[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3497329B1 - Dickstoffventil - Google Patents

Dickstoffventil Download PDF

Info

Publication number
EP3497329B1
EP3497329B1 EP17748765.9A EP17748765A EP3497329B1 EP 3497329 B1 EP3497329 B1 EP 3497329B1 EP 17748765 A EP17748765 A EP 17748765A EP 3497329 B1 EP3497329 B1 EP 3497329B1
Authority
EP
European Patent Office
Prior art keywords
valve
valve member
thick stock
opening
thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17748765.9A
Other languages
English (en)
French (fr)
Other versions
EP3497329A1 (de
Inventor
Felix Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Putzmeister Engineering GmbH
Original Assignee
Putzmeister Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56686669&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3497329(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Putzmeister Engineering GmbH filed Critical Putzmeister Engineering GmbH
Publication of EP3497329A1 publication Critical patent/EP3497329A1/de
Application granted granted Critical
Publication of EP3497329B1 publication Critical patent/EP3497329B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0019Piston machines or pumps characterised by having positively-driven valving a common distribution member forming a single discharge distributor for a plurality of pumping chambers
    • F04B7/003Piston machines or pumps characterised by having positively-driven valving a common distribution member forming a single discharge distributor for a plurality of pumping chambers and having a slidable movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
    • F04B15/023Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous supply of fluid to the pump by gravity through a hopper, e.g. without intake valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0019Piston machines or pumps characterised by having positively-driven valving a common distribution member forming a single discharge distributor for a plurality of pumping chambers
    • F04B7/0026Piston machines or pumps characterised by having positively-driven valving a common distribution member forming a single discharge distributor for a plurality of pumping chambers and having an oscillating movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/109Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers
    • F04B9/117Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other
    • F04B9/1176Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other the movement of each piston in one direction being obtained by a single-acting piston liquid motor
    • F04B9/1178Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers the pumping members not being mechanically connected to each other the movement of each piston in one direction being obtained by a single-acting piston liquid motor the movement in the other direction being obtained by a hydraulic connection between the liquid motor cylinders
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0436Devices for both conveying and distributing with distribution hose on a mobile support, e.g. truck
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/09Motor parameters of linear hydraulic motors
    • F04B2203/0903Position of the driving piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0019Piston machines or pumps characterised by having positively-driven valving a common distribution member forming a single discharge distributor for a plurality of pumping chambers
    • F04B7/0034Piston machines or pumps characterised by having positively-driven valving a common distribution member forming a single discharge distributor for a plurality of pumping chambers and having an orbital movement, e.g. elbow-pipe type members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type

