[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0718579B1 - Wärmetauscher zum Kühlen von Spaltgas - Google Patents

Wärmetauscher zum Kühlen von Spaltgas Download PDF

Info

Publication number
EP0718579B1
EP0718579B1 EP95111740A EP95111740A EP0718579B1 EP 0718579 B1 EP0718579 B1 EP 0718579B1 EP 95111740 A EP95111740 A EP 95111740A EP 95111740 A EP95111740 A EP 95111740A EP 0718579 B1 EP0718579 B1 EP 0718579B1
Authority
EP
European Patent Office
Prior art keywords
cooling
recess
tube
heat exchanger
outer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95111740A
Other languages
English (en)
French (fr)
Other versions
EP0718579A3 (de
EP0718579A2 (de
Inventor
Peter Brücher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Borsig GmbH
Original Assignee
Borsig GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Borsig GmbH filed Critical Borsig GmbH
Publication of EP0718579A2 publication Critical patent/EP0718579A2/de
Publication of EP0718579A3 publication Critical patent/EP0718579A3/de
Application granted granted Critical
Publication of EP0718579B1 publication Critical patent/EP0718579B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/002Cooling of cracked gases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/18Apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0075Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for syngas or cracked gas cooling systems

Definitions

  • the invention relates to a heat exchanger for cooling Fission gas with the features of the generic term of Claim 1.
  • a heat exchanger is from the GB-A-1 504 361.
  • the cracked gas is released by a thermal cracking of Hydrocarbons produced in a cracking furnace.
  • This Cracking furnaces are heated with a number from the outside Provide canned tubes through which the used Hydrocarbons with the addition of water vapor become.
  • the cracked gas generated leaves the can with one Temperature of about 800 to 850 ° C and needs for stabilization its molecular composition cooled very quickly become. This is done in a cracked gas cooler by a Heat transfer from the fission gas to evaporating, below high pressure water.
  • Cracked gas coolers are known in which each one is made of the can coming out of the cracking furnace with a separate one
  • the cracked gas cooler is connected to one or more pipes can own, enclosed by a common coat or are designed as double pipes. Since the from the As a rule, the cracked tubes emerging from the cracking furnace are linear can be arranged at a relatively short distance from one another all cracked gas coolers in one module in the form of a Linear cooler can be summarized.
  • the supply and discharge of the Cooling medium takes place at the ends of the pipes Water chambers that are oval or tubular can.
  • the double tube heat exchanger known from GB-A-1 504 361 for cooling cracked gas contains oval tubes Water chambers. Several oval tubes are gas tight Floor welded together, which is a gas entry chamber completes. The inner tube and the inner tube under formation an outer tube surrounding an annular gap are on each other welded into the oval tube on opposite sides. The interior of a water chamber stands with the annular gap of all connected double pipes in connection.
  • From US-A-5 035 283 is a shell and tube heat exchanger known in which the cooling tubes of a common jacket enclosed and in a tube plate provided with cooling channels are welded in.
  • the tube plate is with the inside of the Provide sheaths open turns, which with the Cooling channels are connected and the cooling pipes surrounded concentrically.
  • the cooling tubes in each row of tubes penetrate the cooling channels.
  • the invention is based, the water chamber of the task Generic heat exchanger to design so that none Material overheating of the surfaces involved in the heat exchange occur that a defined flow of entering Cooling medium is set and that the water chamber the high Presses the coolant withstands and inexpensively is to be produced.
  • the pressure of the Cooling medium on a relatively narrow annular, the Bottom of the depression-representing surface, the Outside diameter not the inside diameter of the outer tube significantly exceeds. Due to the small size of the through the pressure of the soil loaded with the cooling medium only needs it to be provided with a small wall thickness. This minor Wall thickness allows good cooling of the temperature-loaded Soil through the cooling medium so that material overheats can be avoided. Outside the distance from each other The water chamber retains the intended recesses original thickness of the solid piece, so that the Water chamber is stiff enough in itself to be without additional Reinforcements to withstand the high pressure of the cooling medium.
  • the recesses can be made into the solid piece by a simple mechanical processing such as drilling and milling bring in, reducing the effort for the production of Water chamber is reduced.
