[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0846781B1 - Procédé de production d'une tole en alliage d'aluminium presentant une excellente aptitude au formage superplastique à haute vitesse. - Google Patents

Procédé de production d'une tole en alliage d'aluminium presentant une excellente aptitude au formage superplastique à haute vitesse. Download PDF

Info

Publication number
EP0846781B1
EP0846781B1 EP95940435A EP95940435A EP0846781B1 EP 0846781 B1 EP0846781 B1 EP 0846781B1 EP 95940435 A EP95940435 A EP 95940435A EP 95940435 A EP95940435 A EP 95940435A EP 0846781 B1 EP0846781 B1 EP 0846781B1
Authority
EP
European Patent Office
Prior art keywords
elongation
alloy
forming
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95940435A
Other languages
German (de)
English (en)
Other versions
EP0846781A1 (fr
EP0846781A4 (fr
Inventor
Hideo Sumitomo Light Metal Ind. Ltd. YOSHIDA
Hiroki Sumitomo Light Metal Ind. Ltd. TANAKA
Kouichirou Sumitomo Light Met.Ind.Ltd. TAKIGUCHI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Publication of EP0846781A1 publication Critical patent/EP0846781A1/fr
Publication of EP0846781A4 publication Critical patent/EP0846781A4/fr
Application granted granted Critical
Publication of EP0846781B1 publication Critical patent/EP0846781B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Definitions

