[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1737995A1 - Feuille d'alliage al-mg ayant une excellente formabilité à des températures élevées et des vitesses élevées et procédé de production de celle-ci - Google Patents

Feuille d'alliage al-mg ayant une excellente formabilité à des températures élevées et des vitesses élevées et procédé de production de celle-ci

Info

Publication number
EP1737995A1
EP1737995A1 EP05734276A EP05734276A EP1737995A1 EP 1737995 A1 EP1737995 A1 EP 1737995A1 EP 05734276 A EP05734276 A EP 05734276A EP 05734276 A EP05734276 A EP 05734276A EP 1737995 A1 EP1737995 A1 EP 1737995A1
Authority
EP
European Patent Office
Prior art keywords
slab
aluminum alloy
alloy sheet
casting
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05734276A
Other languages
German (de)
English (en)
Inventor
Pizhi c/o Nikkei Research & Develop. Center ZHAO
Kazuhiro c/o Nikkei Rsch & Dev.. Center SHIOZAWA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Publication of EP1737995A1 publication Critical patent/EP1737995A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/003Aluminium alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0605Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two belts, e.g. Hazelett-process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Definitions

  • the present invention relates to an Al-Mg alloy sheet with excellent formability at high temperatures and high speeds and a method of production of the same.
  • An Al-Mg alloy is light and excellent in strength and corrosion resistance, so is being proposed as an automobile sheet material or other worked or formed material.
  • its elongation at room temperature is low, therefore th ⁇ re is the problem that an Al-Mg alloy cannot be formed into a complex shape by cold working.
  • an Al-Mg-based superplastic alloy suppressing the recrystallization at the time of hot working to reduce the size of the crystal grains and obtaining an elongation of several 100% in a high temperature region of for example 500 to 550°C as been developed and is being used for various applications.
  • a conventional Al-Mg-based superplastic alloy manifests its superplasticity at a slow forming speed
  • strain rate 10 "4 to 10 ⁇ 3 /sec and requires a long time, therefore is low in productivity when applied to ordinary press forming and is not practical. Therefore, an aluminum alloy sheet able to give a sufficient elongation even with high forming speed of a strain rate of for example 0.1/sec or more in the high temperature region for hot working, that is, 100 times or more than that of the prior art, and able to suppress occurrence of cavities at the time of forming has been developed.
  • 10-259441 proposes an aluminum alloy sheet with excellent superplastic formability at high speeds and having a reduced amount of cavities after forming characterized in that it contains 3.0-8.0% (wt%, same below) of Mg, 0.21-0.50% of Cu, and 0.001-0.1% of Ti, contains as impurities Fe to 0.06% or less and Si to
  • An object of the present invention is to provide an aluminum alloy sheet solving the above problems of the prior art, not requiring the use of high purity metal accompanied with higher cost, improving the formability at high temperatures and high speeds, and reducing the cavities after forming and a method of production of the same .
  • an aluminum alloy sheet with excellent formability at high temperatures and high speeds with a reduced amount of cavities after forming characterized in that it consists of: Mg: 2.0-8.0wt%, Si: 0.06-0.2wt%, Fe: 0.1-0.5wt%, Mn: 0.1-0.5wt%, and the balance of Al and unavoidable impurities, wherein a density of an inter-metallic compound having an equivalent circle diameter of 1 to 5 ⁇ m is 5000/mm 2 or more and an average crystal grain size is 20 ⁇ m or less.
  • a method of production of an aluminum alloy sheet of the present invention with excellent formability at high temperatures and high speeds with a reduced amount of cavities after forming characterized in that it comprises the steps of: preparing an alloy melt having a composition of the aluminum alloy sheet of the present invention, casting the alloy melt by a twin belt casting machine at a cooling rate of 20 to 150°C/sec at the location of 1/4 of the slab thickness during casting to form a slab having a thickness of 5 to 15 mm, subsequently rewinding up the slab as a coil, cold rolling the slab taken out from the coil with a cold rolling reduction of 70 to 96%, and performing annealing for heating the obtained cold rolled sheet at a rate of temperature rise of 5°C/sec or more to 420 to 500°C.
