JP2005039286A - Cerium oxide abrasive and method for polishing substrate - Google Patents
Cerium oxide abrasive and method for polishing substrate Download PDFInfo
- Publication number
- JP2005039286A JP2005039286A JP2004250350A JP2004250350A JP2005039286A JP 2005039286 A JP2005039286 A JP 2005039286A JP 2004250350 A JP2004250350 A JP 2004250350A JP 2004250350 A JP2004250350 A JP 2004250350A JP 2005039286 A JP2005039286 A JP 2005039286A
- Authority
- JP
- Japan
- Prior art keywords
- cerium oxide
- particles
- polishing
- insulating film
- cerium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910000420 cerium oxide Inorganic materials 0.000 title claims abstract description 79
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 title claims abstract description 79
- 238000005498 polishing Methods 0.000 title claims abstract description 55
- 239000000758 substrate Substances 0.000 title claims description 36
- 238000000034 method Methods 0.000 title claims description 22
- 239000002245 particle Substances 0.000 claims abstract description 94
- 239000011164 primary particle Substances 0.000 claims abstract description 26
- GHLITDDQOMIBFS-UHFFFAOYSA-H cerium(3+);tricarbonate Chemical compound [Ce+3].[Ce+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O GHLITDDQOMIBFS-UHFFFAOYSA-H 0.000 claims abstract description 20
- 238000004438 BET method Methods 0.000 claims abstract description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 22
- 239000013078 crystal Substances 0.000 claims description 11
- 239000002994 raw material Substances 0.000 claims description 4
- 239000002002 slurry Substances 0.000 abstract description 29
- 238000005229 chemical vapour deposition Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract 1
- 239000004065 semiconductor Substances 0.000 description 21
- 239000000843 powder Substances 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 230000003287 optical effect Effects 0.000 description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- 238000002441 X-ray diffraction Methods 0.000 description 9
- 239000011521 glass Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 238000010298 pulverizing process Methods 0.000 description 9
- 238000003991 Rietveld refinement Methods 0.000 description 6
- 239000002270 dispersing agent Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000011802 pulverized particle Substances 0.000 description 6
- -1 Na and K Chemical class 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 229920002125 Sokalan® Polymers 0.000 description 5
- 150000003863 ammonium salts Chemical class 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000004744 fabric Substances 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 239000004584 polyacrylic acid Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- KHSBAWXKALEJFR-UHFFFAOYSA-H cerium(3+);tricarbonate;hydrate Chemical compound O.[Ce+3].[Ce+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O KHSBAWXKALEJFR-UHFFFAOYSA-H 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000007561 laser diffraction method Methods 0.000 description 3
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 241000403354 Microplus Species 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000002178 crystalline material Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 239000005304 optical glass Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- 238000001132 ultrasonic dispersion Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 238000000733 zeta-potential measurement Methods 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical group C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- JPNZKPRONVOMLL-UHFFFAOYSA-N azane;octadecanoic acid Chemical class [NH4+].CCCCCCCCCCCCCCCCCC([O-])=O JPNZKPRONVOMLL-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 150000004689 octahydrates Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Landscapes
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
本発明は、酸化セリウム研磨剤及び基板の研磨法に関する。 The present invention relates to a cerium oxide abrasive and a method for polishing a substrate.
従来、半導体装置の製造工程において、プラズマ−CVD、低圧−CVD等の方法で形成されるSiO2絶縁膜等無機絶縁膜層を平坦化するための化学機械研磨剤として、コロイダルシリカ系の研磨剤が一般的に検討されている。コロイダルシリカ系の研磨剤は、シリカ粒子を四塩化珪素を熱分解する等の方法で粒成長させ、アルカリ溶液でpH調整を行って製造している。しかしながら、この様な研磨剤は、無機絶縁膜の研磨速度が充分な速度を持たず、実用化には低研磨速度という技術課題がある。 Conventionally, a colloidal silica-based polishing agent as a chemical mechanical polishing agent for planarizing an inorganic insulating film layer such as a SiO 2 insulating film formed by a method such as plasma-CVD or low-pressure CVD in a manufacturing process of a semiconductor device Is generally considered. Colloidal silica-based abrasives are produced by growing silica particles by a method such as thermal decomposition of silicon tetrachloride and adjusting the pH with an alkaline solution. However, such an abrasive does not have a sufficient polishing rate for the inorganic insulating film, and there is a technical problem of low polishing rate for practical use.
一方、フォトマスクやレンズ等のガラス表面研磨剤として、酸化セリウム研磨剤が用いられている。酸化セリウム粒子は、シリカ粒子やアルミナ粒子に比べ硬度が低く、したがって研磨表面に傷が入りにくいことから仕上げ鏡面研磨に有用である。また、酸化セリウムは、強い酸化剤として知られるように化学的活性な性質を有している。この利点を活かし、絶縁膜用化学機械研磨剤への適用が有用である。しかしながら、ガラス表面研磨用酸化セリウム研磨剤は、不純物を多く含有するためそのまま半導体用研磨剤として適用することはできない。さらに、ガラス表面研磨用酸化セリウム研磨剤をそのまま無機絶縁膜研磨に適用すると、酸化セリウム粒子径(一次粒子や凝集粒子)が大きく、そのため絶縁膜表面に目視で観察できる研磨傷が入ってしまう。 On the other hand, a cerium oxide abrasive is used as a glass surface abrasive for photomasks and lenses. Cerium oxide particles have a lower hardness than silica particles and alumina particles, and are therefore useful for finish mirror polishing because they are less likely to scratch the polished surface. Moreover, cerium oxide has a chemically active property as known as a strong oxidizing agent. Taking advantage of this advantage, application to a chemical mechanical polishing agent for insulating films is useful. However, the cerium oxide abrasive for polishing glass surfaces cannot be applied as it is as an abrasive for semiconductors because it contains many impurities. Furthermore, when the cerium oxide abrasive for polishing the glass surface is directly applied to the inorganic insulating film polishing, the cerium oxide particle diameter (primary particles and aggregated particles) is large, and therefore, the surface of the insulating film can be visually observed.
本発明は、SiO2絶縁膜等の被研磨面を傷なく高速に研磨することが可能な酸化セリウム研磨剤および基板の研磨法を提供するものである。 The present invention provides a cerium oxide abrasive capable of polishing a surface to be polished such as a SiO 2 insulating film at a high speed without damage and a method for polishing a substrate.
