[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2944401B1 - Verfahren zur Herstellung eines Bauteils aus einer Metalllegierung mit amorpher Phase - Google Patents

Verfahren zur Herstellung eines Bauteils aus einer Metalllegierung mit amorpher Phase Download PDF

Info

Publication number
EP2944401B1
EP2944401B1 EP14168461.3A EP14168461A EP2944401B1 EP 2944401 B1 EP2944401 B1 EP 2944401B1 EP 14168461 A EP14168461 A EP 14168461A EP 2944401 B1 EP2944401 B1 EP 2944401B1
Authority
EP
European Patent Office
Prior art keywords
powder
component
temperature
amorphous
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14168461.3A
Other languages
English (en)
French (fr)
Other versions
EP2944401A1 (de
Inventor
Jürgen Wachter
Alexander Elsen
Annette Lukas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Deutschland GmbH and Co KG
Original Assignee
Heraeus Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PL14168461T priority Critical patent/PL2944401T3/pl
Application filed by Heraeus Deutschland GmbH and Co KG filed Critical Heraeus Deutschland GmbH and Co KG
Priority to ES14168461T priority patent/ES2727507T3/es
Priority to EP14168461.3A priority patent/EP2944401B1/de
Priority to KR1020167031362A priority patent/KR20160143798A/ko
Priority to US15/310,263 priority patent/US20170151609A1/en
Priority to JP2016567346A priority patent/JP6370925B2/ja
Priority to CN201580027018.3A priority patent/CN106413948B/zh
Priority to PCT/EP2015/060410 priority patent/WO2015173211A1/de
Priority to TW104115379A priority patent/TWI557242B/zh
Publication of EP2944401A1 publication Critical patent/EP2944401A1/de
Application granted granted Critical
Publication of EP2944401B1 publication Critical patent/EP2944401B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/006Amorphous articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/186High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/02Amorphous