  • the aluminum alloy sheet of the present invention defines ranges of the chemical composition and microstructure and disperses the inter-metallic compounds uniformly and finely so as to improve the formability at high temperatures and high speeds by the increased fineness of the crystal grains without requiring any high purity metal and reduce the cavities after forming. Further, the method of production of the present invention secures a high cooling rate at the time of casting by twin belt casting, restricts the cold rolling reduction, and limits the annealing conditions after the cold rolling so as to realize a uniform fine dispersion of the inter-metallic compounds and increased fineness of the crystal grains. By using the aluminum alloy sheet of the present invention, a high grade formed product is obtained, the forming time is shortened, and the productivity is enhanced.
  • Mg is an element improving the strength. In order to manifest this effect, it is necessary to set the Mg content to 2.0% or more. However, if the Mg content exceeds 8.0%, the castability of a thin slab is lowered. Accordingly, the Mg content is limited to 2.0 to 8.0%. If stressing the castability, preferably the upper limit of the Mg content is further limited to 6.0% or less.
  • Si is precipitated as fine particles of Al-Fe-Si- based, Mg 2 Si, and other inter-metallic compounds at the time of casting and functions as a nucleus generating site of recrystallization at the time of annealing after cold rolling. Accordingly, the larger the number of particles of these inter-metallic compounds, the larger the number of generated recrystallized nucleii and as a result the larger number of fine recrystallized grains formed. Further, the fine particles of the inter-metallic compounds pin the grain boundaries of the generated recrystallized grains and suppress growth due to merging of crystal grains to stably maintain the fine recrystallized grains. In order to manifest these effects, it is necessary to make the Si content 0.06% or more.
  • the Si content exceeds 0.2%, the tendency of the precipitated inter-metallic compounds to become coarser becomes stronger, so the formation of cavities is promoted at the time of high temperature deformation. Accordingly, the Si content is limited to 0.06 to 0.2%. The preferred range is 0.07 to 0.15%.
  • Si is regarded as an impurity element to be eliminated in the same way as the following Fe, but in the present invention, conversely a suitable amount of Si is made present in order to increase the fineness of the recrystallized grains as described above. Accordingly, high purity metal is not needed and there is no accompanying rise in cost.
  • Fe is precipitated as fine grains of Al-Fe-Si-based or other inter-metallic compounds at the time of casting and functions as a nuclei generating site of recrystallization at the time of annealing after cold rolling. Accordingly, the larger the number of particles of these inter-metallic compounds, the larger the number of the generated recrystallized nucleii and as a result the larger the number of fine recrystallized grains formed. Further, the fine particles of the inter-metallic compounds pin the grain boundaries of the generated recrystallized grains and suppress the growth due to merger of crystal grains to stably maintain the fine recrystallized grains. In order to manifest this effect, it is necessary to make the Fe content 0.1% or more.
  • the Fe content is limited to 0.1 to 0.5%.
  • a preferred range is 0.1 to 0.3%.
  • Fe is regarded as an impurity element to be eliminated in the same way as the above Si, but in the present invention, conversely a suitable amount of Fe is made present in order to increase the fineness of the recrystallized grains as described above. Accordingly, high purity metal is not needed and there is no accompanying rise in cost.
  • Mn 0.1-0.5%
  • Mn is an element increasing the fineness of the recrystallized grains.
  • the Mn content is 0.1% or more.