  • each cooling tube can individually from the cooling medium can be controlled, resulting in a better distribution of the Cooling medium on this results in a cooling tube.
  • the cross section circular depression created especially in connection with a tangential supply of the cooling medium a rotating Coolant flow, which ensures good cooling of the floor and an undesirable deposition of particles from the Coolant does not allow. Any existing particles will be the cyclone principle in the rotating flow near the Wall of the recess held and can by the further Borehole leading to the outside is removed during operation become.
  • a cracking furnace In a cracking furnace is implemented by Hydrocarbons generate a fission gas with water vapor.
  • the Cracking furnace is provided with can 2, from the outside are heated and flowed through by the feed. That the Can 2 with a temperature of 800 to 850 ° C leaving cracked gas enters a cracked gas cooler 3 one that is in the immediate vicinity above the cracking furnace is arranged.
  • this cracked gas cooler 3 In this cracked gas cooler 3, the molecular Composition of the cracked gas due to a sudden cooling in the Heat exchange with evaporating, under high pressure Stabilized water.
  • the cracked gas cooler 3 consists of one or more cooling tubes 4, which are arranged in a row next to each other, that each cooling tube 4 is assigned to and in a canned tube 2 axial extension.
  • the inside diameter of The can 2 and the cooling tube 4 are, as shown, customary same size.
  • the cooling pipes 4 open into a gas manifold 5 on.
  • Each cooling tube 4 is ring-shaped Intermediate space surrounded by an outer tube 6. At both ends the outer tubes 6 are water chambers 7, 8 for the supply and Removal of the cooling medium is provided.
  • each can 2 is widened like a fork.
  • an inner, the tube section 9 forming the extension of the can 2 and an outer tube section 10, both at one end are interconnected.
  • the outer tube section 10 is on the lower water chamber 7 welded.
  • the inner one Pipe section 9 of the canned tube 2 is small axial distance from the cooling tube 4.
  • the gap between the inner pipe section 9 and the outer Pipe section 10 is made of a layer 17 filled with heat-insulating material.
  • the water chamber 7, 8 is made of a solid, seamless, strip-shaped piece. This piece is in one Distance from one another in cross section circular depressions 11 incorporated, the number of which corresponds to the cooling tubes 4.
  • Each cooling tube 4 has its own depression 11 assigned.
  • the outer tube 6 is on the can 2 opposite side welded to the water chamber 7.
  • the inside diameter of the Outer tube 6 corresponds to the diameter of the reinforcement 11.
  • the recess 11 can consistently this diameter exhibit.
  • the deepening can also be done in the middle area be widened, the diameter of the recess 11 being approximately by the width of the space between the cooling tube 4 and the outer tube 6 can be larger than the inner diameter of the Outer tube 6.
  • the depression 11 is so deep that the water chamber 7, 8 forming piece incorporated that an annular bottom 12 with a small remaining wall thickness remains.
  • this floor 12 is the cooling tube 4 welded.
  • the area of the annular Bottom 12 is limited by the outer diameter of the Cooling tube 4 and the diameter of the recess 11th
  • Each depression 11 opens out at the level of the bottom 12 preferably tangentially into a bore 13.
  • the holes 13 are each via a connecting piece 14 with a Supply line 15 connected to the cooling medium.
  • the Coolant passes through the bore 13 at high speed into the recess 11 and generates a rotating flow around the cooling tube 4. This flow ensures good cooling of the bottom 12 of the recess 11 and thereby prevents one Deposition of particles on the floor 12, which leads to a harmful local overheating.
  • the depression 11 is provided with a further bore 16, which is led to the outside at the level of the bottom 12. Through this further bore 16 can the particles that are in the Well 11 are and with the flow of the cooling medium rotate during the operation of the cracked gas cooler 3 be removed.
  • the others are Bores 16 connected to a line 18.
  • This line 18 is equipped with a drain valve, not shown. By a brief, sudden opening of the drain valve can remove cooling medium with particles contained therein become.
  • the holes 13, 16 described can be used as Inspection openings can be used by passing through them an operational shutdown, an endoscope in the recess 11 is introduced. With the help of these endoscopes, the Check the condition of the recess 11.
  • Fig. 1 is a cracked gas cooler 3 with three cooling tubes shown. Without leaving the principle according to the invention, can the cracked gas cooler also more than three or only one Cooling tube included.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