Definitions

  • the invention relates to a thick substance valve with a first passage opening, a second passage opening and with a valve member which interacts with both passage openings.
  • Such valves are used when conveying thick materials such as fresh concrete or mortar. There is a first conveying state in which the thick matter passes through the first passage opening and a second conveying condition in which the thick matter passes through the second passage opening.
  • the thick matter valve serves to open the passage opening for the thick matter suitable for the respective conveying state.
  • Thick matter valves in which a valve member is assigned two through openings are known, see DE 10 2013 215 990 A1 , US 8,827,657 , DE 195 93 986 A1 , DE 10 2005 008 938 A1 .
  • the valve member has the shape of an S-shaped tube section, one end of which can optionally be coupled to the first passage opening or the second passage opening. This is mechanically complex.
  • document BE 903 984 A presents a pump with two cylinders, a valve chamber and a valve, the valve may be a butterfly valve and the valve chamber may be rectangular.
  • the invention has for its object to present a thick material valve that is of simple construction. Based on the prior art mentioned, the problem is solved with the Features of claim 1. Advantageous embodiments are specified in the subclaims.
  • the valve member assigned to the two passage openings is pivotably mounted with respect to a pivot axis and has a sealing surface that is curved concentrically to the pivot axis.
  • the valve member releases the first passage opening and closes the second passage opening.
  • the valve member clears the second passage opening and closes the first passage opening.
  • the valve member comprises a sealing part and a swivel part.
  • the swivel part is rotatably mounted in the swivel axis.
  • the sealing part is connected to the swivel part via a connecting structure.
  • Thick matter is a generic term for media that are difficult to convey.
  • the thick material can be, for example, a material with coarse-grained components, a material with aggressive components or the like.
  • the thick matter can also be a bulk material.
  • the thick material is fresh concrete. Fresh concrete contains grains up to a size of more than 30 mm, sets, forms deposits in dead spaces and is therefore difficult to promote.
  • the valve member can be arranged in an interior of the thick matter valve.
  • the thick matter valve according to the invention can be designed such that the thick matter enters the interior of the thick matter valve through the passage openings.
  • the thick matter valve can additionally comprise an outlet opening through which the thick matter that has entered leaves the valve again.
  • a tube can be connected to the outlet opening, through which the further transport of the thick matter takes place.
  • the path between the passage openings and the outlet opening can be arranged such that it does not extend through the valve member.
  • the first and the second passage opening can each have a sealing surface which is designed to cooperate with the sealing surface of the valve member.
  • the sealing surface can be, for example, an inner surface of a housing of the thick material valve, which extends around the passage opening.
  • the sealing surfaces of the passage openings can have a curvature which is concentric with the pivot axis of the valve member. Due to the concentric curvature of the cooperating sealing surfaces, the valve member can be rotated about the pivot axis, which corresponds to the axis of the curvature. This makes it possible for one of the openings to be freely flowable, while on the other hand the sealing surface of the valve member interacts in a sealing manner with the sealing surface of the other passage opening.
  • the term sealing is to be understood with reference to the area of application in which 100% tightness is not required.
  • the concentric curvature corresponds to a segment of a cylinder jacket, the cylinder axis being equal to the pivot axis.
  • the radial distance between the sealing surface of the valve member and the pivot axis constant over the length of the pivot axis.
  • the curvature can correspond to a segment of a circle in the circumferential direction.
  • An intermediate surface can be arranged between the first passage opening and the second passage opening, which also has a curvature concentric to the pivot axis. As a result, a continuous contour can be created which is concentric with the pivot axis and extends from the first passage opening over the intermediate surface to the second passage opening.
  • the thick matter valve in addition to the switching states mentioned, in which the valve member closes the first or the second passage opening, the thick matter valve can comprise a third switching state (intermediate state) in which both the first passage opening and the second passage opening are released.
  • the valve member In the intermediate state, the valve member can be arranged between the first passage opening and the second passage opening.
  • the distance between the two through openings can be so large that both through openings are completely exposed. This has the advantage that the edges of the sealing surface are not exposed to the flow of material that extends through the openings. It is also possible that one or both through openings are still partially covered by the valve member.
  • the valve member can comprise a sealing part and a swivel part, the swivel part being rotatably mounted in the swivel axis.
  • a motor drive can act on the swivel part in order to effect the switching operations between the various states of the thick matter valve.
  • the valve member may include a connection structure that establishes a connection between the sealing part and the pivoting part.
  • the connection structure can be designed in such a way that it is rigid with respect to torques which act relative to the pivot axis. Rigid in this sense means that when the swivel part rotates relative to the swivel axis, the sealing part also performs the corresponding swivel movement.
  • the connecting structure can allow the sealing part to move relative to the pivoting part. With such a relative movement, the radial distance between the sealing surface and the swivel axis can be adjusted so that the desired sealing effect is established between the valve member and the passage opening.
  • the connecting structure can comprise an elastic element arranged between the sealing part and the pivoting part.
  • the elastic element In the initial state of the thick matter valve, the elastic element can be compressed. If wear occurs between the sealing surfaces during operation, the elastic element expands. Wear is automatically compensated for.
  • valve member according to the invention can comprise a drive in order to move the sealing part in the radial direction relative to the pivoting part.
  • the drive can be used to adapt the position of the sealing part to the swivel part during operation. It is also possible to use the drive to adjust the spring tension of the elastic element.
  • the drive can be, for example, a hydraulic drive or a mechanical drive.
  • the valve member comprises a rigid connection between the sealing surface and the pivotably mounted shaft or the pivotably supported shaft ends.
  • a radial mobility of the sealing surface relative to the valve housing can result from the fact that the shaft or the shaft stub are mounted elastically with respect to the valve housing.
  • one or more elastic elements can be provided, which extend around the shaft or the shaft end. This embodiment has the advantage that the elastic elements are not affected by the thick material flow.
  • the valve member can be arranged in a housing of the thick matter valve according to the invention.
  • the valve member can be arranged adjacent to an end wall of the housing, the end axis being oriented at right angles to the pivot axis. The pivoting movement of the valve member then runs parallel to the end wall.
  • the valve member can be spaced from the end wall so that there is also space for the coarse-grained components of the thick material between the valve member and the end wall. This facilitates the actuation of the valve member.
  • the distance between the valve member and the end wall is smaller than the coarse-grained components of the thick material.
  • the valve member may include a scratch that pushes the thick material to the side along the end wall when the valve member is actuated, so that no grains can be pinched between the valve member and the end wall. The scratch can rest on the end wall or be a slight distance from the end wall.
  • the housing can have a second end wall, so that the valve member is arranged between the first and the second end wall.
  • the interaction between the valve member and the second end wall can be designed accordingly.
  • a shaft of the valve member can be mounted in the housing of the thick matter valve.
  • Two bearings can be arranged so that they enclose the valve member between them.
  • a shaft, which is part of the pivoting part of the valve member, can extend between the bearings.
  • the thick matter valve according to the invention can be designed such that a straight connecting path between an inlet opening and the outlet opening of the thick matter valve intersects the pivot axis. If a shaft of the valve member extends continuously along the swivel axis, the material flow must be guided past the shaft along a curved path.
  • the valve member can comprise a guide surface with which the material flow is guided past the shaft.
  • the guide surface can connect to the sealing surface (based on the direction of movement of the valve member) and define a substantially straight path past the valve member and the pivot axis.
  • the guide surface can be a flat guide surface, which can in particular be aligned parallel to the pivot axis.
  • the guide surface can be provided with a recess in order to facilitate the transition of the material flow into the exit opening.
  • the valve member can comprise two such guide surfaces, the sealing surface being enclosed between the guide surfaces. Depending on the switching status of the valve, the material flow can either be guided along one and / or the other guide surface.
  • Such a guide surface can be particularly advantageous if the valve member is designed such that the pivot axis is enclosed in the body of the valve member.
  • the elastic element of the valve member can extend around the shaft of the valve member or can be arranged between the pivot axis and the sealing surface.
  • the shaft can comprise two shaft ends, which are guided in bearings in the valve housing.
  • the connection between the two shaft ends can be established via a connection structure, the distance from which to the sealing surface is less than the distance from the pivot axis to the sealing surface. Because the connection structure does not extend along the pivot axis, but rather is arranged closer to the sealing surface, there remains a free space which is available for the material flow on its way to the exit opening.
  • the connection structure can be designed such that a straight line that extends from the center of the unlocked passage opening to the center of the outlet opening does not intersect the valve member.
  • connection structure can comprise a leg which extends to the sealing part.
  • the leg can be aligned in the radial direction. Relative to the sealing part, the leg can be arranged in the center. If the leg is at a distance from the end walls of the valve housing, the thick material can flow around it well.
  • connection structure comprises two legs that extend in the direction of the sealing part.
  • the legs can be parallel to each other and aligned in the radial direction.
  • the legs can be arranged in such a way that an area arranged between the pivot axis and the center of the sealing part is kept free, so that the thick material can flow through it. Based on the distance between the pivot axis and the sealing surface of the valve member, the area kept free can extend over at least 10%, preferably at least 30%, further preferably at least 50%.
  • the two legs can be at a distance from the end walls of the housing.
  • the legs can be designed as scratches, so that the thick material is pushed aside along the end face when the valve member is actuated.
  • the thick matter valve according to the invention is used in such a way that the material flow enters the interior of the valve through one of the passage openings, extends past the valve member and leaves the valve through an outlet opening (pump operation), there is regularly a pressure difference between the interior of the thick matter valve and to an outside space, which adjoins the passage opening closed with the valve member.
  • the thick matter valve can be designed such that a force is exerted on the valve member by the pressure difference, which strengthens the sealing effect.
  • valve member can be pressed in the radial direction against the sealing surface of the passage opening.
  • the radial direction relates to the pivot axis of the valve member.
  • the valve member can for this purpose comprise an outer surface through which a pressure applied in the interior is converted into a force acting in the radial direction. Outer surface denotes an area of the valve member which is in contact with the thick material in the interior of the thick material valve.
  • valve member can have an outer surface that lies opposite the sealing surface.
  • the outer surface can be oriented so that it intersects the radial direction perpendicularly. A pressure acting on the outer surface is then oriented so that it directly reinforces the sealing effect.
  • valve member it is also possible for the valve member to have an outer surface that is inclined with respect to the radial direction, so that only a portion of the compressive force acts in the direction of the sealing surface.
  • the valve member can also have two oppositely oriented inclined outer surfaces. Counter-rotating means that the outer surfaces are aligned so that the components of the compressive force acting in the radial direction add up.
  • the pressure difference can generally not be used to increase the sealing effect of the valve member.
  • the sealing effect then results primarily from the force exerted on the sealing part starting from the pivoting part. As stated, this force can result either from an elastic pretension or from an active drive.
  • the invention also relates to a pump equipped with such a thick matter valve.
  • the thick matter valve can be arranged in such a way that in a pumping operation that of the delivery member material set in motion by the pump enters the interior of the thick matter valve through the first and / or the second opening.
  • the pump can comprise a first delivery cylinder and a second delivery cylinder.
  • a piston can be arranged in each of the feed cylinders, which in suction mode sucks thick matter into the interior of the feed cylinder with a backward movement and which feeds the thick matter in the direction of the passage opening of the thick matter valve with a forward movement.
  • the flow rates of the two delivery cylinders can be separated before the thick matter valve and combined with the thick matter valve to form a common flow rate.
  • the flow from the first feed cylinder can enter the interior of the thick matter valve through the first passage opening of the thick matter valve.
  • the flow from the second feed cylinder can enter the interior of the thick matter valve through the second passage opening of the thick matter valve.
  • the pistons can be controlled in such a way that the backward movement takes place within a shorter period of time than the forward movement.
  • the start of the forward movement of one piston may overlap with the end of the forward movement of the other piston. There is then a period of time in which both pistons convey material in the direction of the thick matter valve in parallel.
  • the switching positions of the thick matter valve can be coordinated with the movement of the pistons in the delivery cylinders.
  • the piston of the first feed cylinder is in the forward movement and the piston of the second feed cylinder is in the backward movement, the thick matter valve can be switched to the first state in which the first passage opening is free and the second passage opening is closed.
  • the thick matter valve can be switched to the second state in which the second passage opening is free and the first passage opening is closed.