  • the Mn content exceeds 0.5%, a coarse Al- (Fe*Mn) -Si-based inter-metal compound is formed, and the occurrence of cavities is promoted at the time of high temperature deformation. Accordingly, the Mn content is limited to 0.1 to 0.5%. Particularly, when stressing the prevention of occurrence of cavities, preferably the upper limit of the Mn content is further restricted to 0.3%.
  • Optional ingredient Cu: 0.1-0.5% In the present invention, Cu can be added within a range of 0.1-0.5% in order to improve the strength of the aluminum alloy sheet.
  • the amounts of addition exceed 0.4%, coarse intermetallic compounds are formed at the time of the casting, and the occurrence of cavities is promoted at the time of high temperature deformation.
  • the upper limits of the amounts of addition are further restricted to 0.2% or less.
  • Ti can be added within a range of 0.001-0.15%. In order to manifest this effect, it is necessary to make the amount of addition of Ti 0.001% or more. However, if the amount of addition of Ti exceeds 0.15%, a coarse compound such as TiAl 3 is generated, the formability at a high temperature is deteriorated, and the occurrence of cavities is promoted.
  • a preferred range is 0.006-0.10%.
  • the present invention utilizes the fine inter- metallic compound particles as (1) the recrystallized grain nuclei generating sites and (2) means for pinning the grain boundaries of the recrystallized grains and generates finer recrystallized grains by the annealing after the cold rolling.
  • the fine grain structure obtained by this gives a high elongation at the time of deformation at high temperatures and high speeds, whereby the formability at high temperatures and high speeds is enhanced.
  • the intermetallic compound having the equivalent circle diameter of 1 to 5 ⁇ m must be present in a density of 5000/mm 2 or more.
  • inter-metallic compounds such as Al-(Fe-Mn)- Si-based compounds, Mg 2 Si, and Al 6 Mn are precipitated during casting.
  • the equivalent circle diameter must be 1 to 5 ⁇ m. If the equivalent circle diameter is less than 1 ⁇ m, the particles are too small to manifest the effects of (1) and (2) described above.
  • the inter-metallic compounds having the size within the above described range must be present at a density of 5000/mm 2 or more. If the density is less than 5000/mm 2 , the recrystallized grain diameter at the time of the annealing exceeds 20 ⁇ m, and the elongation at the time of high temperature deformation is lowered. [Average crystal grain diameter of 20 ⁇ m or less] In the alloy sheet of the present invention, the average crystal grain diameter is made 20 ⁇ m or less.
  • the twin belt casting method is a continuous casting method injecting a melt into a mould of a pair of water cooled rotating belts facing each other from one end in the vertical direction, solidifying the melt by the cooling from the belt surfaces to form the slab, pulling out the formed slab from the other end of the mould, and taking it up in the form of a coil.
  • the thickness of the slab cast by this twin belt casting method is made 5 to 15 mm.
  • the thickness is within this range, a high solidification speed can be secured even at the center portion of the sheet thickness, therefore a uniform casting structure can be easily formed.
  • the composition of the present invention it is possible to easily suppress the generation of coarse inter-metallic compounds and it becomes easy to control the average grain size of the recrystallized grains in the final sheet product to 20 ⁇ m or less.
  • the above described slab thickness range is also suitable from the viewpoint of the twin belt casting. Namely, if the slab thickness is less than 5 mm, the amount of the aluminum alloy melt passing through the casting machine per unit time becomes too small, so the twin belt casting becomes difficult. If the slab thickness exceeds 15 mm, it becomes difficult to rewind it up as a coil.
  • the inter-metallic compounds become finer and the compounds less than 1 ⁇ m increase.
  • the density of the inter-metallic compounds having the equivalent circle diameter of 1 to 5 ⁇ m becomes less than 5000/mm 2 and the nuclei of the recrystallized grains become fewer at the time of the final annealing (CAL) , so the recrystallized grains become coarse.
  • CAL final annealing
  • the above annealing is conducted as the final annealing after the cold rolling. This is generally conducted by the continuous annealing, but it is not particularly necessary to limit the annealing to this.