Die Erfindung betrifft einen Wärmetauscher zum Kühlen von Spaltgas mit den Merkmalen des Oberbegriffes des Patentanspruches 1. Ein solcher Wärmetauscher ist aus der GB-A-1 504 361 bekannt.
Das Spaltgas wird durch eine thermische Spaltung von Kohlenwasserstoffen in einem Spaltofen erzeugt. Diese Spaltöfen sind mit einer Anzahl von außen beheizten Spaltrohren versehen, durch die die eingesetzten Kohlenwasserstoffen unter Zusatz von Wasserdampf geführt werden. Das erzeugte Spaltgas verläßt die Spaltrohre mit einer Temperatur von etwa 800 bis 850°C und muß zur Stabilisierung seiner molekularen Zusammensetzung sehr schnell abgekühlt werden. Dies erfolgt in Spaltgaskühlern durch eine Wärmeübertragung von dem Spaltgas an verdampfendes, unter einem hohen Druck stehendes Wasser.
Es sind Spaltgaskühler bekannt, bei denen jedes einzelne aus dem Spaltofen austretende Spaltrohr mit einem separaten Spaltgaskühler verbunden ist, der ein oder mehrere Rohre besitzen kann, die von einem gemeinsamen Mantel umschlossen oder als Doppelrohre ausgebildet sind. Da die aus dem Spaltofen austretende Spaltrohre in der Regel linear mit relativ geringem Abstand voneinander angeordnet sind, können sämtliche Spaltgaskühler in einem Modul in Form eines Linearkühlers zusammengefaßt werden. Die Zu- und Ableitung des Kühlmediums erfolgt jeweils an den Enden der Rohre mittels Wasserkammern, die oval oder rohrförmig ausgeführt sein können.
Der aus der GB-A-1 504 361 bekannte Doppelrohrwärmetauscher zur Kühlung von Spaltgas enthält als Ovalrohre ausgebildete Wasserkammern. Mehrere Ovalrohre sind zu einem gasdichten Boden zusammengeschweißt, der eine Gaseintrittskammer abschließt. Das Innenrohr und das das Innenrohr unter Bildung eines Ringspaltes umgebende Außenrohr sind an einander gegenüber liegenden Seiten in das Ovalrohr eingeschweißt. Dabei steht der Innenraum einer Wasserkammer mit dem Ringspalt aller angeschlossenen Doppelrohre in Verbindung.
Aus der US-A-5 035 283 ist ein Rohrbündel-Wärmetauscher bekannt, bei dem die Kühlrohre von einem gemeinsamen Mantel umschlossen und in eine mit Kühlkanälen versehene Rohrplatte eingeschweißt sind. Die Rohrplatte ist mit zum Inneren des Mantels hin offenen Ausdrehungen versehen, die mit den Kühlkanälen in Verbindung stehen und die die Kühlrohre konzentrisch umgeben. Die Kühlrohre jeweils einer Rohrreihe durchdringen die Kühlkanäle.
Der Erfindung liegt die Aufgabe zugrunde, die Wasserkammer des gattungsgemäßen Wärmetauschers so zu gestalten, daß keine Materialüberhitzungen der am Wärmetausch beteiligte Flächen auftreten, daß eine definierte Strömung des eintretenden Kühlmediums eingestellt wird und daß die Wasserkammer den hohen Drücken des Kühlmediums standhält und kostengünstig herzustellen ist.
Diese Aufgabe wird bei einem gattungsgemäßen Wärmetauscher erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruches 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