  • the thick matter valve In the intermediate phase, in which the pistons of both delivery cylinders are in the forward movement, the thick matter valve can be switched into a state in which none of the through openings is closed. Both through openings are preferably free in this intermediate state of the thick material valve.
  • the piston of the first delivery cylinder is in the backward movement and the piston of the second delivery cylinder is in the forward movement, there is a pressure difference across the first passage opening of the thick matter valve.
  • the pressure in the interior of the thick matter valve essentially corresponds to the pressure that the piston of the second feed cylinder exerts on the material with its forward movement.
  • the suction pressure of the first delivery cylinder which is significantly lower, is present in front of the first passage opening. This pressure difference can be used as described above to increase the sealing effect between the valve member and the first passage opening.
  • the piston of the second delivery cylinder is in the backward movement and the piston of the first delivery cylinder is in the forward movement, then the corresponding pressure difference is present across the first opening of the thick matter valve.
  • the thick matter valve can therefore be set up in such a way that the switching process takes place when there is a pressure difference above the valve member which is reduced compared to this pressure difference.
  • the switching process only takes place when the backward movement of the piston is completed, the passage opening of which is closed by the valve member. It can also be advantageous that the switching process only takes place when the piston in question has started its forward movement, so that a pressure has already been built up again in front of the passage opening in question.
  • the thick matter valve can be set up so that the switching process is completed before the backward movement of the other piston begins.
  • the thick matter valve can be set up in such a way that the switching process is completed before the forward movement of the other piston has ended.
  • the switching process can be designed such that the valve member is moved from a first switching state, in which one of the passage openings is closed and the other passage opening is free, to an intermediate state, in which none of the passage openings is closed, in a second switching state, in which the other passage opening is closed or free.
  • the pump can be set up in such a way that the switching operations of the valve member are only carried out when the pressure difference across the valve member is small.
  • the above statements refer to the pump operation of the pump.
  • the pump can also be operated in the reverse direction in a suction mode.
  • the suction operation can serve, for example, to clean the thick matter valve and an adjoining delivery line or to remove a blockage in this area.
  • the interplay of the delivery cylinder and the thick matter valve is then coordinated with one another in the reverse manner.
  • valve member In suction operation, a pressure difference across the valve member tends to reduce the sealing effect of the valve member.
  • the valve member should therefore be designed such that it has a sufficient sealing effect even under such a negative pressure difference, in that a force acting in the direction of the passage opening is exerted on the sealing part via the pivoting part.
  • a thick matter pump 15 is arranged in the form of a concrete pump.
  • the thick matter pump 15 comprises a prefilling container 16, into which the concrete is poured from a supply (not shown).
  • the thick matter pump 15 sucks the concrete out of the prefilling container and conveys the concrete through a connecting pipe 17 which extends along a distribution boom 18.
  • the placing boom 18 is mounted on a slewing ring 19 and can be folded out over several joints, so that the end of the tube 17 can be brought into a position spaced apart from the truck 14. In this position, the concrete is brought out of the connecting pipe 17.
  • the thick matter pump comprises according to Fig. 2 a first feed cylinder 21 and a second feed cylinder 22.
  • Each feed cylinder 21, 22 comprises a piston which sucks concrete out of the prefilling container 16 with a backward movement and which conveys the concrete towards an outlet 23 of the pump with a forward movement.
  • a first inlet valve 24 is assigned to the first feed cylinder 21.
  • the inlet valve 24 is opened during the backward movement of the first delivery cylinder 21, so that the delivery cylinder 21 can suck in concrete from the prefilling container 16.
  • the inlet valve 24 is closed during the forward movement of the first delivery cylinder 21, so that the concrete in Direction pump outlet 23 can be promoted.
  • the second feed cylinder 22 is assigned a second inlet valve 25, the switching operations of which are matched to the backward and forward movements of the second feed cylinder 22.
  • the pump comprises a thick matter valve 26, which forms a common outlet valve for the first delivery cylinder 21 and the second delivery cylinder 22.
  • the thick matter valve 26 comprises a first passage opening 27 for concrete conveyed with the first delivery cylinder 21 and a second passage opening 28 for concrete conveyed with the second delivery cylinder 22.
  • a valve member 32 of the thick material valve closes the first passage opening 27 and leaves the second passage opening 28 open.
  • the thick matter valve 26 closes the second passage opening 28 and leaves the first passage opening 27 open.
  • both passage openings 27, 28 are open.
  • the two feed cylinders 21, 22 are driven so that the backward movement takes place within a shorter period of time than the forward movement.
  • the beginning of the forward movement of one delivery cylinder overlaps with the end of the forward movement of the other delivery cylinder.
  • Concrete is conveyed in the direction of the thick matter valve 26 by at least one of the delivery cylinders 21, 22 at all times.
  • the valve member 32 of the thick matter valve 26 is actively switched between the different switching states via a drive. If the first feed cylinder 21 is in the forward movement and the second feed cylinder 22 is in the backward movement, the thick matter valve 26 is in the switching state 30, in which only the material flow coming from the first feed cylinder 21 can pass through the thick matter valve 26. If the second feed cylinder 22 is in the forward movement and the first feed cylinder 21 is in the backward movement, the thick matter valve 26 is in the switching state 29 in which only the material flow coming from the second feed cylinder 22 can pass through the thick matter valve 26. In the overlapping phase, in which both delivery cylinders 21, 22 are in the forward movement, the thick matter valve 26 is in the intermediate state 31, in which the material flows from both delivery cylinders 21, 22 can pass through the thick matter valve 26.
  • Both feed cylinders 21, 22 have a basic speed for the forward movement.
  • the basic speed of the forward movement is used while the other feed cylinder 21, 22 is in the backward movement.
  • the material flow, which is conveyed in the direction of the pump outlet 23 in this phase, is defined by the basic speed.
  • the speed is reduced compared to the basic speed in such a way that the speeds of the two forward movements add up to the basic speed. In this way, a constant material flow in the direction of the pump outlet 23 is maintained even during the overlap phase.
  • the Fig. 3 shows the thick matter pump according to the invention in a perspective view.
  • the inlet valve 25 is in the open state, so that the associated inlet opening 45 of the pump is continuous and that thick matter from the prefilling container 16 ( Fig. 1 ) can be sucked in.
  • the first inlet valve 24 is closed Status. When the piston of the first delivery cylinder 21 is in the forward movement, the material flow moves through the first passage opening 27 of the thick matter valve 26 in the direction of the pump outlet 23, see Fig. 4 .
  • valve member 32 of the thick matter valve 26 is switched such that it closes the passage opening 27 of the first delivery cylinder 21 and that it leaves the passage opening 28 of the second delivery cylinder 22 open.
  • the inlet valve 25 of the second feed cylinder 22 is closed, see Figure 5B .
  • the second delivery cylinder 22 is in the forward movement and conveys concrete through the passage opening 28 into the interior of the thick matter valve 26 and to the pump outlet 23.
  • the sealing effect between the valve member 32 and the passage opening 27 is increased by the pressure difference applied across the valve member 32.
  • the inlet valve 24 of the first delivery cylinder 21 is open, so that the first delivery cylinder 21 can suck concrete out of the prefilling container 16 with a backward movement through the inlet opening 44 of the pump.
  • the backward movement of the first delivery cylinder 21 ends earlier than the forward movement of the second delivery cylinder 22.
  • Fig. 6 the state is shown in which the forward movement of the first delivery cylinder 21 begins and the forward movement of the second delivery cylinder 22 is close to the end. Both inlet valves 24, 25 are closed.
  • the switching of the thick substance valve 26 into the intermediate state 31 begins after the first delivery cylinder 21 has already built up pressure in front of the passage opening 27, so that there is only a slight pressure difference across the valve member 32.
  • the thick matter valve is 26 in the intermediate state 31, in which the valve member 32 leaves both the first passage opening 27 and the second passage opening 28 free.
  • the speed of the forward movement is reduced in the case of both delivery cylinders 21, 22, so that the delivery cylinders 21, 22 now together convey the amount of material that the second delivery cylinder 22 alone previously transported.
  • the inlet valve 25 is opened, see Fig. 7 .
  • the second delivery cylinder 22 can already perform a first backward movement before opening the inlet valve 25.
  • the inlet valve 25 is open, the second feed cylinder 22 sucks concrete out of the prefill container 16 with a backward movement through the inlet opening 45 of the pump.
  • the first feed cylinder 21 moves forward at its basic speed, so that the material flow to the pump outlet 23 remains unchanged.
  • Fig. 8 begins the forward movement of the second feed cylinder 22 again, while the forward movement of the first feed cylinder 21 ends. With the end of the forward movement of the first delivery cylinder 21, the cycle ends and the pump returns to the state according to Fig. 5 about.
  • the valve member 32 of the thick matter valve 26 comprises according to Fig. 9 a swivel part 34 and a sealing part 35.
  • the swivel part 34 comprises two sections of a shaft 33, via which the swivel part is rotatably mounted with respect to a swivel axis 36. Between the shaft 33 and the sealing part 35 is an in Fig. 9 only schematically illustrated connection structure 48 is formed. The radial distance between the sealing part 35 and the shaft 33 can be changed via the connection structure 48.
  • connection structure 48 is rigid with respect to torques. If the shaft is rotated through a certain angle, the sealing part 35 performs a pivoting movement through the same angle.
  • the underside of the sealing part 35 forms a sealing surface 38 in the form of a cylinder segment aligned concentrically with the pivot axis 36.
  • the housing of the thick matter valve 26 has a matching counter surface, which also has the shape of a cylinder segment.
  • the passage openings 27, 28 of the thick material valve 26 are formed in the counter surface.
  • the sealing surface 38 of the valve member 32 interacts with the counter surface of the valve housing and, depending on the switching state, can either seal the passage opening 27 or the passage opening 28.
  • a state of the thick material valve is shown in which a higher pressure is present in the interior of the thick material valve than in front of the passage opening 27, which is closed with the sealing part 35.
  • the valve member 32 has an outer surface 43 opposite the sealing surface 38, on which the pressure of the material located in the thick material valve 26 acts in the radial direction. The pressure difference from the outside helps to increase the sealing effect between the valve member 32 and the valve housing.
  • the valve member 32 also has two outer surfaces 44, 45 arranged symmetrically to one another. A pressure of the material acting on the outer surfaces 44, 45 also has a component in the radial direction, so that the outer surfaces 44, 45 also contribute to strengthening the sealing effect.
  • the pivot member 34 comprises a pin 50 which in a matching recess of the sealing part 35 engages.
  • a slide guide is formed with the pin 50, along which the sealing part 35 can move in the radial direction relative to the shaft 33.
  • the sliding guide is rigid with respect to forces in other directions.
  • a plate 37 made of an elastic material is arranged between the pivoting part 34 and the sealing part 35.
  • the plate 37 is part of the connection structure between the swivel part 34 and the sealing part 35.
  • the pressure in the radial direction enables the plate 37 to be elastically compressed, as a result of which the sealing part 35 is brought closer to the swivel part 34 along the sliding guide.
  • the thick matter valve 26 according to the invention is set up in the delivery state in such a way that the plate 37 is elastically compressed and the sealing part 35 consequently rests under an elastic pressure on the valve housing which the plate 37 exerts in the radial direction. If the valve member 32 or the valve housing is worn during operation of the pump, this can be compensated for automatically by expanding the elastic plate 37. In suction operation, the plate 37 ensures that there is sufficient contact pressure between the sealing part 35 and the valve housing.
  • the valve member 32 shown is also designed such that a space is enclosed between two shaft ends 33, so that the material flow can move directly from the passage openings 27, 28 in the direction of the pump outlet 23.
  • the pivot part 34 comprises two legs 51, 52 which extend in the radial direction and which enclose the free space between them. Extends in the radial direction the free space extends over more than 50% of the distance between the pivot axis 36 and the sealing surface 38.
  • a space is also enclosed between two shaft ends 33 in order to facilitate the movement of the delivery flow in the direction of the outlet opening.
  • a central leg 53 extends in the radial direction and is centrally connected to the sealing part 35. There is sufficient space around the leg 53 for the movement of the material flow. Otherwise, the connection structure is analogous to Fig. 11 designed with an elastic plate 37 and an in Fig. 12 invisible sliding guide.
  • FIG. 13 An alternative embodiment of a valve member 32 according to the invention is shown.
  • the sealing part 35 extends around the swivel part 34, so that a portion of the swivel part 34 is received in the interior of the sealing part.
  • the swivel part 34 has a rectangular cross section in the interior of the sealing part 35.
  • the sealing part 35 has a slot matching the rectangular cross section, in which elastic elements 37 are arranged above and below the pivoting part 34, so that the sealing part 35 can move in the radial direction relative to the pivoting part 34, while a relative rotational movement between the sealing part 35 and the swivel part 34 is excluded.
  • the pivoting part 34 comprises a lever 39, on which a drive can engage in order to switch the valve member 32 between the different switching states.
  • the valve member 32 is dimensioned such that it rests with its two end faces pointing in the axial direction directly on the housing 46 of the thick material valve 26.
  • the end faces of the valve member are designed as scratches 55. The scratches 55 push the thick material aside along the end face of the housing during a switching operation of the valve member 32.
  • the side surfaces 57 of the valve member are designed as guide surfaces.
  • the material flow is directed along the guide surfaces in the direction of the outlet opening of the thick matter valve.
  • the valve member 32 is provided with a recess 56 through which the movement of the material flow in the direction of the outlet opening is facilitated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lift Valve (AREA)
  • Reciprocating Pumps (AREA)
  • Sliding Valves (AREA)
  • Multiple-Way Valves (AREA)
  • Details Of Reciprocating Pumps (AREA)