  • the annealing temperature of the final annealing is made a range of 420 to 500°C.
  • the temperature is less than 420°C, the energy required for recrystallization is insufficient, therefore the recrystallization becomes insufficient and a fine recrystallization structure cannot be obtained.
  • the recrystallized grain diameter exceeds 20 ⁇ m, and the fine recrystallization structure cannot be obtained.
  • the heating rate to the annealing temperature is made 5°C/sec or more. If the temperature is slowly elevated by a rate less than 5°C/sec, the recrystallized grains become coarse, so the fine recrystallization structure cannot be obtained.
  • the forming of the aluminum alloy sheet of the present invention is preferably conducted at a temperature of 400-500°C.
  • the forming temperature is less than 400°C, a sufficient elongation cannot be obtained. If the forming temperature exceeds 550°C, the coarsening of the crystal grains occurs. Further, burning occurs in an alloy having a high Mg content within the range of the present invention, and the elongation is lowered.
  • the strain rate at the time of the shaping is preferably 0.1/sec or more. If the strain rate is less than 0.1/sec, the coarsening of the crystal grains occurs during the forming, so a drop of the elongation is induced. Examples Aluminum alloy melts having the compositions shown in Table 1 were cast by the twin belt casting method to form slabs having thicknesses of 7 to 9 mm.
  • the recrystallized grains were measured by the cross-cut method.
  • the cooling rate was calculated from DAS measurement results at 1/4 thickness of cast slab.
  • Sheets obtained by cold rolling thin slabs cast by a twin belt casting machine (products of the present invention, Sample Nos. 1 to 7), as apparent also from the alloy compositions of Table 1, irrespective of the fact that the Fe contents were 0.1% or more and the Si contents were 0.06% or more in all samples, had densities of the inter-metallic compounds having equivalent circle diameters of 1 to 5 ⁇ m of 5000/mm 2 or more and crystal grain sizes of 20 ⁇ m or less. For this reason, the elongations at the tensile temperature of 500°C were good ones of 200% or more and also the cavity ratios after the high temperature tension were good ones of the range of 0.15-0.27% or less than 1%.
  • a sheet obtained by cold rolling a thin slab cast by a twin roll casting machine (comparative example, Sample No. 8) had a large number of very fine intermetallic compounds having equivalent circle diameters less than 1 ⁇ m since the cooling rate at the time of the casting was a relatively high 300°C/sec, therefore the density of ' the inter-metallic compounds having an equivalent circle diameter of 1 to 5 ⁇ m in the final sheet became less than 5000/mm 2 or coarse exceeding the crystal grain size of 20 ⁇ m or more. For this reason, the cavity ratio after the high temperature tension was a relatively low good one of 0.12%, but the elongation at the tensile temperature of 500°C was a poor 80%.
  • a sheet obtained by cold rolling a thin slab cast by a twin belt casting machine down to the sheet thickness of 2 mm, then intermediate annealing the slab at 350°C, then cold rolling down to 1 mm had a density of inter-metallic compounds of an equivalent circle diameter of 1 to 5 ⁇ m in the final sheet of 5000/mm 2 or more, but the cold rolling reduction before the final annealing was a low one of less than 70%, therefore the crystal grains became slightly coarse exceeding the crystal grain size of 20 ⁇ m.
  • the elongation at the tensile temperature of 500°C was a poor one of less than 200%.
  • a sheet obtained by cold rolling a thin slab cast by a twin belt casting machine comparativelongation at the tensile temperature of 500°C was a poor one of less than 200%.
  • the tensile speed in the tensile test was a relatively slow 0.01/sec, therefore the cavity ratio after the high temperature tension was also a poor 1.8% and the elongation at the tensile temperature of 500°C was a poor one of less than 200%.
  • INDUSTRIAL APPLICABILITY According to the present invention, aluminum alloy sheet with excellent formability at high temperatures and high speeds with a reduced amount of cavities after the forming and the method of production of the same are provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Continuous Casting (AREA)
  • Metal Rolling (AREA)

