ミクロンフィルターでろ
過をし、さらに脱イオン水を加えることにより3wt.
%研磨剤を得た。スラリーpHは8.3であった。スラ
リー粒子の粒度分布をレーザー回折法(測定装置:マル
バーンインスツルメンツ社製Master Sizer
microplus、屈折率:1.9285、光源:H
e−Neレーザー、吸収0で測定)を用いて調べたとこ
ろ、中央値がともに200nmであった。最大粒子径は
780nm以上の粒子が0体積%であった。スラリーの
分散性およびスラリー粒子の電荷を調べるため、スラリ
ーのゼータ電位を調べた。両側に白金製電極を取り付け
てある測定セルに酸化セリウムスラリーを入れ、両電極
に10Vの電圧を印加した。電圧を印加することにより
電荷を持ったスラリー粒子はその電荷と反対の極を持つ
電極側に移動する。この移動速度を求めることにより粒
子のゼータ電位を求めることができる。ゼータ電位測定
の結果、それぞれマイナスに荷電し、−50mV、−6
3mVと絶対値が大きく分散性が良好であることを確認
した。
(Preparation of Cerium Oxide Slurry) 1 kg of the cerium oxide particles prepared in Preparations 1 and 2, 23 g of an aqueous solution of ammonium polyacrylate (40% by weight), and deionized water 8
977 g were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The obtained slurry was filtered through a 1-micron filter, and 3 wt.
% Abrasive was obtained. The slurry pH was 8.3. The particle size distribution of the slurry particles was measured by a laser diffraction method (measuring device: Master Sizer manufactured by Malvern Instruments Co., Ltd.).
microplus, refractive index: 1.9285, light source: H
When the median value was measured using an e-Ne laser and an absorption of 0), the median value was 200 nm. The particles having a maximum particle diameter of 780 nm or more were 0% by volume. In order to examine the dispersibility of the slurry and the charge of the slurry particles, the zeta potential of the slurry was examined. The cerium oxide slurry was placed in a measurement cell having platinum electrodes attached to both sides, and a voltage of 10 V was applied to both electrodes. When a voltage is applied, the charged slurry particles move to the side of the electrode having the opposite polarity to the charge. By determining the moving speed, the zeta potential of the particles can be determined. As a result of zeta potential measurement, each was negatively charged, -50 mV, -6
It was confirmed that the absolute value was large at 3 mV and the dispersibility was good.

【0036】(絶縁膜層の研磨)保持する基板取り付け
用の吸着パッドを貼り付けたホルダーにTEOS−プラ
ズマCVD法で作製したSiO絶縁膜を形成させたS
iウエハをセットし、多孔質ウレタン樹脂製の研磨パッ
ドを貼り付けた定盤上に絶縁膜面を下にしてホルダーを
載せ、さらに加工荷重が300g/cmになるように
重しを載せた。定盤上に上記の酸化セリウムスラリー
(固形分:3重量%)を50cc/minの速度で滴下
しながら、定盤を30rpmで2分間回転させ、絶縁膜
を研磨した。研磨後ウエハをホルダーから取り外して、
流水で良く洗浄後、超音波洗浄機によりさらに20分間
洗浄した。洗浄後、ウエハをスピンドライヤーで水滴を
除去し、120℃の乾燥機で10分間乾燥させた。光干
渉式膜厚測定装置を用いて、研磨前後の膜厚変化を測定
した結果、この研磨によりそれぞれ600nm、580
nm(研磨速度:300nm/min.、290nm/
min.)の絶縁膜が削られ、ウエハ全面に渡って均一
の厚みになっていることがわかった。また、光学顕微鏡
を用いて絶縁膜表面を観察したところ、明確な傷は見ら
れなかった。
(Polishing of Insulating Film Layer) An SiO 2 insulating film produced by a TEOS-plasma CVD method was formed on a holder to which a suction pad for attaching a substrate to be held was attached.
An i-wafer was set, and a holder was placed with the insulating film surface down on a surface plate to which a polishing pad made of a porous urethane resin was attached, and a weight was further placed so that a processing load was 300 g / cm 2 . . While the cerium oxide slurry (solid content: 3% by weight) was dropped on the platen at a rate of 50 cc / min, the platen was rotated at 30 rpm for 2 minutes to polish the insulating film. After polishing, remove the wafer from the holder,
After being thoroughly washed with running water, it was further washed for 20 minutes by an ultrasonic washing machine. After the cleaning, water droplets were removed from the wafer with a spin dryer, and the wafer was dried with a dryer at 120 ° C. for 10 minutes. As a result of measuring a change in film thickness before and after polishing using an optical interference type film thickness measuring apparatus, the polishing resulted in 600 nm and 580 nm, respectively.
nm (polishing rate: 300 nm / min., 290 nm /
min. It was found that the insulating film was abraded to have a uniform thickness over the entire surface of the wafer. When the surface of the insulating film was observed using an optical microscope, no clear damage was found.