Definitions

  • the invention relates to a method for producing a component from an at least partially amorphous metal alloy.
  • the invention further relates to a component made of a metal alloy with amorphous phase and the use of such a component.
  • Amorphous metals and their alloys have been known for several decades. Thin tapes and their manufacture are disclosed, for example, in the disclosure DE 35 24 018 A1 described, wherein on a support by quench cooling from the molten phase, a thin metallic glass is produced. Also, for example, in the patent EP 2 430 205 B1 described a composite of an amorphous alloy, which requires a cooling rate of 102 K / s for its production. The disadvantage of this is that with such known methods only thin layers or very compact components can be constructed with a few millimeters in cross-section.
  • EP 1 593 749 A1 describes a metallic glass of an iron alloy containing 0.5-10 at% Ga, 7-15 at% P, 3-7 at% C, 3-7 at% B and 1-7 at% Si as Contains alloying elements and is present in the form of spherical particles.
  • the spherical ones Metal particles are available via gas atomization and are used for the production of a sintered body.
  • the object of the invention is therefore to overcome the disadvantages of the prior art.
  • a simple and inexpensive to implement method is to be developed with which a component can be made of a metal alloy with amorphous portion, which may have a volume of 0.1 cm 3 and more, preferably 1 cm 3 and more, and in different Even complex shapes can be generated.
  • the component produced should also have the highest possible homogeneity with regard to the physical properties and the distribution of the amorphous phase.
  • Object of the present invention is also to provide such a component.
  • the process should be easy to implement and deliver highly reproducible results.
  • the component produced should have the highest possible proportion of amorphous metallic phase. It is also desirable if the component produced is as compact as possible and has only a few pores.
  • Another object can be seen that the method can be implemented with the largest possible number of different alloys having an amorphous phase. Furthermore, it is advantageous if the method can be implemented with the simplest and most commonly used in laboratories equipment and tools.
  • the duration of the temperature treatment is chosen such that the duration is at least so long that the powder is sintered after the temperature treatment, and that the duration is at most so long that the component still has an amorphous content of at least 85 percent after the temperature treatment.
  • an amorphous material is a substance in which the atoms do not form ordered structures but form an irregular pattern and have only short-range order, but not long-range ordering. In contrast to amorphous, regularly structured materials are called crystalline.
  • Spherical particles need not be geometrically perfect spheres within the meaning of the present invention, but may also deviate from the spherical shape.
  • the spherical powder particles have a rounded at least approximately spherical shape and have a ratio of the longest cross section to the shortest cross section of at most 2 to 1.
  • a spherical geometry does not mean a strictly geometrical or mathematical sphere.
  • the cross-sections relate to running within the powder particles extremale dimensions.
  • Particularly preferred spherical powder particles may have a ratio of the longest cross section to the shortest cross section of at most 1.5 to 1, or most preferably spherical. In this case, the diameter of the largest cross-section of the powder particles is assumed according to the invention.
  • Temperature treatment under the same conditions soft - or at least under soft approximate the same conditions soft.
  • they combine or sinter these particularly well and within a short period of time, or at a known time or in a known time interval, with adjacent powder particles.
  • Another advantage of high bulk density is low shrinkage of the component during sintering. As a result, production close to the final shape is possible.
  • the component may, in accordance with a preferred embodiment of the present invention, be considered to be sintered in particular if it has a density of at least 97% of the theoretical density of the completely amorphous metal alloy.
  • sintering or sintering is understood as meaning a process in which the powder particles soften on the surface and combine with one another and remain connected after cooling. As a result, a coherent body or a coherent component is generated from the powder.
  • the transformation temperature of an amorphous phase is often referred to as the glass transition temperature or as a transformation point or glass transition point, it being understood that these are equivalent terms for the transformation temperature.
  • the powder is formed by filling the powder into a mold or into a tool and then pressing the powder in the mold or in the tool or by pressing it with the tool.
  • the heating until reaching the transformation temperature and the cooling should be carried out according to the invention as quickly as possible, since even at these temperatures below the transformation temperature crystallization takes place on the inevitable seed crystals, but still no softening of the powder particles is achieved, leading to sintering of the powder could lead. It is to be achieved according to the invention a plastic deformation of the powder particles, which leads to a compacting of the powder and thus to an accelerated sintering of the powder. An overshoot of the temperature above the desired setpoint temperature or final temperature should be as low as possible.
  • the powder particle size of the powder or the powder particle size distribution of the powder can be achieved by the manufacturing process and by sieving a starting powder.
  • the powder provided according to the invention is thus produced by sieving a starting powder before it is provided or used for the process according to the invention.
  • by sieving it can also be ensured that the number of powder particles having a shape which differs greatly from the spherical shape, which are produced by sintering several powder particles and which are contained in the starting powder, can be reduced or minimized.
  • the temperature treatment is carried out under vacuum, wherein preferably the powder is compacted by a temperature treatment at a vacuum of at least 10 -3 mbar.
  • metal oxides and other reaction products as nucleating agents for crystalline phases, have a negative effect on the purity of the amorphous phase in the produced component.
  • the invention may additionally or alternatively be provided that the temperature treatment is carried out under a protective gas, in particular under a noble gas such as argon, preferably with a purity of at least 99.99%, more preferably with a purity of at least 99.999 % he follows. It may preferably be provided in such embodiments that the atmosphere in which the pressing and the temperature treatment or only the temperature treatment takes place is largely freed of residual gases by repeated evacuation and rinsing with inert gas, in particular with argon.
  • a protective gas in particular under a noble gas such as argon
  • the temperature treatment takes place under a reducing gas, in particular under a forming gas, in order to keep the amount of interfering metal oxides as low as possible.
  • Another measure for reducing the number of metal oxides in the component can be achieved by the use of an oxygen getter in the temperature treatment of the powder and / or in the production of the powder.
  • the powder is compacted by hot isostatic pressing or hot pressing.
  • the combination of pressure and temperature treatment results in a more compact component.
  • the compound is improved by the plastic deformation of the powder particles with each other and accelerates the sintering behavior, so that a shorter duration of the temperature treatment can be selected and the proportion of crystalline phase is reduced in the component.
  • the duration of the temperature treatment is selected such that the component has an amorphous content of at least 90 percent, preferably of more than 95 percent, particularly preferably more than 98 percent.
  • Preferred embodiments of the present invention may also provide that a powder of an amorphous metal alloy or an at least partially amorphous metal alloy having at least 50 weight percent zirconium is used.
  • Zirconium-containing amorphous metal alloys are particularly well suited for practicing methods of the present invention because many of these alloys have a large difference between the transformation temperature and the crystallization temperature, making the process easier to implement.
  • zirconium The remainder up to 100 percent by weight is zirconium. Common contaminants may be included in the alloy. These zirconium-containing amorphous metal alloys are particularly well suited for implementing inventive methods.
  • the spherical amorphous metal alloy powder is produced by melt atomization, preferably by melt atomization in a noble gas, in particular in argon, particularly preferably by melt atomization in a noble gas of purity 99.99%, 99.999% or higher purity.
  • an amorphous metal alloy is also used if the metal alloy has an amorphous phase content of at least 85% by volume.
  • melt atomization powder particles can be produced with spherical shape in a simple and cost-effective manner.
  • inert gas, in particular of argon or high-purity argon in the melt atomization causes that in the powder as few disturbing impurities as metal oxides are included.
  • the powder has less than 1 weight percent of particles less than 5 microns in diameter, or the powder is screened or air-treated so that it has less than 1 weight percent of particles less than 5 microns in diameter.
  • powder particles with a diameter of less than 5 ⁇ m are preferably removed by air classification, or more precisely, the proportion of powder particles with a diameter of less than 5 ⁇ m is reduced by air classification.
  • the temperature treatment of the powder takes place at a temperature (T) between the transformation temperature and a maximum temperature, the maximum temperature being 30% higher than the temperature difference between the transformation temperature (T T ) and the crystallization temperature (T K ) of the amorphous phase of the metallic alloy is above the transformation temperature (T T ), the maximum temperature preferably being 20% or 10% of the temperature difference between the transformation temperature (T T ) and the crystallization temperature (T K ) the amorphous phase of the metallic alloy is above the transformation temperature (T T ).
  • the temperature T at which the temperature treatment of the powder takes place should fulfill the following conditions: T T ⁇ T ⁇ T T + 300 / 100 * T K - T T or preferred T T ⁇ T ⁇ T T + 20 / 100 * T K - T T or more preferably T T ⁇ T ⁇ T T + 10 / 100 * T K - T T ,
  • a particularly advantageous embodiment of the method according to the invention results if it is provided that the duration of the temperature treatment is selected as a function of the geometric shape, in particular the thickness, of the component to be produced, preferably as a function of the largest relevant diameter of the component to be produced ,
  • the geometric shape, or the thickness, of the component to be produced is taken into account in that the heat conduction in the molded powder or molding component should be sufficient to also the powder inside the component or the component inside up to the transformation temperature or above Heat transformation temperature, so that also takes place inside the component sintering of the powder.
  • the largest relevant diameter of the component can be geometrically determined by the largest sphere that can be geometrically accommodated within the component.
  • the duration of the heat treatment in a time range of 3 seconds per millimeter of the thickness or the wall thickness of the component or the largest relevant diameter of the component to be produced to 900 seconds per millimeter of thickness or the largest relevant diameter of the Component takes place, wherein preferably the duration of the temperature treatment in a time range of 5 seconds per millimeter of the thickness or the wall thickness of the component or the largest relevant diameter of the component to be produced to 600 seconds per millimeter of thickness or the largest relevant diameter of the component to be produced he follows.