Description

  • Die Erfindung betrifft ein Dickstoffventil mit einer ersten Durchtrittsöffnung, einer zweiten Durchtrittsöffnung und mit einem Ventilglied, das mit beiden Durchtrittsöffnungen zusammenwirkt.
  • Solche Ventile kommen beim Fördern von Dickstoffen, wie beispielsweise Frischbeton oder Mörtel zum Einsatz. Dabei gibt es einen ersten Förderzustand, in dem der Dickstoff durch die erste Durchtrittsöffnung hindurchtritt, und einen zweiten Förderzustand, in dem der Dickstoff durch die zweite Durchtrittsöffnung hindurchtritt. Das Dickstoffventil dient dazu, die für den jeweiligen Förderzustand passende Durchtrittsöffnung für den Dickstoff freizugeben.
  • Dickstoffventile, bei denen ein Ventilglied zwei Durchtrittsöffnungen zugeordnet ist, sind bekannt, siehe DE 10 2013 215 990 A1 , US 8,827,657 , DE 195 93 986 A1 , DE 10 2005 008 938 A1 . Das Ventilglied hat die Form eines S-förmigen Rohrabschnitts, dessen eines Ende wahlweise mit der ersten Durchtrittsöffnung oder der zweiten Durchtrittsöffnung gekoppelt werden kann. Dies ist mechanisch aufwändig. Dokument BE 903 984 A stellt eine Pumpe mit zwei Zylindern, einer Ventilkammer und einem Ventil vor, wobei das Ventil ein Schmetterlingsventil sein kann und die Ventilkammer rechteckig sein kann.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Dickstoffventil vorzustellen, das einfacher aufgebaut ist. Ausgehend vom genannten Stand der Technik wird die Aufgabe gelöst mit den Merkmalen des Anspruchs 1. Vorteilhafte Ausführungsformen sind in den Unteransprüchen angegeben.
  • Bei dem erfindungsgemäßen Dickstoffventil ist das den beiden Durchtrittsöffnungen zugeordnete Ventilglied bezogen auf eine Schwenkachse schwenkbar gelagert und hat eine konzentrisch zu der Schwenkachse gewölbte Dichtfläche. In einem ersten Zustand gibt das Ventilglied die erste Durchtrittsöffnung frei und verschließt die zweite Durchtrittsöffnung. In einem zweiten Zustand gibt das Ventilglied die zweite Durchtrittsöffnung frei und verschließt die erste Durchtrittsöffnung. In einer Variante der Erfindung umfasst das Ventilglied ein Dichtteil und ein Schwenkteil. Das Schwenkteil ist in der Schwenkachse drehbar gelagert. Das Dichtteil ist über eine Verbindungsstruktur mit dem Schwenkteil verbunden.
  • Durch die erfindungsgemäße Gestaltung gibt es eine einfache räumliche Zuordnung zwischen den Durchtrittsöffnungen und der Schwenkachse des Ventilglieds, wodurch eine konstruktiv einfache Gestaltung des Dickstoffventils möglich wird. Wenn das Dichtteil über eine Verbindungsstruktur mit dem Schwenkteil verbunden ist, kann eine zuverlässige Dichtwirkung zwischen dem Dichtteil und den Durchtrittsöffnungen erreicht werden.
  • Dickstoff ist ein Oberbegriff für schwer förderbare Medien. Bei dem Dickstoff kann es sich beispielsweise um einen Stoff mit grobkörnigen Bestandteilen, einen Stoff mit aggressiven Bestandteilen oder Ähnliches handeln. Der Dickstoff kann auch ein Schüttgut sein. In einer Ausführungsform ist der Dickstoff Frischbeton. Frischbeton enthält Körner bis zu einer Größe von mehr als 30 mm, bindet ab, bildet Ablagerungen in Toträumen und ist aus diesen Gründen schwierig zu fördern.
  • Das Ventilglied kann in einem Innenraum des Dickstoffventils angeordnet sein. Das erfindungsgemäße Dickstoffventil kann so gestaltet sein, dass der Dickstoff durch die Durchtrittsöffnungen in den Innenraum des Dickstoffventils eintritt. Das Dickstoffventil kann zusätzlich eine Ausgangsöffnung umfassen durch die der eingetretene Dickstoff das Ventil wieder verlässt. An die Ausgangsöffnung kann ein Rohr angeschlossen sein, durch das der weitere Transport des Dickstoffs erfolgt. Der Weg zwischen den Durchtrittsöffnungen und der Ausgangsöffnung kann so eingerichtet sein, dass er sich nicht durch das Ventilglied hindurch erstreckt.
  • Die erste und die zweite Durchtrittsöffnung können jeweils eine Dichtfläche aufweisen, die dazu ausgelegt ist, mit der Dichtfläche des Ventilglieds zusammenzuwirken. Bei der Dichtfläche kann es sich beispielsweise um eine Innenfläche eines Gehäuses des Dickstoffventils handeln, die sich rund um die Durchtrittsöffnung herum erstreckt. Die Dichtflächen der Durchtrittsöffnungen können eine zu der Schwenkachse des Ventilglieds konzentrische Wölbung aufweisen. Durch die konzentrische Wölbung der zusammenwirkenden Dichtflächen kann das Ventilglied um die Schwenkachse, die der Achse der Wölbung entspricht, verdreht werden. Dadurch wird es möglich, dass eine der Öffnungen frei durchströmbar ist, während andererseits die Dichtfläche des Ventilglieds dichtend mit der Dichtfläche der anderen Durchtrittsöffnung zusammenwirkt. Der Begriff Dichten ist mit Bezug auf das Anwendungsgebiet zu verstehen, in dem eine hundertprozentige Dichtheit nicht gefordert ist.
  • In einer Ausführungsform entspricht die konzentrische Wölbung einem Segment eines Zylindermantels, wobei die Zylinderachse gleich der Schwenkachse ist. Bei dieser Ausführungsform ist der radiale Abstand zwischen der Dichtfläche des Ventilglieds und der Schwenkachse über die Länge der Schwenkachse konstant. Umfasst sind auch Ausführungsformen, bei denen der radiale Abstand längs der Schwenkachse variiert. In jedem Fall kann die Wölbung in Umfangsrichtung einem Kreissegment entsprechen.
  • Zwischen der ersten Durchtrittsöffnung und der zweiten Durchtrittsöffnung kann eine Zwischenfläche angeordnet sein, die ebenfalls eine zu der Schwenkachse konzentrische Wölbung aufweist. Dadurch kann eine durchgehende zu der Schwenkachse konzentrische Kontur geschaffen werden, die sich von der ersten Durchtrittsöffnung über die Zwischenfläche bis zu der zweiten Durchtrittsöffnung erstreckt.
  • Neben den genannten Schaltzuständen, in denen das Ventilglied die erste bzw. die zweite Durchtrittsöffnung verschließt, kann das Dickstoffventil einen dritten Schaltzustand (Zwischenzustand) umfassen, in dem sowohl die erste Durchtrittsöffnung als auch die zweite Durchtrittsöffnung freigegeben sind. In dem Zwischenzustand kann das Ventilglied zwischen der ersten Durchtrittsöffnung und der zweiten Durchtrittsöffnung angeordnet sein. Der Abstand zwischen den beiden Durchtrittsöffnungen kann so groß sein, dass beide Durchtrittsöffnungen vollständig freigegeben sind. Dies hat den Vorteil, dass die Kanten der Dichtfläche nicht dem Materialstrom ausgesetzt sind, der sich durch die Öffnungen hindurch erstreckt. Möglich ist auch, dass eine oder beide Durchtrittsöffnungen noch teilweise von dem Ventilglied überdeckt sind.
  • Das Ventilglied kann ein Dichtteil und ein Schwenkteil umfassen, wobei das Schwenkteil in der Schwenkachse drehbar gelagert ist. An dem Schwenkteil kann ein motorischer Antrieb angreifen, um die Schaltvorgänge zwischen den verschiedenen Zuständen des Dickstoffventils zu bewirken.
  • Das Ventilglied kann eine Verbindungsstruktur umfassen, die eine Verbindung zwischen dem Dichtteil und dem Schwenkteil herstellt. Die Verbindungsstruktur kann so gestaltet sein, dass sie starr ist gegenüber Drehmomenten, die relativ zu der Schwenkachse wirken. Starr in diesem Sinne bedeutet, dass bei einer Drehung des Schwenkteils relativ zu der Schwenkachse auch das Dichtteil die entsprechende Schwenkbewegung vollzieht.
  • Bezogen auf die Radialrichtung kann die Verbindungsstruktur eine Bewegung des Dichtteils relativ zu dem Schwenkteil zulassen. Durch eine solche Relativbewegung kann der radiale Abstand zwischen der Dichtfläche und der Schwenkachse so angepasst werden, dass sich die gewünschte Dichtwirkung zwischen dem Ventilglied und der Durchtrittsöffnung einstellt.
  • Die Verbindungsstruktur kann ein zwischen dem Dichtteil und dem Schwenkteil angeordnetes elastisches Element umfassen. Im Anfangszustand des Dickstoffventils kann das elastische Element komprimiert sein. Kommt es im Laufe des Betriebs zu einem Verschleiß zwischen den Dichtflächen, so dehnt sich das elastische Element aus. Der Verschleiß wird also automatisch ausgeglichen.
  • Zusätzlich oder alternativ dazu kann das erfindungsgemäße Ventilglied einen Antrieb umfassen, um das Dichtteil in Radialrichtung relativ zu dem Schwenkteil zu bewegen. Der Antrieb kann genutzt werden, um die Position des Dichtteils zu dem Schwenkteil im Betrieb anzupassen. Möglich ist auch, den Antrieb zu nutzen, um die Federspannung des elastischen Elements zu justieren. Der Antrieb kann beispielsweise ein hydraulischer Antrieb oder ein mechanischer Antrieb sein.
  • In einer Variante umfasst das Ventilglied eine starre Verbindung zwischen der Dichtfläche und der schwenkbar gelagerten Welle bzw. den schwenkbar gelagerten Wellenstummeln. Eine radiale Beweglichkeit der Dichtfläche relativ zu dem Ventilgehäuse kann daraus resultieren, dass die Welle bzw. die Wellenstummel elastisch gegenüber dem Ventilgehäuse gelagert sind. Beispielsweise können eines oder mehrere elastische Elemente vorgesehen sein, die sich um die Welle bzw. die Wellenstummel herum erstrecken. Diese Ausführungsform hat den Vorteil, dass die elastischen Elemente nicht durch den Dickstoffstrom beeinträchtigt werden.
  • Das Ventilglied kann in einem Gehäuse des erfindungsgemäßen Dickstoffventils angeordnet sein. Das Ventilglied kann benachbart zu einer Stirnwand des Gehäuses angeordnet sein, wobei die Stirnachse rechtwinklig zu der Schwenkachse ausgerichtet ist. Die Schwenkbewegung des Ventilglieds verläuft dann parallel zu der Stirnwand. Das Ventilglied kann von der Stirnwand beabstandet sein, so dass auch die grobkörnigen Bestandteile des Dickstoffs zwischen dem Ventilglied und der Stirnwand Platz haben. Damit wird die Betätigung des Ventilglieds erleichtert.
  • In einer alternativen Ausführungsform ist der Abstand zwischen dem Ventilglied und der Stirnwand kleiner als die grobkörnigen Bestandteile des Dickstoffs. Das Ventilglied kann einen Kratzer umfassen, der beim Betätigen des Ventilglieds den Dickstoff entlang der Stirnwand zur Seite schiebt, sodass keine Körner zwischen dem Ventilglied und der Stirnwand eingeklemmt werden können. Der Kratzer kann auf der Stirnwand aufliegen oder einen geringfügigen Abstand zu der Stirnwand haben.
  • Das Gehäuse kann eine zweite Stirnwand aufweisen, sodass das Ventilglied zwischen der ersten und der zweiten Stirnwand angeordnet ist. Das Zusammenwirken zwischen dem Ventilglied und der zweiten Stirnwand kann entsprechend gestaltet sein.
  • Eine Welle des Ventilglieds kann in dem Gehäuse des Dickstoffventils gelagert sein. Dabei können zwei Lager so angeordnet sein, dass sie das Ventilglied zwischen sich einschließen. Zwischen den Lagern kann sich eine Welle erstrecken, die ein Bestandteil des Schwenkteils des Ventilglieds ist.
  • Das erfindungsgemäße Dickstoffventil kann so gestaltet sein, dass eine gerade Verbindungsstrecke zwischen einer Eingangsöffnung und der Ausgangsöffnung des Dickstoffventils die Schwenkachse schneidet. Erstreckt sich eine Welle des Ventilglieds durchgehend entlang der Schwenkachse, so muss der Materialstrom entlang einem gekrümmten Weg an der Welle vorbeigeführt werden.
  • Um den Strömungswiderstand gering zu halten, kann das Ventilglied eine Leitfläche umfassen, mit der der Materialstrom an der Welle vorbei geleitet wird. Die Leitfläche kann an die Dichtfläche anschließen (bezogen auf die Bewegungsrichtung des Ventilglieds) und einen im Wesentlichen geraden Weg an dem Ventilglied und der Schwenkachse vorbei definieren. Die Leitfläche kann eine ebene Leitfläche sein, die insbesondere parallel zu der Schwenkachse ausgerichtet sein kann. An ihrem zu der Ausgangsöffnung benachbarten Ende kann die Leitfläche mit einer Ausnehmung versehen sein, um den Übergang des Materialstroms in die Ausgangsöffnung zu erleichtern. Das Ventilglied kann zwei solcher Leitflächen umfassen, wobei die Dichtfläche zwischen den Leitflächen eingeschlossen ist. Je nach Schaltzustand des Ventils kann der Materialstrom entweder an der einen und/oder der anderen Leitfläche entlang geleitet werden.
  • Eine solche Leitfläche kann insbesondere dann von Vorteil sein, wenn das Ventilglied so gestaltet ist, dass die Schwenkachse im Körper des Ventilglieds eingeschlossen ist. Das elastische Element des Ventilglieds kann sich um die Welle des Ventilglieds herum erstrecken oder zwischen der Schwenkachse und der Dichtfläche angeordnet sein.
  • Um den Strömungswiderstand gering zu halten, kann die Welle zwei Wellenstummel umfassen, die in Lagern des Ventilgehäuses geführt sind. Die Verbindung zwischen den beiden Wellenstummeln kann über eine Verbindungsstruktur hergestellt werden, deren Abstand zu der Dichtfläche geringer ist als der Abstand zwischen der Schwenkachse und der Dichtfläche. Indem die Verbindungsstruktur sich nicht entlang der Schwenkachse erstreckt, sondern näher an der Dichtfläche angeordnet ist, bleibt ein Freiraum, der für den Materialstrom auf seinem Weg zu der Ausgangsöffnung zur Verfügung steht. Insbesondere kann die Verbindungsstruktur so gestaltet sein, dass eine Gerade, die sich vom Mittelpunkt der nicht verschlossenen Durchtrittsöffnung zum Mittelpunkt der Austrittsöffnung erstreckt das Ventilglied nicht schneidet.
