EP0640022B1 - Plasma aus hoher temperatur verbrauchende spritzpistole - Google Patents
Plasma aus hoher temperatur verbrauchende spritzpistole Download PDFInfo
- Publication number
- EP0640022B1 EP0640022B1 EP93913829A EP93913829A EP0640022B1 EP 0640022 B1 EP0640022 B1 EP 0640022B1 EP 93913829 A EP93913829 A EP 93913829A EP 93913829 A EP93913829 A EP 93913829A EP 0640022 B1 EP0640022 B1 EP 0640022B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- plasma gun
- tube
- plasma
- hollow
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000843 powder Substances 0.000 claims abstract description 41
- 238000001816 cooling Methods 0.000 claims abstract description 10
- 239000012212 insulator Substances 0.000 claims description 20
- 230000008878 coupling Effects 0.000 claims description 17
- 238000010168 coupling process Methods 0.000 claims description 17
- 238000005859 coupling reaction Methods 0.000 claims description 17
- 239000012809 cooling fluid Substances 0.000 claims description 16
- 239000004020 conductor Substances 0.000 claims description 4
- 239000012530 fluid Substances 0.000 claims 1
- 239000012811 non-conductive material Substances 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 239000000498 cooling water Substances 0.000 abstract description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 28
- 239000007789 gas Substances 0.000 description 20
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 239000012254 powdered material Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/42—Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/28—Cooling arrangements
Definitions
- the present invention relates to plasma systems capable of thermal spraying of powdered materials for coating on a workpiece.
- the plasma gun which has an anode and a cathode is water cooled by supplying cooling water from a water booster pump to a water inlet. From the water inlet, the cooling water circulates through a predetermined path within the plasma gun before exiting via a water outlet for return to the water booster pump. Cooling water from the water booster pump is provided to the water inlet of the plasma gun by a hose having a conductive inner tube which functions as the cathode connection to the plasma gun and which is coupled to a plasma power supply. The water outlet of the plasma gun is coupled by a second hose to return the water to the water booster pump.
- the second hose has a conductive inner tube which functions as the anode connection to the plasma gun and which is coupled to the plasma power supply.
- a tube coupled to a powder feed mechanism provides powder to the plasma gun with the help of a carrier gas flowing under pressure.
- Another tube couples a source of inert plasma gas to the plasma gun to provide plasma gas to the gun.
- Document US-A-3 684 911 discloses a high temperature plasma gun assembly comprising a plasma gun having first and second electrodes, a power supply, a first and second electrode couplings attached to the power supply and capable of withstanding tempratures up to a given maximum temperature.
- the plasma gun is provided with electrode extensions consisting of water-cooled hollow tubes for coupling the electrodes couplings to the respective electrodes.
- the plasma gun and the connecting portions of the water-supplying electrode hoses and the powder and plasma gas supply tubes are subjected to moderate temperatures which are not substantially in excess of about 500°F. This does not adversely affect the hoses, which are typically Teflon-coated on the exterior thereof. Nor do such temperatures adversely affect the powder and gas supply tubes.
- the plasma gun and the connections thereto may be subjected to temperatures substantially in excess of 260°C. This may occur, for example, where the plasma gun is located at the interior of a circular workpiece in order to spray the inner surface thereof. As the circular workpiece undergoes rotational motion relative to the plasma gun for spraying of the interior surface thereof, the temperatures in the vicinity of the plasma gun may be as high as 1093°C. Temperatures of this magnitude do not adversely affect the plasma gun, which is water-cooled and essentially of metal construction. However, such high temperatures adversely affect the connecting hoses as well as the powder and plasma gas supply tubes. The Teflon-coated hoses rapidly deteriorate in the presence of such temperatures. In addition, conventional non-cooled powder and gas supply tubes will not function properly at temperatures of this magnitude.
- a more specific object of the invention is the provision of a plasma gun assembly capable of withstanding the high temperatures produced during certain operations such as spraying the interior of a circular part.
- Plasma gun assemblies in accordance with the invention as defined by claim 1 employ an extension arrangement for coupling the electrode and water-carrying hoses to the plasma gun.
- the extension arrangement is fluid-cooled and essentially of metal construction so as to be capable of withstanding very high temperatures.
- powder and plasma gas may be supplied to the plasma gun by fluid-cooled tubes which are also capable of withstanding the high temperature environment.