Bei dem erfindungsgemäßen Wärmetauscher wirkt der Druck des Kühlmediums auf eine verhältnismäßig schmale ringförmige, den Boden der Vertiefung darstellende Fläche, deren Außendurchmesser den Innendurchmesser des Außenrohres nicht wesentlich übersteigt. Aufgrund der geringen Größe des durch den Druck des Kühlmediums belasteten Bodens braucht dieser nur mit einer geringen Wanddicke versehen zu werden. Diese geringe Wanddicke läßt eine gute Kühlung des temperaturbelasteten Bodens durch das Kühlmediums zu, so daß Materialüberhitzungen vermieden werden können. Außerhalb der mit Abstand voneinander vorgesehenen Vertiefungen behält die Wasserkammer die ursprüngliche Dicke des massiven Stückes, so daß die Wasserkammer in sich steif genug ist, um ohne zusätzliche Verstärkungen dem hohen Druck des Kühlmediums standzuhalten. Die Vertiefungen lassen sich in das massive Stück durch eine einfache mechanische Bearbeitung, wie Bohren und Fräsen einbringen, wodurch der Aufwand für die Herstellung der Wasserkammer verringert wird. Da für jedes Kühlrohr eine eigene, von den übrigen Kühlrohre getrennte Vertiefung vorhanden ist, kann jedes Kühlrohr einzeln von dem Kühlmedium angesteuert werden, woraus sich eine bessere Verteilung des Kühlmediums auf dieses eine Kühlrohr ergibt. Die im Querschnitt kreisförmige Vertiefung erzeugt insbesondere in Verbindung mit einer tangentialen Zuführung des Kühlmediums eine rotierende Kühlmediumströmung, die für eine gute Kühlung des Bodens sorgt und eine unerwünschte Ablagerung von Partileln aus dem Kühlmedium nicht zuläßt. Etwa vorhandene Partikel werden nach dem Zyklonprinzip in der rotierenden Strömung in der Nähe der Wandung der Vertiefung gehalten und können durch die weitere, nach außen führende Bohrung während des Betriebes ausgeschleust werden.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher erläutert. Es zeigen:
Fig. 1
perspektivisch einen Spaltgaskühler,
Fig. 2
den Längsschnitt durch einen Spaltgaskühler im Bereich der unteren Wasserkammer und
Fig. 3
die Draufsicht auf Fig. 2.
In einem Spaltofen wird durch Umsetzung von Kohlenwasserstoffen mit Wasserdampf ein Spaltgas erzeugt. Der Spaltofen ist mit Spaltrohren 2 versehen, die von außen beheizt und von dem Einsatzstoff durchströmt sind. Das die Spaltrohre 2 mit einer Temperatur von 800 bis 850 °C verlassende Spaltgas tritt direkt in einen Spaltgaskühler 3 ein, der in unmittelbarer Nähe oberhalb des Spaltofens angeordnet ist. In diesem Spaltgaskühler 3 wird die molekulare Zusammensetzung des Spaltgases durch eine schroffe Abkühlung im Wärmetausch mit verdampfendem, unter hohem Druck stehenden Wasser stabilisiert.
Der Spaltgaskühler 3 besteht aus einem oder mehreren Kühlrohren 4, die so in einer Reihe nebeneinander angeordnet sind, daß jedes Kühlrohr 4 einem Spaltrohr 2 zugeordnet ist und in dessen axialer Verlängerung verläuft. Die Innendurchmesser von Spaltrohr 2 und Kühlrohr 4 sind, wie dargestellt, üblicherweise gleich groß. Die Kühlrohre 4 münden in eine Gassammelleitung 5 ein. Jedes Kühlrohr 4 ist unter Bildung eines ringförmigen Zwischenraumes von einem Außenrohr 6 umgeben. An beiden Enden der Außenrohre 6 sind Wasserkammern 7, 8 für die Zuführung und Abführung des Kühlmediums vorgesehen.
Das austrittsseitige Ende eines jeden Spaltrohres 2 ist gabelförmig aufgeweitet. Auf diese Weise entsteht ein innerer, die Verlängerung des Spaltrohres 2 bildender Rohrabschnitt 9 und ein äußerer Rohrabschnitt 10, die beide an einem Ende miteinander verbunden sind. Der äußere Rohrabschnitt 10 ist an die untere Wasserkammer 7 angeschweißt. Der innere Rohrabschnitt 9 des Spaltrohres 2 steht in einem geringen axialen Abstand dem Kühlrohr 4 gegenüber. Der Zwischenraum zwischen dem inneren Rohrabschnitt 9 und dem äußeren Rohrabschnitt 10 ist mit einer Schicht 17 aus einem wärmeisolierenden Material ausgefüllt.