  • the duration of the temperature treatment is selected so that sufficient sintering of the powder occurs, but at the same time as possible the formation of crystalline phase in the component is kept low or ideally minimal.
  • it may already be sufficient if only the edge regions of the component are completely sintered and powder that is not yet sintered is present in the interior of the component.
  • the component is sintered completely (also inside).
  • the objects underlying the present invention are also achieved by a component made of a pressed, sintered, spherical, amorphous Metal alloy powder, wherein the component has an amorphous content of at least 85 percent.
  • the component is produced by the method according to the invention.
  • the method according to the invention has been described above.
  • the invention is based on the surprising finding that by using spherical powder particles of suitable size and a temperature treatment at the suitable temperature over a suitable short period, it is also possible to produce larger and / or complex components from a powder of an amorphous metal alloy consist of a high proportion (at least 85 percent by volume) of the amorphous phase and thus have advantageous physical properties of the amorphous metal alloy.
  • the present invention thus describes for the first time a method in which a component of an amorphous metal alloy or of a metal alloy consisting of at least 85% of an amorphous phase can be produced by sintering a powder in which a high proportion of amorphous phase is retained.
  • the duration of the temperature treatment is adapted to the dimensions of the component to be produced in order to obtain the highest possible proportion of amorphous phase during sintering of the powder, or to keep the proportion of crystalline phase in the metal alloy as low as possible.
  • metal oxides and other reaction products act in particular as nuclei for the crystallization and thus reduce the proportion of amorphous phase in the component.
  • amorphous metallic powders for producing the component are produced by melt atomization and the powders are X-ray amorphous, with their powder particles preferably being smaller than 125 ⁇ m.
  • the resulting molten Droplets of the alloy cooled very rapidly through the process gas stream (argon), thereby promoting the presence of an amorphous powder fraction. From this powder, the fine dust (particles smaller than 5 microns) and the coarse grain of greater than 125 microns largely separated, for example by sieving and / or by air classification of the powder.
  • Such powder fractions are then an optimum starting material (the powder provided) to produce complex amorphous components by pressing and temperature treatment, both successive or combined pressure and temperature steps having very good results with respect to the amorphous behavior of the component.
  • the powder provided an optimum starting material
  • the powder provided to produce complex amorphous components by pressing and temperature treatment, both successive or combined pressure and temperature steps having very good results with respect to the amorphous behavior of the component.
  • the component thus produced and made of such a powder has a high degree of sintered powder particles and a low porosity, preferably a porosity of less than 5%.
  • the amorphous powder is not heated to the crystallization temperature or beyond, otherwise crystallization occurs and the amorphous character of the alloy is lost.
  • it is necessary to heat the material at least to the transformation temperature ie the temperature at which the amorphous phase of the metal alloy during the cooling from the plastic region in the rigid state passes. In this temperature range, the powder particles can connect, but without crystallizing.
  • the transformation temperature can also be referred to as the glass transition temperature and is often referred to as such.
  • the duration of the temperature treatment depends mainly on the volume of the component and should not take too long, as a rule, since each small crystal nucleus acts as a seed crystal and so crystals can grow, or so spreads the unwanted crystalline phase in the component.
  • a temperature treatment in the temperature range according to the invention with a maximum duration of 400 seconds per 1 mm component cross-section gives particularly good results.
  • the heating-up phase should also take place as quickly as possible since, in some cases, the undesired crystal growth already occurs 50 Kelvin below the transformation temperature.
  • T is the working temperature
  • T T is the transformation temperature of the amorphous metal alloy
  • T K is the crystallization temperature of the amorphous phase of the metal alloy.
  • an amorphous metallic powder is produced from a metallic alloy whose composition is suitable for forming an amorphous phase or which already consists of the amorphous phase. This is followed by a powder fractionation in which too small and too large powder particles or powder particles, in particular by sieving and air classification, are removed. The powder can then be pressed either with or without temperature entry in a desired shape. When the powder is pressed into the mold without the introduction of temperature, a temperature treatment is subsequently carried out, which in the context of the present invention is referred to as sintering or which causes sintering. The temperature treatment during pressing or after pressing takes place for a maximum period of 900 seconds per 1 mm component cross-section at a temperature above the transformation temperature T T and below the crystallization temperature T K of the amorphous phase of the metallic alloy used.
  • Niobium Film 99.97% Article Number 002378 was heated in an induction melting plant (VSG, inductively heated vacuum, melting and casting plant, Nürmont, Freiberg) under 800 mbar argon (argon 6.0, Linde AG, Pullach) melted and poured into a water-cooled copper mold. From the thus produced alloy was prepared by a method such as WO 99/30858 A1 is known, produced in a Nanoval Schmelzverdüsungs apparatus (Nanoval GmbH & Co. KG, Berlin) by atomizing the melt with argon, a fine powder.
  • the fine grain is separated, so that less than 0.1% of the particles are smaller than 5 microns in size, that is at least 99.9% of the particles one Diameter or a dimension of 5 microns or more, and by sieving through a test sieve with 125 microns mesh size (Retsch GmbH, Haan Germany, Article No. 60.131.000125) are removed all powder particles that are larger than 125 microns.
  • the powder thus produced is examined by means of X-ray diffractometry and has an amorphous content greater than 95%.
  • the compacted compacts are finally compacted by hot isostatic pressing under a pressure of 200 megapascal (200 MPa) under high-purity argon (Argon 6.0, Linde AG, Pullach) at a temperature of 400 ° C for 90 seconds.
  • Niobium Film 99.97% Article Number 002378 was heated in an induction melting plant (VSG, inductively heated vacuum, melting and casting plant, Nürmont, Freiberg) under 800 mbar argon (argon 6.0, Linde AG, Pullach) melted and poured into a water-cooled copper mold. From the thus produced alloy was prepared by a method such as WO 99/30858 A1 is known, produced in a Nanoval Schmelzverdüsungs apparatus (Nanoval GmbH & Co. KG, Berlin) by atomizing the melt with argon, a fine powder.
  • the fine grain was separated by separation by means of air classification Condux-Feinstsichter CFS (Netsch-Feinmahltechnik GmbH Selb Germany), so that less than 0.1% of the particles are smaller than 5 microns in size and by sieving through a test sieve with 125 microns mesh size (Retsch GmbH , Haan Germany, article number 60.131.000125), all powder particles larger than 125 ⁇ m were away.
  • the powder thus produced was examined by means of X-ray diffractometry and has an amorphous content greater than 95%.
  • niobium film 99.97% article number 002378 was used in an induction melting plant (VSG, inductively heated vacuum, melting and casting plant, Nürmont, Freiberg) under 800 mbar argon (argon 6.0, Linde AG, Pullach) melted and poured into a water-cooled copper mold. From the thus produced alloy was prepared by a method such as WO 99/30858 A1 is known, produced in a Nanoval Schmelzverdüsungs apparatus (Nanoval GmbH & Co. KG, Berlin) by atomizing the melt with argon, a fine powder.
  • the fine grain was separated by separation by means of air classification Condux-Feinstsichter CFS (Netsch-Feinmahltechnik GmbH Selb Germany), so that less than 0.1% of the particles are smaller than 5 microns in size and by sieving through a test sieve with 125 microns mesh size (Retsch GmbH , Haan Germany, article number 60.131.000125), all powder particles larger than 125 ⁇ m were removed.
  • the powder thus produced was examined by X-ray diffractometry and has an amorphous content greater than 95%.
  • niobium film 99.97% article number 002378 was used in an induction melting plant (VSG, inductively heated vacuum, melting and casting plant, Nürmont, Freiberg) under 800 mbar argon (argon 6.0, Linde AG, Pullach) melted and poured into a water-cooled copper mold. From the thus produced alloy was prepared by a method such as WO 99/30858 A1 is known, produced in a Nanoval Schmelzverdüsungs apparatus (Nanoval GmbH & Co. KG, Berlin) by atomizing the melt with argon, a fine powder.
  • the fine grain was separated by separation by means of air classification Condux-Feinstsichter CFS (Netsch-Feinmahltechnik GmbH Selb Germany), so that less than 0.1% of the particles are smaller than 5 microns in size and by sieving through a test sieve with 125 microns mesh size (Retsch GmbH , Haan Germany, article number 60.131.000125), all powder particles larger than 125 ⁇ m were removed.
  • the powder thus produced was examined by means of X-ray diffractometry and has an amorphous content greater than 95%.
  • the component produced in this way was examined by means of several metallographic micrographs for the amorphous area fraction in the microstructure. This shows that on average 90% of the surfaces are amorphous.
  • the particle size of inorganic powders was determined by laser light scattering with a Mastersizer 2000 (Malvern Instruments Ltd., Great Britain).
  • a geometrically exact cuboid can be created by grinding the surfaces so that it can be precisely measured with a digital micrometer (PR1367, Mitutoyo Messtechnik Leonberg GmbH, Leonberg).
  • PR1367 Mitutoyo Messtechnik Leonberg GmbH, Leonberg.
  • the volume is determined and then the exact weight is determined on an analytical balance (XPE analytical balances from Mettler-Toledo GmbH).
  • XPE analytical balances from Mettler-Toledo GmbH
  • the theoretical density of an amorphous alloy corresponds to the density at the melting point.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines Bauteils aus einer zumindest teilweisen amorphen Metalllegierung.
  • Die Erfindung betrifft ferner ein Bauteil aus einer Metalllegierung mit amorpher Phase und die Verwendung eines solchen Bauteils.
  • Amorphe Metalle und deren Legierungen sind seit mehreren Jahrzehnten bekannt. Dünne Bänder und deren Herstellung werden zum Beispiel in der Offenlegung DE 35 24 018 A1 beschrieben, wobei auf einem Träger durch Abschreckkühlung aus der Schmelzphase ein dünnes metallisches Glas erzeugt wird. Auch wird zum Beispiel in der Patentschrift EP 2 430 205 B1 ein Composite aus einer amorphen Legierung beschrieben, das für seine Herstellung eine Abkühlrate von 102 K/s benötigt. Nachteilig ist hieran, dass mit solchen bekannten Methoden nur dünne Schichten oder sehr kompakte Bauteile mit einigen Millimetern Querschnitt aufgebaut werden können.
  • Ein Problem besteht also darin, große Bauteile in komplexen Formen herzustellen, die eine amorphe Struktur aufweisen. Die notwendigen Abkühlraten sind für komplexe Bauteile und Halbzeuge mit großem Volumen technisch nicht realisierbar. Aus der WO 2008/039134 A1 ist ein Verfahren bekannt, bei dem ein größeres Bauteil aus einem amorphen Metall-Pulver hergestellt wird. Dazu wird das Bauteil nach Art eines 3D-Drucks schichtweise aufgebaut, wobei Teilbereiche der Schichten mit einem Elektronenstrahl aufgeschmolzen werden.