  • Für die Verbindung zwischen der Welle und dem Dichtteil kann die Verbindungsstruktur einen Schenkel umfassen, der sich zu dem Dichtteil erstreckt. Insbesondere kann der Schenkel in radialer Richtung ausgerichtet sein. Bezogen auf das Dichtteil kann der Schenkel mittig angeordnet sein. Wenn der Schenkel einen Abstand zu den Stirnwänden des Ventilgehäuses hat, so kann er gut von dem Dickstoff umströmt werden.
  • Möglich ist auch, dass die Verbindungsstruktur zwei Schenkel umfasst, die sich in Richtung Dichtteil erstrecken. Die Schenkel können parallel zueinander sein und in radialer Richtung ausgerichtet sein. Die Schenkel können so angeordnet sein, dass ein zwischen der Schwenkachse und dem Zentrum des Dichtteils angeordneter Bereich freigehalten wird, sodass er von dem Dickstoff durchströmt werden kann. Bezogen auf den Abstand zwischen der Schwenkachse und der Dichtfläche des Ventilglieds kann der freigehaltene Bereich sich über wenigstens 10 %, vorzugsweise wenigstens 30 %, weiter vorzugsweise wenigstens 50 % erstrecken.
  • Die beiden Schenkel können einen Abstand zu den Stirnwänden des Gehäuses aufweisen. Alternativ können die Schenkel als Kratzer ausgebildet sein, sodass der Dickstoff bei einer Betätigung des Ventilglieds entlang der Stirnfläche beiseitegeschoben wird.
  • Wird das erfindungsgemäße Dickstoffventil so verwendet, dass der Materialstrom durch eine der Durchtrittsöffnungen in den Innenraum des Ventils eintritt, sich an dem Ventilglied vorbei erstreckt und das Ventil durch eine Ausgangsöffnung wieder verlässt (Pumpbetrieb), so liegt regelmäßig eine Druckdifferenz zwischen dem Innenraum des Dickstoffventils und einem Außenraum an, der sich an die mit dem Ventilglied verschlossene Durchtrittsöffnung anschließt. Das Dickstoffventil kann so gestaltet sein, dass durch die Druckdifferenz eine Kraft auf das Ventilglied ausgeübt wird, die die Dichtwirkung verstärkt.
  • Ist der Druck im Innenraum höher als im Außenraum, so kann das Ventilglied in radialer Richtung gegen die Dichtfläche der Durchtrittsöffnung gedrückt werden. Die Richtungsangabe radial bezieht sich auf die Schwenkachse des Ventilglieds. Das Ventilglied kann zu diesem Zweck eine Außenfläche umfassen, durch die ein in dem Innenraum anliegender Druck in eine in radialer Richtung wirkende Kraft umgesetzt wird. Außenfläche bezeichnet einen Bereich des Ventilglieds, der mit dem Dickstoff im Innenraum des Dickstoffventils in Berührung steht.
  • Insbesondere kann das Ventilglied eine Außenfläche aufweisen, die der Dichtfläche gegenüberliegt. Die Außenfläche kann so ausgerichtet sein, dass sie die Radialrichtung senkrecht schneidet. Ein auf die Außenfläche wirkender Druck ist dann so ausgerichtet, dass er direkt die Dichtwirkung verstärkt.
  • Möglich ist auch, dass das Ventilglied eine bezogen auf die Radialrichtung geneigte Außenfläche aufweist, sodass lediglich ein Anteil der Druckkraft in Richtung der Dichtfläche wirkt. Das Ventilglied kann auch zwei gegensinnig orientierte geneigte Außenflächen aufweisen. Gegensinnig bedeutet, dass die Außenflächen so ausgerichtet sind, dass die in radialer Richtung wirkenden Komponenten der Druckkraft sich addieren.
  • Wird das erfindungsgemäße Dickstoffventil so eingesetzt, dass der Materialstrom in umgekehrter Richtung fließt (Saugbetrieb), so kann die Druckdifferenz im Allgemeinen nicht genutzt werden, um die Dichtwirkung des Ventilglieds zu verstärken. Die Dichtwirkung resultiert dann in erster Linie aus der Kraft, die ausgehend von dem Schwenkteil auf das Dichtteil ausgeübt wird. Diese Kraft kann sich wie dargelegt entweder aus einer elastischen Vorspannung oder aus einem aktiven Antrieb ergeben.
  • Die Erfindung betrifft außerdem eine mit einem solchen Dickstoffventil ausgestattete Pumpe. Das Dickstoffventil kann so angeordnet sein, dass in einem Pumpbetrieb das von dem Förderorgan der Pumpe in Bewegung versetzte Material durch die erste und/oder die zweite Öffnung in den Innenraum des Dickstoffventils eintritt.
  • Die Pumpe kann einen ersten Förderzylinder und einen zweiten Förderzylinder umfassen. In jedem der Förderzylinder kann ein Kolben angeordnet sein, der im Pumpbetrieb mit einer Rückwärts-Bewegung Dickstoff in den Innenraum des Förderzylinders einsaugt und der mit einer Vorwärts-Bewegung den Dickstoff in Richtung der Durchtrittsöffnung des Dickstoffventils fördert.
  • Die Förderströme der beiden Förderzylinder können vor dem Dickstoffventil getrennt sein und mit dem Dickstoffventil zu einem gemeinsamen Förderstrom vereinigt werden. Der Förderstrom von dem ersten Förderzylinder kann durch die erste Durchtrittsöffnung des Dickstoffventils in den Innenraum des Dickstoffventils eintreten. Der Förderstrom von dem zweiten Förderzylinder kann durch die zweite Durchtrittsöffnung des Dickstoffventils in den Innenraum des Dickstoffventils eintreten.
  • Die Kolben können so angesteuert sein, dass die Rückwärts-Bewegung innerhalb einer kürzeren Zeitspanne erfolgt als die Vorwärts-Bewegung. Der Beginn der Vorwärts-Bewegung des einen Kolbens kann sich überschneiden mit dem Ende der Vorwärts-Bewegung des anderen Kolbens. Es gibt dann eine Zeitspanne, in der beide Kolben parallel Material in Richtung des Dickstoffventils befördern.
  • Die Schaltstellungen des Dickstoffventils können mit der Bewegung der Kolben in den Förderzylindern abgestimmt sein. Befindet sich der Kolben des ersten Förderzylinders in der Vorwärts-Bewegung und der Kolben des zweiten Förderzylinders in der Rückwärts-Bewegung, so kann das Dickstoffventil in den ersten Zustand geschaltet sein, in dem die erste Durchtrittsöffnung frei ist und die zweite Durchtrittsöffnung verschlossen ist. Befindet sich der Kolben des zweiten Förderzylinders in der Vorwärts-Bewegung und der Kolben des ersten Förderzylinders in der Rückwärts-Bewegung, so kann das Dickstoffventil in den zweiten Zustand geschaltet sein, in dem die zweite Durchtrittsöffnung frei ist und die erste Durchtrittsöffnung verschlossen ist. In der Zwischenphase, in der sich die Kolben beider Förderzylinder in der Vorwärts-Bewegung befinden, kann das Dickstoffventil in einen Zustand geschaltet sein, in dem keine der Durchtrittsöffnungen verschlossen ist. Bevorzugt sind beide Durchtrittsöffnungen in diesem Zwischenzustand des Dickstoffventils frei.
  • Befindet sich der Kolben des ersten Förderzylinders in der Rückwärts-Bewegung und der Kolben des zweiten Förderzylinders in der Vorwärts-Bewegung, so liegt eine Druckdifferenz über der ersten Durchtrittsöffnung des Dickstoffventils an. Der Druck im Innenraum des Dickstoffventils entspricht im Wesentlichen dem Druck, den der Kolben des zweiten Förderzylinders mit seiner Vorwärts-Bewegung auf das Material ausübt. Vor der ersten Durchtrittsöffnung liegt der Saugdruck des ersten Förderzylinders an, der wesentlich niedriger ist. Diese Druckdifferenz kann wie oben beschrieben genutzt werden, um die Dichtwirkung zwischen dem Ventilglied und der ersten Durchtrittsöffnung zu verstärken. Ist umgekehrt der Kolben des zweiten Förderzylinders in der Rückwärts-Bewegung und der Kolben des ersten Förderzylinders in der Vorwärts-Bewegung, so liegt die entsprechende Druckdifferenz über der ersten Öffnung des Dickstoffventils an.
  • Für einen Schaltvorgang des Dickstoffventils ist eine über dem Ventilglied anliegende Druckdifferenz hinderlich. Das Dickstoffventil kann deswegen so eingerichtet sein, dass der Schaltvorgang dann stattfindet, wenn über dem Ventilglied eine Druckdifferenz anliegt, die gegenüber dieser Druckdifferenz vermindert ist. Dazu ist es von Vorteil, wenn der Schaltvorgang erst dann stattfindet, wenn die Rückwärtsbewegung des Kolbens abgeschlossen ist, dessen Durchtrittsöffnung mit dem Ventilglied verschlossen ist. Weiter von Vorteil kann es sein, dass der Schaltvorgang erst dann stattfindet, wenn der betreffende Kolben seine Vorwärts-Bewegung begonnen hat, sodass vor der betreffenden Durchtrittsöffnung bereits wieder ein Druck aufgebaut wurde.
  • Das Dickstoffventil kann so eingerichtet sein, dass der Schaltvorgang abgeschlossen ist, bevor die Rückwärts-Bewegung des anderen Kolbens beginnt. Insbesondere kann das Dickstoffventil so eingerichtet sein, dass der Schaltvorgang abgeschlossen ist, bevor die Vorwärts-Bewegung des anderen Kolbens beendet ist. Der Schaltvorgang kann so gestaltet sein, dass das Ventilglied von einem ersten Schaltzustand, in dem eine der Durchtrittsöffnungen geschlossen ist und die andere Durchtrittsöffnung frei ist, über einen Zwischenzustand, in dem keine der Durchtrittsöffnungen geschlossen ist, in einen zweiten Schaltzustand bewegt wird, in dem die jeweils andere Durchtrittsöffnung geschlossen bzw. frei ist. Insbesondere kann die Pumpe so eingerichtet sein, dass die Schaltvorgänge des Ventilglieds nur dann vorgenommen werden, wenn die über dem Ventilglied anliegende Druckdifferenz klein ist.
  • Die vorstehenden Ausführungen beziehen sich auf den Pumpbetrieb der Pumpe. Die Pumpe kann auch in umgekehrter Richtung in einem Saugbetrieb betrieben werden. Der Saugbetrieb kann beispielsweise dazu dienen, das Dickstoffventil sowie eine daran anschließende Förderleitung zu reinigen oder um eine Verstopfung in diesem Bereich zu beseitigen. Das Zusammenspiel der Förderzylinder und des Dickstoffventils ist dann in umgekehrter Weise aufeinander abgestimmt.
  • Im Saugbetrieb hat eine über dem Ventilglied anliegende Druckdifferenz regelmäßig die Tendenz, die Dichtwirkung des Ventilglieds zu vermindern. Das Ventilglied sollte deswegen so gestaltet sein, dass es auch unter einer solchen negativen Druckdifferenz eine ausreichende Dichtwirkung aufweist, indem über das Schwenkteil eine in Richtung der Durchtrittsöffnung wirkende Kraft auf das Dichtteil ausgeübt wird.
  • Die Erfindung wird nachfolgend unter Bezugnahme auf die beigefügten Zeichnungen anhand vorteilhafter Ausführungsformen beispielhaft beschrieben. Es zeigen:
  • Fig. 1:
    ein Fahrzeug mit einer Dickstoffpumpe, das mit einem erfindungsgemäßen Dickstoffventil ausgestattet ist;
    Fig. 2:
    ein Blockschaltbild einer mit einem erfindungsgemäßen Dickstoffventil ausgestatteten Dickstoffpumpe (in Hydrauliknotation) ;
    Fig. 3:
    eine perspektivische Darstellung einer Dickstoffpumpe mit einem erfindungsgemäßen Dickstoffventil;
    Fig. 4:
    eine Schnittdarstellung der Pumpe gemäß Fig. 3;
    Figuren 5 bis 8:
    schematische Darstellungen verschiedener Zustände der Dickstoffpumpe gemäß Fig. 3;
    Fig. 9:
    eine schematische Darstellung eines erfindungsgemäßen Ventilglieds;
    Fig. 10:
    eine Darstellung der auf das Dichtteil des Ventilglieds wirkenden Drücke;
    Fig. 11:
    ein Ventilglied eines erfindungsgemäßen Dickstoffventils in teilweise geschnittener Darstellung;
    Figuren 12 und 13:
    Ventilglieder in alternativen Ausführungsformen der Erfindung; und
    Fig. 14
    eine Schnittdarstellung der Ausführungsform gemäß Fig. 13.
  • Auf der Ladefläche eines in Fig. 1 gezeigten Lastwagens 14 ist eine Dickstoffpumpe 15 in Form einer Betonpumpe angeordnet. Die Dickstoffpumpe 15 umfasst einen Vorfüllbehälter 16, in den der Beton aus einem Vorrat (nicht dargestellt) eingefüllt wird. Die Dickstoffpumpe 15 saugt den Beton aus dem Vorfüllbehälter an und fördert den Beton durch ein Anschlussrohr 17, das sich entlang einem Verteilermast 18 erstreckt. Der Verteilermast 18 ist auf einem Drehkranz 19 gelagert und kann über mehrere Gelenke ausgeklappt werden, so dass das Ende des Rohrs 17 in eine von dem Lastwagen 14 beabstandete Position gebracht werden kann. In dieser Position wird der Beton aus dem Anschlussrohr 17 ausgebracht.
  • Die Dickstoffpumpe umfasst gemäß Fig. 2 einen ersten Förderzylinder 21 und einen zweiten Förderzylinder 22. Jeder Förderzylinder 21, 22 umfasst einen Kolben, der mit einer Rückwärts-Bewegung Beton aus dem Vorfüllbehälter 16 ansaugt und der mit einer Vorwärts-Bewegung den Beton in Richtung eines Auslasses 23 der Pumpe fördert.
  • Dem ersten Förderzylinder 21 ist ein erstes Einlassventil 24 zugeordnet. Das Einlassventil 24 ist während der Rückwärts-Bewegung des ersten Förderzylinders 21 geöffnet, sodass der Förderzylinder 21 Beton aus dem Vorfüllbehälter 16 ansaugen kann. Das Einlassventil 24 ist während der Vorwärts-Bewegung des ersten Förderzylinders 21 geschlossen, sodass der Beton in Richtung Pumpenauslass 23 gefördert werden kann. Dem zweiten Förderzylinder 22 ist ein zweites Einlassventil 25 zugeordnet, dessen Schaltvorgänge entsprechend auf die Rückwärts- und Vorwärts-Bewegungen des zweiten Förderzylinders 22 abgestimmt sind.