- the extension arrangement includes fluid-cooled anode and cathode extensions of desired length for coupling the hoses to the plasma gun.
- the fluid-cooled powder and plasma gas delivery tubes are disposed adjacent the anode and cathode extensions and are coupled to the plasma guns.
- the anode and cathode extensions comprise hollow tubes, one of which is concentrically disposed within the other.
- the cathode extension comprises a hollow tube coupled to the cathode hose and having a hollow interior for delivering cooling water to the plasma gun.
- the cathode extension tube which is cooled by the water flowing therethrough, is concentrically disposed within the hollow interior of an anode extension tube which is coupled to the anode hose.
- the space between the outer surface of the cathode extension tube and the adjacent inner wall of the anode extension tube forms a passage for return of the cooling water from the plasma gun to the anode hose. Such water cools the anode extension tube.
- the cathode and anode extension tubes are made of conductive material such as copper in order to electrically connect the conductive tubes within the hoses to the anode and the cathode of the plasma gun.
- the cathode and anode extension tubes are held in spaced-apart relation, and a hollow insulator tube may be mounted on the outer surface of the cathode tube to prevent electrical contact with the surrounding anode tube.
- the powder and plasma gas supply tubes are cooled by being concentrically disposed within intermediate and outer tubes forming a series of passages for cooling fluid which enters the passages and exits therefrom via fittings mounted on the outer tube.
- the passages extend along substantially the entire length of the powder or plasma gas supply tube so as to cool substantially the entire length thereof.
- connection block assembly couples the cathode extension tube to a hollow interior communicating with the space between the cathode and anode extension tubes.
- the connection block assembly electrically couples the anode fitting to the anode extension tube.
- a hollow, generally cylindrical boot extension extends outwardly from the insulator block and surrounds the cathode fitting.
- the opposite ends of the cathode and anode extension tubes extend into the plasma gun to connect the hollow interior of the cathode extension tube to the water inlet for the plasma gun cooling system and the space between the cathode and anode extension tubes to the water outlet for such system.
- the anode and cathode extension tubes make electrical contact with the anode and cathode of the plasma gun.
- Fig. 1 is a simplified representation of a plasma system 10 having a plasma gun assembly 12 according to the invention.
- the plasma system 10 may be of the type described in the previously referred U.S. Patent 4,328,257 of Muehlberger et al.
- the plasma system 10 of Fig. 1 includes a sealed enclosure 14 which contains the plasma gun assembly 12 and a workpiece 16.
- the plasma gun assembly 12 terminates at a lower end thereof in a plasma gun 18 disposed within the hollow interior of the circular workpiece 16 in order to spray a coating on an interior surface 20 of the workpiece 16.
- the workpiece 16, which is shown in sectional view in Fig. 1, is mounted by a pedestal 22 on a turntable 24. As the turntable 24 is rotated via a rotating drive 26, the workpiece 16 rotates around the plasma gun 18. This enables the plasma gun 18 to spray the entire interior surface 20 of the workpiece 16.
- a water booster pump 28 located outside of the enclosure 14 is coupled to the plasma gun assembly 12 by a cathode hose 30 and an anode hose 32.
- the cathode hose 30 serves to deliver cooling water from the booster pump 28 to the plasma gun assembly 12.
- a conductive tube within the cathode hose 30 electrically couples the negative terminal of a plasma power supply 34 to the plasma gun assembly 12.
- the anode hose 32 also has a conductive tube therein for electrically coupling the positive terminal of the plasma power supply 34 to the plasma gun assembly 12.
- the plasma power supply 34 provides the desired plasma stream or flame upon introduction of a plasma gas into the plasma gun 18.
- a plasma gas is provided by a plasma gas supply tube 36 coupled to a plasma gas source 38.
- the plasma gas may be an inert gas such as argon, or a mixture of such inert gasses.
- a powder supply tube 40 couples a powder feed mechanism 42 to the plasma gun 18, whereby metal powder or other particulate matter is introduced into the plasma stream for spraying onto the interior surface 20 of the workpiece 16.
- a low pressure environment is provided within the enclosure 14 by a vacuum source 44 coupled to the interior of the enclosure 14.