Die Wasserkammer 7, 8 ist aus einem massiven, nahtlosen, streifenförmigen Stück gefertigt. In dieses Stück sind in einem Abstand voneinander im Querschnitt kreisförmige Vertiefungen 11 eingearbeitet, deren Anzahl der der Kühlrohre 4 entspricht. Dabei ist jedem Kühlrohr 4 eine eigene Vertiefung 11 zugeordnet. Das Außenrohr 6 ist auf der dem Spaltrohr 2 abgewandten Seite an die Wasserkammer 7 angeschweißt. Dabei stimmt an der Einschweißstelle der Innendurchmesser des Außenrohres 6 mit dem Durchmesser der Verteifung 11 überein. Die Vertiefung 11 kann durchgehend diesen Durchmesser aufweisen. Im mittleren Bereich kann die Vertiefung auch verbreitert sein, wobei der Durchmesser der Vertiefung 11 etwa um die Breite des Zwischenraumes zwischen dem Kühlrohr 4 und dem Außenrohr 6 größer sein kann als der Innendurchmesser des Außenrohres 6.
Die Vertiefung 11 ist so tief in das die Wasserkammer 7, 8 bildende Stück eingearbeitet, daß ein ringförmiger Boden 12 mit einer geringen Restwanddicke verbleibt. In diesen Boden 12 ist das Kühlrohr 4 eingeschweißt. Die Fläche des ringförmigen Bodens 12 ist begrenzt durch den Außendurchmesser des Kühlrohres 4 und den Durchmesser der Vertiefung 11.
In jede Vertiefung 11 mündet in der Höhe des Bodens 12 vorzugsweise tangential eine Bohrung 13 hinein. Die Bohrungen 13 sind jeweils über einen Verbindungsstutzen 14 mit einer Zuführungsleitung 15 für das Kühlmedium verbunden. Das Kühlmedium tritt durch die Bohrung 13 mit hoher Geschwindigkeit in die Vertiefung 11 ein und erzeugt eine rotierende Strömung um das Kühlrohr 4. Diese Strömung sorgt für eine gute Kühlung des Bodens 12 der Vertiefung 11 und verhindert dadurch eine Ablagerung von Partikeln auf dem Boden 12, die zu einer schädlichen örtlichen Überhitzung führen würde.
Die Vertiefung 11 ist mit einer weiteren Bohrung 16 versehen, die in Höhe des Bodens 12 nach außen geführt ist. Durch diese weitere Bohrung 16 können die Partikel, die sich in der Vertiefung 11 befinden und mit der Strömung des Kühlmediums rotieren während des Betriebes des Spaltgaskühlers 3 ausgeschleust werden. Zu diesem Zweck sind die weiteren Bohrungen 16 mit einer Leitung 18 verbunden. Diese Leitung 18 ist mit einem nicht gezeigten Abschlämmventil versehen. Durch ein kurzzeitiges, schlagartiges Öffnen des Abschlämmventils kann Kühlmedium mit darin enthaltenen Partikeln abgezogen werden.
Das als Kühlmedium dienende unter hohen Druck stehende und über die Zuführungsleitung 15 in die Vertiefungen 11 der unteren Wasserkammer 7 eingespeiste Wasser durchströmt den Zwischenraum zwischen dem Kühlrohr 4 und dem Außenrohr 6. Dabei verdampft das Wasser im Wärmetausch mit dem die Kühlrohre 4 durchströmenden Spaltgas teilweise und tritt als Wasser/Sattdampf-Gemisch in die obere Wasserkammer 8 ein. Aus dieser wird das Wasser/Sattdampf-Gemisch einem nicht gezeigten Wasser-Dampf-Kreislauf zugeführt, an den auch die Zuführungsleitung 15 angeschlossen ist.
Die beschriebenen Bohrungen 13, 16 können als Inspektionsöffnungen benutzt werden, indem durch sie während eines Betriebsstillstandes ein Endoskop in die Vertiefung 11 eingeführt wird. Mit Hilfe dieser Endoskope läßt sich der Zustand der Vertiefung 11 überprüfen.
In der Fig. 1 ist ein Spaltgaskühler 3 mit drei Kühlrohren gezeigt. Ohne das erfindungsgemäße Prinzip zu verlassen, kann der Spaltgaskühler auch mehr als drei oder nur ein einziges Kühlrohr enthalten.