【0037】実施例2 (酸化セリウム粒子の作製)炭酸セリウム水和物2kg
を白金製容器に入れ、700℃で2時間空気中で焼成す
ることにより黄白色の粉末を約1kg得た。この粉末を
X線回折法で相同定を行ったところ酸化セリウムである
ことを確認した。焼成粉末粒子径は30〜100ミクロ
ンであった。焼成粉末粒子表面を走査型電子顕微鏡で観
察したところ、酸化セリウムの粒界が観察された。粒界
に囲まれた酸化セリウム一次粒子径を測定したところ、
その分布の中央値が50nm、最大値が100nmであ
った。焼成粉末についてX線回折精密測定を行い、その
結果についてリートベルト法(RIETAN−94)に
よる解析で、一次粒子径を表わす構造パラメータ−:X
の値が0.300、等方的微少歪みを表わす構造パラメ
ータ−:Yの値が0.350であった。酸化セリウム粉
末1kgをジェットミルを用いて乾式粉砕を行った。粉
砕粒子について走査型電子顕微鏡で観察したところ、一
次粒子径と同等サイズの小さな粒子の他に、2ミクロン
から4ミクロンの大きな粉砕残り粒子と0.5から1.
2ミクロンの粉砕残り粒子が混在していた。粉砕残り粒
子は、一次粒子の凝集体ではない。粉砕粒子についてX
線回折精密測定を行い、その結果についてリートベルト
法(RIETAN−94)による解析で、一次粒子径を
表わす構造パラメータ−:Xの値が0.302、等方的
微少歪みを表わす構造パラメータ−:Yの値が0.41
2であった。この結果、粉砕による一次粒子径変量はほ
とんどなく、また粉砕により粒子に歪みが導入されてい
た。さらにBET法による比表面積測定の結果、40m
/gであることがわかった。
Example 2 (Preparation of cerium oxide particles) 2 kg of cerium carbonate hydrate
Was placed in a platinum container, and calcined at 700 ° C. for 2 hours in the air to obtain about 1 kg of a yellowish white powder. When this powder was subjected to phase identification by an X-ray diffraction method, it was confirmed that the powder was cerium oxide. The calcined powder particle size was 30-100 microns. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the primary particle diameter of cerium oxide surrounded by grain boundaries was measured,
The median of the distribution was 50 nm, and the maximum was 100 nm. X-ray diffraction precision measurement is performed on the calcined powder, and the result is analyzed by the Rietveld method (Rietan-94).
Was 0.300, and the value of the structural parameter-: Y representing isotropic micro-strain was 0.350. 1 kg of cerium oxide powder was dry-ground using a jet mill. Observation of the pulverized particles with a scanning electron microscope revealed that, in addition to the small particles having the same size as the primary particle diameter, large pulverized residual particles of 2 to 4 microns and 0.5 to 1.
Residual particles of 2 μm were mixed. The unmilled particles are not aggregates of primary particles. X about crushed particles
X-ray diffraction precision measurement is performed, and the result is analyzed by the Rietveld method (Rietan-94). As a result, the structural parameter representing the primary particle diameter: X is 0.302, and the structural parameter representing the isotropic micro-strain is: The value of Y is 0.41
It was 2. As a result, there was almost no change in the primary particle diameter due to the pulverization, and distortion was introduced into the particles by the pulverization. Furthermore, as a result of the specific surface area measurement by the BET method, 40 m
2 / g.

【0038】(酸化セリウムスラリーの作製)上記作製
の酸化セリウム粒子1kgとポリアクリル酸アンモニウ
ム塩水溶液(40重量%)23gと脱イオン水8977
gを混合し、攪拌しながら超音波分散を10分間施し
た。得られたスラリーを2ミクロンフィルターでろ過を
し、さらに脱イオン水を加えることにより3wt.%研
磨剤を得た。スラリーpHは8.0であった。スラリー
粒子の粒度分布をレーザー回折法(測定装置:Mast
er Sizer製microplus、屈折率:1.
9285)を用いて調べたところ、中央値が510nm
で、最大粒子径は1430nm以上の粒子が0%であっ
た。スラリーの分散性およびスラリー粒子の電荷を調べ
るため、スラリーのゼータ電位を調べた。両側に白金製
電極を取り付けてある測定セルに酸化セリウムスラリー
を入れ、両電極に10Vの電圧を印加した。電圧を印加
することにより電荷を持ったスラリー粒子はその電荷と
反対の極を持つ電極側に移動する。この移動速度を求め
ることにより粒子のゼータ電位を求めることができる。
ゼータ電位測定の結果、マイナスに荷電し、−64mV
と絶対値が大きく分散性が良好であることを確認した。
(Preparation of cerium oxide slurry) 1 kg of the cerium oxide particles prepared above, 23 g of an aqueous solution of ammonium polyacrylate (40% by weight), and deionized water 8977
g was mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The resulting slurry was filtered through a 2 micron filter, and 3 wt. % Abrasive was obtained. The slurry pH was 8.0. The particle size distribution of the slurry particles was measured by a laser diffraction method (measuring device: Mast
microplus, refractive index: 1.
9285), the median value was 510 nm.
The particles having a maximum particle diameter of 1430 nm or more were 0%. In order to examine the dispersibility of the slurry and the charge of the slurry particles, the zeta potential of the slurry was examined. The cerium oxide slurry was placed in a measurement cell having platinum electrodes attached to both sides, and a voltage of 10 V was applied to both electrodes. When a voltage is applied, the charged slurry particles move to the side of the electrode having the opposite polarity to the charge. By determining the moving speed, the zeta potential of the particles can be determined.
As a result of zeta potential measurement, negatively charged, -64 mV
It was confirmed that the absolute value was large and the dispersibility was good.