本発明の酸化セリウム研磨剤は、酸化セリウム粒子、分散剤、及び水を含むものである。酸化セリウム粒子は、炭酸セリウムを原料として製造したもので、炭酸セリウムは全体の90体積%以上が一次粒子径3〜60μmであるものが使用される。炭酸セリウムは、板状結晶の凝集体が好ましく、凝集体の平均粒子径が20〜100μmであることが好ましい。本発明の酸化セリウム研磨剤を構成する酸化セリウム粒子は、粒子径の中央値が150〜600nmであることが好ましい。出発原料である炭酸セリウムの一次粒子径は走査型電子顕微鏡(例えば(株)日立製作所製 S−900型)による観察で測定する。粒子の長径と短径を求め長径と短径の積の平方根をその粒子の粒子径とする。出発原料である炭酸セリウム凝集体の粒子径又は酸化セリウム研磨剤に含まれる酸化セリウム粒子の粒子径は、レーザー回折法(例えば測定装置、Malvern Instruments社製 Mastersizer Microplus、光源He−Neレーザー、粒子の屈折率1.9285、吸収0で測定)で測定する。中央値は、体積粒子径分布の中央値であり、粒子径の細かいものからその粒子の体積割合を積算していき50%になったときの粒子径を意味する。すなわち、ある区間Δの粒子径の範囲に体積割合Vi%の量の粒子が存在するとき、区間Δの平均粒子径をdiとすると粒子径diの粒子がVi体積%存在するとする。粒子径diの小さい方から粒子の存在割合Vi(体積%)を積算していき、Vi=50%になったときのdiを中央値とする。酸化セリウム研磨剤中の酸化セリウム粒子は、99体積%以上が3000nm以下であることが好ましい。本発明の基板の研磨法は、上記の酸化セリウム研磨剤で所定の基板、例えばSiO2絶縁膜が形成された基板で研磨することを特徴とするものである。本発明は、炭酸セリウムを原料に用いて製造した酸化セリウム粒子を含む酸化セリウム研磨剤が、SiO2絶縁膜等の被研磨面を傷なく高速に研磨することを見い出したことによりなされたものである。 The cerium oxide abrasive | polishing agent of this invention contains a cerium oxide particle, a dispersing agent, and water. The cerium oxide particles are produced using cerium carbonate as a raw material, and 90% by volume or more of cerium carbonate having a primary particle diameter of 3 to 60 μm is used. The cerium carbonate is preferably an aggregate of plate crystals, and the average particle diameter of the aggregate is preferably 20 to 100 μm. The cerium oxide particles constituting the cerium oxide abrasive of the present invention preferably have a median particle diameter of 150 to 600 nm. The primary particle diameter of cerium carbonate as a starting material is measured by observation with a scanning electron microscope (for example, S-900 type manufactured by Hitachi, Ltd.). The major axis and minor axis of the particle are obtained, and the square root of the product of the major axis and the minor axis is defined as the particle diameter of the particle. The particle diameter of the cerium carbonate aggregate as a starting material or the particle diameter of the cerium oxide particles contained in the cerium oxide abrasive is determined by a laser diffraction method (for example, a measuring device, Mastersizer Microplus manufactured by Malvern Instruments, light source He-Ne laser, particle size). (Measured at a refractive index of 1.9285, absorption 0). The median is the median of the volume particle size distribution, and means the particle size when the volume ratio of the particles is accumulated from the finer particle size to 50%. That is, when particles having an amount of volume ratio Vi% exist in a range of particle diameters in a certain section Δ, assuming that the average particle diameter in the section Δ is di, particles having a particle diameter di exist in Vi volume%. The particle abundance ratio Vi (volume%) is integrated from the smaller particle diameter di, and di when Vi = 50% is set as the median. 99% by volume or more of the cerium oxide particles in the cerium oxide abrasive is preferably 3000 nm or less. The substrate polishing method of the present invention is characterized by polishing with a predetermined substrate, for example, a substrate on which an SiO 2 insulating film is formed, with the above cerium oxide abrasive. The present invention has been made by finding that a cerium oxide abrasive containing cerium oxide particles produced using cerium carbonate as a raw material polishes a surface to be polished such as an SiO 2 insulating film at high speed without scratches. is there.
本発明の研磨剤により、SiO2絶縁膜等の被研磨面を傷なく高速に研磨することが可能となる。 The polishing agent of the present invention makes it possible to polish the surface to be polished such as the SiO 2 insulating film at high speed without scratching.
炭酸セリウムは、八水和物として結晶化するが、これを空気中等の酸素含有雰囲気中で加熱すると、分解して酸化セリウムが生成する。このときの重量減少は50%に及ぶが分解後の酸化セリウムは、原料の炭酸セリウムの形態を保持している。したがって、熱分解直後の酸化セリウムは、相対密度が約50%に低下しており、強度の低い酸化セリウムが得られる。そこで本発明によれば、炭酸セリウムを用いて酸化セリウムを製造し、これを酸化セリウム研磨剤に使用することで、SiO2絶縁膜等の被研磨面を傷なく高速に研磨できる酸化セリウム研磨剤および基板の研磨法が得られる。本発明で用いる酸化セリウム粒子は、炭酸セリウムを原料とし、炭酸セリウムは全体の90体積%以上が一次粒子径3〜60μmである。炭酸セリウムは板状結晶の凝集体が好ましく、凝集体の平均粒子経が20〜100μmであることが好ましい。炭酸セリウムは水和物として結晶化するため、本発明で用いる炭酸セリウムは水和物をさす。本発明の酸化セリウム研磨剤を構成する酸化セリウム粒子は、粒子径の中央値が150〜600nmであることが好ましい。酸化セリウム研磨剤中の酸化セリウム粒子は、99体積%以上が3000nm以下であることが好ましい。また、半導体チップ研磨に使用することから、アルカリ金属およびハロゲン類の含有率は、10ppm以下に抑えることが好ましい。 Cerium carbonate crystallizes as an octahydrate, and when this is heated in an oxygen-containing atmosphere such as air, it decomposes to produce cerium oxide. Although the weight loss at this time reaches 50%, the decomposed cerium oxide maintains the form of the raw material cerium carbonate. Therefore, cerium oxide immediately after pyrolysis has a relative density reduced to about 50%, and cerium oxide with low strength can be obtained. Therefore, according to the present invention, a cerium oxide abrasive capable of producing a cerium oxide using cerium carbonate and using the cerium oxide abrasive as an abrasive to polish a surface to be polished such as a SiO 2 insulating film at a high speed without damage. And a polishing method for the substrate is obtained. The cerium oxide particles used in the present invention are made from cerium carbonate, and 90% by volume or more of the cerium carbonate has a primary particle diameter of 3 to 60 μm. The cerium carbonate is preferably an aggregate of plate crystals, and the average particle size of the aggregate is preferably 20 to 100 μm. Since cerium carbonate crystallizes as a hydrate, the cerium carbonate used in the present invention refers to a hydrate. The cerium oxide particles constituting the cerium oxide abrasive of the present invention preferably have a median particle diameter of 150 to 600 nm. 99% by volume or more of the cerium oxide particles in the cerium oxide abrasive is preferably 3000 nm or less. Moreover, since it uses for semiconductor chip grinding | polishing, it is preferable to suppress the content rate of an alkali metal and halogens to 10 ppm or less.