  • Die Pumpe umfasst ein Dickstoffventil 26, das ein gemeinsames Auslassventil für den ersten Förderzylinder 21 und den zweiten Förderzylinder 22 bildet. Das Dickstoffventil 26 umfasst eine erste Durchtrittsöffnung 27 für mit dem ersten Förderzylinder 21 geförderten Beton und eine zweite Durchtrittsöffnung 28 für mit dem zweiten Förderzylinder 22 geförderten Beton. Ein Ventilglied 32 des Dickstoffventils verschließt in einem ersten Schaltzustand 29 die erste Durchtrittsöffnung 27 und lässt die zweite Durchtrittsöffnung 28 offen. In einem zweiten Schaltzustand 30 verschließt das Dickstoffventil 26 die zweite Durchtrittsöffnung 28 und lässt die erste Durchtrittsöffnung 27 offen. In einem dritten Schaltzustand 31 (Zwischenzustand) sind beide Durchtrittsöffnungen 27, 28 offen.
  • Die beiden Förderzylinder 21, 22 sind so angetrieben, dass die Rückwärts-Bewegung innerhalb einer kürzeren Zeitspanne erfolgt als die Vorwärts-Bewegung. Der Beginn der Vorwärts-Bewegung des einen Förderzylinders überschneidet sich mit dem Ende der Vorwärts-Bewegung des anderen Förderzylinders. Zu jedem Zeitpunkt wird also von mindestens einem der Förderzylinder 21, 22 Beton in Richtung des Dickstoffventils 26 gefördert.
  • Das Ventilglied 32 des Dickstoffventils 26 wird über einen Antrieb aktiv zwischen den verschiedenen Schaltzuständen umgeschaltet. Ist der erste Förderzylinder 21 in der Vorwärts-Bewegung und der zweite Förderzylinder 22 in der Rückwärts-Bewegung, so ist das Dickstoffventil 26 in dem Schaltzustand 30, in dem nur der von dem ersten Förderzylinder 21 kommende Materialstrom durch das Dickstoffventil 26 hindurchtreten kann. Ist der zweite Förderzylinder 22 in der Vorwärts-Bewegung und der erste Förderzylinder 21 in der Rückwärts-Bewegung, so ist das Dickstoffventil 26 in dem Schaltzustand 29, in dem nur der von dem zweiten Förderzylinder 22 kommende Materialstrom durch das Dickstoffventil 26 hindurchtreten kann. In der Überschneidungsphase, in der beide Förderzylinder 21, 22 sich in der Vorwärts-Bewegung befinden, ist das Dickstoffventil 26 in dem Zwischenzustand 31, in dem die Materialströme von beiden Förderzylindern 21, 22 durch das Dickstoffventil 26 hindurchtreten können.
  • Beide Förderzylinder 21, 22 haben eine Grundgeschwindigkeit für die Vorwärts-Bewegung. Die Grundgeschwindigkeit der Vorwärts-Bewegung kommt zur Anwendung, während der jeweils andere Förderzylinder 21, 22 in der Rückwärts-Bewegung ist. Durch die Grundgeschwindigkeit ist der Materialstrom definiert, der in dieser Phase in Richtung Pumpenauslass 23 gefördert wird. In der Überschneidungsphase, in der beide Förderzylinder 21, 22 sich in der Vorwärts-Bewegung befinden, ist die Geschwindigkeit gegenüber der Grundgeschwindigkeit derart vermindert, dass die Geschwindigkeiten der beiden Vorwärts-Bewegungen sich zur Grundgeschwindigkeit addieren. Auf diese Weise wird auch während der Überschneidungsphase ein konstanter Materialstrom in Richtung Pumpenauslass 23 aufrechterhalten.
  • Die Fig. 3 zeigt die erfindungsgemäße Dickstoffpumpe in einer perspektivischen Darstellung. Das Einlassventil 25 ist im geöffneten Zustand, sodass die zugehörige Eingangsöffnung 45 der Pumpe durchgängig ist und dass mit dem zweiten Förderzylinder 22 Dickstoff aus dem Vorfüllbehälter 16 (Fig. 1) angesaugt werden kann. Das erste Einlassventil 24 ist im geschlossenen Zustand. Wenn der Kolben des ersten Förderzylinders 21 in der Vorwärtsbewegung ist, bewegt sich der Materialstrom durch die erste Durchtrittsöffnung 27 des Dickstoffventils 26 in Richtung Pumpenauslass 23, siehe Fig. 4.
  • Der Ablauf im Betrieb der Pumpe wird nachfolgend anhand der schematischen Darstellungen der Figuren 5 bis 8 erläutert. In Fig. 5A ist das Ventilglied 32 des Dickstoffventils 26 so geschaltet, dass es die Durchtrittsöffnung 27 des ersten Förderzylinders 21 verschließt und dass es die Durchtrittsöffnung 28 des zweiten Förderzylinders 22 freilässt. Das Einlassventil 25 des zweiten Förderzylinders 22 ist geschlossen, siehe Fig. 5B. Der zweite Förderzylinder 22 ist in der Vorwärts-Bewegung und fördert Beton durch die Durchtrittsöffnung 28 in den Innenraum des Dickstoffventils 26 und zum Pumpenauslass 23. Durch die über dem Ventilglied 32 anliegende Druckdifferenz wird die Dichtwirkung zwischen Ventilglied 32 und der Durchtrittsöffnung 27 verstärkt. Das Einlassventil 24 des ersten Förderzylinders 21 ist geöffnet, sodass der erste Förderzylinder 21 mit einer Rückwärts-Bewegung durch die Einlassöffnung 44 der Pumpe Beton aus dem Vorfüllbehälter 16 ansaugen kann.
  • Die Rückwärts-Bewegung des ersten Förderzylinders 21 endet früher als die Vorwärts-Bewegung des zweiten Förderzylinders 22. In Fig. 6 ist der Zustand gezeigt, in dem die Vorwärts-Bewegung des ersten Förderzylinders 21 beginnt und die Vorwärts-Bewegung des zweiten Förderzylinders 22 kurz vor dem Ende steht. Beide Einlassventile 24, 25 sind geschlossen. Das Umschalten des Dickstoffventils 26 in den Zwischenzustand 31 beginnt, nachdem der erste Förderzylinder 21 bereits wieder Druck vor der Durchtrittsöffnung 27 aufgebaut hat, so dass über dem Ventilglied 32 nur noch eine geringfügige Druckdifferenz anliegt. Nach dem Umschalten ist das Dickstoffventil 26 im Zwischenzustand 31, in dem das Ventilglied 32 sowohl die erste Durchtrittsöffnung 27 als auch die zweite Durchtrittsöffnung 28 freilässt. Bei beiden Förderzylindern 21, 22 ist die Geschwindigkeit der Vorwärts-Bewegung reduziert, sodass die Förderzylinder 21, 22 nun gemeinsam die Materialmenge fördern, die zuvor der zweite Förderzylinder 22 alleine gefördert hat.
  • Nach dem Ende der Vorwärts-Bewegung des zweiten Förderzylinders 22 wird das Einlassventil 25 geöffnet, siehe Fig. 7. Zur Druckentlastung kann der zweite Förderzylinder 22 vor dem Öffnen des Einlassventils 25 bereits eine erste Rückwärts-Bewegung vollführen. Wenn das Einlassventil 25 geöffnet ist, saugt der zweite Förderzylinder 22 mit einer Rückwärts-Bewegung durch die Einlassöffnung 45 der Pumpe Beton aus dem Vorfüllbehälter 16 an. Der erste Förderzylinder 21 bewegt sich mit seiner Grundgeschwindigkeit nach vorne, sodass der Materialstrom zum Pumpenauslass 23 unverändert aufrechterhalten bleibt.
  • In Fig. 8 beginnt erneut die Vorwärts-Bewegung des zweiten Förderzylinders 22, während die Vorwärts-Bewegung des ersten Förderzylinders 21 endet. Mit dem Ende der Vorwärts-Bewegung des ersten Förderzylinders 21 endet der Zyklus und die Pumpe geht wieder in den Zustand gemäß Fig. 5 über.
  • Das Ventilglied 32 des Dickstoffventils 26 umfasst gemäß Fig. 9 ein Schwenkteil 34 und ein Dichtteil 35. Das Schwenkteil 34 umfasst zwei Abschnitte einer Welle 33, über die das Schwenkteil bezogen auf eine Schwenkachse 36 drehbar gelagert ist. Zwischen der Welle 33 und dem Dichtteil 35 ist eine in Fig. 9 nur schematisch dargestellte Verbindungsstruktur 48 ausgebildet. Über die Verbindungsstruktur 48 kann der radiale Abstand zwischen dem Dichtteil 35 und der Welle 33 verändert werden.
  • Hingegen ist die Verbindungsstruktur 48 gegenüber Drehmomenten starr. Wird also die Welle um einen bestimmten Winkel gedreht, so vollführt das Dichtteil 35 eine Schwenkbewegung um denselben Winkel.
  • Die Unterseite des Dichtteils 35 bildet eine Dichtfläche 38 in Form eines konzentrisch zu der Schwenkachse 36 ausgerichteten Zylindersegments. Das Gehäuse des Dickstoffventils 26 hat eine dazu passende Gegenfläche, die ebenfalls die Form eines Zylindersegments hat. In der Gegenfläche sind die Durchtrittsöffnungen 27, 28 des Dickstoffventils 26 ausgebildet. Die Dichtfläche 38 des Ventilglieds 32 wirkt mit der Gegenfläche des Ventilgehäuses zusammen und kann je nach Schaltzustand entweder die Durchtrittsöffnung 27 oder die Durchtrittsöffnung 28 abdichten.
  • In Fig. 10 ist ein Zustand des Dickstoffventils dargestellt, in dem im Innenraum des Dickstoffventils ein höherer Druck anliegt als vor der Durchtrittsöffnung 27, die mit dem Dichtteil 35 verschlossen ist. Das Ventilglied 32 hat eine der Dichtfläche 38 gegenüberliegende Außenfläche 43, auf die der Druck des in dem Dickstoffventil 26 befindlichen Materials in radialer Richtung wirkt. Die Druckdifferenz gegenüber der Außenseite trägt dazu bei, die Dichtwirkung zwischen dem Ventilglied 32 und dem Ventilgehäuse zu verstärken. Das Ventilglied 32 hat außerdem zwei symmetrisch zueinander angeordnete Außenflächen 44, 45. Ein auf die Außenflächen 44, 45 wirkender Druck des Materials hat ebenfalls eine Komponente in radialer Richtung, sodass auch die Außenflächen 44, 45 zur Verstärkung der Dichtwirkung beitragen.
  • Bei dem in Fig. 11 gezeigten Ventilglied 32 umfasst das Schwenkteil 34 einen Zapfen 50, der in eine passende Ausnehmung des Dichtteils 35 eingreift. Mit dem Zapfen 50 wird eine Schiebeführung gebildet, entlang derer sich das Dichtteil 35 in radialer Richtung relativ zu der Welle 33 bewegen kann. Gegenüber Kräften in anderen Richtungen ist die Schiebeführung starr.
  • Zwischen dem Schwenkteil 34 und dem Dichtteil 35 ist eine Platte 37 aus einem elastischen Material angeordnet. Die Platte 37 ist Bestandteil der Verbindungsstruktur zwischen dem Schwenkteil 34 und dem Dichtteil 35. Durch Druck in radialer Richtung kann die Platte 37 elastisch komprimiert werden, wodurch das Dichtteil 35 entlang der Schiebeführung an das Schwenkteil 34 angenähert wird.
  • Das erfindungsgemäße Dickstoffventil 26 ist im Auslieferungszustand so eingerichtet, dass die Platte 37 elastisch komprimiert ist und das Dichtteil 35 folglich unter einem elastischen Druck an dem Ventilgehäuse anliegt, den die Platte 37 in radialer Richtung ausübt. Kommt es im Betrieb der Pumpe zu einem Verschleiß des Ventilglieds 32 oder des Ventilgehäuses, so kann dieser durch Ausdehnung der elastischen Platte 37 selbsttätig ausgeglichen werden. Im Saugbetrieb wird durch die Platte 37 sichergestellt, dass ein ausreichender Anpressdruck zwischen dem Dichtteil 35 und dem Ventilgehäuse anliegt.
  • Das in Fig. 11 gezeigte Ventilglied 32 ist außerdem so gestaltet, dass zwischen zwei Wellenstummeln 33 ein Freiraum eingeschlossen ist, sodass der Materialstrom sich auf direktem Weg von den Durchtrittsöffnungen 27, 28 in Richtung Pumpenauslass 23 bewegen kann. Das Schwenkteil 34 umfasst zwei Schenkel 51, 52, die sich in radialer Richtung erstrecken und die den Freiraum zwischen sich einschließen. In radialer Richtung erstreckt der Freiraum sich über mehr als 50 % des Abstands zwischen der Schwenkachse 36 und der Dichtfläche 38.
  • Bei der Ausführungsform gemäß Fig. 12 ist ebenfalls zwischen zwei Wellenstummeln 33 ein Freiraum eingeschlossen, um die Bewegung des Förderstroms in Richtung der Auslassöffnung zu erleichtern. Ein zentraler Schenkel 53 erstreckt sich in radialer Richtung und ist mittig mit dem Dichtteil 35 verbunden. Um den Schenkel 53 herum ist ausreichend Raum für die Bewegung des Materialstroms. Im Übrigen ist die Verbindungsstruktur analog zu Fig. 11 gestaltet mit einer elastischen Platte 37 und einer in Fig. 12 nicht sichtbaren Schiebeführung.
  • In Fig. 13 ist eine alternative Ausführungsform eines erfindungsgemäßen Ventilglieds 32 dargestellt. Das Dichtteil 35 erstreckt sich um das Schwenkteil 34 herum, so dass ein Abschnitt des Schwenkteils 34 im Inneren des Dichtteils aufgenommen ist. Gemäß der Schnittdarstellung in Fig. 14 hat das Schwenkteil 34 im Inneren des Dichtteils 35 einen rechteckigen Querschnitt. Das Dichtteil 35 hat einen zu dem rechteckigen Querschnitt passenden Schlitz, in dem oberhalb und unterhalb des Schwenkteils 34 elastische Elemente 37 angeordnet sind, so dass das Dichtteil 35 sich in Radialrichtung relativ zu dem Schwenkteil 34 bewegen kann, während eine relative Drehbewegung zwischen dem Dichtteil 35 und dem Schwenkteil 34 ausgeschlossen ist. Das Schwenkteil 34 umfasst einen Hebel 39, an dem ein Antrieb angreifen kann, um das Ventilglied 32 zwischen den verschiedenen Schaltzuständen umzuschalten.
  • Das Ventilglied 32 ist so bemessen, dass es mit seinen beiden in Axialrichtung weisenden Stirnflächen direkt an dem Gehäuse 46 des Dickstoffventils 26 anliegt. Die Stirnflächen des Ventilglieds sind als Kratzer 55 ausgebildet. Die Kratzer 55 schieben bei einem Schaltvorgang des Ventilglieds 32 den Dickstoff entlang der Stirnfläche des Gehäuses zur Seite.
  • Die Seitenflächen 57 des Ventilglieds sind als Leitflächen gestaltet. Entlang den Leitflächen wird der Materialstrom in Richtung der Ausgangsöffnung des Dickstoffventils geleitet. An seiner Oberseite ist das Ventilglied 32 mit einer Ausnehmung 56 versehen, durch die die Bewegung des Materialstroms in Richtung der Austrittsöffnung erleichtert wird.