【0039】(絶縁膜層の研磨)保持する基板取り付け
用の吸着パッドを貼り付けたホルダーにTEOS−プラ
ズマCVD法で作製したSiO絶縁膜を形成させたS
iウエハをセットし、多孔質ウレタン樹脂製の研磨パッ
ドを貼り付けた定盤上に絶縁膜面を下にしてホルダーを
載せ、さらに加工加重が300g/cmになるように
重しを載せた。定盤上に上記の酸化セリウムスラリー
(固形分:3重量%)を35cc/minの速度で滴下
しながら、定盤を30rpmで2分間回転させ、絶縁膜
を研磨した。研磨後ウエハをホルダーから取り外して、
流水で良く洗浄後、超音波洗浄機によりさらに20分間
洗浄した。洗浄後、ウエハをスピンドライヤーで水滴を
除去し、120℃の乾燥機で10分間乾燥させた。光干
渉式膜厚測定装置を用いて、研磨前後の膜厚変化を測定
した結果、この研磨により740nm(研磨速度:37
0nm/min.)の絶縁膜が削られ、ウエハ全面に渡
って均一の厚みになっていることがわかった。また、光
学顕微鏡を用いて絶縁膜表面を観察したところ、明確な
傷は見られなかった。
(Polishing of Insulating Film Layer) An SiO 2 insulating film formed by a TEOS-plasma CVD method was formed on a holder to which a suction pad for attaching a substrate to be held was attached.
The i-wafer was set, and a holder was placed with the insulating film surface down on a surface plate to which a polishing pad made of a porous urethane resin was attached, and a weight was further placed so that the processing load was 300 g / cm 2 . . While the cerium oxide slurry (solid content: 3% by weight) was dropped on the platen at a rate of 35 cc / min, the platen was rotated at 30 rpm for 2 minutes to polish the insulating film. After polishing, remove the wafer from the holder,
After being thoroughly washed with running water, it was further washed for 20 minutes by an ultrasonic washing machine. After the cleaning, water droplets were removed from the wafer with a spin dryer, and the wafer was dried with a dryer at 120 ° C. for 10 minutes. As a result of measuring a change in film thickness before and after polishing using an optical interference type film thickness measuring apparatus, it was found that this polishing resulted in 740 nm (polishing speed: 37 nm).
0 nm / min. It was found that the insulating film was abraded to have a uniform thickness over the entire surface of the wafer. When the surface of the insulating film was observed using an optical microscope, no clear damage was found.

【0040】実施例3 (酸化セリウム粒子の作製)炭酸セリウム水和物2kg
を白金製容器に入れ、800℃で2時間空気中で焼成す
ることにより黄白色の粉末を約1kg得た。この粉末を
X線回折法で相同定を行ったところ酸化セリウムである
ことを確認した。焼成粉末粒子径は30〜100ミクロ
ンであった。焼成粉末粒子表面を走査型電子顕微鏡で観
察したところ、酸化セリウムの粒界が観察された。粒界
に囲まれた酸化セリウム一次粒子径を測定したところ、
その分布の中央値が190nm、最大値が500nmで
あった。焼成粉末についてX線回折精密測定を行い、そ
の結果についてリートベルト法(RIETAN−94)
による解析で、一次粒子径を表わす構造パラメータ−:
Xの値が0.080、等方的微少歪みを表わす構造パラ
メータ−:Yの値が0.223であった。酸化セリウム
粉末1kgをビーズミルを用いて湿式粉砕を行った。粉
砕粒子を含む液を乾燥し、乾燥粒子をボールミル粉砕を
行った。粉砕粒子について走査型電子顕微鏡で観察した
ところ、一次粒子径と同等サイズの粒子まで粉砕されて
おり、大きな粉砕残りは見られなかった。粉砕粒子につ
いてX線回折精密測定を行い、その結果についてリート
ベルト法(RIETAN−94)による解析で、一次粒
子径を表わす構造パラメータ−:Xの値が0.085、
等方的微少歪みを表わす構造パラメータ−:Yの値が
0.300であった。この結果、粉砕による一次粒子径
変量はほとんどなく、また粉砕により粒子に歪みが導入
されていた。さらにBET法による比表面積測定の結
果、10m/gであることがわかった。
Example 3 (Preparation of cerium oxide particles) Cerium carbonate hydrate 2 kg
Was placed in a platinum container, and calcined at 800 ° C. for 2 hours in the air to obtain about 1 kg of a yellowish white powder. When this powder was subjected to phase identification by an X-ray diffraction method, it was confirmed that the powder was cerium oxide. The calcined powder particle size was 30-100 microns. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the primary particle diameter of cerium oxide surrounded by grain boundaries was measured,
The median of the distribution was 190 nm and the maximum was 500 nm. X-ray diffraction precision measurement is performed on the fired powder, and the result is Rietveld method (Rietan-94).
According to the analysis based on the above, the structural parameter representing the primary particle diameter is:
The value of X was 0.080, and the value of structural parameter-: Y representing isotropic micro-strain was 0.223. 1 kg of cerium oxide powder was wet-ground using a bead mill. The liquid containing the pulverized particles was dried, and the dried particles were subjected to ball mill pulverization. Observation of the pulverized particles with a scanning electron microscope revealed that the particles were pulverized to particles having the same size as the primary particle diameter, and no large pulverized residue was observed. X-ray diffraction precision measurement is performed on the pulverized particles, and the result is analyzed by the Rietveld method (Rietan-94). As a result, the value of the structural parameter representing the primary particle diameter: X is 0.085,
The value of the structural parameter-: Y representing isotropic micro-strain was 0.300. As a result, there was almost no change in the primary particle diameter due to the pulverization, and distortion was introduced into the particles by the pulverization. Further, the specific surface area measured by the BET method was found to be 10 m 2 / g.