Claims (5)

  1. Wärmetauscher zum Kühlen von Spaltgas mit mindestens einem von einem Außenrohr (6) umgebenen Kühlrohr (4), wobei Kühlrohr (4) und Außenrohr (6) an beiden Enden an je eine Wasserkammer (7, 8) zur Zuführung bzw. Abführung eines Kühlmediums angeschweißt sind, dadurch gekennzeichnet, daß die Wasserkammer (7, 8) aus einem massiven, streifenförmigen Stück besteht, in das entsprechend der Anzahl der Kühlrohre (4) in einem Abstand voneinander kreisförmige Vertiefungen (11) eingebracht sind, daß jede Vertiefung (11) ein Kühlrohr (4) umgibt, daß der Durchmesser der Vertiefung (11) gleich dem oder größer als der Innendurchmesser des Außenrohres (6) ist, daß der Innendurchmesser des Außenrohres (6) mit dem Durchmesser der Vertiefung (11) an der Einschweißstelle des Außenrohres (6) an die Wasserkammer (7, 8) übereinstimmt, daß die Vertiefung (11) im Bereich der Rohrenden der Kühlrohre (4) einen dünnen, ringförmigen Boden (12) mit einer geringen Restwanddicke aufweist und daß zur Zuführung bzw. Abführung des Kühlmediums in jede Vertiefung (11) eine durch die Seitenwand der Wasserkammer (7, 8) geführte Bohrung (13) einmündet.
  2. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, daß die Bohrung (13) tangential in die Vertiefung (11) einmündet.
  3. Wärmetauscher nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß alle Bohrungen (13) an eine gemeinsame Zuführungsleitung (15) angeschlossen sind.
  4. Wärmetauscher nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß aus jeder Vertiefung (11) eine weitere Bohrung (16) herausgeführt ist.
  5. Wärmetauscher nach Anspruch 4, dadurch gekennzeichnet, daß alle weiteren Bohrungen (16) an eine gemeinsame Leitung (18) angeschlossen sind.
EP95111740A 1994-12-21 1995-07-26 Wärmetauscher zum Kühlen von Spaltgas Expired - Lifetime EP0718579B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4445687 1994-12-21
DE4445687A DE4445687A1 (de) 1994-12-21 1994-12-21 Wärmetauscher zum Kühlen von Spaltgas