- the cathode and anode hoses 30 and 32 are of conventional design. As such, the hoses 30 and 32 are not capable of withstanding very high temperatures such as those substantially in excess of 260°C (500°F). At the same time, disposition of the plasma gun 18 within the workpiece 16 creates a very high temperature environment in which the temperatures can reach as much as 1093°C (2,000°F). Accordingly, the plasma gun assembly 12 employs an extension arrangement 46 for coupling the hoses 30 and 32 to the plasma gun 18. As described hereafter, the extension arrangement 46 is capable of withstanding the high temperatures in the region of the plasma gun 18, even though the hoses 30 and 32 are not. Moreover, the plasma gas supply tube 36 and the powder supply tube 40, both of which coupled to the plasma gun 18, are adequately cooled in the vicinity of the plasma gun 18, as described hereafter.
- the plasma gun assembly 12 is shown in detail in Figs. 2-5.
- the extension arrangement 46 includes an anode extension tube 48 extending upwardly from the plasma gun 18 at a lower end thereof to a connection block assembly 50 at an upper end thereof.
- the connection block assembly 50 includes an anode fitting 52 mounted thereon and terminating in a threaded end 54 for receiving the anode hose 32 shown in Fig. 1.
- the connection block assembly 50 abuts an insulator block 56, from which a hollow, generally cylindrical boot extension 58 extends.
- the boot extension 58 surrounds a cathode fitting for receiving the cathode hose 30.
- the plasma gas supply tube 36 which is shown in Fig. 1 extends through the insulator block 56 and the connection block assembly 50 and couples to the plasma gun 18 at a fitting 60.
- the tube 36 couples to the insulator block 56 via a fitting 62.
- the fitting 62 couples the tube 36 through apertures 64 and 66 in the insulator block 56 and the connection block assembly 50, respectively, to a fitting 68 at the bottom of the connection block assembly 50. From the fitting 68, the tube 36 extends to the fitting 60 at the plasma gun 18.
- the anode extension tube 48 extends downwardly from the connection block assembly 50 to the plasma gun 18. Within the plasma gun 18, the anode extension tube 48 makes electrical contact with an anode body assembly 70 forming part of the anode of the plasma gun 18. At its opposite upper end, the anode extension tube 48 extends into contact with the connection block assembly 50 which has the anode fitting 52 mounted thereon.
- the connection block assembly 50 and the anode fitting 52 are of conductive material, as is the anode extension tube 48 which may be made of copper. In this manner, a conductive path is provided between the anode hose 32, which is coupled to the anode fitting 52, and the anode body assembly 70 of the plasma gun 18.
- the extension arrangement 46 includes a hollow cathode extension tube 72.
- the cathode extension tube 72 is concentrically disposed within the anode extension tube 48, and has an insulator tube 74 mounted on an outer surface 76 thereof.
- the insulator tube 74 which is made of Teflon or other appropriate electrical insulating material, prevents inadvertent contact of the anode extension tube 48 with the cathode extension tube 72.
- a passage 78 of generally uniform width is formed between the insulator tube 74 at the outer surface 76 of the cathode extension tube 72 and an inner wall 80 of the anode extension tube 48.
- the passage 78 extends along the lengths of the anode extension tube 48 and the cathode extension tube 72, and communicates with an aperture 82 within the connection block assembly 50 and with an aperture 84 within the anode body assembly 70 of the plasma gun 18.
- the cathode extension tube 72 extends upwardly from a cathode holder assembly 86 within the plasma gun 18 and through the connection block assembly 50 to the insulator block 56. At the other side of the insulator block 56 from the connection block assembly 50, the cathode extension tube 72 extends into and is coupled to a cathode fitting 88 within the hollow interior of the boot extension 58.
- the cathode fitting 88 has a threaded end 90 thereof for receipt of the cathode hose 30. In this manner a conductive path is formed between the cathode hose 30 and the cathode holder assembly 86 within the plasma gun 18.
- the insulator tube 74 on the outer surface 76 of the cathode extension tube 72 extends through the connection block assembly 50 to insulate the cathode extension tube 72 from the connection block assembly 50.
- the insulator block 56 is made of insulative material.
- the cathode extension tube 72 is made of conductive material such as copper.
- the cathode hose 30 supplies cooling water from the water booster pump 28.