本発明において、酸化セリウム粉末を作製する方法として、焼成法が使用できる。焼成温度は、600℃以上900℃以下が好ましい。上記の方法により製造された酸化セリウム粒子は凝集しているため、機械的に粉砕することが好ましい。粉砕方法として、ジェットミル等による乾式粉砕や遊星ビーズミル等による湿式粉砕方法が好ましい。ジェットミルは、例えば化学工学論文集第6巻第5号(1980)527〜532頁に説明されている。 In the present invention, a firing method can be used as a method for producing the cerium oxide powder. The firing temperature is preferably 600 ° C. or higher and 900 ° C. or lower. Since the cerium oxide particles produced by the above method are agglomerated, it is preferably mechanically pulverized. As the pulverization method, a dry pulverization method such as a jet mill or a wet pulverization method such as a planetary bead mill is preferable. The jet mill is described, for example, in Chemical Engineering Papers Vol. 6 No. 5 (1980) pp. 527-532.
本発明における酸化セリウムスラリーは、例えば上記の特徴を有する酸化セリウム粒子とポリアクリル酸アンモニウム塩を含む分散剤と水からなる組成物を分散させることによって得られる。ここで、酸化セリウム粒子の濃度に制限はないが、懸濁液の取り扱いやすさから0.5以上20重量%以下の範囲が好ましい。また、分散剤として、半導体チップ研磨に使用することから、Na、K等のアルカリ金属および、ハロゲン、イオウを含まないものとして、ポリアクリル酸アンモニウム塩が好ましい。また、ポリアクリル酸アンモニウム塩と水溶性有機高分子類(ポリグリセリン脂肪酸エステル等)、水溶性陰イオン性界面活性剤(アルキルエーテルカルボン酸塩)、水溶性非イオン性界面活性剤(ポリエチレングリコールモノステアレート等)、水溶性アミン類(モノエタノールアミン等)から選ばれた少なくとも1種類を含む2種類以上の分散剤を使用してもよい。これらの分散剤添加量は、スラリー中の粒子の分散性および沈降防止、さらに研磨傷と分散剤添加量との関係から、酸化セリウム粒子100重量部に対して0.01以上2.0重量部以下の範囲が好ましい。ポリアクリル酸アンモニウム塩の分子量(重量平均分子量)は、1000〜10000が好ましく、3000〜8000がより好ましい。これらの酸化セリウム粒子を水中に分散させる方法としては、通常の撹拌機による分散処理の他にホモジナイザ−、超音波分散機、ビーズミル、遊星ボールミル、振動ミル等を用いることができる。分散後のスラリー中の大きな凝集粒子を分級により除去する方法としては、沈降分離法、液体サイクロン、フィルターろ過等を用いることができる。 The cerium oxide slurry in the present invention can be obtained, for example, by dispersing a composition composed of cerium oxide particles having the above characteristics, a dispersant containing polyacrylic acid ammonium salt, and water. Here, although there is no restriction | limiting in the density | concentration of a cerium oxide particle, The range of 0.5-20 weight% is preferable from the ease of handling of suspension. Moreover, since it uses for semiconductor chip grinding | polishing as a dispersing agent, polyacrylic acid ammonium salt is preferable as an alkali metal, such as Na and K, and a thing which does not contain a halogen and sulfur. In addition, polyacrylic acid ammonium salt and water-soluble organic polymers (polyglycerin fatty acid ester, etc.), water-soluble anionic surfactant (alkyl ether carboxylate), water-soluble nonionic surfactant (polyethylene glycol monoester) Two or more dispersants including at least one selected from stearates and the like and water-soluble amines (monoethanolamine and the like) may be used. These dispersants are added in an amount of 0.01 to 2.0 parts by weight with respect to 100 parts by weight of the cerium oxide particles in view of the dispersibility of the particles in the slurry and prevention of settling, and the relationship between the polishing scratches and the amount of the dispersant added. The following ranges are preferred. 1000-10000 are preferable and, as for the molecular weight (weight average molecular weight) of polyacrylic acid ammonium salt, 3000-8000 are more preferable. As a method for dispersing these cerium oxide particles in water, a homogenizer, an ultrasonic disperser, a bead mill, a planetary ball mill, a vibration mill, and the like can be used in addition to a dispersion treatment using a normal stirrer. As a method for removing large agglomerated particles in the dispersed slurry by classification, a sedimentation separation method, a hydrocyclone, filter filtration, or the like can be used.
本発明の酸化セリウム研磨剤は、上記スラリ−をそのまま使用してもよいが、N,N−ジエチルエタノ−ルアミン、N,N−ジメチルエタノ−ルアミン、アミノエチルエタノ−ルアミン等の添加剤を添加して研磨剤とすることができる。 The cerium oxide abrasive of the present invention may use the above slurry as it is, but an additive such as N, N-diethylethanolamine, N, N-dimethylethanolamine, aminoethylethanolamine is added. Thus, an abrasive can be obtained.