  • This invention relates to a method of producing an aluminum alloy sheet which has excellent high-speed superplastic formability, and more specifically, to a method involving an Al-Mg alloy sheet which enables superplastic forming at high strain rate of 10 -2 to 10 0 /s.
  • an aluminum alloy sheet containing 2.0 to 6.0% of Mg, 0.0001 to 0.01% of Be, and 0.001 to 0.15% of Ti, with Fe and Si as impurities being controlled each at 0.2% or less and the largest grain diameter of impurity-based intermetallic compounds limited to 10 ⁇ m or less is proposed in Japanese Patent Application Laid-Open No. 72030/1992. While such a product does show an elongation of 350% or more at a strain rate of 10 -3 /s under a high-temperature deformation condition of 400°C, the elongation decreases as the forming speed increases and becomes insufficient at strain rates of 10 -2 /s or higher.
  • Another aluminum alloy sheet proposed in Japanese Patent Application Laid-Open No. 318145/1992, contains 2 to 5% of Mg, 0.04 to 0.10% of Cu, as well as optional small quantities of certain transition elements, Cr, Zr, or Mn; with Si and Fe as impurities being controlled at 0.1% or less, and at 0.15% or less, respectively; while controlling the crystal grain diameter at 20 ⁇ m or less and maintaining the grain diameter and the cubic ratio of transition metal-based intermetallic compounds within certain specific ranges.
  • Such an alloy sheet also has a limited application range of strain rates in the order of 10 -4 /s, and is not suitable for high strain rate superplastic forming at a higher strain rate.
  • the present invention has been achieved as a result of diverse examination and exhaustive experiments concerning the relationships of superplastic formability with various alloy constituents and their quantitative combinations, in addition to those with impurity content and their distribution, as well as with crystal grain diameters of impurity-based intermetallic compounds, made in an attempt to overcome the aforementioned shortcomings of the Al-Mg superplastic aluminum alloy.
  • the object of the present invention is to provide, by identifying a particular distribution and crystal grain diameter range for Al-Fe-Si compounds to be controlled based on restriction of Fe and Si as impurities, a method of producing an aluminum alloy sheet using a high strain rate superplastic forming in a forming process with a high forming speed such as at a strain rate ranging from 10 -2 to 10 0 /s.
  • Mg acts to recrystallize the alloy during the high-temperature deformation.
  • the content range is between 3.0 and 8.0%, below which the effect on promoting the recrystallization is insufficient while a content in excess of 8.0% acts to reduce hot workability of the material.
  • Cu acts to improve the superplastic elongation of the Al-Mg alloy system.
  • the content range is between 0.05 to 0.50%, where a content below 0.05% fails to give sufficient elongation while a content in excess of 0.50% acts to reduce the hot workability.
  • Ti acts to turn the ingot crystals into finer grains and to provide the alloy with a better superplastic formability.
  • the content range is between 0.001 to 0.1%, where a content below 0.001% will fail to give the expected effect and a content in excess of 0.1% will yield coarse compounds that hinder workability as well as ductility.
  • Mn and Cr act to make recrystallized grains finer in the alloy recrystallization process that occurs during high-temperature deformation.
  • the content range is below 0.10% for each, where a content in excess of 0.10% will act to increase a constituent particle whose grain diameter is 1 ⁇ m or above to decrease the superplastic formability of the alloy.
  • Fe and Si are impurities each at 0.06% or less.
  • These impurities form an Al-Fe-Si compound that is insoluble and prone to precipitate along the grain boundary, increasing cavities and thereby impairing the superplastic elongation.
  • the Fe and Si should each be controlled at 0.05% or less. It is also noted here that up to 50 ppm of Be may be added to prevent oxidation of the molten metal, just as in the case of ordinary Al-Mg alloys.
  • the Al-Fe-Si compound present in the alloy matrix gives rise to the above mentioned problem, it is better to allow as little of such a compound as possible, and, in particular, the limit in terms of number per square millimeter of an Al-Fe-Si compound having a grain diameter of 1 ⁇ m or more should be 2000 or less, since particles in excess of 2000 per square millimeter will increase cavities and thereby impair the superplastic elongation.
  • the original mean crystal grain diameter of the aluminum alloy sheet it is preferrably required to regulate the original mean crystal grain diameter of the aluminum alloy sheet within a range of 25 to 200 ⁇ m. If the original mean crystal grain diameter is below 25 ⁇ m, the original crystal grains will be recreated when recrystallization occurs during high temperature deformation, making it difficult to obtain a recrystallized structure with clean crystal grains as a result of a recrystallization process to obliterate the grain boundary with precipitation of the aforementioned insoluble compounds. If the original mean crystal grain diameter exceeds 200 ⁇ m, the shearing deformation within the crystal grains becomes more prominent with increasing deformation rate, causing the crystal grains to rupture more easily, thus suppressing the superplastic elongation.
  • the range of the strain rate during the forming process is between 10 -2 to 10°/s, where a rate below 10 -2 /s will cause the crystal grains to become coarser, reducing elongation, while a strain rate exceeding 10°/s creates a shearing deformation within the crystal grains causing cracks, or forms precipitation along the grain boundary, reducing elongation.
  • an aluminum alloy material with the above mentioned composition is melted, cast, and homogenized according to a conventional method. It is preferable to carry out the homogenizing process at a temperature between 450 to 550°C. At temperatures below 450°C, Mg or Cu that are formed along the grain boundary or the cell boundary of the ingot by segregation will not be fully dissolved and may contribute to cracks in a subsequent hot rolling step. Conversely, at temperatures exceeding 550°C, the Al-Mg or Al-Mg-Cu crystallization products will cause a eutectic fusion thereby giving rise to cracks during the hot rolling process.
  • the ingot is hot-rolled to obtain a structure suitable as a forming material. While the required starting temperature for hot rolling is between 250 to just under 400°C. If the hot rolling process is started at a temperature below 250°C, the deformation resistance is too high, making proper rolling difficult. If the rolling temperature is too high, this could alter the distribution form of the precipitation, thereby making it difficult to obtain the required crystal grain structure as well as proper distribution of precipitated compounds.
  • a cold rolling is provided.
  • an intermediate annealing may be provided as necessary.
  • the final annealing of the cold rolled stock should be provided at a temperature between 350 to 550°C. If the annealing is performed at a temperature below 350°C, the isotropy created during the cold rolling process may not completely disappear; if higher than 550°C, a local melting may occur at the recrystallization boundary. As such, it is preferred to conduct the final annealing in a rapid annealing process such as continuous annealing.
  • the Al-Fe-Si compounds present in the matrix are controlled within certain specific distribution while maintaining the crystal grain diameter within a certain specific range, resulting in such alloy structure and characteristics to produce cleaner grain boundaries with less compounds formed along these bounderies to suppress cavity formation. Recrystallized grains having an average diameter of 20 ⁇ m or less are formed during a high-temperature deformation, thereby achieving an excellent elongation of 380% or greater in high speed forming at a strain rate of 10 -2 to 10°/s in a temperature range of 350 to 550°C.
  • Al-Mg based aluminum alloys having compositions as listed in Table-1 below were melted and cast into ingots via a DC casting method.
  • the resultant ingots were homogenized at 530°C for 10 hours to a thickness of 30 mm, and then hot rolled at 390°C to a thickness of 4 mm.
  • the sheets were subsequently cold rolled to a thickness of 2 mm and then rapidly annealed by heating rapidly to 480°C and holding at this temperature for 5 minutes.
  • Specimens prepared from the test materials produced in the above process were evaluated by a tensile test at a strain rate of 10 -2 /s at 480°C.
  • Table 1 lists the average crystal grain diameter for each specimen(as measured at the sheet surface), the number per square millimeter of grains of the AL-Fe-Si compound having a diameter of 1 ⁇ m or above, and the elongation measurement results. Note here that the grain count of the compound was made using image processing.
  • Al-Mg based aluminum alloys having compositions as listed in Table 2 were melted and cast into ingots in the same manner as in Examples 1, and made into 2-mm thick test materials using the same process as in Examples 1. Specimens were then evaluated in the same tensile test under the same conditions. Table 2 lists the average crystal grain diameter, the number per square millimeter of grains of the AL-Fe-Si compound having a diameter of 1 ⁇ m or above, and the elongation measurement results.
  • the average crystal grain diameter (as measured at the sheet surface) for all of these specimens was in the range of 50 to 60 ⁇ m, and the number per square millimeter of grains of the AL-Fe-Si compound having a diameter of 1 ⁇ m or above, likewise, was below 2000.
  • the present invention provides a method for the production of an Al-Mg aluminum alloy sheet having excellent superplastic elongation in high speed forming such as at high strain rate of 10 -2 to 10 0 /s at a high temperature, and a superplastic forming process using this aluminum alloy sheet shortens the forming time to improve productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Claims (4)