【0041】(酸化セリウムスラリーの作製)上記作製
の酸化セリウム粒子1kgとポリアクリル酸アンモニウ
ム塩水溶液(40重量%)23gと脱イオン水8977
gを混合し、攪拌しながら超音波分散を10分間施し
た。得られたスラリーを1ミクロンフィルターでろ過を
し、さらに脱イオン水を加えることにより3wt.%研
磨剤を得た。スラリーpHは8.3であった。スラリー
粒子の粒度分布をレーザー回折法(測定装置:Mast
erSizer製microplus、屈折率:1.9
285)を用いて調べたところ、中央値が290nm
で、最大粒子径は780nm以上の粒子が0%であっ
た。スラリーの分散性およびスラリー粒子の電荷を調べ
るため、スラリーのゼータ電位を調べた。両側に白金製
電極を取り付けてある測定セルに酸化セリウムスラリー
を入れ、両電極に10Vの電圧を印加した。電圧を印加
することにより電荷を持ったスラリー粒子はその電荷と
反対の極を持つ電極側に移動する。この移動速度を求め
ることにより粒子のゼータ電位を求めることができる。
ゼータ電位測定の結果、マイナスに荷電し、−50mV
と絶対値が大きく分散性が良好であることを確認した。
(Preparation of Cerium Oxide Slurry) 1 kg of the cerium oxide particles prepared above, 23 g of an aqueous solution of ammonium polyacrylate (40% by weight), and deionized water 8977
g was mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The obtained slurry was filtered through a 1-micron filter, and 3 wt. % Abrasive was obtained. The slurry pH was 8.3. The particle size distribution of the slurry particles was measured by a laser diffraction method (measuring device: Mast
microplus manufactured by erSizer, refractive index: 1.9
285), the median was 290 nm
The particles having a maximum particle size of 780 nm or more were 0%. In order to examine the dispersibility of the slurry and the charge of the slurry particles, the zeta potential of the slurry was examined. The cerium oxide slurry was placed in a measurement cell having platinum electrodes attached to both sides, and a voltage of 10 V was applied to both electrodes. When a voltage is applied, the charged slurry particles move to the side of the electrode having the opposite polarity to the charge. By determining the moving speed, the zeta potential of the particles can be determined.
As a result of zeta potential measurement, negatively charged, -50 mV
It was confirmed that the absolute value was large and the dispersibility was good.

【0042】(絶縁膜層の研磨)保持する基板取り付け
用の吸着パッドを貼り付けたホルダーにTEOS−プラ
ズマCVD法で作製したSiO絶縁膜を形成させたS
iウエハをセットし、多孔質ウレタン樹脂製の研磨パッ
ドを貼り付けた定盤上に絶縁膜面を下にしてホルダーを
載せ、さらに加工加重が300g/cmになるように
重しを載せた。定盤上に上記の酸化セリウムスラリー
(固形分:3重量%)を35cc/minの速度で滴下
しながら、定盤を30rpmで2分間回転させ、絶縁膜
を研磨した。研磨後ウエハをホルダーから取り外して、
流水で良く洗浄後、超音波洗浄機によりさらに20分間
洗浄した。洗浄後、ウエハをスピンドライヤーで水滴を
除去し、120℃の乾燥機で10分間乾燥させた。光干
渉式膜厚測定装置を用いて、研磨前後の膜厚変化を測定
した結果、この研磨により560nm(研磨速度:28
0nm/min.)の絶縁膜が削られ、ウエハ全面に渡
って均一の厚みになっていることがわかった。また、光
学顕微鏡を用いて絶縁膜表面を観察したところ、明確な
傷は見られなかった。
(Polishing of Insulating Film Layer) An SiO 2 insulating film formed by a TEOS-plasma CVD method was formed on a holder to which a suction pad for attaching a substrate to be held was attached.
The i-wafer was set, and a holder was placed with the insulating film surface down on a surface plate to which a polishing pad made of a porous urethane resin was attached, and a weight was further placed so that the processing load was 300 g / cm 2 . . While the cerium oxide slurry (solid content: 3% by weight) was dropped on the platen at a rate of 35 cc / min, the platen was rotated at 30 rpm for 2 minutes to polish the insulating film. After polishing, remove the wafer from the holder,
After being thoroughly washed with running water, it was further washed for 20 minutes by an ultrasonic washing machine. After the cleaning, water droplets were removed from the wafer with a spin dryer, and the wafer was dried with a dryer at 120 ° C. for 10 minutes. The change in film thickness before and after polishing was measured using an optical interference type film thickness measuring apparatus.
0 nm / min. It was found that the insulating film was abraded to have a uniform thickness over the entire surface of the wafer. When the surface of the insulating film was observed using an optical microscope, no clear damage was found.

【0043】実施例4 (酸化セリウム粒子の作製)炭酸セリウム水和物2kg
を白金製容器に入れ、700℃で2時間空気中で焼成す
ることにより黄白色の粉末を約1kg得た。この粉末を
X線回折法で相同定を行ったところ酸化セリウムである
ことを確認した。焼成粉末粒子径は30〜100ミクロ
ンであった。焼成粉末粒子表面を走査型電子顕微鏡で観
察したところ、酸化セリウムの粒界が観察された。粒界
に囲まれた酸化セリウム一次粒子径を測定したところ、
その分布の中央値が50nm、最大値が100nmであ
った。焼成粉末についてX線回折精密測定を行い、その
結果についてリートベルト法(RIETAN−94)に
よる解析で、一次粒子径を表わす構造パラメータ−:X
の値が0.300、等方的微少歪みを表わす構造パラメ
ータ−:Yの値が0.350であった。酸化セリウム粉
末1kgをビーズミルを用いて湿式粉砕を行った。粉砕
粒子を含む液を乾燥し、乾燥粒子をボールミル粉砕を行
った。粉砕粒子について走査型電子顕微鏡で観察したと
ころ、一次粒子径と同等サイズの粒子まで粉砕されてお
り、大きな粉砕残りは見られなかった。粉砕粒子につい
てX線回折精密測定を行い、その結果についてリートベ
ルト法(RIETAN−94)による解析で、一次粒子
径を表わす構造パラメータ−:Xの値が0.302、等
方的微少歪みを表わす構造パラメータ−:Yの値が0.
450であった。この結果、粉砕による一次粒子径変量
はほとんどなく、また粉砕により粒子に歪みが導入され
ていた。さらにBET法による比表面積測定の結果、4
0m/gであることがわかった。
Example 4 (Preparation of cerium oxide particles) 2 kg of cerium carbonate hydrate
Was placed in a platinum container, and calcined at 700 ° C. for 2 hours in the air to obtain about 1 kg of a yellowish white powder. When this powder was subjected to phase identification by an X-ray diffraction method, it was confirmed that the powder was cerium oxide. The calcined powder particle size was 30-100 microns. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the primary particle diameter of cerium oxide surrounded by grain boundaries was measured,
The median of the distribution was 50 nm, and the maximum was 100 nm. X-ray diffraction precision measurement is performed on the calcined powder, and the result is analyzed by the Rietveld method (Rietan-94).
Was 0.300, and the value of the structural parameter-: Y representing isotropic micro-strain was 0.350. 1 kg of cerium oxide powder was wet-ground using a bead mill. The liquid containing the pulverized particles was dried, and the dried particles were subjected to ball mill pulverization. Observation of the pulverized particles with a scanning electron microscope revealed that the particles were pulverized to particles having the same size as the primary particle diameter, and no large pulverized residue was observed. X-ray diffraction precision measurement is performed on the pulverized particles, and the result is analyzed by the Rietveld method (Rietan-94), and the value of the structural parameter representing the primary particle diameter: X is 0.302, indicating isotropic micro-strain. Structural parameter: The value of Y is 0.
450. As a result, there was almost no change in the primary particle diameter due to the pulverization, and distortion was introduced into the particles by the pulverization. Further, as a result of the specific surface area measurement by the BET method, 4
It was found to be 0 m 2 / g.