  • Nachteilig ist hieran, dass das Verfahren nur sehr aufwendig und kostspielig umzusetzen ist. Zudem ist mit einem solchen Verfahren keine ausreichende Homogenität der physikalischen Eigenschaften des erzeugten Bauteils zu erzielen. Durch das lokale Aufschmelzen und wieder Abkühlen des Pulvers kommt es zu einer punktuellen Überschreitung der Kristallisationstemperatur und einer Kristallisation der Legierung, wenn die Abkühlrate der Schmelze zu gering verläuft. Dadurch entsteht eine unerwünschte Menge und eine ungleichmäßige Verteilung an kristalliner Phase in dem Bauteil.
  • EP 1 593 749 A1 beschreibt ein metallisches Glas einer Eisenlegierung, die 0,5-10 Atom-% Ga, 7-15 Atom-% P, 3-7 Atom-% C, 3-7 Atom-% B und 1-7 Atom-% Si als Legierungselemente enthält und in Form sphärischer Partikel vorliegt. Die sphärischen Metallpartikel sind über eine Gasverdüsung erhältlich und werden für die Herstellung eines Sinterkörpers verwendet.
  • Die Aufgabe der Erfindung besteht also darin, die Nachteile des Stands der Technik zu überwinden. Insbesondere soll ein einfaches und kostengünstig zu realisierendes Verfahren entwickelt werden, mit dem ein Bauteil aus einer Metalllegierung mit amorphem Anteil hergestellt werden kann, das ein Volumen 0,1 cm3 und mehr, bevorzugt 1 cm3 und mehr, aufweisen kann und das in unterschiedlichen auch komplexen Formen erzeugt werden kann. Das erzeugte Bauteil soll auch eine möglichst hohe Homogenität hinsichtlich der physikalischen Eigenschaften und der Verteilung der amorphen Phase aufweisen. Aufgabe der vorliegenden Erfindung ist es auch ein solches Bauteil bereitzustellen. Das Verfahren soll dabei einfach umzusetzen sein und gut reproduzierbare Ergebnisse liefern. Das erzeugte Bauteil soll einen möglichst hohen Anteil an amorpher metallischer Phase aufweisen. Auch ist es wünschenswert, wenn das erzeugte Bauteil möglichst kompakt ist und nur wenige Poren aufweist. Eine weitere Aufgabe kann darin gesehen werden, dass das Verfahren mit einer möglichst großen Anzahl unterschiedlicher Legierungen umsetzbar ist, die eine amorphe Phase aufweisen. Ferner ist es vorteilhaft, wenn das Verfahren mit möglichst einfachen und in Labors üblicherweise vorhandenen Apparaturen und Werkzeugen umsetzbar ist.
  • Die Aufgaben der Erfindung werden gelöst durch ein Verfahren zur Herstellung eines Bauteils aus einer zumindest teilweise amorphen Metalllegierung mit den Schritten:
    1. A) Bereitstellen eines Pulvers aus einer zumindest teilweise amorphen Metalllegierung, wobei das Pulver aus sphärischen Pulverpartikeln besteht, wobei die sphärischen Pulverpartikel eine abgerundete zumindest näherungsweise kugelförmige Form aufweisen und ein Verhältnis des längsten Querschnitts zum kürzesten Querschnitt von höchstens 2 zu 1 haben und wobei als Durchmesser der größte Querschnitt der Pulverpartikel angenommen wird, und die Pulverpartikel einen Durchmesser von weniger als 125 µm aufweisen, und wobei das Pulver weniger als 1 Gewichtsprozent an Teilchen mit einem Durchmesser kleiner als 5 µm aufweist oder das Pulver gesiebt oder durch Windsichten behandelt wird, so dass es weniger als 1 Gewichtsprozent an Teilchen mit einem Durchmesser kleiner als 5 µm aufweist;
    2. B) Pressen des Pulvers in die gewünschte Form des zu erzeugenden Bauteils;
    3. C) Verdichten und Sintern des Pulvers durch eine Temperaturbehandlung des Pulvers während des Pressens oder nach dem Pressen bei einer Temperatur, die zwischen der Transformationstemperatur und der Kristallisationstemperatur der amorphen Phase der Metalllegierung liegt, wobei die Dauer der Temperaturbehandlung derart gewählt wird, dass das Bauteil nach der Temperaturbehandlung gesintert ist und einen amorphen Anteil von mindestens 85 Prozent aufweist.
  • Die Dauer der Temperaturbehandlung wird derart gewählt, dass die Dauer zumindest so lange ist, dass das Pulver nach der Temperaturbehandlung gesintert ist, und dass die Dauer höchstens so lange ist, dass das Bauteil nach der Temperaturbehandlung noch einen amorphen Anteil von mindestens 85 Prozent aufweist.
  • Das Pulver besteht aus Pulverpartikeln von denen 100% weniger als 125 µm Durchmesser haben. Solche Partikelgrößen beziehungsweise Partikelverteilungen werden häufig auch mit D100 = 125 µm bezeichnet.
  • Als amorphes Material bezeichnet man in der Physik und der Chemie einen Stoff, bei dem die Atome keine geordneten Strukturen, sondern ein unregelmäßiges Muster bilden und lediglich über Nahordnung, nicht aber Fernordnung verfügen. Im Gegensatz zu amorphen bezeichnet man regelmäßig strukturierte Materialien als kristallin.
  • Sphärische Partikel müssen im Sinne der vorliegenden Erfindung keine geometrisch perfekten Kugeln sein, sondern können auch von der Kugelform abweichen. Die sphärischen Pulverpartikel weisen eine abgerundete zumindest näherungsweise kugelförmige Form auf und haben ein Verhältnis des längsten Querschnitts zum kürzesten Querschnitt von höchstens 2 zu 1. Im Sinne der vorliegenden Erfindung ist mit einer sphärischen Geometrie also keine streng geometrische beziehungsweise mathematische Kugel gemeint. Die Querschnitte beziehen sich dabei auf innerhalb der Pulverpartikel verlaufende extremale Abmessungen. Besonders bevorzugte sphärische Pulverpartikel können ein Verhältnis des längsten Querschnitts zum kürzesten Querschnitt von höchstens 1,5 zu 1 aufweisen oder ganz besonders bevorzugt kugelförmig sein. Als Durchmesser wird dabei erfindungsgemäß der größte Querschnitt der Pulverpartikel angenommen.
  • Die sphärische Form der Pulverpartikel hat die folgenden Vorteile:
    • Es kann eine hohe Schüttdichte des Pulvers erreicht werden;
    • Die Pulverpartikel weisen ähnlich gekrümmte Oberflächen auf, die bei der
  • Temperaturbehandlung bei den gleichen Bedingungen (Temperatur und Zeit beziehungsweise dem gleichen Wärmeenergieeintrag) weich werden - oder zumindest unter in guter Näherung den gleichen Bedingungen weich werden. Dadurch verbinden sich diese beziehungsweise sintern diese besonders gut und innerhalb einer kurzen Zeitspanne, beziehungsweise zu einem vorbekannten Zeitpunkt beziehungsweise in einem vorbekannten Zeitintervall, mit benachbarten Pulverpartikeln. Ein weiterer Vorteil einer hohen Schüttdichte ist ein geringer Schrumpf des Bauteils beim Sintern. Dadurch wird eine endformnahe Fertigung möglich.
  • Das Bauteil kann gemäß einer bevorzugten Ausführung der vorliegenden Erfindung insbesondere dann als gesintert angesehen werden, wenn es eine Dichte von mindestens 97% der theoretischen Dichte der vollständig amorphen Metalllegierung aufweist.
  • Unter einer Sinterung oder einem Sintern wird im Rahmen der vorliegenden Erfindung ein Vorgang verstanden, bei dem die Pulverpartikel an der Oberfläche weich werden und sich miteinander verbinden und nach dem Abkühlen verbunden bleiben. Dadurch wird aus dem Pulver ein zusammenhängender Körper beziehungsweise ein zusammenhängendes Bauteil erzeugt.
  • Die Transformationstemperatur einer amorphen Phase wird häufig auch als Glasübergangstemperatur oder als Transformationspunkt oder Glasübergangspunkt bezeichnet, wobei hiermit klargestellt sein soll, dass dies äquivalente Begriffe für die Transformationstemperatur sind.
  • Bevorzugt wird das Pulver geformt, indem das Pulver in eine Form oder in ein Werkzeug gefüllt wird und anschließend das Pulver in der Form oder in dem Werkzeug gepresst wird, beziehungsweise mit dem Werkzeug gepresst wird.
  • Das Aufheizen bis zum Erreichen der Transformationstemperatur und das Abkühlen sollen erfindungsgemäß so schnell wie möglich erfolgen, da auch bei diesen Temperaturen unterhalb der Transformationstemperatur eine Kristallisation an den zwangsläufig vorhandenen Impfkristallen erfolgt, aber noch keine Erweichung der Pulverpartikel erreicht wird, die zu einem Sintern des Pulvers führen könnte. Es soll erfindungsgemäß eine plastische Verformung der Pulverpartikel erreicht werden, die zu einem Kompaktieren des Pulvers und somit zu einem beschleunigten Sintern des Pulvers führt. Ein Überschwingen der Temperatur über die gewünschte Solltemperatur oder Endtemperatur soll dabei möglichst gering ausfallen.
  • Die Pulverpartikelgröße des Pulvers beziehungsweise die Pulverpartikelgrößenverteilung des Pulvers kann durch den Herstellungsprozess und durch ein Sieben eines Ausgangs-Pulvers erreicht werden. Das erfindungsgemäß bereitgestellte Pulver wird also durch Sieben eines Ausgangs-Pulvers hergestellt, bevor es für das erfindungsgemäße Verfahren bereitgestellt beziehungsweise verwendet wird. Zudem kann durch Sieben auch sichergestellt werden, dass die Anzahl der Pulverpartikel mit einer von der sphärischen Form stark abweichenden Form, die durch Ansintern mehrerer Pulverpartikel entstanden sind und die in dem Ausgangs-Pulver enthalten sind, reduziert oder minimiert werden kann.
  • Mit der Erfindung wird als bevorzugte Ausgestaltung des Verfahrens auch vorgeschlagen, dass die Temperaturbehandlung unter Vakuum erfolgt, wobei bevorzugt das Pulver durch eine Temperaturbehandlung bei einem Vakuum von zumindest 10-3 mbar verdichtet wird.
  • Hierdurch wird erreicht, dass die Oberfläche des Pulvers weniger stark mit den umgebenden Gasen reagieren kann. Metalloxide und andere Reaktionsprodukte wirken sich nämlich als Keimbildner für kristalline Phasen negativ auf die Reinheit der amorphen Phase in dem erzeugten Bauteil aus.
  • Aus dem gleichen Grund kann erfindungsgemäß zusätzlich oder auch alternativ vorgesehen sein, dass die Temperaturbehandlung unter einem Schutzgas erfolgt, insbesondere unter einem Edelgas, wie beispielsweise Argon, bevorzugt mit einer Reinheit von wenigstens 99,99% erfolgt, besonders bevorzugt mit einer Reinheit von wenigstens 99,999% erfolgt. Bevorzugt kann bei solchen Ausführungsformen vorgesehen sein, dass die Atmosphäre, in der das Pressen und die Temperaturbehandlung oder nur die Temperaturbehandlung erfolgt, durch mehrmaliges Evakuieren und Spülen mit Edelgas, insbesondere mit Argon, weitgehend von Restgasen befreit wird.
  • Es kann erfindungsgemäß alternativ auch vorgesehen sein, dass die Temperaturbehandlung unter einem reduzierenden Gas erfolgt, insbesondere unter einem Formiergas erfolgt, um die Menge an störenden Metall-Oxiden möglichst gering zu halten.
  • Eine weitere Maßnahme zur Verringerung der Anzahl von Metalloxiden in dem Bauteil kann durch die Anwendung eines Sauerstoff-Getters bei der Temperaturbehandlung des Pulvers und/oder bei der Herstellung des Pulvers erreicht werden.
  • Ferner kann erfindungsgemäß vorgesehen sein, dass das Pulver durch Heiß-Isostatisches Pressen oder Heißpressen verdichtet wird.
  • Die Kombination von Druck- und Temperaturbehandlung bewirkt ein kompakteres Bauteil. Zudem wird die Verbindung durch die plastische Verformung der Pulverpartikel untereinander verbessert und das Sinterverhalten beschleunigt, so dass eine kürzere Dauer der Temperaturbehandlung gewählt werden kann und der Anteil kristalliner Phase in dem Bauteil reduziert wird.
  • Gemäß einer Weiterbildung der Erfindung kann auch vorgesehen sein, dass die Dauer der Temperaturbehandlung derart gewählt wird, dass das Bauteil einen amorphen Anteil von mindestens 90 Prozent aufweist, bevorzugt von mehr als 95 Prozent, besonders bevorzugt von mehr als 98 Prozent aufweist.
  • Je höher der Anteil der amorphen Phase in dem Bauteil ist, desto mehr nähert man sich den gewünschten physikalischen Eigenschaften eines vollständig aus amorpher Phase bestehenden Bauteils.
  • Bevorzugte Ausgestaltungen der vorliegenden Erfindung können auch vorsehen, dass ein Pulver aus einer amorphen Metalllegierung oder einer zumindest teilweise amorphen Metalllegierung mit mindestens 50 Gewichtsprozenten Zirkonium verwendet wird.
  • Zirkonium-haltige amorphe Metalllegierungen sind besonders gut zum Umsetzen erfindungsgemäßer Verfahren geeignet, da bei vielen dieser Legierungen eine große Differenz zwischen der Transformationstemperatur und der Kristallisationstemperatur existiert, wodurch das Verfahren leichter umzusetzen ist.
  • Ganz besonders bevorzugte Ausgestaltungen der vorliegenden Erfindung können vorsehen, dass ein Pulver aus einer amorphen Metalllegierung oder einer zumindest teilweise amorphen Metalllegierung aus
    1. a) 58 bis 77 Gewichtsprozenten Zirkonium,
    2. b) 0 bis 3 Gewichtsprozenten Hafnium,
    3. c) 20 bis 30 Gewichtsprozenten Kupfer,
    4. d) 2 bis 6 Gewichtsprozenten Aluminium, und
    5. e) 1 bis 3 Gewichtsprozenten Niob
    bereitgestellt wird.
  • Der Restanteil bis auf 100 Gewichtsprozente ist dabei Zirkonium. Übliche Verunreinigungen können in der Legierung enthalten sein. Diese Zirkonium-haltigen amorphen Metalllegierungen sind ganz besonders gut zum Umsetzen erfindungsgemäßer Verfahren geeignet.