本発明の酸化セリウム研磨剤が使用される無機絶縁膜の作製方法として、低圧CVD法、プラズマCVD法等が挙げられる。低圧CVD法によるSiO2絶縁膜形成は、Si源としてモノシラン:SiH4、酸素源として酸素:O2を用いる。このSiH4−O2系酸化反応を400℃程度以下の低温で行わせることにより得られる。場合によっては、CVD後1000℃またはそれ以下の温度で熱処理される。高温リフローによる表面平坦化を図るためにリン:Pをドープするときには、SiH4−O2−PH3系反応ガスを用いることが好ましい。プラズマCVD法は、通常の熱平衡下では、高温を必要とする化学反応が低温でできる利点を有する。プラズマ発生法には、容量結合型と誘導結合型の2つが挙げられる。反応ガスとしては、Si源としてSiH4、酸素源としてN2Oを用いたSiH4−N2O系ガスとテトラエトキシシラン(TEOS)をSi源に用いたTEOS−O2系ガス(TEOS−プラズマCVD法)が挙げられる。基板温度は250℃〜400℃、反応圧力は67〜400Paの範囲が好ましい。このように、本発明のSiO2絶縁膜にはリン、ホウ素等の元素がド−プされていても良い。 Examples of a method for manufacturing an inorganic insulating film in which the cerium oxide abrasive of the present invention is used include a low pressure CVD method and a plasma CVD method. In the formation of the SiO 2 insulating film by the low pressure CVD method, monosilane: SiH 4 is used as the Si source, and oxygen: O 2 is used as the oxygen source. It can be obtained by performing this SiH 4 —O 2 -based oxidation reaction at a low temperature of about 400 ° C. or less. In some cases, heat treatment is performed at a temperature of 1000 ° C. or lower after CVD. When doping phosphorus: P in order to achieve surface flattening by high-temperature reflow, it is preferable to use a SiH 4 —O 2 —PH 3 -based reactive gas. The plasma CVD method has an advantage that a chemical reaction requiring a high temperature can be performed at a low temperature under normal thermal equilibrium. There are two plasma generation methods, capacitive coupling type and inductive coupling type. The reaction as a gas, SiH 4 as an Si source, an oxygen source as N 2 O was used was SiH 4 -N 2 O-based gas and TEOS-O 2 based gas using tetraethoxysilane (TEOS) in an Si source (TEOS- Plasma CVD method). The substrate temperature is preferably 250 to 400 ° C., and the reaction pressure is preferably 67 to 400 Pa. Thus, elements such as phosphorus and boron may be doped in the SiO 2 insulating film of the present invention.
所定の基板として、半導体基板すなわち回路素子と配線パターンが形成された段階の半導体基板、回路素子が形成された段階の半導体基板等の半導体基板上に、SiO2絶縁膜層が形成された基板が使用できる。このような半導体基板上に形成されたSiO2絶縁膜層を、上記酸化セリウム研磨剤で研磨することによって、SiO2絶縁膜層表面の凹凸を解消し、半導体基板全面に渡って平滑な面とする。ここで、研磨する装置としては、半導体基板を保持するホルダーと研磨布(パッド)を貼り付けた(回転数が変更可能なモータ等を取り付けてある)定盤を有する一般的な研磨装置が使用できる。研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂等が使用でき、特に制限がない。また、研磨布には、スラリーが溜まる様な溝加工を施すことが好ましい。研磨条件には制限はないが、定盤の回転速度は、半導体が飛び出さない様に100rpm以下の低回転が好ましく、半導体基板にかける圧力は、研磨後に傷が発生しない様に1kg/cm2以下が好ましい。研磨している間、研磨布にはスラリーをポンプ等で連続的に供給する。この供給量には制限はないが、研磨布の表面が常にスラリーで覆われていることが好ましい。 As the predetermined substrate, there is a semiconductor substrate, that is, a semiconductor substrate in which a circuit element and a wiring pattern are formed, and a substrate in which a SiO 2 insulating film layer is formed on a semiconductor substrate such as a semiconductor substrate in which a circuit element is formed. Can be used. By polishing the SiO 2 insulating film layer formed on such a semiconductor substrate with the cerium oxide abrasive, unevenness on the surface of the SiO 2 insulating film layer is eliminated, and a smooth surface over the entire surface of the semiconductor substrate is obtained. To do. Here, as a polishing apparatus, a general polishing apparatus having a surface plate with a holder for holding a semiconductor substrate and a polishing cloth (pad) attached (a motor etc. capable of changing the number of rotations) is used. it can. As an abrasive cloth, a general nonwoven fabric, a polyurethane foam, a porous fluororesin, etc. can be used, and there is no restriction | limiting in particular. Further, the polishing cloth is preferably subjected to groove processing so that slurry is accumulated. The polishing conditions are not limited, but the rotation speed of the surface plate is preferably low rotation of 100 rpm or less so that the semiconductor does not jump out, and the pressure applied to the semiconductor substrate is 1 kg / cm 2 so that no scratches are generated after polishing. The following is preferred. During polishing, slurry is continuously supplied to the polishing cloth with a pump or the like. Although there is no restriction | limiting in this supply amount, It is preferable that the surface of polishing cloth is always covered with the slurry.
研磨終了後の半導体基板は、流水中で良く洗浄後、スピンドライヤ等を用いて半導体基板上に付着した水滴を払い落としてから乾燥させることが好ましい。このようにして平坦化されたSiO2絶縁膜層の上に、第2層目のアルミニウム配線を形成し、その配線間および配線上に再度上記方法によりSiO2絶縁膜を形成後、上記酸化セリウム研磨剤を用いて研磨することによって、絶縁膜表面の凹凸を解消し、半導体基板全面に渡って平滑な面とする。この工程を所定数繰り返すことにより、所望の層数の半導体を製造する。 The semiconductor substrate after the polishing is preferably washed in running water, and then dried after removing water droplets adhering to the semiconductor substrate using a spin dryer or the like. A second-layer aluminum wiring is formed on the thus planarized SiO 2 insulating film layer, and the SiO 2 insulating film is formed again between the wirings and on the wiring by the above method, and then the cerium oxide. By polishing with an abrasive, unevenness on the surface of the insulating film is eliminated, and a smooth surface is formed over the entire surface of the semiconductor substrate. By repeating this process a predetermined number of times, a desired number of semiconductor layers are manufactured.