- Such cooling water is provided to the cathode fitting 88, from which it flows through a hollow interior 92 of the cathode extension tube 72 to an aperture 94 within the cathode holder assembly 86 of the plasma gun 18. From the aperture 94, the cooling water flows forwardly through a cathode assembly 96 and then back into a passage 98. From the passage 98, the cooling water flows into a passage 100 in an insulator housing 102.
- the insulator housing 102 separates the cathode assembly 96 from the anode body assembly 70 and an anode retainer 104 within the plasma gun 18.
- the cooling water flows through a passage 106 in the anode body assembly 70 and into a cavity 108 in a forward portion of the cathode holder assembly 86. From the cavity 108, the cooling water exits via passages 110 to the aperture 84 in the anode body assembly 70.
- the cooling water exits the plasma gun 18 by flowing into the passage 78 between the anode extension tube 48 and the cathode extension tube 72.
- the cooling water flows upwardly the passage 78 to the aperture 82 within the connection block assembly 50.
- the cooling water flows into the anode fitting 52 and is returned to the water booster pump 28 by the anode hose 32.
- the coaxial arrangement of the anode extension tube 48 and the cathode extension tube 72 forming the extension arrangement 46 is cooled by the cooling water as the water is delivered to the plasma gun 18 and returned to the water booster pump 28.
- the cooling water flows through the hollow interior 92 of the cathode extension tube 72 to the plasma gun 18, the cathode extension tube 72 is cooled by the water.
- both the anode extension tube 48 and the cathode extension tube 72 are cooled by the water.
- Such cooling and the copper or other metallic composition of the extension tubes 48 and 72 enable the extension arrangement 46 to withstand the high temperatures encountered in the plasma spraying environment described in connection with Fig. 1.
- the extension arrangement 46 may be of virtually any desired length which is adequate to allow maneuverability of the plasma gun assembly 12 while at the same time locating the cathode hose 30 and the anode hose 32 at a safe distance from the high temperatures in the vicinity of the plasma gun 18.
- Fig. 6 shows a water cooled arrangement of the powder supply tube 40 in accordance with the invention. A similar water cooled arrangement can be used for the plasma gas supply tube 36.
- the powder supply tube 40 has an inner powder delivery tube 116 having a connection fitting 118 at an upper end thereof and a fitting 120 at an opposite lower end thereof.
- the fitting 120 is used to secure the lower end of the powder delivery tube 116 within a receptacle 122 in the anode retainer 104 of the plasma gun 18 shown in Fig. 5.
- a hollow outer tube 124 is concentrically disposed about the powder delivery tube 116 along most of the length of the powder delivery tube 116.
- the outer tube 124 is held in this position by a manifold assembly 126 at the upper end of the powder delivery tube 116 and a spacer 128 at the lower end of the powder delivery tube 116.
- a hollow intermediate tube 130 is concentrically disposed between the powder delivery tube 116 and the outer tube 124.
- the intermediate tube 130 forms a first passage 132 with the powder delivery tube 116 and a second passage 134 with the outer tube 124.
- a cooling water inlet fitting 136 mounted on the manifold assembly 126 is coupled to a supply of cooling water, such as the water booster pump 28 shown in Fig. 1.
- the manifold 126 directs the cooling water into the first passage 132 between the powder delivery tube 116 and the intermediate tube 130.
- the cooling water flows through the first passage 132 to a lower end 138 of the intermediate tube 130.
- the cooling water reverses flow direction and flows into the second passage 134 between the intermediate tube 130 and the outer tube 124.