  1. Procédé de production d'une tôle d'alliage d'aluminium avec une excellente capacité de formage superplastique à grande vitesse par fusion d'un alliage comportant :
    3,0 à 8,0% en poids de Mg, 0,001 à 0,1% en poids de Ti,
    0,06% en poids ou moins de Fe et Si chacun, éventuellement 0,05 à 0,50% en poids de Cu, 0 à 50 ppm de Be, pas plus de 0,10% en poids de Mn, pas plus de 0,1% en poids de Cr et le reste étant de l'Al et des impuretés inévitables,
    coulée et homogénéisation de l'alliage, suivies d'un laminage à chaud à 250 jusqu'à juste en dessous de 400°C et recuit de la tôle d'alliage à 350 à 550°C,
    et formage de l'alliage ainsi obtenu à une vitesse de déformation de 10-2 à 100/s à une température de 350 à 550°C avec un allongement supérieur à 380%.
  2. Procédé selon la revendication 1, selon lequel les quantités commandées de Fe et Si sont de 0,05 ou moins.
  3. Procédé selon la revendication 1 ou 2, selon lequel le nombre par millimètre carré de grains d'un composé Al-Fe-Si dans la structure de matrice dudit alliage ayant un diamètre de 1 µm ou plus est de 2000 ou moins.
  4. Procédé selon la revendication 1, 2 ou 3, selon lequel le diamètre de grain de cristal moyen d'un composé Al-Fe-Si est de 25 à 200 µm.
EP95940435A 1995-08-23 1995-12-12 Procédé de production d'une tole en alliage d'aluminium presentant une excellente aptitude au formage superplastique à haute vitesse. Expired - Lifetime EP0846781B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP237707/95 1995-08-23
JP23770795 1995-08-23
JP23770795A JP3145904B2 (ja) 1995-08-23 1995-08-23 高速超塑性成形に優れたアルミニウム合金板およびその成形方法
PCT/JP1995/002564 WO1997008354A1 (fr) 1995-08-23 1995-12-12 Tole en alliage d'aluminium presentant une excellente aptitude au formage superplastique a haute vitesse et procede de production de cette tole

Publications (3)

Publication Number Publication Date
EP0846781A1 EP0846781A1 (fr) 1998-06-10
EP0846781A4 EP0846781A4 (fr) 1998-11-18
EP0846781B1 true EP0846781B1 (fr) 2000-11-15

Family

ID=17019320

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95940435A Expired - Lifetime EP0846781B1 (fr) 1995-08-23 1995-12-12 Procédé de production d'une tole en alliage d'aluminium presentant une excellente aptitude au formage superplastique à haute vitesse.