本発明の酸化セリウム研磨剤は、半導体基板に形成されたSiO2絶縁膜だけでなく、所定の配線を有する配線板に形成されたSiO2絶縁膜、ガラス、窒化ケイ素等の無機絶縁膜、フォトマスク・レンズ・プリズム等の光学ガラス、ITO等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバ−の端面、シンチレ−タ等の光学用単結晶、固体レ−ザ単結晶、青色レ−ザLED用サファイア基板、SiC、GaP、GaAs等の半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド等を研磨するために使用される。このように本発明において所定の基板とは、SiO2絶縁膜が形成された半導体基板、SiO2絶縁膜が形成された配線板、ガラス、窒化ケイ素等の無機絶縁膜が形成された基板、フォトマスク・レンズ・プリズム等の光学ガラス、ITO等の無機導電膜、ガラス及び結晶質材料で構成される光集積回路・光スイッチング素子・光導波路、光ファイバ−の端面、シンチレ−タ等の光学用単結晶、固体レ−ザ単結晶、青色レ−ザLED用サファイア基板、SiC、GaP、GaAs等の半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド等を含む。 Cerium oxide abrasive of the present invention is not only SiO 2 insulating film formed on a semiconductor substrate, SiO 2 insulating film formed on the wiring board having a predetermined wiring, glass, inorganic insulating films such as silicon nitride, Photo Optical glass for masks, lenses, prisms, etc., optical conductive circuits such as ITO, inorganic conductive films such as ITO, glass and crystalline materials, optical switching elements, optical waveguides, end faces of optical fibers, scintillators, etc. It is used for polishing single crystals, solid laser single crystals, sapphire substrates for blue laser LEDs, semiconductor single crystals such as SiC, GaP, and GaAs, glass substrates for magnetic disks, magnetic heads, and the like. Thus the predetermined substrate in the present invention, SiO 2 semiconductor substrate on which an insulating film is formed, SiO 2 insulating film is formed wiring board, a glass substrate an inorganic insulating film such as silicon nitride is formed, the photo Optical glass for masks, lenses, prisms, etc., optical conductive circuits such as ITO, inorganic conductive films such as ITO, glass and crystalline materials, optical switching elements, optical waveguides, end faces of optical fibers, scintillators, etc. Including single crystals, solid laser single crystals, sapphire substrates for blue laser LEDs, semiconductor single crystals such as SiC, GaP, and GaAs, glass substrates for magnetic disks, magnetic heads, and the like.
実施例1
(酸化セリウム粒子の作製1)
出発原料に板状結晶の凝集した炭酸セリウムを使用した。走査型電子顕微鏡観察により一次粒子の長径、短径を測定し、直径を長径×短径の平方根で求めたところ、この炭酸セリウムの一次粒子は、90体積%以上が直径3〜60μmの板状結晶であった。炭酸セリウムの凝集粒子径は、レーザー光回折法(測定装置:Malvern Instruments社製 Mastersizer Microplus、光源He−Neレーザー、粒子の屈折率1.9285、吸収0で測定)で測定したところ、中央値が31μmであった。炭酸セリウム水和物2kgを白金製容器に入れ、800℃で2時間空気中で焼成することにより、黄白色の粉末を約1kg得た。この粉末をX線回折法で相同定を行ったところ、酸化セリウムであることを確認した。焼成粉末粒子径は30〜100μmであった。焼成粉末粒子表面を走査型電子顕微鏡で観察したところ、酸化セリウムの粒界が観察された。粒界に囲まれた酸化セリウム一次粒子径を測定したところ、その分布の中央値が190nm、最大値が500nmであった。焼成粉末についてX線回折精密測定を行い、その結果についてリートベルト法(RIETAN−94)による解析で、一次粒子径を表わす構造パラメーター:Xの値が0.080、等方的微少歪みを表わす構造パラメーター:Yの値が0.223であった。酸化セリウム粉末1kgをジェットミルを用いて乾式粉砕を行った。粉砕粒子について走査型電子顕微鏡で観察したところ、一次粒子径と同等サイズの小さな粒子の他に、1μmから3μmの大きな粉砕残り粒子と0.5から1μmの粉砕残り粒子が混在していた。粉砕残り粒子は、一次粒子の凝集体ではない。粉砕粒子についてX線回折精密測定を行い、その結果についてリートベルト法(RIETAN−94)による解析で、一次粒子径を表わす構造パラメーター:Xの値が0.085、等方的微少歪みを表わす構造パラメーター:Yの値が0.264であった。この結果、粉砕による一次粒子径変量は殆どなく、また粉砕により粒子に歪みが導入されていた。さらに、BET法による比表面積測定の結果、10m2/gであることがわかった。
Example 1
(Preparation of cerium oxide particles 1)
The starting material used was cerium carbonate with agglomerated plate crystals. When the major axis and minor axis of the primary particles were measured by observation with a scanning electron microscope and the diameter was determined by the square root of the major axis × minor axis, the primary particles of cerium carbonate were 90% by volume or more in a plate shape having a diameter of 3 to 60 μm. It was a crystal. The aggregate particle diameter of cerium carbonate was measured by a laser light diffraction method (measurement apparatus: Mastersizer Microplus manufactured by Malvern Instruments, light source He-Ne laser, particle refractive index 1.9285, measured at 0 absorption), and the median value was It was 31 μm. By putting 2 kg of cerium carbonate hydrate in a platinum container and firing in air at 800 ° C. for 2 hours, about 1 kg of yellowish white powder was obtained. When this powder was phase-identified by X-ray diffraction, it was confirmed to be cerium oxide. The fired powder particle size was 30 to 100 μm. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the primary particle diameter of cerium oxide surrounded by the grain boundaries was measured, the median value of the distribution was 190 nm and the maximum value was 500 nm. The X-ray diffraction precision measurement is performed on the calcined powder, and the result is analyzed by the Rietveld method (RIETAN-94). The structural parameter indicating the primary particle diameter: the value of X is 0.080, and the structure indicates isotropic strain Parameter: Y value was 0.223. 1 kg of cerium oxide powder was dry pulverized using a jet mill. When pulverized particles were observed with a scanning electron microscope, large pulverized residual particles of 1 to 3 μm and pulverized residual particles of 0.5 to 1 μm were mixed in addition to small particles having the same size as the primary particle diameter. The unmilled particles are not aggregates of primary particles. The X-ray diffraction precision measurement is performed on the pulverized particles, and the result is analyzed by Rietveld method (RIETAN-94). The structure parameter indicating the primary particle diameter: the value of X is 0.085, and the structure represents isotropic strain Parameter: Y value was 0.264. As a result, there was almost no change in the primary particle size due to pulverization, and distortion was introduced into the particles due to pulverization. Furthermore, as a result of measuring the specific surface area by the BET method, it was found to be 10 m 2 / g.