【0044】(酸化セリウムスラリーの作製)上記作製
の酸化セリウム粒子1kgとポリアクリル酸アンモニウ
ム塩水溶液(40重量%)23gと脱イオン水8977
gを混合し、攪拌しながら超音波分散を10分間施し
た。得られたスラリーを1ミクロンフィルターでろ過を
し、さらに脱イオン水を加えることにより3wt.%研
磨剤を得た。スラリーpHは8.5であった。スラリー
粒子の粒度分布をレーザー回折法(測定装置:Mast
erSizer製microplus、屈折率:1.9
285)を用いて調べたところ、中央値が290nm
で、最大粒子径は780nm以上の粒子が0%であっ
た。スラリーの分散性およびスラリー粒子の電荷を調べ
るため、スラリーのゼータ電位を調べた。両側に白金製
電極を取り付けてある測定セルに酸化セリウムスラリー
を入れ、両電極に10Vの電圧を印加した。電圧を印加
することにより電荷を持ったスラリー粒子はその電荷と
反対の極を持つ電極側に移動する。この移動速度を求め
ることにより粒子のゼータ電位を求めることができる。
ゼータ電位測定の結果、マイナスに荷電し、−65mV
と絶対値が大きく分散性が良好であることを確認した。
(Preparation of Cerium Oxide Slurry) 1 kg of the cerium oxide particles prepared above, 23 g of an aqueous solution of ammonium polyacrylate (40% by weight), and deionized water 8977
g was mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The obtained slurry was filtered through a 1-micron filter, and 3 wt. % Abrasive was obtained. The slurry pH was 8.5. The particle size distribution of the slurry particles was measured by a laser diffraction method (measuring device: Mast
microplus manufactured by erSizer, refractive index: 1.9
285), the median was 290 nm
The particles having a maximum particle size of 780 nm or more were 0%. In order to examine the dispersibility of the slurry and the charge of the slurry particles, the zeta potential of the slurry was examined. The cerium oxide slurry was placed in a measurement cell having platinum electrodes attached to both sides, and a voltage of 10 V was applied to both electrodes. When a voltage is applied, the charged slurry particles move to the side of the electrode having the opposite polarity to the charge. By determining the moving speed, the zeta potential of the particles can be determined.
As a result of zeta potential measurement, negatively charged, -65 mV
It was confirmed that the absolute value was large and the dispersibility was good.

【0045】(絶縁膜層の研磨)保持する基板取り付け
用の吸着パッドを貼り付けたホルダーにTEOS−プラ
ズマCVD法で作製したSiO絶縁膜を形成させたS
iウエハをセットし、多孔質ウレタン樹脂製の研磨パッ
ドを貼り付けた定盤上に絶縁膜面を下にしてホルダーを
載せ、さらに加工加重が300g/cmになるように
重しを載せた。定盤上に上記の酸化セリウムスラリー
(固形分:3重量%)を35cc/minの速度で滴下
しながら、定盤を30rpmで2分間回転させ、絶縁膜
を研磨した。研磨後ウエハをホルダーから取り外して、
流水で良く洗浄後、超音波洗浄機によりさらに20分間
洗浄した。洗浄後、ウエハをスピンドライヤーで水滴を
除去し、120℃の乾燥機で10分間乾燥させた。光干
渉式膜厚測定装置を用いて、研磨前後の膜厚変化を測定
した結果、この研磨により400nm(研磨速度:20
0nm/min.)の絶縁膜が削られ、ウエハ全面に渡
って均一の厚みになっていることがわかった。また、光
学顕微鏡を用いて絶縁膜表面を観察したところ、明確な
傷は見られなかった。
(Polishing of Insulating Film Layer) An SiO 2 insulating film formed by a TEOS-plasma CVD method was formed on a holder to which a suction pad for attaching a substrate to be held was attached.
The i-wafer was set, and a holder was placed with the insulating film surface down on a surface plate to which a polishing pad made of a porous urethane resin was attached, and a weight was further placed so that the processing load was 300 g / cm 2 . . While the cerium oxide slurry (solid content: 3% by weight) was dropped on the platen at a rate of 35 cc / min, the platen was rotated at 30 rpm for 2 minutes to polish the insulating film. After polishing, remove the wafer from the holder,
After being thoroughly washed with running water, it was further washed for 20 minutes by an ultrasonic washing machine. After the cleaning, water droplets were removed from the wafer with a spin dryer, and the wafer was dried with a dryer at 120 ° C. for 10 minutes. As a result of measuring the change in film thickness before and after polishing using an optical interference type film thickness measuring device, this polishing resulted in 400 nm (polishing rate: 20).
0 nm / min. It was found that the insulating film was abraded to have a uniform thickness over the entire surface of the wafer. When the surface of the insulating film was observed using an optical microscope, no clear damage was found.