  • Des Weiteren kann vorgesehen sein, dass das sphärische amorphe Metalllegierungs-Pulver durch Schmelzverdüsung hergestellt wird, bevorzugt durch Schmelzverdüsung in einem Edelgas, insbesondere in Argon, besonders bevorzugt durch Schmelzverdüsung in einem Edelgas der Reinheit 99,99%, 99,999% oder einer höheren Reinheit. Im Rahmen der vorliegenden Erfindung wird auch dann von einer amorphen Metalllegierung gesprochen, wenn die Metalllegierung einen Anteil an amorpher Phase von wenigstens 85 Volumenprozent aufweist.
  • Die Herstellung des Pulvers erfolgt selbstverständlich vor dem Bereitstellen des Pulvers. Durch die Schmelzverdüsung lassen sich Pulverpartikel mit sphärischer Form auf einfache und kostengünstige Art herstellen. Die Verwendung von Edelgas, insbesondere von Argon oder hochreinem Argon bei der Schmelzverdüsung bewirkt, dass in dem Pulver möglichst wenige störende Verunreinigungen wie Metalloxide enthalten sind.
  • Das Pulver weist weniger als 1 Gewichtsprozent an Teilchen mit einem Durchmesser kleiner als 5 µm auf oder das Pulver wird gesiebt oder durch Windsichten behandelt, so dass es weniger als 1 Gewichtsprozent an Teilchen mit einem Durchmesser kleiner als 5 µm aufweist.
  • Erfindungsgemäß bevorzugt werden Pulverpartikel mit einem Durchmesser von weniger als 5 µm durch Windsichten entfernt, beziehungsweise genauer der Anteil von Pulverpartikeln mit einem Durchmesser von weniger als 5 µm durch Windsichten reduziert.
  • Durch den geringen Anteil von Pulverpartikeln mit einem Durchmesser kleiner als 5 µm wird die für eine Oxidation oder für eine andere störende chemische Reaktion der Pulverpartikel mit umgebendem Gas empfindliche Oberfläche des Pulvers (Summe der Oberflächen aller Pulverpartikel) begrenzt. Des Weiteren wird durch die Begrenzung der Korngröße des Pulvers sichergestellt, dass die Erweichung der Pulverpartikel zu ähnlichen Bedingungen (hinsichtlich der Temperatur und der Zeit beziehungsweise des erfolgten Energieeintrags) stattfinden wird, da die Krümmungen der Oberflächen der Pulverpartikel dann ähnlich sind und sich hierdurch eine kompakte Füllung des Pulvers durch Pressen erreichen lässt. Ein geringer Anteil von feinen Pulverpartikeln (kleiner als 5 µm) wirkt sich nicht nachteilig aus, da solche Pulverpartikel sich in den Zwischenräumen zwischen größeren Partikeln einlagern können und somit die Dichte des ungesinterten Pulvers erhöhen.
  • Mit einer bevorzugten Weiterbildung des erfindungsgemäßen Verfahrens wird vorgeschlagen, dass die Temperaturbehandlung des Pulvers bei einer Temperatur (T) zwischen der Transformationstemperatur und einer Maximal-Temperatur erfolgt, wobei die Maximal-Temperatur um 30% von der Temperaturdifferenz zwischen der Transformationstemperatur (TT) und der Kristallisationstemperatur (TK) der amorphen Phase der metallischen Legierung oberhalb der Transformationstemperatur (TT) liegt, wobei bevorzugt die Maximal-Temperatur um 20% oder 10% von der Temperaturdifferenz zwischen der Transformationstemperatur (TT) und der Kristallisationstemperatur (TK) der amorphen Phase der metallischen Legierung oberhalb der Transformationstemperatur (TT) liegt.
  • Wenn die Temperaturbehandlung dicht bei oder oberhalb der Transformationstemperatur erfolgt, wird das Entstehen und das Wachsen kristalliner Phase relativ gering ausfallen und damit die Reinheit der amorphen Phase in dem Bauteil hoch sein. Als Formel ausgedrückt soll die Temperatur T, bei der die Temperaturbehandlung des Pulvers erfolgt, bezogen auf die Transformationstemperatur TT und die Kristallisationstemperatur TK der amorphen Phase der metallischen Legierung die folgenden Bedingungen erfüllen: T T < T < T T + 300 / 100 * T K T T
    Figure imgb0001
    oder bevorzugt T T < T < T T + 20 / 100 * T K T T
    Figure imgb0002
    oder besonders bevorzugt T T < T < T T + 10 / 100 * T K T T .
    Figure imgb0003
  • Mit den in den vorangegangenen mathematischen Formeln angegebenen Temperaturbereichen, in denen die Temperaturbehandlung stattfinden soll, wird eine Sinterung bei geringer Ausbildung kristalliner Phasen in dem Bauteil erreicht.
  • Eine besonders vorteilhafte Ausgestaltung erfindungsgemäßer Verfahren ergibt sich wenn vorgesehen ist, dass die Dauer der Temperaturbehandlung in Abhängigkeit von der geometrischen Form, insbesondere von der Dicke, des zu erzeugenden Bauteils gewählt wird, bevorzugt in Abhängigkeit von dem größten relevanten Durchmesser des zu erzeugenden Bauteils gewählt wird.
  • Die geometrische Form, beziehungsweise die Dicke, des zu erzeugenden Bauteils wird dahingehend berücksichtigt, dass die Wärmeleitung in dem geformten Pulver beziehungsweise sich formenden Bauteil ausreichen soll, um auch das Pulver im Inneren des Bauteils beziehungsweise das Bauteil im Inneren bis zur Transformationstemperatur oder bis oberhalb der Transformationstemperatur zu erhitzen, so dass auch im Inneren des Bauteils eine Sinterung des Pulvers erfolgt.
  • Der größte relevante Durchmesser des Bauteils kann geometrisch durch die größte Kugel bestimmt werden, die geometrisch innerhalb des Bauteils untergebracht werden kann. Bei der Bestimmung des größten relevanten Durchmessers können Kanäle oder Spalten in dem Körper unberücksichtigt bleiben, die zum Wärmeeintrag über ein umgebendes Gas und/oder eine andere Wärmequelle nicht oder nur wenig (beispielsweise in der Summe weniger als 5%) beitragen.
  • Bevorzugt kann vorgesehen sein, dass die Dauer der Temperaturbehandlung in einem zeitlichen Bereich von 3 Sekunden pro Millimeter der Dicke beziehungsweise der Wandstärke des Bauteils oder des größten relevanten Durchmessers des zu erzeugenden Bauteils bis 900 Sekunden pro Millimeter der Dicke oder des größten relevanten Durchmessers des zu erzeugenden Bauteils erfolgt, wobei bevorzugt die Dauer der Temperaturbehandlung in einem zeitlichen Bereich von 5 Sekunden pro Millimeter der Dicke beziehungsweise der Wandstärke des Bauteils oder des größten relevanten Durchmessers des zu erzeugenden Bauteils bis 600 Sekunden pro Millimeter der Dicke oder des größten relevanten Durchmessers des zu erzeugenden Bauteils erfolgt.
  • Durch die Berücksichtigung der Form, der Dicke, beziehungsweise der Wandstärke des Bauteils, und/oder des größten relevanten Durchmessers des Bauteils wird die Dauer der Temperaturbehandlung so gewählt, dass eine ausreichende Versinterung des Pulvers erfolgt, gleichzeitig aber die Bildung kristalliner Phase in dem Bauteil möglichst gering gehalten wird oder idealerweise minimal ist. Für bestimmte Bauteile und für einige Anwendungen kann es bereits ausreichend sein, wenn nur die Randbereiche des Bauteils vollständig gesintert sind und im Inneren des Bauteils noch nicht gesintertes Pulver vorhanden ist. Bevorzugt wird das Bauteil aber vollständig (auch im Inneren) gesintert.
  • Die der vorliegenden Erfindung zugrundeliegenden Aufgaben werden auch gelöst durch ein Bauteil aus einem gepressten, gesinterten, sphärischen, amorphen Metalllegierungs-Pulver, wobei das Bauteil einen amorphen Anteil von mindestens 85 Prozent aufweist.
  • Das Bauteil ist mit dem erfindungsgemäßen Verfahren hergestellt. Das erfindungsgemäße Verfahren ist zuvor beschrieben.
  • Die der Erfindung zugrundeliegenden Aufgaben werden auch gelöst durch die Verwendung eines solchen Bauteils als Zahnrad, Reibrad, verschleißfeste Komponente, Gehäuse, Uhrengehäuse, Teil eines Getriebes oder Halbzeug.
  • Der Erfindung liegt die überraschende Erkenntnis zugrunde, dass es durch die Verwendung von sphärischen Pulverpartikeln geeigneter Größe und eine Temperaturbehandlung bei der geeigneten Temperatur über eine geeignete kurze Dauer gelingt, aus einem Pulver einer amorphen Metalllegierung auch größere und/oder komplexe Bauteile zu erzeugen, die zu einem hohen Anteil (zumindest 85 Volumenprozent) aus der amorphen Phase bestehen und damit über vorteilhafte physikalische Eigenschaften der amorphen Metalllegierung verfügen. Die vorliegende Erfindung beschreibt damit erstmals ein Verfahren, bei dem ein Bauteil aus einer amorphen Metalllegierung oder aus einer zu zumindest 85% aus einer amorphen Phase bestehende Metalllegierung durch Sintern eines Pulvers erzeugt werden kann, bei dem ein hoher Anteil amorpher Phase erhalten bleibt. Bevorzugt ist die Dauer der Temperaturbehandlung dabei an die Abmessungen des zu erzeugenden Bauteils angepasst, um beim Sintern des Pulvers einen möglichst hohen Anteil amorpher Phase zu erhalten, beziehungsweise um den Anteil kristalliner Phase in der Metalllegierung so gering wie möglich zu halten. Zu dem gleichen Zweck ist es vorteilhaft, die Temperaturbehandlung unter Schutzgas oder unter Vakuum durchzuführen, um einen möglichst geringen Anteil von Metalloxiden oder anderen Reaktionsprodukten mit Luft in dem Pulver und damit in dem Bauteil zu erzeugen. Solche Metalloxide und andere Reaktionsprodukte wirken dabei insbesondere als Keime für die Kristallisation und verringern so den Anteil an amorpher Phase in dem Bauteil.
  • Es wurde im Rahmen der vorliegenden Erfindung gefunden, dass erfindungsgemäße Verfahren zu besonders guten Resultaten führen, wenn die amorphen metallischen Pulver zur Herstellung des Bauteils über Schmelzverdüsung hergestellt werden und die Pulver röntgenamorph sind, wobei bevorzugt deren Pulverpartikel kleiner als 125 µm sind. Bei der Schmelzverdüsung werden die entstehenden schmelzflüssigen Tröpfchen der Legierung sehr schnell durch den Prozessgasstrom (Argon) abgekühlt, wodurch das Vorliegen einer amorphen Pulverfraktion gefördert wird. Von diesem Pulver wird der Feinstaub (Teilchen kleiner 5 µm) sowie das Grobkorn von größer 125 µm weitgehend abgetrennt, beispielsweise durch Sieben und/oder durch Windsichten des Pulvers. Solche Pulverfraktionen sind dann ein optimales Ausgangsmaterial (das bereitgestellt Pulver), um durch Pressen und eine Temperaturbehandlung komplexe amorphe Bauteile herzustellen, wobei hier sowohl nacheinander ausgeführte oder kombinierte Druck- und Temperaturschritte sehr gute Resultate in Bezug auf das amorphe Verhalten des Bauteils aufweisen. Mit derart hergestellten Pulvern erhält man ein Bauteil mit besonders hohem Anteil an amorpher metallischer Phase. Gleichzeitig hat das so erzeugte und aus einem derartigen Pulver hergestellte Bauteil einen hohen Grad an gesinterten Pulverpartikel und eine geringe Porosität, bevorzugt eine Porosität von weniger als 5%.
  • Wichtig ist dabei, dass bei dem Verfahren das amorphe Pulver nicht bis zur Kristallisationstemperatur oder darüber hinaus erhitzt wird, da sonst Kristallisation eintritt und der amorphe Charakter der Legierung verloren geht. Andererseits ist es notwendig, das Material mindestens auf die Transformationstemperatur, also die Temperatur, bei der die amorphe Phase der Metalllegierung während der Abkühlung aus dem plastischen Bereich in den starren Zustand übergeht, zu erhitzen. In diesem Temperaturbereich können sich die Pulverpartikel verbinden, ohne jedoch zu kristallisieren. Die Transformationstemperatur kann auch als Glasübergangstemperatur bezeichnet werden und wird auch häufig so bezeichnet.
  • Da es jedoch technisch kaum möglich und wirtschaftlich nicht sinnvoll ist, absolut frei von Verunreinigungen sowie auch frei von insbesondere Sauerstoff zu sein, sind mikrokristalline Einschlüsse nicht zu vermeiden. Geringe, im zweistelligen ppm Bereich liegende Sauerstoffanteile verursachen entsprechende Oxidbildung der sauerstoffaffinen Bestandteile der Legierung. Diese sind dann als kleine Kristallisationskeime vorhanden und können so zu kleinen Oxid-Einschlüssen mit Körnern führen, die im Schliffbild bei 1000-facher Vergrößerung oder bei einer Röntgendiffraktometrie-Untersuchung als Peak erkennbar sind. Ähnliche Effekte können auch durch weitere beziehungsweise andere Verunreinigungen der Ausgangsmaterialien sowie weitere Elemente, wie beispielsweise Stickstoff, entstehen.
  • Die Dauer der Temperaturbehandlung richtet sich hauptsächlich nach dem Bauteilvolumen und sollte in der Regel nicht zu lange dauern, da jeder noch so kleine Kristallkeim als Impfkristall wirkt und so Kristalle wachsen können, beziehungsweise sich so die unerwünschte kristalline Phase in dem Bauteil ausbreitet. In Versuchen mit Zirkon-basierten Legierungen konnte aufgezeigt werden, dass eine Temperaturbehandlung in dem erfindungsgemäßen Temperaturbereich mit einer Dauer von maximal 400 Sekunden pro 1 mm Bauteilquerschnitt, besonders gute Ergebnisse liefert. Auch die Aufheizphase sollte so schnell wie möglich erfolgen, da teilweise bereits 50 Kelvin unter der Transformationstemperatur das unerwünschte Kristallwachstum eintritt.