- the cooling water flows upwardly through the second passage 134 to the manifold assembly 126 where it exits via a cooling water outlet fitting 140 mounted on the manifold assembly 126.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Coating By Spraying Or Casting (AREA)
- Plasma Technology (AREA)
- Nozzles (AREA)
- Arc Welding In General (AREA)
Claims (14)
- Hochtemperatur-Plasmapistoleneinheit, die folgende Kombination umfaßt:eine Plasmapistole (18), die eine erste und eine zweite Elektrode (70, 96) aufweist;eine Stromquelle (34);ein erstes Elektrodenverbindungsstück (32), das an die Stromquelle (34) angeschlossen ist und dazu fähig ist, Temperaturen bis zu einer gegebenen maximalen Temperatur zu widerstehen;ein zweites Elektrodenverbindungsstück (30), das an die Stromquelle (34) angeschlossen ist und dazu fähig ist, Temperaturen bis zu der genannten gegebenen maximalen Temperatur zu widerstehen;eine erste Elektrodenverlängerung, die eine hohle Röhre (48) umfaßt, die sich zwischen dem ersten Elektrodenverbindungsstück und der Plasmapistole erstreckt und diese koppelt;eine zweite Elektrodenverlängerung, die eine zweite hohle Röhre (72) umfaßt, die konzentrisch innerhalb der ersten hohlen Röhre (48) angeordnet ist, wobei sich die zweite hohle Röhre zwischen dem zweiten Elektrodenverbindungsstück und der Plasmapistole erstreckt und diese koppelt;Kühlfluidwege, die durch einen Raum (92) innerhalb der zweiten hohlen Röhre (72) und einen Raum (78) zwischen der ersten und der zweiten hohlen Röhre (48, 72) definiert sind;ein Mittel (28) zur Bereitstellung von Kühlfluid an die Plasmapistole (18) über die Kühlfluidwege; bei derdie erste und die zweite Elektrodenverlängerung (48, 72) dazu fähig sind, Temperaturen zu widerstehen, die wesentlich über der gegebenen maximalen Temperatur liegen.
- Plasmapistoleneinheit nach Anspruch 1, bei der das Mittel (28) zur Bereitstellung einer Fluidkühlung folgendes umfaßt: ein Mittel zur Bereitstellung von Kühlfluid an die Plasmapistole (18) über den Kühlfluidweg (92), der innerhalb der zweiten hohlen Röhre (72) definiert ist, und ein Mittel zur Rückführung von Kühlfluid von der Plasmapistole über den Kühlfluidweg (78), der durch den Raum zwischen der ersten und der zweiten hohlen Röhre (48, 72) definiert ist.
- Plasmapistoleneinheit nach Anspruch 1 oder Anspruch 2, bei der die erste Elektrode die Anode (70) der Plasmapistole ist und die zweite Elektrode die Kathode (96) ist.
- Plasmapistoleneinheit nach einem der vorhergehenden Ansprüche, die ferner folgendes umfaßt: eine Pulverzufuhrröhre (40), die angrenzend an die erste Elektrodenverlängerung (48) und die zweite Elektrodenverlängerung (72) angeordnet ist und mit der Plasmapistole (18) gekoppelt ist, ein Mittel zum Kühlen der Pulverzufuhrröhre, eine Plasmagaszufuhrröhre (36), die angrenzend an die erste Elektrodenverlängerung (48) und die zweite Elektrodenverlängerung (72) angeordnet ist und mit der Plasmapistole (18) gekoppelt ist, und eine Mittel zum Kühlen der Plasmagaszufuhrröhre.
- Plasmapistoleneinheit nach Anspruch 4, bei der das Mittel zum Kühlen der Pulverzufuhrröhre (40) eine Mittel dazu umfaßt, ein Kühlfluid über mindestens einen Abschnitt der Länge der Pulverzufuhrröhre (40) strömen zu lassen, und das Mittel zum Kühlen der Plasmagaszufuhrröhre (36) ein Mittel dazu umfaßt, ein Kühlfluid über mindestens einen Abschnitt der Länge der Plasmagaszufuhrröhre (36) strömen zu lassen.
- Plasmapistoleneinheit nach einem der vorhergehenden Ansprüche, bei der die erste und die zweite hohle Röhre (48, 72) aus einem leitfähigen Material gefertigt sind und die ferner eine hohle Nichtleiterröhre (74) aus einem nichtleitenden Material umfaßt, die zwischen einer Außenwand der zweiten hohlen Röhre (72) und einer Innenwand der ersten hohlen Röhre (48) angeordnet ist.