【0046】比較例 実施例と同様にTEOS−CVD法で作製したSiO
絶縁膜を形成させたSiウエハについて、市販シリカス
ラリー(キャボット社製、商品名SS225)を用いて
研磨を行った。この市販スラリーのpHは10.3で、
SiO粒子を12.5wt%含んでいるものである。
研磨条件は実施例と同一である。その結果、研磨による
傷は見られず、また均一に研磨がなされたが、2分間の
研磨により150nm(研磨速度:75nm/mi
n.)の絶縁膜層しか削れなかった。
Comparative Example SiO 2 produced by the TEOS-CVD method in the same manner as in the example.
The Si wafer on which the insulating film was formed was polished using a commercially available silica slurry (manufactured by Cabot Corp., trade name SS225). The pH of this commercial slurry was 10.3,
It contains 12.5 wt% of SiO 2 particles.
The polishing conditions are the same as in the embodiment. As a result, no scratches due to the polishing were observed, and the polishing was performed uniformly. However, the polishing was performed for 2 minutes to 150 nm (polishing speed: 75 nm / mi).
n. Only the insulating film layer of (2) was removed.

【0047】[0047]

【発明の効果】本発明の研磨剤により、SiO絶縁膜
等の被研磨面を傷なく高速に研磨することが可能とな
る。
The polishing agent of the present invention makes it possible to polish a surface to be polished such as an SiO 2 insulating film at high speed without any damage.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺崎 裕樹 茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内 (72)発明者 倉田 靖 茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内 (72)発明者 松沢 純 茨城県つくば市和台48 日立化成工業株式 会社筑波開発研究所内 (72)発明者 丹野 清仁 茨城県日立市東町四丁目13番1号 日立化 成工業株式会社山崎工場内 (72)発明者 大槻 裕人 茨城県日立市東町四丁目13番1号 日立化 成工業株式会社茨城研究所内 Fターム(参考) 3C058 AA07 CB01 CB03 CB10 DA02 DA12 DA17  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroki Terasaki 48 Wadai, Tsukuba, Ibaraki Prefecture, Hitachi Chemical Co., Ltd.Tsukuba R & D Co., Ltd. Within the Development Laboratory (72) Inventor Jun Matsuzawa 48 Wadai, Tsukuba, Ibaraki Prefecture Within the Hitachi Chemical Co., Ltd.Tsukuba Development Laboratory Co., Ltd. Inside the Yamazaki Plant (72) Inventor Hiroto Otsuki 4-13-1, Higashicho, Hitachi City, Ibaraki Prefecture F-term in the Ibaraki Research Laboratory, Hitachi Chemical Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 粉末X線リートベルト法(RIETAN
−94)による解析で等方的微小歪を表わす構造パラメ
ーター:Yの値が0.01以上0.70以下である酸化
セリウム粒子を媒体に分散させたスラリーを含む酸化セ
リウム研磨剤。
1. A powder X-ray Rietveld method (Rietan
-94) A cerium oxide abrasive containing a slurry in which cerium oxide particles having a value of Y of 0.01 or more and 0.70 or less are dispersed in a medium.
【請求項2】 媒体が水である請求項1に記載の酸化セ
リウム研磨剤。
2. The cerium oxide abrasive according to claim 1, wherein the medium is water.
【請求項3】 スラリ−が分散剤を含む請求項1または
請求項2に記載の酸化セリウム研磨剤。
3. The cerium oxide abrasive according to claim 1, wherein the slurry contains a dispersant.
【請求項4】 分散剤が水溶性有機高分子、水溶性陰イ
オン界面活性剤、水溶性非イオン性界面活性剤及び水溶
性アミンから選ばれる少なくとも1種である請求項1〜
3のいずれかに記載の酸化セリウム研磨剤。
4. The dispersant is at least one selected from a water-soluble organic polymer, a water-soluble anionic surfactant, a water-soluble nonionic surfactant and a water-soluble amine.
3. The cerium oxide abrasive according to any one of 3.
【請求項5】 分散剤がポリアクリル酸アンモニウム塩
である請求項4記載の酸化セリウム研磨剤。
5. The cerium oxide abrasive according to claim 4, wherein the dispersant is a polyacrylic ammonium salt.
【請求項6】 酸化セリウム粒子をポリアクリル酸アン
モニウム塩を含有する水に分散させたスラリーを含む酸
化セリウム研磨剤。
6. A cerium oxide abrasive comprising a slurry in which cerium oxide particles are dispersed in water containing ammonium polyacrylate.
【請求項7】 酸化セリウム粒子が炭酸セリウムを焼成
した酸化セリウムである請求項1〜6のいずれかに記載
の酸化セリウム研磨剤。
7. The cerium oxide abrasive according to claim 1, wherein the cerium oxide particles are cerium oxide obtained by calcining cerium carbonate.
【請求項8】 請求項1〜7のいずれかに記載の酸化セ
リウム研磨剤で所定の基板を研磨することを特徴とする
基板の研磨法。
8. A method for polishing a substrate, comprising polishing a predetermined substrate with the cerium oxide abrasive according to claim 1.
【請求項9】 所定の基板がシリカ膜が形成された半導
体チップである請求項8記載の基板の研磨法。
9. The method for polishing a substrate according to claim 8, wherein the predetermined substrate is a semiconductor chip on which a silica film is formed.
JP2001275530A 1996-09-30 2001-09-11 Cerium oxide abrasive agent and method for abrading base Withdrawn JP2002138275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001275530A JP2002138275A (en) 1996-09-30 2001-09-11 Cerium oxide abrasive agent and method for abrading base