Claims (14)

  1. Dickstoffventil mit einer ersten Durchtrittsöffnung (27), mit einer zweiten Durchtrittsöffnung (28) und mit einem den beiden Durchtrittsöffnungen (27, 28) zugeordneten Ventilglied (32), wobei das Ventilglied (32) bezogen auf eine Schwenkachse (36) schwenkbar gelagert ist, wobei das Ventilglied (32) eine konzentrisch zu der Schwenkachse (36) gewölbte Dichtfläche (38) aufweist, wobei das Ventilglied (32) in einem ersten Zustand (30) die erste Durchtrittsöffnung (27) freigibt sowie die zweite Durchtrittsöffnung (28) verschließt, wobei das Ventilglied (32) in einem zweiten Zustand (29) die zweite Durchtrittsöffnung (28) freigibt sowie die erste Durchtrittsöffnung (27) verschließt, dadurch gekennzeichnet, dass das Ventilglied (32) ein Dichtteil (35) und ein Schwenkteil (34) umfasst, wobei das Schwenkteil (34) in der Schwenkachse (36) drehbar gelagert ist und wobei das Dichtteil (35) über eine Verbindungsstruktur (37) mit dem Schwenkteil (34) verbunden ist.
  2. Dickstoffventil nach Anspruch 1, dadurch gekennzeichnet, dass das Ventilglied (32) in einem Innenraum des Dickstoffventils angeordnet ist.
  3. Dickstoffventil nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass zwischen der ersten Durchtrittsöffnung (27) und der zweiten Durchtrittsöffnung (28) eine Zwischenfläche angeordnet ist, die eine zu der Schwenkachse (36) konzentrische Wölbung aufweist.
  4. Dickstoffventil nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in einem dritten Schaltzustand das Ventilglied (32) zwischen der ersten Durchtrittsöffnung (27) und der zweiten Durchtrittsöffnung (28) angeordnet ist.
  5. Dickstoffventil nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Verbindungsstruktur (37) starr ist gegenüber relativ zu der Schwenkachse (36) wirkenden Drehmomenten.
  6. Dickstoffventil nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Verbindungsstruktur (37) in Radialrichtung eine Bewegung des Dichtteils (35) relativ zu dem Schwenkteil (34) zulässt.
  7. Dickstoffventil nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Verbindungsstruktur ein zwischen dem Dichtteil (35) und dem Schwenkteil (34) angeordnetes elastisches Element (37) umfasst.
  8. Ventil nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass zwischen einer Welle (33) des Ventilglieds (32) und einem Gehäuse (46) des Ventils ein elastisches Element ist.
  9. Dickstoffventil nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Ventilglied (32) zwei in der Schwenkachse (36) gelagerte Wellenstummel (33) umfasst und dass die Wellenstummel (33) einen Freiraum zwischen sich einschließen.
  10. Dickstoffventil nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Ventilglied (32) einen Schenkel (51, 52, 53) umfasst, der sich zwischen der Schwenkachse (36) und der Dichtfläche (38) erstreckt, und dass der Schenkel (51, 52, 53) von einer Stirnfläche eines Gehäuses (46) des Dickstoffventils (26) beabstandet ist.
  11. Dickstoffventil nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Ventilglied (32) einen Kratzer (55) aufweist, der bei einem Schaltvorgang des Ventilglieds (32) entlang einer Stirnfläche des Gehäuses (46) des Dickstoffventils (26) geführt wird.
  12. Dickstoffventil nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das Ventilglied (32) eine Außenfläche (43, 44, 45) umfasst, durch die eine über Ventilglied (32) anliegende Druckdifferenz in eine in radialer Richtung wirkende Kraft umgesetzt wird.
  13. Dickstoffpumpe mit einem Dickstoffventil gemäß einem der Ansprüche 1 bis 13 und einem Förderorgan, dadurch gekennzeichnet, dass das Förderorgan dazu ausgelegt ist, Material in Bewegung zu versetzen, sodass das Material durch die erste und/oder zweite Eintrittsöffnung (27, 28) in den Innenraum des Dickstoffventils eintritt.
  14. Dickstoffpumpe nach Anspruch 14, dadurch gekennzeichnet, dass das Förderorgan einen ersten und einen zweiten Kolben umfasst, wobei die Schaltstellung des Dickstoffventils mit der Bewegung der Kolben abgestimmt ist, sodass die Dickstoffpumpe zwischen Zuständen des Dickstoffventils (26) umschaltet, wenn keine Druckdifferenz über dem Ventilglied (32) anliegt.
EP17748765.9A 2016-08-11 2017-08-04 Dickstoffventil Active EP3497329B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16183665.5A EP3282125A1 (de) 2016-08-11 2016-08-11 Dickstoffventil
PCT/EP2017/069783 WO2018029099A1 (de) 2016-08-11 2017-08-04 Dickstoffventil

Publications (2)

Publication Number Publication Date
EP3497329A1 EP3497329A1 (de) 2019-06-19
EP3497329B1 true EP3497329B1 (de) 2020-04-01

Family

ID=56686669

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16183665.5A Withdrawn EP3282125A1 (de) 2016-08-11 2016-08-11 Dickstoffventil
EP17748765.9A Active EP3497329B1 (de) 2016-08-11 2017-08-04 Dickstoffventil

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP16183665.5A Withdrawn EP3282125A1 (de) 2016-08-11 2016-08-11 Dickstoffventil

Country Status (6)