  • Im Folgenden werden weitere Ausführungsbeispiele der Erfindung anhand eines schematisch dargestellten Ablaufdiagramms erläutert, ohne jedoch dabei die Erfindung zu beschränken.
    Figure imgb0004
  • In dem Ablaufdiagramm wird mit T die Arbeitstemperatur, mit TT die Transformationstemperatur der amorphen Metalllegierung und mit TK die Kristallisationstemperatur der amorphen Phase der Metalllegierung bezeichnet.
  • Aus einer metallischen Legierung, deren Zusammensetzung zur Bildung einer amorphen Phase geeignet ist oder die bereits aus der amorphen Phase besteht, wird ein amorphes metallisches Pulver erzeugt. Anschließend erfolgt eine Pulverfraktionierung, bei der zu kleine und zu große Pulver-Teilchen beziehungsweise Pulverpartikel, insbesondere durch Sieben und Windsichten, entfernt werden. Das Pulver kann dann entweder mit oder ohne Temperatureintrag in eine gewünschte Form gepresst werden. Wenn das Pulver ohne Temperatureintrag in Form gepresst wird, erfolgt im Anschluss daran eine Temperaturbehandlung, die im Rahmen der vorliegenden Erfindung als Sinterung bezeichnet wird beziehungsweise die eine Sinterung bewirkt. Die Temperaturbehandlung während des Pressens oder nach dem Pressen erfolgt für einen Zeitraum von maximal 900 Sekunden pro 1 mm Bauteilquerschnitt bei einer Temperatur oberhalb der Transformationstemperatur TT und unterhalb der Kristallisationstemperatur TK der amorphen Phase der verwendeten metallischen Legierung.
  • Es folgen konkrete Ausführungsbeispiele, in denen erfindungsgemäße Verfahren beschrieben werden und bei denen eine Auswertung der so erhaltenen Ergebnisse erfolgt.
  • Beispiel 1:
  • Eine Legierung aus 70,5 Gewichtsprozent Zirkonium (Haines&Maassen Metallhandelsgesellschaft mbH Bonn, Zr-201-Zirkon Crystalbar), 0,2 Gewichtsprozent Hafnium (Alpha Aesar GmbH & Co KG Karlsruhe, Hafnium Crystal Bar milled chips 99,7% Artikelnummer 10204), 23,9 Gewichtsprozent Kupfer (Alpha Aesar GmbH & Co KG Karlsruhe, Copper plate, Oxygen free, High Conductivity (OFCH) Artikelnummer 45210), 3,6 Gewichtsprozent Aluminium (Alpha Aesar GmbH & Co KG Karlsruhe, Aluminium Ingot 99,999% Artikelnummer 10571) und 1,8 Gewichtsprozent Niob (Alpha Aesar GmbH & Co KG Karlsruhe, Niob Folie 99,97% Artikelnummer 00238) wurde in einer Induktionsschmelzanlage (VSG, induktiv beheizte Vakuum-, Schmelz- und Gießanlage, Nürmont, Freiberg) unter 800 mbar Argon (Argon 6.0, Linde AG, Pullach) erschmolzen und in eine wassergekühlte Kupferkokille abgegossen. Aus der so erzeugten Legierung wurde mit einem Verfahren, wie es beispielsweise aus der WO 99/30858 A1 bekannt ist, in einer Nanoval Schmelzverdüsungs-Apparatur (Nanoval GmbH & Co. KG, Berlin) durch Zerstäubung der Schmelze mit Argon ein feines Pulver erzeugt.
  • Durch Abtrennung mittels Windsichten mit einem Condux-Feinstsichter CFS (Netsch-Feinmahltechnik GmbH Selb Deutschland) wird das Feinkorn abgetrennt, so dass weniger als 0,1 % der Teilchen kleiner als 5 µm groß sind, das heißt zumindest 99,9% der Teilchen einen Durchmesser oder eine Abmessungen von 5 µm oder mehr aufweisen, und mittels Siebung durch ein Analysensieb mit 125 µm Maschenweite (Retsch GmbH, Haan- Deutschland, Artikelnummer 60.131.000125) werden alle Pulverpartikel entfernt, die größer als 125 µm sind. Das derart erzeugte Pulver wird mittels Röntgendiffraktometrie untersucht und weist einen amorphen Anteil größer 95% auf.
  • Jeweils 5,0 Gramm dieser derart gewonnen Pulverfraktion werden in einer Laborpresse 54MP250D (mssiencetific Chromatographie-Handel GmbH, Berlin) mit einem Presswerkzeug (32 mm, P0764, mssiencetific Chromatographie-Handel GmbH, Berlin) und einer Presskraft von 15 Tonnen verdichtet. Die Presslinge werden anschließend in einer Vakuumsinterung (Gero Hochtemperatur-Vakuumtemperofen LHTW 100-200/22, Neuhausen) bei 410 °C und einem Druck von etwa 10-5 mbar für 120 Sekunden verdichtet. Anschließend werden die verdichteten Presslinge durch heißisostatisches Pressen unter einem Druck von 200 Megapascal (200 MPa) unter hochreinem Argon (Argon 6.0, Linde AG, Pullach) bei einer Temperatur von 400°C für 90 Sekunden endverdichtet.
  • Fünfzehn derart hergestellte Bauteile werden mittels metallographischer Schliffbilder auf den amorphen Flächenanteil im Gefüge untersucht. Hierbei zeigt sich, dass im Durchschnitt 92 % der Flächen amorph sind.
  • Beispiel 2:
  • Eine Legierung aus 70,5 Gewichtsprozent Zirkonium (Haines&Maassen Metallhandelsgesellschaft mbH Bonn, Zr-201-Zirkon Crystalbar), 0,2 Gewichtsprozent Hafnium (Alpha Aesar GmbH & Co KG Karlsruhe, Hafnium Crystal Bar milled chips 99,7% Artikelnummer 10204), 23,9 Gewichtsprozent Kupfer (Alpha Aesar GmbH & Co KG Karlsruhe, Copper plate, Oxygen free, High Conductivity (OFCH) Artikelnummer 45210), 3,6 Gewichtsprozent Aluminium (Alpha Aesar GmbH & Co KG Karlsruhe, Aluminium Ingot 99,999% Artikelnummer 10571) und 1,8 Gewichtsprozent Niob (Alpha Aesar GmbH & Co KG Karlsruhe, Niob Folie 99,97% Artikelnummer 00238) wurde in einer Induktionsschmelzanlage (VSG, induktiv beheizte Vakuum-,Schmelz- und Gießanlage, Nürmont, Freiberg) unter 800 mbar Argon (Argon 6.0, Linde AG, Pullach) erschmolzen und in eine wassergekühlte Kupferkokille abgegossen. Aus der derart erzeugten Legierung wurde mit einem Verfahren, wie es beispielsweise aus der WO 99/30858 A1 bekannt ist, in einer Nanoval Schmelzverdüsungs-Apparatur (Nanoval GmbH & Co. KG, Berlin) durch Zerstäubung der Schmelze mit Argon ein feines Pulver erzeugt.
  • Durch Abtrennung mittels Windsichten Condux-Feinstsichter CFS (Netsch-Feinmahltechnik GmbH Selb Deutschland) wurde das Feinkorn abgetrennt, so dass weniger als 0,1 % der Teilchen kleiner als 5 µm groß sind und mittels Siebung durch ein Analysensieb mit 125 µm Maschenweite (Retsch GmbH, Haan- Deutschland, Artikelnummer 60.131.000125) wurden alle Pulverpartikel, die größer als 125 µm sind, entfernt. Das derart erzeugte Pulver wurde mittels Röntgendiffraktometrie untersucht und weist einen amorphen Anteil größer 95% auf.
  • Jeweils 15,0 Gramm dieser derart gewonnen Pulverfraktion wurden durch Heißpressen mit einem Druck von 200 Megapascal (200 MPa) bei einer Temperatur von 400 °C für 3 Minuten versintert.
  • Fünfzehn derart hergestellte Bauteile wurden mittels metallographischer Schliffbilder auf den amorphen Flächenanteil im Gefüge untersucht. Hierbei zeigte sich, dass im Durchschnitt 85 % der Flächen amorph sind.
  • Beispiel 3:
  • Eine Legierung aus 70,6 Gewichtsprozent Zirkonium (Haines&Maassen Metallhandelsgesellschaft mbH Bonn, Zr-201-Zirkon Crystalbar), 23,9 Gewichtsprozent Kupfer (Alpha Aesar GmbH & Co KG Karlsruhe, Copper plate, Oxygen free, High Conductivity (OFCH) Artikelnummer 45210), 3,7 Gewichtsprozent Aluminium (Alpha Aesar GmbH & Co KG Karlsruhe, Aluminium Ingot 99,999% Artikelnummer 10571) und 1,8 Gewichtsprozent Niob (Alpha Aesar GmbH & Co KG Karlsruhe, Niob Folie 99,97% Artikelnummer 00238) wurde in einer Induktionsschmelzanlage (VSG, induktiv beheizte Vakuum-,Schmelz- und Gießanlage, Nürmont, Freiberg) unter 800 mbar Argon (Argon 6.0, Linde AG, Pullach) erschmolzen und in eine wassergekühlte Kupferkokille abgegossen. Aus der derart erzeugten Legierung wurde mit einem Verfahren, wie es beispielsweise aus der WO 99/30858 A1 bekannt ist, in einer Nanoval Schmelzverdüsungs-Apparatur (Nanoval GmbH & Co. KG, Berlin) durch Zerstäubung der Schmelze mit Argon ein feines Pulver erzeugt.
  • Durch Abtrennung mittels Windsichten Condux-Feinstsichter CFS (Netsch-Feinmahltechnik GmbH Selb Deutschland) wurde das Feinkorn abgetrennt, so dass weniger als 0,1 % der Teilchen kleiner als 5 µm groß sind und mittels Siebung durch ein Analysensieb mit 125 µm Maschenweite (Retsch GmbH, Haan- Deutschland, Artikelnummer 60.131.000125) wurden alle Pulverpartikel, die größer als 125 µm sind, entfernt. Das so erzeugte Pulver wurde mittels Röntgendiffraktometrie untersucht und weist einen amorphen Anteil größer 95% auf.
  • Jeweils 15,0 Gramm dieser derart gewonnen Pulverfraktion wurden durch Pressen unter einem Druck von 200 Megapascal (200 MPa) bei einer Temperatur von 400°C für 3 Minuten versintert.
  • Fünfzehn derart hergestellte Bauteile wurden mittels metallographischer Schliffbilder auf den amorphen Flächenanteil im Gefüge untersucht. Hierbei zeigte sich, dass im Durchschnitt 87 % der Flächen amorph sind.
  • Beispiel 4:
  • Eine Legierung aus 70,6 Gewichtsprozent Zirkonium (Haines&Maassen Metallhandelsgesellschaft mbH Bonn, Zr-201-Zirkon Crystalbar), 23,9 Gewichtsprozent Kupfer (Alpha Aesar GmbH & Co KG Karlsruhe, Copper plate, Oxygen free, High Conductivity (OFCH) Artikelnummer 45210), 3,7 Gewichtsprozent Aluminium (Alpha Aesar GmbH & Co KG Karlsruhe, Aluminium Ingot 99,999% Artikelnummer 10571) und 1,8 Gewichtsprozent Niob (Alpha Aesar GmbH & Co KG Karlsruhe, Niob Folie 99,97% Artikelnummer 00238) wurde in einer Induktionsschmelzanlage (VSG, induktiv beheizte Vakuum-,Schmelz- und Gießanlage, Nürmont, Freiberg) unter 800 mbar Argon (Argon 6.0, Linde AG, Pullach) erschmolzen und in eine wassergekühlte Kupferkokille abgegossen. Aus der derart erzeugten Legierung wurde mit einem Verfahren, wie es beispielsweise aus der WO 99/30858 A1 bekannt ist, in einer Nanoval Schmelzverdüsungs-Apparatur (Nanoval GmbH & Co. KG, Berlin) durch Zerstäubung der Schmelze mit Argon ein feines Pulver erzeugt.
  • Durch Abtrennung mittels Windsichten Condux-Feinstsichter CFS (Netsch-Feinmahltechnik GmbH Selb Deutschland) wurde das Feinkorn abgetrennt, so dass weniger als 0,1 % der Teilchen kleiner als 5 µm groß sind und mittels Siebung durch ein Analysensieb mit 125 µm Maschenweite (Retsch GmbH, Haan- Deutschland, Artikelnummer 60.131.000125) wurden alle Pulverpartikel, die größer als 125 µm sind, entfernt. Das derart erzeugte Pulver wurde mittels Röntgendiffraktometrie untersucht und weist einen amorphen Anteil größer 95% auf.
  • 50 Gramm dieser derart gewonnen Pulverfraktion wurden in einer Laborpresse 54MP250D (mssiencetific Chromatographie-Handel GmbH, Berlin) mit einem Presswerkzeug (32 mm, P0764, mssiencetific Chromatographie-Handel GmbH, Berlin) und der maximalen Presskraft von 25 Tonnen verdichtet und unter hochreinem Argon (Argon 6.0, Linde AG, Pullach) bei einer Temperatur von 410°C für 5 Minuten versintert.
  • Das so hergestellte Bauteil wurde mittels mehrerer metallographischer Schliffbilder auf den amorphen Flächenanteil im Gefüge untersucht. Hierbei zeigt sich, dass im Durchschnitt 90 % der Flächen amorph sind.
  • Test-und Prüfmethoden 1) Methode zur Bestimmung der Partikelgröße von Metalllegierungs-Pulvern:
  • Die Partikelgröße von anorganischen Pulvern wurde durch Laserlichtstreuung mit einem Mastersizer 2000 (Malvern Instruments Ltd., Großbritannien) bestimmt.
  • 2) Prüfmethode für die Bestimmung der Dichte:
  • Für die Bestimmung der Dichte kann ein geometrisch exakter Quader durch Schleifen der Oberflächen erzeugt werden, so dass dieser mit einer Digitalen Bügelmessschraube (PR1367, Mitutoyo Messgeräte Leonberg GmbH, Leonberg) exakt vermessen werden kann. Mathematisch wird nun das Volumen bestimmt und anschließend wird auf einer Analysenwaage (XPE-Analysenwaagen von Mettler-Toledo GmbH) das genaue Gewicht bestimmt. Durch Bildung des Verhältnisses aus gewogenem Gewicht und berechnetem Volumen ergibt sich die Dichte.
  • Die theoretische Dichte einer amorphen Legierung entspricht der Dichte beim Schmelzpunkt.
  • 3) Prüfmethode für die Bestimmung des amorphen Flächenanteils im Bauteil:
  • Hierzu werden jeweils fünfzehn metallographische Schliffe in Anlehnung an die DIN EN ISO 1463 angefertigt, wobei mit einer SiC-Folie 1200 (Struers GmbH, Willich) sowie anschließend folgenden Polierschritten mit Diamantpoliermittel mit 6µm, 3µm und 1 µm (Struers GmbH, Willich) und abschließend mit den chemo-mechanischen Oxidpoliersuspensionen OP-S (Struers GmbH, Willich) poliert wird. Die so erzeugten Schliffoberflächen werden unter einem Lichtmikroskop (Leica DM 4000 M, Leica DM 6000 M) mit einer Vergrößerung von 1000 auf kristalline Flächenanteile im Schliffbild untersucht. Hierbei erfolgt eine Auswertung nach Flächenprozent kristalliner-Anteil zu Gesamtfläche des Schliffs.
  • Die in der voranstehenden Beschreibung, sowie den Ansprüchen, dem Ablaufdiagramm und den Ausführungsbeispielen offenbarten Merkmale der Erfindung können sowohl einzeln, als auch in jeder beliebigen Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausführungsformen wesentlich sein.