Country Status (5)

Country Link
US (1) US20010001969A1 (fr)
EP (1) EP0846781B1 (fr)
JP (1) JP3145904B2 (fr)
DE (1) DE69519444T2 (fr)
WO (1) WO1997008354A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534573B2 (ja) * 2004-04-23 2010-09-01 日本軽金属株式会社 高温高速成形性に優れたAl‐Mg合金板およびその製造方法
KR100933385B1 (ko) 2005-01-19 2009-12-22 가부시키가이샤 고베 세이코쇼 알루미늄 합금판 및 그의 제조방법
EP1975263A4 (fr) 2006-01-12 2012-03-07 Furukawa Sky Aluminum Corp Alliages d aluminium pour une formation a haute temperature et a grande vitesse, leurs procedes de production et procede de production des formes d alliage d aluminium
KR100676174B1 (ko) * 2006-05-25 2007-02-01 주식회사 엠코 철골건축구조물용 착탈식 안전망 설치대
US8323428B2 (en) * 2006-09-08 2012-12-04 Honeywell International Inc. High strain rate forming of dispersion strengthened aluminum alloys
JP2016191137A (ja) * 2015-03-31 2016-11-10 株式会社神戸製鋼所 樹脂被覆缶胴用アルミニウム合金板
JP2018199866A (ja) * 2018-08-24 2018-12-20 株式会社神戸製鋼所 樹脂被覆缶胴用アルミニウム合金板
CN113695538B (zh) * 2021-09-03 2023-07-25 中铝河南洛阳铝加工有限公司 一种高成形性镜面铝板带材的制备方法及镜面铝板带材

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159961A (ja) * 1983-02-28 1984-09-10 Mitsubishi Alum Co Ltd 超塑性Al合金
JPH02285046A (ja) * 1989-04-26 1990-11-22 Sky Alum Co Ltd 超塑性加工用アルミニウム合金圧延板およびその製造方法
JP2517445B2 (ja) * 1990-06-05 1996-07-24 スカイアルミニウム株式会社 ダイアフラム成形用a1合金板およびその製造方法
JP2865499B2 (ja) * 1991-09-26 1999-03-08 健 増本 超塑性アルミニウム基合金材料及び超塑性合金材料の製造方法
JP2510449B2 (ja) * 1992-01-31 1996-06-26 スカイアルミニウム株式会社 ロ―ルボンドパネル用クラッド板の製造方法
JPH05230583A (ja) * 1992-02-25 1993-09-07 Mitsubishi Alum Co Ltd 成形加工性のすぐれた高強度Al合金板材
JPH05345963A (ja) * 1992-06-12 1993-12-27 Furukawa Alum Co Ltd 高成形性アルミニウム合金板の製造方法
EP0594509B1 (fr) * 1992-10-23 1996-08-14 The Furukawa Electric Co., Ltd. Procédé de fabrication de feuilles en alliage Al-Mg pour formage sous pression
CA2103182A1 (fr) * 1992-11-17 1994-05-18 Ryo Shoji Toles en alliage d'aluminium offrant une resistance et une aptitude au formage profond ameliorees, et procede de fabrication connexe
JPH07145441A (ja) * 1993-01-27 1995-06-06 Toyota Motor Corp 超塑性アルミニウム合金およびその製造方法
JPH06240395A (ja) * 1993-02-12 1994-08-30 Sky Alum Co Ltd 超塑性成形用アルミニウム合金板、その製造方法およびそれを用いた超塑性成形体
JPH07197177A (ja) * 1994-01-10 1995-08-01 Sky Alum Co Ltd キャビテーションの少ない超塑性成形用アルミニウム合金圧延板
JPH08199272A (ja) * 1995-01-19 1996-08-06 Nippon Steel Corp アルミニウム合金板とその成形方法