(酸化セリウム粒子の作製2)
酸化セリウム粒子の作製1で用いたのと同じ炭酸セリウム水和物2kgを白金製容器に入れ、750℃で2時間空気中で焼成することにより、黄白色の粉末を約1kg得た。この粉末をX線回折法で相同定を行ったところ、酸化セリウムであることを確認した。焼成粉末粒子径は30〜100μmであった。焼成粉末粒子表面を走査型電子顕微鏡で観察したところ、酸化セリウムの粒界が観察された。粒界に囲まれた酸化セリウム一次粒子径を測定したところ、その分布の中央値が141nm、最大値が400nmであった。焼成粉末についてX線回折精密測定を行い、その結果についてリートベルト法(RIRTAN−94)による解析で、一次粒子径を表わす構造パラメーター:Xの値が0.101、等方的微少歪みを表わす構造パラメーター:Yの値が0.223であった。酸化セリウム粉末1kgをジェットミルを用いて乾式粉砕を行った。粉砕粒子について走査型電子顕微鏡で観察したところ、一次粒子径と同等サイズの小さな粒子の他に、1μmから3μmの大きな粉砕残り粒子と0.5から1μmの粉砕残り粒子が混在していた。粉砕残り粒子は、一次粒子の凝集体ではない。粉砕粒子についてX線回折精密測定を行い、その結果についてリートベルト法(RIETAN−94)による解析で、一次粒子径を表わす構造パラメーター:Xの値が0.104、等方的微少歪みを表わす構造パラメーター:Yの値が0.315であった。この結果、粉砕による一次粒子径変量は殆どなく、また粉砕により粒子に歪みが導入されていた。さらに、BET法による比表面積測定の結果、16m2/gであることがわかった。
(Preparation of cerium oxide particles 2)
Preparation of Cerium Oxide Particles 2 kg of the same cerium carbonate hydrate used in Step 1 was placed in a platinum container and baked in air at 750 ° C. for 2 hours to obtain about 1 kg of yellowish white powder. When this powder was phase-identified by X-ray diffraction, it was confirmed to be cerium oxide. The fired powder particle size was 30 to 100 μm. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the primary particle diameter of cerium oxide surrounded by the grain boundaries was measured, the median value of the distribution was 141 nm and the maximum value was 400 nm. X-ray diffraction precision measurement is performed on the calcined powder, and the result is analyzed by the Rietveld method (RIRTAN-94). The structure parameter indicating the primary particle size: X is 0.101, and the structure represents isotropic strain Parameter: Y value was 0.223. 1 kg of cerium oxide powder was dry pulverized using a jet mill. When pulverized particles were observed with a scanning electron microscope, large pulverized residual particles of 1 to 3 μm and pulverized residual particles of 0.5 to 1 μm were mixed in addition to small particles having the same size as the primary particle diameter. The unmilled particles are not aggregates of primary particles. The X-ray diffraction precision measurement is performed on the pulverized particles, and the result is analyzed by the Rietveld method (RIETAN-94). The structure parameter indicating the primary particle size: the value of X is 0.104, and the structure indicates isotropic strain. Parameter: Y value was 0.315. As a result, there was almost no change in the primary particle size due to pulverization, and distortion was introduced into the particles due to pulverization. Furthermore, as a result of measuring the specific surface area by the BET method, it was found to be 16 m 2 / g.
(酸化セリウムスラリーの作製)
上記作製1、2の酸化セリウム粒子1kgとポリアクリル酸アンモニウム塩水溶液(40重量%)23gと脱イオン水8977gを混合し、撹拌しながら超音波分散を10分間施した。得られたスラリーを1μmフィルターでろ過をし、さらに脱イオン水を加えることにより3wt%研磨剤を得た。スラリーpHは8.3であった。スラリー粒子の粒度分布をレーザー回折法を用いて調べたところ、中央値が共に200nmであった。最大粒子径は、780nm以上の粒子が0体積%であった。スラリーの分散性およびスラリー粒子の電荷を調べるため、スラリーのゼータ電位を調べた。両側に白金製電極を取り付けてある測定セルに酸化セリウムスラリーを入れ、両電極に10Vの電圧を印加した。電圧を印加することにより電荷を持ったスラリー粒子は、その電荷と反対の極を持つ電極側に移動する。この移動速度を求めることにより、粒子のゼータ電位を求めることができる。ゼータ電位測定の結果、それぞれマイナスに荷電し、−50mV、−63mVと絶対値が大きく分散性が良好であることを確認した。
(Preparation of cerium oxide slurry)
1 kg of the cerium oxide particles of Preparations 1 and 2 above, 23 g of ammonium polyacrylate aqueous solution (40% by weight) and 8977 g of deionized water were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The obtained slurry was filtered with a 1 μm filter, and deionized water was further added to obtain a 3 wt% abrasive. The slurry pH was 8.3. When the particle size distribution of the slurry particles was examined using a laser diffraction method, both median values were 200 nm. The maximum particle size was 0% by volume of particles having a particle size of 780 nm or more. To examine the dispersibility of the slurry and the charge of the slurry particles, the zeta potential of the slurry was examined. A cerium oxide slurry was placed in a measurement cell having platinum electrodes on both sides, and a voltage of 10 V was applied to both electrodes. Slurry particles having a charge by applying a voltage move to the side of the electrode having a pole opposite to the charge. By obtaining this moving speed, the zeta potential of the particles can be obtained. As a result of the zeta potential measurement, it was confirmed that each was negatively charged and had a large absolute value of −50 mV and −63 mV and good dispersibility.
(絶縁膜層の研磨)
保持する基板取り付け用の吸着パッドを貼り付けたホルダーに、TEOS−プラズマCVD法で作製したSiO2絶縁膜を形成させたSiウエハをセットし、多孔質ウレタン樹脂製の研磨パッドを貼り付けた定盤上に、絶縁膜面を下にしてホルダーを載せ、さらに加工荷重が300g/cm2になるように重しを載せた。定盤上に、上記の酸化セリウムスラリー(固形分:3重量%)を50cc/minの速度で滴下しながら、定盤を30rpmで2分間回転させ、絶縁膜を研磨した。研磨後ウエハをホルダーから取り外して、流水で良く洗浄後、超音波洗浄機によりさらに20分間洗浄した。洗浄後、ウエハをスピンドライヤーで水滴を除去し、120℃の乾燥機で10分間乾燥させた。光干渉式膜厚測定装置を用いて、研磨前後の膜厚変化を測定した結果、この研磨によりそれぞれ600nm、580nm(研磨速度:300nm/min、290nm/min)の絶縁膜が削られ、ウエハ全面に渡って均一の厚みになっていることがわかった。また、光学顕微鏡を用いて絶縁膜表面を観察したところ、明確な傷は見られなかった。
(Polishing the insulating film layer)
A Si wafer on which a SiO 2 insulating film formed by TEOS-plasma CVD method is set in a holder to which a suction pad for mounting a substrate to be held is attached, and a polishing pad made of porous urethane resin is attached. A holder was placed on the board with the insulating film side down, and a weight was placed so that the processing load was 300 g / cm 2 . While the above cerium oxide slurry (solid content: 3% by weight) was dropped on the surface plate at a speed of 50 cc / min, the surface plate was rotated at 30 rpm for 2 minutes to polish the insulating film. After polishing, the wafer was removed from the holder, washed thoroughly with running water, and further washed with an ultrasonic cleaner for 20 minutes. After washing, water droplets were removed from the wafer with a spin dryer, and the wafer was dried with a dryer at 120 ° C. for 10 minutes. As a result of measuring the film thickness change before and after polishing using an optical interference type film thickness measuring apparatus, the insulating films of 600 nm and 580 nm (polishing rate: 300 nm / min, 290 nm / min) were respectively cut by this polishing, and the entire wafer surface It was found that the thickness was uniform over the entire area. Further, when the surface of the insulating film was observed using an optical microscope, no clear scratch was found.