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP8-258770 1996-09-30
JP8-258776 1996-09-30
JP25877696 1996-09-30
JP25877496 1996-09-30
JP25877096 1996-09-30
JP8-258774 1996-09-30
JP2001275530A JP2002138275A (en) 1996-09-30 2001-09-11 Cerium oxide abrasive agent and method for abrading base

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP26597997A Division JP3462052B2 (en) 1996-09-30 1997-09-30 Cerium oxide abrasive and substrate polishing method

Publications (1)

Publication Number Publication Date
JP2002138275A true JP2002138275A (en) 2002-05-14

Family

ID=27478488

Family Applications (7)

Application Number Title Priority Date Filing Date
JP26597997A Expired - Fee Related JP3462052B2 (en) 1996-09-30 1997-09-30 Cerium oxide abrasive and substrate polishing method
JP2001103920A Withdrawn JP2001329250A (en) 1996-09-30 2001-04-02 Cerium oxide abrasive and polishing method for substrate
JP2001103923A Withdrawn JP2001329251A (en) 1996-09-30 2001-04-02 Cerium oxide abrasive and polishing method for substrate
JP2001275530A Withdrawn JP2002138275A (en) 1996-09-30 2001-09-11 Cerium oxide abrasive agent and method for abrading base
JP2006246039A Expired - Lifetime JP4971731B2 (en) 1996-09-30 2006-09-11 Polishing method of cerium oxide slurry and substrate
JP2006246046A Expired - Lifetime JP5023626B2 (en) 1996-09-30 2006-09-11 Polishing method of cerium oxide slurry and substrate
JP2012089594A Withdrawn JP2012169648A (en) 1996-09-30 2012-04-10 Cerium oxide abrasive and method for polishing substrate

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP26597997A Expired - Fee Related JP3462052B2 (en) 1996-09-30 1997-09-30 Cerium oxide abrasive and substrate polishing method
JP2001103920A Withdrawn JP2001329250A (en) 1996-09-30 2001-04-02 Cerium oxide abrasive and polishing method for substrate
JP2001103923A Withdrawn JP2001329251A (en) 1996-09-30 2001-04-02 Cerium oxide abrasive and polishing method for substrate

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2006246039A Expired - Lifetime JP4971731B2 (en) 1996-09-30 2006-09-11 Polishing method of cerium oxide slurry and substrate
JP2006246046A Expired - Lifetime JP5023626B2 (en) 1996-09-30 2006-09-11 Polishing method of cerium oxide slurry and substrate
JP2012089594A Withdrawn JP2012169648A (en) 1996-09-30 2012-04-10 Cerium oxide abrasive and method for polishing substrate

Country Status (1)

Country Link
JP (7) JP3462052B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009333A (en) * 2006-10-23 2007-01-18 Shinshu Univ Plated structure and method of manufacturing the same
JP2010222707A (en) * 2010-06-07 2010-10-07 Shinshu Univ Electroless plating method and electroless plating solution

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100759182B1 (en) 1996-09-30 2007-09-14 히다치 가세고교 가부시끼가이샤 A Cerium Oxide Particle
JPH11181403A (en) 1997-12-18 1999-07-06 Hitachi Chem Co Ltd Cerium oxide abrasive and grinding of substrate
US6299659B1 (en) 1998-08-05 2001-10-09 Showa Denko K.K. Polishing material composition and polishing method for polishing LSI devices
JP3560484B2 (en) * 1998-08-05 2004-09-02 昭和電工株式会社 Abrasive composition for polishing LSI devices and polishing method
EP1132431A4 (en) 1998-11-13 2007-05-02 Mitsui Chemicals Inc Organic polymer/fine inorganic particle aqueous dispersion with excellent dispersion stability and use thereof
KR100822116B1 (en) 1998-12-25 2008-04-15 히다치 가세고교 가부시끼가이샤 Cmp abrasive, liquid additive for cmp abrasive and method for polishing substrate
JP4604727B2 (en) * 1998-12-25 2011-01-05 日立化成工業株式会社 Additive for CMP abrasives
JP4608925B2 (en) * 1998-12-25 2011-01-12 日立化成工業株式会社 Additive for CMP abrasives
KR20000055131A (en) * 1999-02-03 2000-09-05 유현식 Method for preparing metaloxide slurry for semiconductor element cmp
EP1036836B1 (en) * 1999-03-18 2004-11-03 Kabushiki Kaisha Toshiba Aqueous dispersion for chemical mechanical polishing
EP2246301A1 (en) * 1999-05-28 2010-11-03 Hitachi Chemical Co., Ltd. Method for producing cerium oxide
WO2001000744A1 (en) 1999-06-28 2001-01-04 Nissan Chemical Industries, Ltd. Abrasive compound for glass hard disk platter
JP4544379B2 (en) * 1999-06-28 2010-09-15 日産化学工業株式会社 Glass hard disk abrasive
TWI265567B (en) 1999-08-26 2006-11-01 Hitachi Chemical Co Ltd Polishing medium for chemical-mechanical polishing, and polishing method
JP2002217140A (en) * 2001-01-19 2002-08-02 Hitachi Chem Co Ltd Cmp abrasive and polishing method of substrate
WO2002067309A1 (en) * 2001-02-20 2002-08-29 Hitachi Chemical Co., Ltd. Polishing compound and method for polishing substrate
JP2002359216A (en) 2001-05-30 2002-12-13 Mitsubishi Electric Corp Polishing method using ceria slurry, and method of manufacturing semiconductor device
AU2003272186A1 (en) * 2002-02-04 2004-01-06 Nanophase Technologies Corporation Stable dispersions of nanoparticles in aqueous media
AU2003275697A1 (en) 2002-10-28 2004-05-13 Nissan Chemical Industries, Ltd. Cerium oxide particles and process for the production thereof
KR100630691B1 (en) 2004-07-15 2006-10-02 삼성전자주식회사 Cerium oxide polishing particles, slurry for CMP, methods for preparing the same, and methods for polishing substrate
JP4951218B2 (en) * 2004-07-15 2012-06-13 三星電子株式会社 Cerium oxide abrasive particles and composition comprising the abrasive particles
KR100574984B1 (en) * 2004-08-16 2006-05-02 삼성전자주식회사 Cerium oxide polishing particles, slurry for CMP, methods for preparing the same, and methods for polishing substrate
KR100641348B1 (en) 2005-06-03 2006-11-03 주식회사 케이씨텍 Slurry for cmp and method of fabricating the same and method of polishing substrate
KR100753994B1 (en) 2005-08-05 2007-09-06 정인 Producing method for cerium-based glass polishing material and method for using the same
CN101039876B (en) * 2005-10-14 2011-07-27 Lg化学株式会社 Method for preparing of cerium oxide powder for chemical mechanical polishing and method for preparing of chemical mechanical polishing slurry using the same
KR100812052B1 (en) * 2005-11-14 2008-03-10 주식회사 엘지화학 Cerium carbonate powder, cerium oxide powder, method for preparing the same, and cmp slurry comprising the same
JP2009113993A (en) * 2006-03-03 2009-05-28 Hitachi Chem Co Ltd Metal oxide particle, polishing material containing them, method for polishing substrate using the polishing material and method for producing semiconductor device manufactured by polishing
FR2923400B1 (en) * 2007-11-09 2009-12-04 Rhodia Operations COLLOIDAL DISPERSION OF MINERAL PARTICLES IN A LIQUID PHASE COMPRISING AN AMPHOLYTE COPOLYMER
JP5221979B2 (en) * 2008-02-25 2013-06-26 シャープ株式会社 Manufacturing method of semiconductor device
JP2009010406A (en) * 2008-08-18 2009-01-15 Hitachi Chem Co Ltd Abrasive powder and polishing method for substrate
KR101075491B1 (en) 2009-01-16 2011-10-21 주식회사 하이닉스반도체 Method for manufacturing semiconductor device
KR101357328B1 (en) 2009-11-12 2014-02-03 히타치가세이가부시끼가이샤 Chemical-mechanical polishing liquid, and semiconductor substrate manufacturing method and polishing method using said polishing liquid
JP6088953B2 (en) * 2013-09-24 2017-03-01 三井金属鉱業株式会社 Abrasive slurry and substrate manufacturing method using the same
EP3083501B1 (en) * 2013-12-16 2020-02-12 Rhodia Operations Liquid suspension of cerium oxide particles
JP6200979B2 (en) * 2016-02-01 2017-09-20 株式会社フジミインコーポレーテッド Polishing composition and method for producing substrate using the same
CN110358453A (en) * 2018-04-10 2019-10-22 蓝思科技(长沙)有限公司 A kind of glass polishing nano-cerium oxide polishing fluid and preparation method thereof
JP7568358B2 (en) 2019-09-30 2024-10-16 富士紡ホールディングス株式会社 Method for manufacturing polishing pad and polished product