Publications (3)

Publication Number Publication Date
EP0718579A2 EP0718579A2 (de) 1996-06-26
EP0718579A3 EP0718579A3 (de) 1997-10-08
EP0718579B1 true EP0718579B1 (de) 1999-11-10

Family

ID=6536519

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95111740A Expired - Lifetime EP0718579B1 (de) 1994-12-21 1995-07-26 Wärmetauscher zum Kühlen von Spaltgas

Country Status (4)

Country Link
US (1) US5579831A (de)
EP (1) EP0718579B1 (de)
JP (1) JP3605681B2 (de)
DE (2) DE4445687A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0810414B1 (de) * 1996-06-01 2002-04-10 Borsig GmbH Wärmetauscher zum Kühlen von Spaltgas
EP2151652A2 (de) 2008-08-08 2010-02-10 Borsig GmbH Verbindungsstück zwischen einem Spaltrohr und einem Kühlrohr sowie ein Verfahren zum Verbinden eines Spaltrohres mit einem Kühlrohr

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19622139A1 (de) * 1994-12-21 1997-12-04 Borsig Babcock Ag Wärmetauscher zum Kühlen von Spaltgas
US5690168A (en) * 1996-11-04 1997-11-25 The M. W. Kellogg Company Quench exchanger
BR9809795B1 (pt) * 1997-05-13 2009-05-05 forno de fracionamento térmico.
DE19833004A1 (de) 1998-07-22 2000-01-27 Borsig Gmbh Wärmetauscher zum Kühlen eines heißen Prozeßgases
CA2274724A1 (en) * 1999-06-16 2000-12-16 Andre Landry Freeze-protected steam operated heat exchanger
US20040089439A1 (en) * 2002-11-07 2004-05-13 Treverton Andrew Clare Tube-to-tube heat exchanger assembly
ITMI20040272A1 (it) * 2004-02-18 2004-05-18 Olmi Spa Giunzione tra un tubo raffreddato a doppia parete ed un tubo non raffreddato e scambiatore di calore a doppio tubi comprendente tale giunzione
ITMI20050847A1 (it) * 2005-05-11 2006-11-12 Olmi Spa Giunzione tra tubo raffreddato e tubo non raffreddato in uno scambiatore di calore a doppio tubo
US7749372B2 (en) * 2005-07-08 2010-07-06 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
US7465388B2 (en) * 2005-07-08 2008-12-16 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
US7780843B2 (en) 2005-07-08 2010-08-24 ExxonMobil Chemical Company Patents Inc. Method for processing hydrocarbon pyrolysis effluent
US8524070B2 (en) * 2005-07-08 2013-09-03 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
US7763162B2 (en) 2005-07-08 2010-07-27 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
DE102009025624A1 (de) * 2009-06-17 2010-12-23 Borsig Gmbh Wärmetauscher zum Kühlen von Spaltgas
CN101975527B (zh) * 2010-10-21 2012-07-25 中国石油化工股份有限公司 一种线性急冷换热器入口连接件及其急冷换热器
DE102014018261A1 (de) * 2014-12-11 2016-06-16 Borsig Gmbh Quenchkühlsystem
PL3266851T3 (pl) * 2016-07-08 2019-08-30 Technip France Wymiennik ciepła do schładzania gazu reakcyjnego
CA3079047A1 (en) * 2017-10-27 2019-05-02 China Petroleum & Chemical Corporation Heat transfer enhancement pipe as well as cracking furnace and atmospheric and vacuum heating furnace including the same
IT201800004827A1 (it) * 2018-04-24 2019-10-24 Scambiatore di calore a doppio tubo e relativo metodo di fabbricazione
DE102021003955A1 (de) * 2021-07-23 2023-01-26 Borsig Gmbh Wärmetauscher

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1096127B (de) * 1957-12-21 1960-12-29 Babcock & Wilcox Dampfkessel Verbindung von Rohren mit einer dickwandigen Rohrplatte
DE1953628B2 (de) * 1969-10-24 1973-05-24 L & C Steinmuller GmbH, 5270 Gum mersbach Rohrbuendel-waermeaustauscher
DE2412421A1 (de) * 1974-03-15 1975-09-25 Schmidt Sche Heissdampf Waermeaustauscher mit doppelrohrelementen
NL7905640A (nl) * 1978-09-14 1980-03-18 Borsig Gmbh Van een pijpenbundel voorziene warmtewisselaar.
DE3411795A1 (de) * 1984-03-30 1985-10-03 Borsig Gmbh, 1000 Berlin Verfahren zum betreiben von rohrbuendelwaermeaustauschern zum kuehlen von gasen
DE3533219C1 (de) * 1985-09-18 1986-11-13 Borsig Gmbh, 1000 Berlin Rohrbuendelwaermetauscher
FR2599133B1 (fr) * 1986-05-21 1990-09-21 Struthers Wells Sa Echangeur de chaleur tubulaire a double plaque de support du faisceau de tube
DE3715713C1 (de) * 1987-05-12 1988-07-21 Borsig Gmbh Waermetauscher insbesondere zum Kuehlen von Spaltgasen
DE3715712C1 (de) * 1987-05-12 1988-07-21 Borsig Gmbh Waermetauscher insbesondere zum Kuehlen von Spaltgas
DE3822808C2 (de) * 1988-07-06 1993-12-23 Balcke Duerr Ag Wärmetauscher mit zwischen zwei Rohrplatten angeordneten Wärmetauscherrohren
DE3930205A1 (de) * 1989-09-09 1991-03-14 Borsig Babcock Ag Rohrbuendel-waermetauscher
DE4000527A1 (de) * 1990-01-10 1991-07-11 Borsig Babcock Ag Waermetauscher zum kuehlen von heissem reaktionsgas
DE4230092C2 (de) * 1992-09-09 2000-07-27 Behr Gmbh & Co Wärmetauscher, insbesondere Verdampfer für Klimaanlagen von Kraftfahrzeugen
US5425415A (en) * 1993-06-15 1995-06-20 Abb Lummus Crest Inc. Vertical heat exchanger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0810414B1 (de) * 1996-06-01 2002-04-10 Borsig GmbH Wärmetauscher zum Kühlen von Spaltgas
EP2151652A2 (de) 2008-08-08 2010-02-10 Borsig GmbH Verbindungsstück zwischen einem Spaltrohr und einem Kühlrohr sowie ein Verfahren zum Verbinden eines Spaltrohres mit einem Kühlrohr
DE102008036955A1 (de) 2008-08-08 2010-02-11 Borsig Gmbh Verbindungsstück zwischen einem Spaltrohr und einem Kühlrohr sowie ein Verfahren zum Verbinden eines Spaltrohres mit einem Kühlrohr
EP2151652A3 (de) * 2008-08-08 2011-10-05 Borsig GmbH Verbindungsstück zwischen einem Spaltrohr und einem Kühlrohr sowie ein Verfahren zum Verbinden eines Spaltrohres mit einem Kühlrohr
KR101432321B1 (ko) * 2008-08-08 2014-08-20 보르지크 게엠베하 반응 파이프와 냉각 파이프 간의 커넥터 및 냉각 파이프에 반응 파이프를 연결하는 방법