Country Link
US (1) US20200182230A1 (de)
EP (2) EP3282125A1 (de)
JP (1) JP7019924B2 (de)
KR (1) KR102334498B1 (de)
CN (1) CN109804161B (de)
WO (1) WO2018029099A1 (de)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH96037A (de) 1921-04-27 1922-09-01 Bucher Guyer Ag Masch Dreiweghahn.
CH217841A (fr) 1941-01-29 1941-11-15 Et Ateliers Du Kursaal Garage Robinet à clef.
DE1064308B (de) 1954-07-12 1959-08-27 Erich Kieback Dr Ing Drehschieber mit teilzylindrischer Schieberplatte
US3279383A (en) 1965-01-06 1966-10-18 Burnup And Sims Inc Hydraulic powered mobile concrete pump assembly
DE1241213B (de) 1963-08-19 1967-05-24 Erkki Pietari Niskanen Absperrhahn
DE1266595B (de) 1964-05-20 1968-04-18 Lederle Pumpen & Maschf Drehschieber fuer Zuckerzentrifugen
DE1817568A1 (de) 1968-12-31 1970-07-09 Stetter Georg Steuerung fuer eine Betonpumpe
US3749525A (en) 1970-08-03 1973-07-31 D Hooper Hydraulically operated fluid aggregate pump
DE2310296A1 (de) 1972-03-24 1973-10-04 Maurice Pichon Pumpe fuer die foerderung, insbesondere hochfoerderung, von beton, moertel oder anderen stoffen gleicher konsistenz
DE2814486A1 (de) 1977-06-03 1978-12-14 Fata Fab App Sollevamento Drehschieber zur steuerung der stroemung eines festen, teilchenfoermigen materials
DE3103321A1 (de) 1981-01-31 1982-08-12 Friedrich Wilh. Schwing Gmbh, 4690 Herne "zweizylinder-dickstoffpumpe, vorzugsweise betonpumpe mit einem von einer zylinderseitigen brillenplatte abwechselnd schwenkenden schaltorgan"
EP0346216A1 (de) 1988-06-07 1989-12-13 Etablissements NEU Société Anonyme dite: Kugelventil
DE29723204U1 (de) 1996-03-21 1998-04-30 Saxlund International GmbH, 29614 Soltau Ventil mit schwenkbarem Visier
DE202008008060U1 (de) 2008-06-18 2008-10-02 Leifert, Rudolf Doppelkolbenpumpe
WO2010043238A1 (en) 2008-10-15 2010-04-22 Norgren Gmbh Pressure-sealing valve
EP2387667B1 (de) 2009-01-16 2013-03-20 Friedrich Schwing Verfahren zur förderung breiiger massen und pumpvorrichtung zur förderung breiiger massen
DE102013215990A1 (de) 2013-08-13 2015-02-19 Putzmeister Engineering Gmbh Zweizylinder-Dickstoffpumpe mit Rohrweiche
DE102016118133A1 (de) 2016-09-26 2018-03-29 Pierburg Gmbh Drehschieberventil

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1653614U (de) * 1953-02-03 1953-04-09 Erich Iversen Bodenbearbeitungsgeraet.
US3398693A (en) * 1966-08-01 1968-08-27 Danken Inc Concrete pumping apparatus
DE1653614B2 (de) * 1967-06-10 1974-06-27 Bobbie Ray Oklahoma City Okla.(V.St.A.) Smith Drehschieberventil für eine Schlammpumpe, z.B. Betonpumpe
DE2415276C2 (de) * 1974-03-29 1976-11-11 Friedrich Schwing Pumpe zum Fördern von Dickstoffen, insbesondere Beton
JPS57135276A (en) * 1981-02-14 1982-08-20 Kyokuto Kaihatsu Kogyo Co Ltd Apparatus for changing over suction conveying section of concrete pump
BE903948A (nl) * 1985-12-30 1986-04-16 Neuckens Francois Betonpomp.
JPH06200868A (ja) * 1992-12-29 1994-07-19 Shintetsuku:Kk 生コンクリート圧送用ポンプ
DE19503986A1 (de) 1995-02-07 1996-08-08 Hudelmaier Ulrike Verfahren und Vorrichtung zum Fördern von Beton oder anderen Dickstoffen
JP2000257731A (ja) * 1999-03-09 2000-09-19 Ishikawajima Harima Heavy Ind Co Ltd 流路切換装置
BR0002048A (pt) * 2000-03-02 2001-11-13 Mauro Moura Da Silva Válvula de bombeamento de concreto
DE102004015768A1 (de) * 2004-03-31 2005-10-20 Christoph Rothdach Dickstoffpumpe im Speziellen für Betonförderung
DE102005008938B4 (de) 2005-02-26 2007-01-25 Schwing, Friedrich, Dipl.-Ing. Pumpvorrichtung und Verfahren zur kontinuierlichen Förderung breiiger Massen
CN100357604C (zh) * 2006-01-23 2007-12-26 三一重工股份有限公司 用于混凝土泵的分配阀
CN101245866B (zh) * 2008-03-24 2010-12-15 三一重工股份有限公司 一种混凝土分配阀及混凝土泵送机构
CN102269161B (zh) * 2011-04-22 2012-11-14 三一重工股份有限公司 一种泵送机构及其分配阀和混凝土泵送机械
JP5895942B2 (ja) * 2011-11-07 2016-03-30 トヨタ自動車株式会社 エンジンの冷却制御装置
CN202612694U (zh) * 2012-03-26 2012-12-19 中交第二航务工程局有限公司 一种料斗阀门
CN202768380U (zh) * 2012-04-25 2013-03-06 中联重科股份有限公司 泵送分配机构、泵送装置及混凝土泵
US8827657B1 (en) 2014-01-15 2014-09-09 Francis Wayne Priddy Concrete pump system and method
JP6200868B2 (ja) 2014-08-19 2017-09-20 富士フイルム株式会社 光学フィルムの製造方法

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH96037A (de) 1921-04-27 1922-09-01 Bucher Guyer Ag Masch Dreiweghahn.
CH217841A (fr) 1941-01-29 1941-11-15 Et Ateliers Du Kursaal Garage Robinet à clef.
DE1064308B (de) 1954-07-12 1959-08-27 Erich Kieback Dr Ing Drehschieber mit teilzylindrischer Schieberplatte
DE1241213B (de) 1963-08-19 1967-05-24 Erkki Pietari Niskanen Absperrhahn
DE1266595B (de) 1964-05-20 1968-04-18 Lederle Pumpen & Maschf Drehschieber fuer Zuckerzentrifugen
US3279383A (en) 1965-01-06 1966-10-18 Burnup And Sims Inc Hydraulic powered mobile concrete pump assembly
DE1817568A1 (de) 1968-12-31 1970-07-09 Stetter Georg Steuerung fuer eine Betonpumpe
US3749525A (en) 1970-08-03 1973-07-31 D Hooper Hydraulically operated fluid aggregate pump
DE2310296A1 (de) 1972-03-24 1973-10-04 Maurice Pichon Pumpe fuer die foerderung, insbesondere hochfoerderung, von beton, moertel oder anderen stoffen gleicher konsistenz
DE2814486A1 (de) 1977-06-03 1978-12-14 Fata Fab App Sollevamento Drehschieber zur steuerung der stroemung eines festen, teilchenfoermigen materials
DE3103321A1 (de) 1981-01-31 1982-08-12 Friedrich Wilh. Schwing Gmbh, 4690 Herne "zweizylinder-dickstoffpumpe, vorzugsweise betonpumpe mit einem von einer zylinderseitigen brillenplatte abwechselnd schwenkenden schaltorgan"
DE3153268C2 (en) 1981-01-31 1988-01-28 Friedrich Wilh. Schwing Gmbh, 4690 Herne, De Two-cylinder viscous-material pump, preferably concrete pump
EP0346216A1 (de) 1988-06-07 1989-12-13 Etablissements NEU Société Anonyme dite: Kugelventil
DE29723204U1 (de) 1996-03-21 1998-04-30 Saxlund International GmbH, 29614 Soltau Ventil mit schwenkbarem Visier
DE202008008060U1 (de) 2008-06-18 2008-10-02 Leifert, Rudolf Doppelkolbenpumpe
WO2010043238A1 (en) 2008-10-15 2010-04-22 Norgren Gmbh Pressure-sealing valve
EP2387667B1 (de) 2009-01-16 2013-03-20 Friedrich Schwing Verfahren zur förderung breiiger massen und pumpvorrichtung zur förderung breiiger massen
DE102013215990A1 (de) 2013-08-13 2015-02-19 Putzmeister Engineering Gmbh Zweizylinder-Dickstoffpumpe mit Rohrweiche
DE102016118133A1 (de) 2016-09-26 2018-03-29 Pierburg Gmbh Drehschieberventil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Suspension (Chemie)", WIKIPEDIA, 23 July 2020 (2020-07-23), XP055777454

Also Published As

Publication number Publication date
CN109804161A (zh) 2019-05-24
KR20190038852A (ko) 2019-04-09
EP3282125A1 (de) 2018-02-14
US20200182230A1 (en) 2020-06-11
JP7019924B2 (ja) 2022-02-16
EP3497329A1 (de) 2019-06-19
JP2019525106A (ja) 2019-09-05
CN109804161B (zh) 2020-11-03
KR102334498B1 (ko) 2021-12-03
WO2018029099A1 (de) 2018-02-15

Similar Documents

Publication Publication Date Title
DE69116670T2 (de) Verfahren und Vorrichtung zur Durchflussregelung
DE2454290A1 (de) Betonpumpe
EP3282124B1 (de) Dickstoffpumpe
EP0022251A1 (de) Rohrleitungsarmatur mit einem in Leitungen, die unter Druck stehende Dickstoffe, vorzugsweise Beton fördern, einbaubaren Gehäuse zum Einwechseln eines Wischers
DE2909964C2 (de)
EP3497329B1 (de) Dickstoffventil
DE2011579B2 (de) Vorrichtung zum kontinuierlichen extrudieren fliessfaehiger stoffe
DE4211850C2 (de) Schiebergehäuse-Öffnungs/Schließvorrichtung bei einer Betonpumpe
EP4281668B1 (de) Dickstoffventil und verfahren zum betätigen eines dickstoffventils
DE1918746A1 (de) Transfereinrichtung
DE4224525C2 (de) Betonpumpe
DE1266130B (de) Mehrzylinderkolbenpumpe zum Foerdern von Beton od. dgl.
DE2421322A1 (de) Pumpvorrichtung zum verpumpen von beton oder anderem material
DE3221949A1 (de) Wechselventil fuer betonpumpen
DE60205273T2 (de) System zum einspritzen von mindestens zwei produkten in behälter
DE4232215C2 (de) Schieberanordnung bei einer Betonpumpe
EP0485862B1 (de) Dickstoffpumpe mit paarweise abwechselnd fördernden und ansaugenden Förderzylindern
DE4102682C2 (de) Dickstoffpumpe mit paarweise abwechselnd fördernden und ansaugenden Förderzylindern
EP3488104B1 (de) Dickstoffpumpe
DE10324715B4 (de) Vorrichtung zum entmischungsfreien Zuführen von Feststoffen und Feststoffgemischen
DE2705664A1 (de) Kolbenpumpenanlage und verfahren zum betrieb derselben
DE2054514C3 (de) Betonpumpe
EP4371916A1 (de) Fördereinrichtung zur gerichteten förderung pulverförmiger stoffe sowie zugehöriges verfahren
DE102019117356A1 (de) Dickstoffpumpe und Verfahren zum Fördern eines Dickstoffs
DE2249683C2 (de) Steuervorrichtung für einen Druckflüssigkeits-Schubkolbenmotor

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F04B 15/02 20060101AFI20191120BHEP

INTG Intention to grant announced

Effective date: 20191210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1251670

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017004549

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200401

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200702

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200701

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200801

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502017004549

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SCHWING GMBH

Effective date: 20201223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200804

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200804

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210804

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502017004549

Country of ref document: DE

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20220819

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1251670

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220804

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230731

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240826

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240827

Year of fee payment: 8