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536756B2 (en) * 1974-05-13 1978-03-10
JP2832270B2 (en) * 1993-05-18 1998-12-09 三井金属鉱業株式会社 Abrasive for glass polishing
JP3278532B2 (en) * 1994-07-08 2002-04-30 株式会社東芝 Method for manufacturing semiconductor device
JP3430733B2 (en) * 1994-09-30 2003-07-28 株式会社日立製作所 Abrasive and polishing method
JP2864451B2 (en) * 1994-11-07 1999-03-03 三井金属鉱業株式会社 Abrasive and polishing method
US6420269B2 (en) * 1996-02-07 2002-07-16 Hitachi Chemical Company, Ltd. Cerium oxide abrasive for polishing insulating films formed on substrate and methods for using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009333A (en) * 2006-10-23 2007-01-18 Shinshu Univ Plated structure and method of manufacturing the same
JP4599565B2 (en) * 2006-10-23 2010-12-15 国立大学法人信州大学 Electrolytic plating method and electrolytic plating solution
JP2010222707A (en) * 2010-06-07 2010-10-07 Shinshu Univ Electroless plating method and electroless plating solution

Also Published As

Publication number Publication date
JP5023626B2 (en) 2012-09-12
JP3462052B2 (en) 2003-11-05
JP2007036270A (en) 2007-02-08
JP2001329250A (en) 2001-11-27
JP2007036271A (en) 2007-02-08
JP4971731B2 (en) 2012-07-11
JP2012169648A (en) 2012-09-06
JP2001329251A (en) 2001-11-27
JPH10152673A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
JP3462052B2 (en) Cerium oxide abrasive and substrate polishing method
KR100403719B1 (en) Abrasive, Method of Polishing Wafer, and Method of Producing Semiconductor Device
KR100420087B1 (en) Cerium Oxide Abrasive and Method of Abrading Substrates
JP3480323B2 (en) Cerium oxide abrasive, substrate polishing method, and semiconductor device
JP4776387B2 (en) Cerium oxide abrasive and substrate polishing method
JP4776388B2 (en) Cerium oxide abrasive and substrate polishing method
JPH11181404A (en) Cerium oxide abrasive and grinding of substrate
JPH11181407A (en) Cerium oxide abrasive and grinding of substrate
KR100622519B1 (en) A Cerium Oxide Particle
JPH11181405A (en) Cerium oxide abrasive and grinding of substrate
JP2004289170A (en) Cerium oxide polishing agent and method of polishing substrate
JP4445820B2 (en) Cerium oxide abrasive and substrate polishing method
JPH11181406A (en) Cerium oxide abrasive and grinding of substrate
JP2004250714A (en) Cerium oxide abrasive and method for grinding substrate
JP2005039286A (en) Cerium oxide abrasive and method for polishing substrate
JP2005039287A (en) Cerium oxide abrasive and method for polishing substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100402