Abstract

Proposer une feuille d'alliage d'aluminium ayant une excellente formabilité à des températures élevées et des vitesses élevées avec un nombre réduit de cavités après formage et un procédé de production de celle-ci. Une feuille d'alliage d'aluminium comprenant de 2,0 à 8,0 % en poids de Mg, de 0,06 à 0,2 % en poids de Si, de 0,1 à 0,5 % en poids de Fe, de 0,1 à 0,5 % en poids de Mn, et le reste étant Al et des impuretés inévitables, dans laquelle une densité des composés intermétalliques ayant un diamètre de cercle équivalent de 1 à 5 (m vaut 5 000/mm2 ou plus et la taille moyenne d'un grain cristallin est de 20 (m ou moins. Un procédé de production d'une feuille d'alliage d'aluminium comprenant les étapes de moulage d'un alliage fondu ayant la composition décrite ci-dessus par une machine à coulée entre bandes à un taux de refroidissement de 20 à 150 °C/sec au niveau de ¼ de l'épaisseur de la plaque durant le moulage pour former une ébauche ayant une épaisseur de 5 à 15 mm, puis d’enroulement de l’ébauche sous la forme d’un rouleau, de laminage à froid de l’ébauche extraite du rouleau à une réduction par laminage à froid de 70 à 96 %, et de chauffage par recuit de la feuille laminée à froid obtenue à une vitesse de chauffage de 50 °C/sec ou plus jusqu'à 420 à 500 °C.
EP05734276A 2004-04-23 2005-04-15 Feuille d'alliage al-mg ayant une excellente formabilité à des températures élevées et des vitesses élevées et procédé de production de celle-ci Withdrawn EP1737995A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004128040A JP4534573B2 (ja) 2004-04-23 2004-04-23 高温高速成形性に優れたAl‐Mg合金板およびその製造方法
PCT/JP2005/007657 WO2005103313A1 (fr) 2004-04-23 2005-04-15 Feuille d'alliage al-mg ayant une excellente formabilité à des températures élevées et des vitesses élevées et procédé de production de celle-ci

Publications (1)

Publication Number Publication Date
EP1737995A1 true EP1737995A1 (fr) 2007-01-03

Family

ID=34967021

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05734276A Withdrawn EP1737995A1 (fr) 2004-04-23 2005-04-15 Feuille d'alliage al-mg ayant une excellente formabilité à des températures élevées et des vitesses élevées et procédé de production de celle-ci

Country Status (8)