Claims (13)

  1. Verfahren zur Herstellung eines Bauteils aus einer zumindest teilweise amorphen Metalllegierung mit den Schritten:
    Bereitstellen eines Pulvers aus einer zumindest teilweise amorphen Metalllegierung, wobei das Pulver aus sphärischen Pulverpartikeln besteht, wobei die sphärischen Pulverpartikel eine abgerundete zumindest näherungsweise kugelförmige Form aufweisen und ein Verhältnis des längsten Querschnitts zum kürzesten Querschnitt von höchstens 2 zu 1 haben und wobei als Durchmesser der größte Querschnitt der Pulverpartikel angenommen wird, und die Pulverpartikel einen Durchmesser von weniger als 125 µm aufweisen, und wobei das Pulver weniger als 1 Gewichtsprozent an Teilchen mit einem Durchmesser kleiner als 5 µm aufweist oder das Pulver gesiebt oder durch Windsichten behandelt wird, so dass es weniger als 1 Gewichtsprozent an Teilchen mit einem Durchmesser kleiner als 5 µm aufweist;
    Pressen des Pulvers in die gewünschte Form des zu erzeugenden Bauteils;
    Verdichten und Sintern des Pulvers durch eine Temperaturbehandlung des Pulvers während des Pressens oder nach dem Pressen bei einer Temperatur, die zwischen der Transformationstemperatur und der Kristallisationstemperatur der amorphen Phase der Metalllegierung liegt, wobei die Dauer der Temperaturbehandlung derart gewählt wird, dass das Bauteil nach der Temperaturbehandlung gesintert ist und einen amorphen Anteil von mindestens 85 Prozent aufweist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Temperaturbehandlung unter Vakuum erfolgt, wobei bevorzugt das Pulver durch eine Temperaturbehandlung bei einem Vakuum von zumindest 10-3 mbar verdichtet wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Pulver durch Heiß-Isostatisches Pressen oder Heißpressen verdichtet wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
    die Dauer der Temperaturbehandlung derart gewählt wird, dass das Bauteil einen amorphen Anteil von mindestens 90 Prozent aufweist, bevorzugt von mehr als 95 Prozent, besonders bevorzugt von mehr als 98 Prozent.
  5. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass
    ein Pulver aus einer amorphen Metalllegierung mit mindestens 50 Gewichtsprozenten Zirkonium verwendet wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass
    ein Pulver aus einer amorphen Metalllegierung aus
    a) 58 bis 77 Gewichtsprozenten Zirkonium,
    b) 0 bis 3 Gewichtsprozenten Hafnium,
    c) 20 bis 30 Gewichtsprozenten Kupfer,
    d) 2 bis 6 Gewichtsprozenten Aluminium, und
    e) 1 bis 3 Gewichtsprozenten Niob
    bereitgestellt wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass
    das sphärische amorphe Metalllegierungs-Pulver durch Schmelzverdüsung hergestellt wird, bevorzugt durch Schmelzverdüsung in einem Edelgas, insbesondere in Argon, besonders bevorzugt durch Schmelzverdüsung in einem Edelgas der Reinheit 99,99%, 99,999% oder einer höheren Reinheit.
  8. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass
    die Temperaturbehandlung des Pulvers bei einer Temperatur (T) zwischen der Transformationstemperatur und einer Maximal-Temperatur erfolgt, wobei die Maximal-Temperatur um 30% von der Temperaturdifferenz zwischen der Transformationstemperatur (TT) und der Kristallisationstemperatur (TK) der amorphen Phase der metallischen Legierung oberhalb der Transformationstemperatur (TT) liegt, wobei bevorzugt die Maximal-Temperatur um 20% oder 10% von der Temperaturdifferenz zwischen der Transformationstemperatur (TT) und der Kristallisationstemperatur (TK) der amorphen Phase der metallischen Legierung oberhalb der Transformationstemperatur (TT) liegt.
  9. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass
    die Dauer der Temperaturbehandlung in Abhängigkeit von der geometrischen Form, insbesondere von der Dicke, des zu erzeugenden Bauteils gewählt wird, bevorzugt in Abhängigkeit von dem größten relevanten Durchmesser des zu erzeugenden Bauteils gewählt wird.
  10. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass
    die Dauer der Temperaturbehandlung in einem zeitlichen Bereich von 3 Sekunden pro Millimeter der Dicke oder des größten relevanten Durchmessers des zu erzeugenden Bauteils bis 900 Sekunden pro Millimeter der Dicke oder des größten relevanten Durchmessers des zu erzeugenden Bauteils erfolgt, wobei bevorzugt die Dauer der Temperaturbehandlung in einem zeitlichen Bereich von 5 Sekunden pro Millimeter der Dicke oder des größten relevanten Durchmessers des zu erzeugenden Bauteils bis 600 Sekunden pro Millimeter der Dicke oder des größten relevanten Durchmessers des zu erzeugenden Bauteils erfolgt.
  11. Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass
    die Pulverpartikel durch die Temperaturbehandlung plastisch verformt werden.
  12. Bauteil aus einem gepressten, gesinterten, sphärischen, amorphen Metalllegierungs-Pulver, wobei das Bauteil einen amorphen Anteil von mindestens 85 Prozent aufweist und mit einem Verfahren nach einem der Ansprüche 1 bis 11 hergestellt ist.
  13. Verwendung eines Bauteils nach Anspruch 12 zur Herstellung eines Zahnrades, eines Reibrades, einer verschleißfesten Komponente, eines Gehäuses, eines Uhrengehäuses, eines Teils eines Getriebes oder eines Halbzeugs.
EP14168461.3A 2014-05-15 2014-05-15 Verfahren zur Herstellung eines Bauteils aus einer Metalllegierung mit amorpher Phase Active EP2944401B1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
ES14168461T ES2727507T3 (es) 2014-05-15 2014-05-15 Procedimiento para la producción de un componente a partir de una aleación metálica con fase amorfa
EP14168461.3A EP2944401B1 (de) 2014-05-15 2014-05-15 Verfahren zur Herstellung eines Bauteils aus einer Metalllegierung mit amorpher Phase
PL14168461T PL2944401T3 (pl) 2014-05-15 2014-05-15 Sposób wytwarzania elementu konstrukcyjnego ze stopu metali zawierającego fazę amorficzną
US15/310,263 US20170151609A1 (en) 2014-05-15 2015-05-12 Method for producing a component from an amorphous-phase metal alloy
KR1020167031362A KR20160143798A (ko) 2014-05-15 2015-05-12 비정질상 금속 합금으로부터 부품을 제조하기 위한 방법
JP2016567346A JP6370925B2 (ja) 2014-05-15 2015-05-12 非晶質相を有する金属合金からなる部品の製造方法
CN201580027018.3A CN106413948B (zh) 2014-05-15 2015-05-12 用于由非晶相金属合金制造构件的方法
PCT/EP2015/060410 WO2015173211A1 (de) 2014-05-15 2015-05-12 Verfahren zur herstellung eines bauteils aus einer metalllegierung mit amorpher phase
TW104115379A TWI557242B (zh) 2014-05-15 2015-05-14 製造非晶相金屬合金組件之方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14168461.3A EP2944401B1 (de) 2014-05-15 2014-05-15 Verfahren zur Herstellung eines Bauteils aus einer Metalllegierung mit amorpher Phase