Also Published As

Publication number Publication date
JPH0979789A (ja) 1997-03-28
DE4445687A1 (de) 1996-06-27
JP3605681B2 (ja) 2004-12-22
US5579831A (en) 1996-12-03
EP0718579A3 (de) 1997-10-08
DE59507221D1 (de) 1999-12-16
EP0718579A2 (de) 1996-06-26

Similar Documents

Publication Publication Date Title
EP0718579B1 (de) Wärmetauscher zum Kühlen von Spaltgas
EP0417428B1 (de) Rohrbündel-Wärmetauscher
EP1939412B1 (de) Wärmetauscher zur Kühlung von Spaltgas
DE2816062C3 (de) Methanisierungsreaktor
DE4401247C2 (de) Wärmeübertrager
EP0810414B1 (de) Wärmetauscher zum Kühlen von Spaltgas
EP0290813B1 (de) Wärmetauscher, insbesondere zum Kühlen von Spaltgasen
EP2151652A2 (de) Verbindungsstück zwischen einem Spaltrohr und einem Kühlrohr sowie ein Verfahren zum Verbinden eines Spaltrohres mit einem Kühlrohr
EP1590076A1 (de) Mehrzonen-mantelrohrreaktor zur durchführung exothermer gasphasenreaktionen
DE2109825C3 (de) Dampferzeuger mit in einem vertikalen Druckbehälter angeordneten Rohrbündel
EP2278248B1 (de) Wärmetauscher zum Kühlen von Spaltgas
DE2631884A1 (de) Dampf-kohlenwasserstoff-reformiereinrichtung
DE1801396B2 (de) Fliessbett beschichtungsvorrichtung
DE3039745A1 (de) Waermeaustauscher
DE2149536A1 (de) Verfahren zum Erhitzen einer Waermeuebertragungsfluessigkeit
EP0436828B1 (de) Wärmetauscher zum Kühlen von heissem Reaktionsgas
DE3333735C2 (de)
WO2002093099A1 (de) Wärmetauscher zum erwärmen eines produktes, insbesondere einer masse zur herstellung von süsswaren
DE2913748C2 (de) Rohrbündelwärmetauscher zum Kühlen schlackenhaltiger Heißgase der Kohlevergasung
DE19622139A1 (de) Wärmetauscher zum Kühlen von Spaltgas
DE3121297C2 (de) Vorrichtung zum Regeln der Temperatur eines korrosiven Gases, insbesondere Synthesegas
DE69316603T2 (de) Ringförmiger Sicherheitswärmetauscher für inkompatible Fluide
DE10102963C1 (de) Verfahren zum Druckausgleich bei einer Kohlevergasungsanlage und Kohlevergasungsanlage zur Durchführung des Verfahrens
DE3913495C2 (de)
DE948692C (de) Waermeaustausch mit U-foermigen Rohren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19971020

17Q First examination report despatched

Effective date: 19980904

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BORSIG GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19991110

REF Corresponds to:

Ref document number: 59507221

Country of ref document: DE

Date of ref document: 19991216

ET Fr: translation filed
ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140922

Year of fee payment: 20

Ref country code: NL

Payment date: 20140721

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140721

Year of fee payment: 20

Ref country code: FR

Payment date: 20140721

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140729

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59507221

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20150725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150725