実施例2
(酸化セリウム粒子の作製)
実施例1で用いたのと同じ炭酸セリウム水和物2kgを白金製容器に入れ、700℃で2時間空気中で焼成することにより、黄白色の粉末を約1kg得た。この粉末をX線回折法で相同定を行ったところ、酸化セリウムであることを確認した。焼成粉末粒子径は30〜100μmであった。焼成粉末粒子表面を走査型電子顕微鏡で観察したところ、酸化セリウムの粒界が観察された。粒界に囲まれた酸化セリウム一次粒子径を測定したところ、その分布の中央値が50nm、最大値が100nmであった。焼成粉末についてX線回折精密測定を行い、その結果についてリートベルト法(RIETAN−94)による解析で、一次粒子径を表わす構造パラメーター:Xの値が0.300、等方的微少歪みを表わす構造パラメーター:Yの値が0.350であった。酸化セリウム粉末1kgをジェットミルを用いて乾式粉砕を行った。粉砕粒子について走査型電子顕微鏡で観察したところ、一次粒子径と同等サイズの小さな粒子の他に、2μmから4μmの大きな粉砕残り粒子と0.5から1.2μmの粉砕残り粒子が混在していた。粉砕残り粒子は、一次粒子の凝集体ではない。粉砕粒子についてX線回折精密測定を行い、その結果についてリートベルト法(RIETAN−94)による解析で、一次粒子径を表わす構造パラメーター:Xの値が0.302、等方的微少歪みを表わす構造パラメーター:Yの値が0.412であった。この結果、粉砕による一次粒子径変量は殆どなく、また粉砕により粒子に歪みが導入されていた。さらに、BET法による比表面積測定の結果、40m2/gであることがわかった。
Example 2
(Production of cerium oxide particles)
2 kg of the same cerium carbonate hydrate used in Example 1 was placed in a platinum container and calcined in air at 700 ° C. for 2 hours to obtain about 1 kg of yellowish white powder. When this powder was phase-identified by X-ray diffraction, it was confirmed to be cerium oxide. The fired powder particle size was 30 to 100 μm. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the primary particle diameter of cerium oxide surrounded by the grain boundaries was measured, the median value of the distribution was 50 nm, and the maximum value was 100 nm. X-ray diffraction precision measurement is performed on the calcined powder, and the result is analyzed by the Rietveld method (RIETAN-94). The structure parameter indicating the primary particle diameter: the value of X is 0.300, and the structure represents isotropic strain Parameter: Y value was 0.350. 1 kg of cerium oxide powder was dry pulverized using a jet mill. Observation of the pulverized particles with a scanning electron microscope revealed that a large pulverized residual particle of 2 μm to 4 μm and a pulverized residual particle of 0.5 to 1.2 μm were mixed in addition to small particles having the same size as the primary particle diameter. . The unmilled particles are not aggregates of primary particles. The X-ray diffraction precision measurement is performed on the pulverized particles, and the result is analyzed by the Rietveld method (RIETAN-94). The structure parameter indicating the primary particle diameter: the value of X is 0.302, and the structure indicates isotropic strain Parameter: Y value was 0.412. As a result, there was almost no change in the primary particle size due to pulverization, and distortion was introduced into the particles due to pulverization. Furthermore, as a result of measuring the specific surface area by the BET method, it was found to be 40 m 2 / g.
(酸化セリウムスラリーの作製)
上記作製の酸化セリウム粒子1kgとポリアクリル酸アンモニウム塩水溶液(40重量%)23gと脱イオン水8977gを混合し、撹拌しながら超音波分散を10分間施した。得られたスラリーを2μmフィルターでろ過をし、さらに脱イオン水を加えることにより3wt%研磨剤を得た。スラリーpHは8.0であった。スラリー粒子の粒度分布をレーザー回折法を用いて調べたところ、中央値が510nmで、最大粒子径は1440nm以上の粒子が0%であった。スラリーの分散性およびスラリー粒子の電荷を調べるため、スラリーのゼータ電位を調べた。両側に白金製電極を取り付けてある測定セルに酸化セリウムスラリーを入れ、両電極に10Vの電圧を印加した。電圧を印加することにより電荷を持ったスラリー粒子は、その電荷と反対の極を持つ電極側に移動する。この移動速度を求めることにより粒子のゼータ電位を求めることができる。ゼータ電位測定の結果、マイナスに荷電し、−64mVと絶対値が大きく分散性が良好であることを確認した。
(Preparation of cerium oxide slurry)
1 kg of the cerium oxide particles prepared above, 23 g of an aqueous polyacrylic acid ammonium salt solution (40% by weight), and 8977 g of deionized water were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The obtained slurry was filtered with a 2 μm filter, and deionized water was further added to obtain a 3 wt% abrasive. The slurry pH was 8.0. When the particle size distribution of the slurry particles was examined using a laser diffraction method, the median value was 510 nm, and the maximum particle size was 1% of particles having a particle size of 1440 nm or more. To examine the dispersibility of the slurry and the charge of the slurry particles, the zeta potential of the slurry was examined. A cerium oxide slurry was placed in a measurement cell having platinum electrodes on both sides, and a voltage of 10 V was applied to both electrodes. Slurry particles having a charge by applying a voltage move to the side of the electrode having a pole opposite to the charge. By obtaining this moving speed, the zeta potential of the particles can be obtained. As a result of the zeta potential measurement, it was confirmed that it was negatively charged, had an absolute value of -64 mV and a large dispersibility.