Also Published As

Publication number Publication date
US20010001969A1 (en) 2001-05-31
EP0846781A1 (fr) 1998-06-10
DE69519444T2 (de) 2001-06-13
JP3145904B2 (ja) 2001-03-12
WO1997008354A1 (fr) 1997-03-06
DE69519444D1 (de) 2000-12-21
JPH0959736A (ja) 1997-03-04
EP0846781A4 (fr) 1998-11-18

Similar Documents

Publication Publication Date Title
JP3194742B2 (ja) 改良リチウムアルミニウム合金系
EP0247181B1 (fr) Alliages d'aluminium et de lithium et leur procede de fabrication
JPH07145441A (ja) 超塑性アルミニウム合金およびその製造方法
EP0480402B1 (fr) Procédé de fabrication de matériau en alliage d'aluminium présentant une aptitude excellente au formage et durcissable lors de la cuisson du vernis
EP0030070A1 (fr) Procédé pour fabrication de matériau pour raidisseurs de l'industrie aéronautique
JPH07252573A (ja) 靭性に優れたAl−Zn−Mg−Cu系合金及びその製造方法
WO2005103313A1 (fr) Feuille d'alliage al-mg ayant une excellente formabilité à des températures élevées et des vitesses élevées et procédé de production de celle-ci
JPH07109536A (ja) 鍛造用アルミニウム合金及びその熱処理
JP7318274B2 (ja) Al-Mg-Si系アルミニウム合金冷延板及びその製造方法並びに成形用Al-Mg-Si系アルミニウム合金冷延板及びその製造方法
JP4996853B2 (ja) 高温高速成形用アルミニウム合金材及びその製造方法、並びにアルミニウム合金成形品の製造方法
EP0846781B1 (fr) Procédé de production d'une tole en alliage d'aluminium presentant une excellente aptitude au formage superplastique à haute vitesse.
JP2001181771A (ja) 高強度耐熱アルミニウム合金材
JPH08232035A (ja) 曲げ加工性に優れたバンパー用高強度アルミニウム合金材およびその製造方法
JP3161141B2 (ja) アルミニウム合金薄板の製造方法
JP4996854B2 (ja) 高温高速成形用アルミニウム合金材及びその製造方法、並びにアルミニウム合金成形品の製造方法
JP3737744B2 (ja) アルミニウム箔地の製造方法
JPH11350058A (ja) 成形性及び焼き付け硬化性に優れるアルミニウム合金板及びその製造方法
JPH10259441A (ja) 高速超塑性成形性に優れ且つ成形後のキャビティの少ないアルミニウム合金板およびその製造方法
JPH07116567B2 (ja) A1−Cu−Li−Zr系超塑性板の製造方法
JPH0718389A (ja) 成形用Al−Mg系合金板の製造方法
JP4164206B2 (ja) 高温焼鈍時の再結晶粒微細化に優れた高強度高成形性アルミニウム合金板
JP2858069B2 (ja) 耐応力腐食割れ性高強度アルミニウム合金板およびその製造方法
JP3529269B2 (ja) アルミニウム箔地及びその製造方法
KR102563406B1 (ko) 2xxx계 알루미늄 합금 및 이의 제조방법
JP7318275B2 (ja) Al-Mg-Si系アルミニウム合金冷延板及びその製造方法並びに成形用Al-Mg-Si系アルミニウム合金冷延板及びその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

A4 Supplementary search report drawn up and despatched

Effective date: 19981002

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE FR GB

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TAKIGUCHI, KOUICHIROU, SUMITOMO LIGHT MET.IND.LTD

Inventor name: TANAKA, HIROKI, SUMITOMO LIGHT METAL IND., LTD.

Inventor name: YOSHIDA, HIDEO, SUMITOMO LIGHT METAL IND., LTD.

17Q First examination report despatched

Effective date: 19990126

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: PROCESS OF FORMING AN ALUMINIUM SHEET WITH EXCELLENT HIGH SPEED SUPERPLASTIC FORMABILITY

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001115

REF Corresponds to:

Ref document number: 69519444

Country of ref document: DE

Date of ref document: 20001221

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050218

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20051220

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061212