Publications (2)

Publication Number Publication Date
EP2944401A1 EP2944401A1 (de) 2015-11-18
EP2944401B1 true EP2944401B1 (de) 2019-03-13

Family

ID=50771069

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14168461.3A Active EP2944401B1 (de) 2014-05-15 2014-05-15 Verfahren zur Herstellung eines Bauteils aus einer Metalllegierung mit amorpher Phase

Country Status (9)

Country Link
US (1) US20170151609A1 (de)
EP (1) EP2944401B1 (de)
JP (1) JP6370925B2 (de)
KR (1) KR20160143798A (de)
CN (1) CN106413948B (de)
ES (1) ES2727507T3 (de)
PL (1) PL2944401T3 (de)
TW (1) TWI557242B (de)
WO (1) WO2015173211A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10987735B2 (en) 2015-12-16 2021-04-27 6K Inc. Spheroidal titanium metallic powders with custom microstructures
PL3389862T3 (pl) 2015-12-16 2024-03-04 6K Inc. Sferoidalne metale podlegające odwodornieniu oraz cząstki stopów metali
GB201609141D0 (en) * 2016-05-24 2016-07-06 Metalysis Ltd Manufacturing apparatus and method
CN108607998B (zh) * 2018-05-04 2020-09-25 西迪技术股份有限公司 一种金属烧结摩擦材料及摩擦片
CN112654444A (zh) 2018-06-19 2021-04-13 6K有限公司 由原材料制造球化粉末的方法
DE102018115815A1 (de) * 2018-06-29 2020-01-02 Universität des Saarlandes Vorrichtung und Verfahren zur Herstellung eines aus einem amorphen oder teilamorphen Metall gebildeten Gussteils sowie Gussteil
KR102644961B1 (ko) 2019-04-30 2024-03-11 6케이 인크. 리튬 란타넘 지르코늄 산화물(llzo) 분말
SG11202111576QA (en) 2019-04-30 2021-11-29 6K Inc Mechanically alloyed powder feedstock
EP3804885A1 (de) * 2019-10-11 2021-04-14 Heraeus Additive Manufacturing GmbH Verfahren zur herstellung eines metallischen bauteils, das einen abschnitt mit hohem aspektverhältnis aufweist
PL4061787T3 (pl) 2019-11-18 2024-08-26 6K Inc. Unikalne surowce do proszków sferycznych i sposoby wytwarzania
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
EP3915701A1 (de) * 2020-05-28 2021-12-01 Heraeus Amloy Technologies GmbH Simulationssystem zur auswahl einer legierung sowie eines fertigungsverfahrens für ein zu fertigendes werkstück mit amorphen eigenschaften
CN116034496A (zh) 2020-06-25 2023-04-28 6K有限公司 微观复合合金结构
WO2022067303A1 (en) 2020-09-24 2022-03-31 6K Inc. Systems, devices, and methods for starting plasma
CN116600915A (zh) 2020-10-30 2023-08-15 6K有限公司 用于合成球化金属粉末的系统和方法
SE544674C2 (en) * 2020-12-11 2022-10-11 Adrian Robert Rennie A beam path component for use in neutron scattering equipment and method of producing such
US12042861B2 (en) 2021-03-31 2024-07-23 6K Inc. Systems and methods for additive manufacturing of metal nitride ceramics
DE102021111186A1 (de) * 2021-04-30 2022-11-03 Haimer Gmbh Werkzeugmaschinenkomponente sowie Verfahren zur Herstellung einer solchen Werkzeugmaschinenkomponente
CN113249661A (zh) * 2021-06-11 2021-08-13 北京大学口腔医学院 生物医用非晶合金及其应用
CN113737111A (zh) * 2021-09-07 2021-12-03 东莞市无疆科技投资有限公司 一种高密度非晶复合材料及其制备方法
CN114284055B (zh) * 2021-12-28 2024-02-23 江西大有科技有限公司 一种非晶粉及其制备方法
US12040162B2 (en) 2022-06-09 2024-07-16 6K Inc. Plasma apparatus and methods for processing feed material utilizing an upstream swirl module and composite gas flows
WO2024044498A1 (en) 2022-08-25 2024-02-29 6K Inc. Plasma apparatus and methods for processing feed material utilizing a powder ingress preventor (pip)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3524018A1 (de) 1985-07-02 1987-01-15 Mannesmann Ag Verfahren und vorrichtung zum herstellen von metallglas
JPH042735A (ja) * 1990-04-19 1992-01-07 Honda Motor Co Ltd 非晶質合金製焼結部材の製造方法
US6022424A (en) * 1996-04-09 2000-02-08 Lockheed Martin Idaho Technologies Company Atomization methods for forming magnet powders
CN1074466C (zh) * 1997-02-25 2001-11-07 中国科学院金属研究所 一种块状非晶及纳米晶合金的制备方法
DE19758111C2 (de) 1997-12-17 2001-01-25 Gunther Schulz Verfahren und Vorrichtung zur Herstellung feiner Pulver durch Zerstäubung von Schmelzen mit Gasen
JP3852809B2 (ja) * 1998-10-30 2006-12-06 独立行政法人科学技術振興機構 高強度・高靭性Zr系非晶質合金
JP3913167B2 (ja) * 2002-12-25 2007-05-09 独立行政法人科学技術振興機構 金属ガラスからなるバルク状のFe基焼結合金軟磁性材料およびその製造方法
JP4836136B2 (ja) * 2004-11-15 2011-12-14 Jx日鉱日石金属株式会社 金属ガラス膜作製用スパッタリングターゲット及びその製造方法
TW200722532A (en) * 2005-12-14 2007-06-16 Jin P Chu Annealing-induced solid-state amorphization in a metallic film
SE530323C2 (sv) 2006-09-26 2008-05-06 Foersvarets Materielverk Sätt att framställa föremål av amorf metall
JP2009097084A (ja) * 2007-09-25 2009-05-07 Sanyo Special Steel Co Ltd 微細形状、微細表面性状を有する精密金属部材の製造方法
CN101886232B (zh) 2009-05-14 2011-12-14 比亚迪股份有限公司 一种非晶合金基复合材料及其制备方法
JP5515539B2 (ja) * 2009-09-09 2014-06-11 日産自動車株式会社 磁石成形体およびその製造方法
KR20110055399A (ko) * 2009-11-19 2011-05-25 한국생산기술연구원 다성분 합금계 스퍼터링 타겟 모물질 및 다기능성 복합코팅 박막 제조방법
CN102383067A (zh) * 2010-08-27 2012-03-21 比亚迪股份有限公司 一种非晶合金粉体及其制备方法、以及一种非晶合金涂层及其制备方法
EP2597166B1 (de) * 2011-11-24 2014-10-15 Universität des Saarlandes Massives metallisches Glas bildende Legierung
CN110977144B (zh) * 2013-04-10 2022-09-23 斯凯孚公司 通过扩散焊接接合两种材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2015173211A1 (de) 2015-11-19
TWI557242B (zh) 2016-11-11
TW201610187A (zh) 2016-03-16
CN106413948A (zh) 2017-02-15
JP6370925B2 (ja) 2018-08-08
US20170151609A1 (en) 2017-06-01
KR20160143798A (ko) 2016-12-14
CN106413948B (zh) 2019-08-02
EP2944401A1 (de) 2015-11-18
PL2944401T3 (pl) 2019-08-30
ES2727507T3 (es) 2019-10-16
JP2017520677A (ja) 2017-07-27

Similar Documents

Publication Publication Date Title
EP2944401B1 (de) Verfahren zur Herstellung eines Bauteils aus einer Metalllegierung mit amorpher Phase
EP2974812B1 (de) Verfahren zur Herstellung eines Bauteils aus einer Metalllegierung mit amorpher Phase
DE3780136T2 (de) Gesinterter verbundpresskoerper mit grosser haerte.
DE69920621T2 (de) Verfahren zur herstellung von sinterteilen
EP2200768B1 (de) Verfahren zur herstellung von halbzeuge aus niti-formgedächtnislegierungen
DE102013103896B4 (de) Verfahren zum Herstellen eines thermoelektrischen Gegenstands für eine thermoelektrische Umwandlungsvorrichtung
EP3360627B1 (de) Pulver zur verwendung in einem additiven fertigungsverfahren
DE3011152A1 (de) Borhaltige legierungen, verfahren zu deren herstellung und deren verwendung
WO2019179680A1 (de) Herstellung eines metallischen massivglas-kompositmaterials mittels pulverbasierter, additiver fertigung
EP1718777B1 (de) Verfahren zur herstellung einer molybdän-legierung
EP3166741A1 (de) Verfahren zur herstellung eines bauteils
WO2019034506A1 (de) Kupfer-basierte legierung für die herstellung metallischer massivgläser
DE102014114830A1 (de) Verfahren zum Herstellen eines thermoelektischen Gegenstands für eine thermoelektrische Umwandlungsvorrichtung
DE60317582T2 (de) Verfahren zum sintern von aluminium- und aluminiumlegierungsteilen
EP3041631B1 (de) Chrommetallpulver
WO2021094560A1 (de) Sphärisches pulver zur fertigung von dreidimensionalen objekten
DE102019104492B4 (de) Verfahren zur herstellung einer kristallinen aluminium-eisen-silizium-legierung
EP3231536B1 (de) Verfahren zur pulvermetallurgischen herstellung von bauteilen aus titan oder titanlegierungen
DE102015114092B4 (de) Oxidationsbeständige Vanadiumlegierungen für hochtemperaturbeanspruchte Bauteile
DE69225469T2 (de) Verfahren zum entgasen und erstarren von aluminiumlegierungspulver
AT10479U1 (de) Fluiddichte sintermetallteile sowie verfahren zu ihrer herstellung
DE60002476T2 (de) Hochdichtes, bei niedrigen temperaturen gesintertes material aus wolfram
WO1995033079A1 (de) Bildung von intermetallischähnlichen vorlegierungen
WO2015042622A1 (de) Kupfer-gallium sputtering target
DE102018205893B3 (de) Werkstoff bestehend aus einem dreidimensionalen Gerüst, das mit SiC oder SiC und Si3N4 gebildet ist und einer Edelmetalllegierung, in der Silicium enthalten ist, sowie ein Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160518

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 1/04 20060101ALI20181002BHEP

Ipc: B22F 9/08 20060101ALI20181002BHEP

Ipc: B22F 1/00 20060101AFI20181002BHEP

Ipc: C22C 45/10 20060101ALI20181002BHEP

Ipc: B22F 3/24 20060101ALI20181002BHEP

Ipc: C22F 1/00 20060101ALI20181002BHEP

Ipc: B22F 3/00 20060101ALI20181002BHEP

Ipc: B22F 3/16 20060101ALI20181002BHEP

Ipc: C22F 1/18 20060101ALI20181002BHEP

Ipc: B22F 9/00 20060101ALI20181002BHEP

Ipc: B22F 3/15 20060101ALI20181002BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C22F 1/00 20060101ALI20181010BHEP

Ipc: B22F 3/00 20060101AFI20181010BHEP

Ipc: C22F 1/18 20060101ALI20181010BHEP

Ipc: B22F 1/00 20060101ALN20181010BHEP

Ipc: B22F 9/00 20060101ALI20181010BHEP

Ipc: C22C 1/04 20060101ALI20181010BHEP

Ipc: C22C 45/10 20060101ALI20181010BHEP

INTG Intention to grant announced

Effective date: 20181114

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1107019

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014011082

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DENNEMEYER AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190313

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190614

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190613

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2727507

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20191016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190713

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014011082

Country of ref document: DE

Representative=s name: BRAND, NORMEN, DR. RER. NAT., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014011082

Country of ref document: DE

Representative=s name: BRAND, NORMEN, DIPL.-CHEM. UNIV. DR. RER. NAT., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014011082

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

26N No opposition filed

Effective date: 20191216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190515

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1107019

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210527

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20210506

Year of fee payment: 8

Ref country code: IE

Payment date: 20210519

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210721

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220515

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230705

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220515

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240521

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240521

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240602

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240528

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240521

Year of fee payment: 11