(絶縁膜層の研磨)
保持する基板取り付け用の吸着パッドを貼り付けたホルダーに、TEOS−プラズマCVD法で作製したSiO2絶縁膜を形成させたSiウエハをセットし、多孔質ウレタン樹脂製の研磨パッドを貼り付けた定盤上に、絶縁膜面を下にしてホルダーを載せ、さらに加工加重が300g/cm2になるように重しを載せた。定盤上に、上記の酸化セリウムスラリー(固形分:3重量%)を35cc/minの速度で滴下しながら、定盤を30rpmで2分間回転させ、絶縁膜を研磨した。研磨後ウエハをホルダーから取り外して、流水で良く洗浄後、超音波洗浄機によりさらに20分間洗浄した。洗浄後、ウエハをスピンドライヤーで水滴を除去し、120℃の乾燥機で10分間乾燥させた。光干渉式膜厚測定装置を用いて、研磨前後の膜厚変化を測定した結果、この研磨により740nm(研磨速度:370nm/min)の絶縁膜が削られ、ウエハ全面に渡って均一の厚みになっていることがわかった。また、光学顕微鏡を用いて絶縁膜表面を観察したところ、明確な傷は見られなかった。
(Polishing the insulating film layer)
A Si wafer on which a SiO 2 insulating film formed by TEOS-plasma CVD method is set in a holder to which a suction pad for mounting a substrate to be held is attached, and a polishing pad made of porous urethane resin is attached. On the board, a holder was placed with the insulating film face down, and a weight was placed so that the processing load was 300 g / cm 2 . While the above cerium oxide slurry (solid content: 3% by weight) was dropped on the surface plate at a rate of 35 cc / min, the surface plate was rotated at 30 rpm for 2 minutes to polish the insulating film. After polishing, the wafer was removed from the holder, washed thoroughly with running water, and further washed with an ultrasonic cleaner for 20 minutes. After washing, water droplets were removed from the wafer with a spin dryer, and the wafer was dried with a dryer at 120 ° C. for 10 minutes. As a result of measuring the film thickness change before and after polishing using an optical interference type film thickness measuring device, the insulating film having a thickness of 740 nm (polishing rate: 370 nm / min) was removed by this polishing, and the thickness was uniform over the entire surface of the wafer. I found out that Further, when the surface of the insulating film was observed using an optical microscope, no clear scratch was found.
比較例
実施例と同様にTEOS−CVD法で作製したSiO2絶縁膜を形成させたSiウエハについて、市販シリカスラリー(キャボット社製、商品名SS225)を用いて研磨を行った。この市販スラリーのpHは10.3で、SiO2粒子を12.5wt%含んでいるものである。研磨条件は実施例と同一である。その結果、研磨による傷は見られず、また均一に研磨がなされたが、2分間の研磨により150nm(研磨速度:75nm/min)の絶縁膜層しか削れなかった。
For Si wafer having formed an SiO 2 insulating film was prepared in the same manner as in Comparative Example Example in TEOS-CVD method, it was polished using a commercially available silica slurry (manufactured by Cabot Corporation, trade name SS225). This commercially available slurry has a pH of 10.3 and contains 12.5 wt% of SiO 2 particles. The polishing conditions are the same as in the example. As a result, scratches due to polishing were not observed and polishing was performed uniformly, but only an insulating film layer having a thickness of 150 nm (polishing rate: 75 nm / min) was removed by polishing for 2 minutes.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004250350A JP2005039286A (en) | 2004-08-30 | 2004-08-30 | Cerium oxide abrasive and method for polishing substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004250350A JP2005039286A (en) | 2004-08-30 | 2004-08-30 | Cerium oxide abrasive and method for polishing substrate |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004146372A Division JP2004250714A (en) | 2004-05-17 | 2004-05-17 | Cerium oxide abrasive and method for grinding substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005039286A true JP2005039286A (en) | 2005-02-10 |
Family
ID=34214386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004250350A Withdrawn JP2005039286A (en) | 2004-08-30 | 2004-08-30 | Cerium oxide abrasive and method for polishing substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005039286A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8372303B2 (en) * | 2006-07-28 | 2013-02-12 | Lg Chem, Ltd. | Cerium oxide powder, method for preparing the same, and CMP slurry comprising the same |
US8388710B2 (en) | 2005-01-26 | 2013-03-05 | Lg Chem, Ltd. | Cerium oxide powder, method for preparing the same, and CMP slurry comprising the same |
-
2004
- 2004-08-30 JP JP2004250350A patent/JP2005039286A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8388710B2 (en) | 2005-01-26 | 2013-03-05 | Lg Chem, Ltd. | Cerium oxide powder, method for preparing the same, and CMP slurry comprising the same |
US8372303B2 (en) * | 2006-07-28 | 2013-02-12 | Lg Chem, Ltd. | Cerium oxide powder, method for preparing the same, and CMP slurry comprising the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4971731B2 (en) | Polishing method of cerium oxide slurry and substrate | |
JP4788586B2 (en) | Abrasive and slurry | |
JP2009182344A (en) | Cerium oxide abrasive and method of polishing substrate | |
JP2005048125A (en) | Cmp abrasive, polishing method, and production method for semiconductor device | |
JP3480323B2 (en) | Cerium oxide abrasive, substrate polishing method, and semiconductor device | |
JP2010030041A (en) | Cerium oxide abrasive and method of polishing substrate | |
JP4776387B2 (en) | Cerium oxide abrasive and substrate polishing method | |
JP4776388B2 (en) | Cerium oxide abrasive and substrate polishing method | |
JP4445820B2 (en) | Cerium oxide abrasive and substrate polishing method | |
JP2005039286A (en) | Cerium oxide abrasive and method for polishing substrate | |
JP2005039287A (en) | Cerium oxide abrasive and method for polishing substrate | |
JP2004250714A (en) | Cerium oxide abrasive and method for grinding substrate | |
JP2004289170A (en) | Cerium oxide polishing agent and method of polishing substrate | |
JPH11181404A (en) | Cerium oxide abrasive and grinding of substrate | |
JPH11181405A (en) | Cerium oxide abrasive and grinding of substrate | |
JP4776518B2 (en) | Abrasive and slurry | |
JP4788585B2 (en) | Abrasive and slurry | |
JPH11181407A (en) | Cerium oxide abrasive and grinding of substrate | |
JP2006148158A (en) | Cerium oxide polishing material and substrate-polishing method | |
JP2008132593A (en) | Cerium oxide slurry, cerium oxide abrasive and base board polishing method | |
JP4776519B2 (en) | Abrasive and slurry | |
JP4788588B2 (en) | Polishing method | |
JP2005048122A (en) | Cmp abrasive, polishing method, and production method for semiconductor device | |
JP2004336082A (en) | Cerium oxide abrasive and method of grinding substrate | |
JPH11181406A (en) | Cerium oxide abrasive and grinding of substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090407 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090804 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20091104 |