Country Link
US (1) US20070217943A1 (fr)
EP (1) EP1737995A1 (fr)
JP (1) JP4534573B2 (fr)
KR (1) KR20060135849A (fr)
CN (1) CN100519797C (fr)
CA (1) CA2563789A1 (fr)
TW (1) TWI310789B (fr)
WO (1) WO2005103313A1 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5135684B2 (ja) * 2006-01-12 2013-02-06 日本軽金属株式会社 高温高速成形性に優れたアルミニウム合金板およびその製造方法
EP1975263A4 (fr) 2006-01-12 2012-03-07 Furukawa Sky Aluminum Corp Alliages d aluminium pour une formation a haute temperature et a grande vitesse, leurs procedes de production et procede de production des formes d alliage d aluminium
JP4996854B2 (ja) * 2006-01-12 2012-08-08 古河スカイ株式会社 高温高速成形用アルミニウム合金材及びその製造方法、並びにアルミニウム合金成形品の製造方法
JP4203508B2 (ja) * 2006-03-08 2009-01-07 株式会社神戸製鋼所 アルミニウム合金鋳造板の製造方法
JP2008024964A (ja) * 2006-07-18 2008-02-07 Nippon Light Metal Co Ltd 高強度アルミニウム合金板およびその製造方法
JP5050577B2 (ja) * 2007-03-09 2012-10-17 日本軽金属株式会社 深絞り性および耐焼付け軟化性に優れた成形加工用アルミニウム合金板及びその製造方法
WO2009098732A1 (fr) * 2008-02-06 2009-08-13 Nippon Light Metal Co., Ltd. Feuille d'alliage d'aluminium pour véhicules à moteur et procédé de production associé
CN102373353B (zh) * 2010-08-05 2016-06-01 株式会社神户制钢所 成形性优异的铝合金板
CN103703155B (zh) 2011-07-25 2015-08-26 日本轻金属株式会社 铝合金片材及其制造方法
JP5870791B2 (ja) * 2012-03-21 2016-03-01 日本軽金属株式会社 プレス成形性と形状凍結性に優れたアルミニウム合金板およびその製造方法
CN102732755A (zh) * 2012-06-19 2012-10-17 银邦金属复合材料股份有限公司 一种用于加工汽车水箱散热器水管的铝合金材料
CA2882614C (fr) * 2012-08-22 2018-01-02 Hydro Aluminium Rolled Products Gmbh Bande d'aimg a haute resistance a la corrosion intercristalline et formabilite
JP5741561B2 (ja) * 2012-12-04 2015-07-01 日本軽金属株式会社 ペリクル枠及びその製造方法
JP6778615B2 (ja) * 2014-10-09 2020-11-04 株式会社Uacj 超塑性成形用アルミニウム合金板及びその製造方法
CN107810284A (zh) * 2015-06-05 2018-03-16 诺维尔里斯公司 高强度5xxx铝合金以及其制造方法
CN107354351A (zh) * 2017-07-25 2017-11-17 杨仲彬 一种外观件用铝合金及其加工方法
CN110216166A (zh) * 2019-06-21 2019-09-10 天津忠旺铝业有限公司 一种电视机底座用铝合金带材的生产方法
FR3122187B1 (fr) 2021-04-21 2024-02-16 Constellium Neuf Brisach Tôles d’aluminium 5xxx dotée d’une aptitude à la mise en forme élevée
CN114277290A (zh) * 2021-12-28 2022-04-05 烟台南山学院 一种铝合金材料和铝合金空心管及其制备方法
CN114480928A (zh) * 2022-01-28 2022-05-13 全良金属(苏州)有限公司 一种电子产品用高强铝板及其制造方法
CN116144996A (zh) * 2023-01-06 2023-05-23 山东创新精密科技有限公司 一种超塑铝合金材料及其制备方法
CN117778794A (zh) * 2024-02-28 2024-03-29 河南工学院 一种铝镁合金车身覆盖件压铸工艺

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822363A (ja) * 1981-07-30 1983-02-09 Mitsubishi Keikinzoku Kogyo Kk 超塑性アルミニウム合金板の製造方法
JP2671121B2 (ja) * 1986-03-10 1997-10-29 スカイアルミニウム 株式会社 伸び、曲げ性、張出し性に優れた成形加工用アルミニウム合金圧延板およびその製造方法
AT394580B (de) * 1989-11-30 1992-05-11 Austria Metall Aktienges Verfahren zur herstellung eines bleches aus einer aluminiumlegierung fuer bauteile
JPH04325659A (ja) * 1991-04-26 1992-11-16 Sky Alum Co Ltd 引き裂き性に優れた成形用アルミニウム合金硬質板の製造方法
EP0534470B1 (fr) * 1991-09-26 1997-06-04 Tsuyoshi Masumoto Matériau superplastique en alliage à base d'aluminium et procédé de fabrication
JP2865499B2 (ja) * 1991-09-26 1999-03-08 健 増本 超塑性アルミニウム基合金材料及び超塑性合金材料の製造方法
JPH07145441A (ja) * 1993-01-27 1995-06-06 Toyota Motor Corp 超塑性アルミニウム合金およびその製造方法
JPH08199272A (ja) * 1995-01-19 1996-08-06 Nippon Steel Corp アルミニウム合金板とその成形方法
JP3145904B2 (ja) * 1995-08-23 2001-03-12 住友軽金属工業株式会社 高速超塑性成形に優れたアルミニウム合金板およびその成形方法
FR2752244B1 (fr) * 1996-08-06 1998-09-18 Pechiney Rhenalu Produit pour construction soudee en alliage almgmn a tenue a la corrosion amelioree
JPH10259441A (ja) * 1997-03-19 1998-09-29 Sumitomo Light Metal Ind Ltd 高速超塑性成形性に優れ且つ成形後のキャビティの少ないアルミニウム合金板およびその製造方法
JP3685973B2 (ja) * 2000-03-23 2005-08-24 株式会社神戸製鋼所 成形性に優れたAl−Mg系Al合金板
JP4001059B2 (ja) * 2002-06-21 2007-10-31 日本軽金属株式会社 耐焼付軟化性に優れたアルミニウム合金板の製造方法
US6811625B2 (en) * 2002-10-17 2004-11-02 General Motors Corporation Method for processing of continuously cast aluminum sheet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005103313A1 *

Also Published As

Publication number Publication date
CN100519797C (zh) 2009-07-29
US20070217943A1 (en) 2007-09-20
KR20060135849A (ko) 2006-12-29
CA2563789A1 (fr) 2005-11-03
JP2005307300A (ja) 2005-11-04
CN1946861A (zh) 2007-04-11
WO2005103313A1 (fr) 2005-11-03
TWI310789B (en) 2009-06-11
TW200540280A (en) 2005-12-16
JP4534573B2 (ja) 2010-09-01

Similar Documents

Publication Publication Date Title
WO2005103313A1 (fr) Feuille d'alliage al-mg ayant une excellente formabilité à des températures élevées et des vitesses élevées et procédé de production de celle-ci
EP0772697B1 (fr) Feuille en alliage d'aluminium et procede de fabrication d'une feuille en alliage d'aluminium
WO2006126281A1 (fr) Feuille en alliage d'aluminium et procede pour la fabriquer
EP0480402B1 (fr) Procédé de fabrication de matériau en alliage d'aluminium présentant une aptitude excellente au formage et durcissable lors de la cuisson du vernis
JP6176393B2 (ja) 曲げ加工性と形状凍結性に優れた高強度アルミニウム合金板
CA2588046C (fr) Feuille d'alliage d'aluminium et methode de fabrication associee
JP7318274B2 (ja) Al-Mg-Si系アルミニウム合金冷延板及びその製造方法並びに成形用Al-Mg-Si系アルミニウム合金冷延板及びその製造方法
CA2706198A1 (fr) Feuille d'alliage d'aluminium pour vehicules a moteur et procede de production associe
CA2551599A1 (fr) Methode de fabrication de feuilles d'aluminium au magnesium- silicium presentant une excellente trempabilite au four
WO2007080689A1 (fr) Feuille en alliage d’aluminium excellente en termes de formabilite a grande vitesse a temperatures elevees et son procede de production
JP5813358B2 (ja) 高成形性Al−Mg−Si系合金板及びその製造方法
US5540791A (en) Preformable aluminum-alloy rolled sheet adapted for superplastic forming and method for producing the same
JP5050577B2 (ja) 深絞り性および耐焼付け軟化性に優れた成形加工用アルミニウム合金板及びその製造方法
WO2008078399A1 (fr) Procédé de production d'une tôle d'alliage d'aluminium
EP1260600B1 (fr) Alliage d'aluminium pour feuilles et son procédé de fabrication
JP2008062255A (ja) キャビティ発生の少ないAl−Mg−Si系アルミニウム合金板の超塑性成形方法およびAl−Mg−Si系アルミニウム合金成形板
EP0846781B1 (fr) Procédé de production d'une tole en alliage d'aluminium presentant une excellente aptitude au formage superplastique à haute vitesse.
JP2001032031A (ja) 耐応力腐食割れ性に優れた構造材用アルミニウム合金板
JP2000160272A (ja) プレス成形性に優れたAl合金板
JP2011144410A (ja) 高成形性Al−Mg−Si系合金板の製造方法
JPH10259464A (ja) 成形加工用アルミニウム合金板の製造方法
JP4164206B2 (ja) 高温焼鈍時の再結晶粒微細化に優れた高強度高成形性アルミニウム合金板
JPH05345963A (ja) 高成形性アルミニウム合金板の製造方法
JPH0978168A (ja) アルミニウム合金板
JP7318275B2 (ja) Al-Mg-Si系アルミニウム合金冷延板及びその製造方法並びに成形用Al-Mg-Si系アルミニウム合金冷延板及びその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061020

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20081208

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090421