- Plasmapistoleneinheit nach Anspruch 3 und einem beliebigen von Anspruch 3 abhängigen Anspruch, die ferner folgendes umfaßt: eine Verbindungsblockeinheit (50), die von der Plasmapistole (18) beabstandet ist und die Anodenverlängerung und die Kathodenverlängerung darin aufnimmt, ein Anodenanschlußstück (52), das an der Verbindungsblockeinheit (50) angebracht ist und einen hohlen Innenraum zur Aufnahme von Kühlfluid darin aufweist, wobei die Verbindungsblockeinheit (50) einen hohlen Innenraum (82) aufweist, der den hohlen Innenraum des Anodenanschlußstücks (52) mit dem Raum (72) zwischen einer äußeren Oberfläche der Kathodenverlängerung und einer inneren Oberfläche der Anodenverlängerung koppelt, und ein Kathodenanschlußstück (88), das angrenzend an die Verbindungsblockeinheit (50) mit der Kathodenverlängerung gekoppelt ist und einen hohlen Innenraum zur Aufnahme eines Kühlfluids aufweist, der mit einem hohlen Innenraum der Kathodenverlängerung gekoppelt ist.
- Plasmapistoleneinheit nach Anspruch 7, die ferner einen Nichtleiterblock (56) umfaßt, der um die Kathodenverlängerung zwischen der Verbindungsblockeinheit (50) und dem Kathodenanschlußstück (88) angeordnet ist.
- Plasmapistoleneinheit nach Anspruch 8, die ferner eine hohle, allgemein zylindrische Muffenverlängerung (58) umfaßt, die mit dem Nichtleiterblock (56) gekoppelt ist und das Kathodenanschlußstück (88) umgibt.
- Plasmapistoleneinheit nach Anspruch 8 oder Anspruch 9, die ferner eine Plasmagaszufuhrröhre (36) umfaßt, die in dem Nichtleiterblock (56) angebracht ist und sich zur Plasmapistole (18) erstreckt.
- Plasmapistoleneinheit nach Anspruch 10, die ferner ein Mittel zur Fluidkühlung der Plasmagaszufuhrröhre (36) umfaßt.
- Plasmapistoleneinheit nach einem der vorhergehenden Ansprüche, die ferner folgendes umfaßt:eine hohle Zufuhrröhre (116) zur Aufnahme einer Substanz an einem ersten Ende davon, die ein gegenüberliegendes zweites Ende zum Koppeln mit der Plasmapistole (18) aufweist;eine hohle äußere Röhre (124), die die Zufuhrröhre (116) umgibt und konzentrisch darin aufnimmt; undein Mittel zum Umwälzen von Kühlfluid zwischen der Zufuhrröhre (116) und der äußeren Röhre (124).
- Plasmapistoleneinheit nach Anspruch 12, die ferner eine hohle Zwischenröhre (130) umfaßt, die konzentrisch zwischen der Zufuhrröhre (116) und der äußeren Röhre (124) angeordnet ist und mit der Zufuhrröhre (116) einen ersten Durchgang (132) bildet und mit der äußeren Röhre (124) einen zweiten Durchgang (134) bildet, und das Mittel zum Umwälzen von Kühlfluid umfaßt ein Kühlfluidzufuhranschlußstück (136), das an der äußeren Röhre (124) angebracht ist und angrenzend an das erste Ende der Zufuhrröhre (116) mit dem ersten Durchgang (132) gekoppelt ist, und ein Kühlfluidentfernungsanschlußstück (140), das an der äußeren Röhre (124) angebracht ist und angrenzend an das erste Ende der Zufuhrröhre (116) mit dem zweiten Durchgang (134) gekoppelt ist.
- Plasmapistoleneinheit nach Anspruch 12 oder Anspruch 13, bei der die Zufuhrröhre (116) eine Pulverzufuhrröhre umfaßt.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US88251892A | 1992-05-13 | 1992-05-13 | |
US882518 | 1992-05-13 | ||
PCT/US1993/004439 WO1993023194A1 (en) | 1992-05-13 | 1993-05-11 | High temperature plasma gun assembly |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0640022A1 EP0640022A1 (de) | 1995-03-01 |
EP0640022A4 EP0640022A4 (de) | 1995-04-19 |
EP0640022B1 true EP0640022B1 (de) | 1999-07-28 |
Family
ID=25380768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93913829A Expired - Lifetime EP0640022B1 (de) | 1992-05-13 | 1993-05-11 | Plasma aus hoher temperatur verbrauchende spritzpistole |
Country Status (7)
Country | Link |
---|---|
US (1) | US5412173A (de) |
EP (1) | EP0640022B1 (de) |
JP (1) | JP3226541B2 (de) |
AT (1) | ATE182499T1 (de) |
CA (1) | CA2134891C (de) |
DE (1) | DE69325802T2 (de) |
WO (1) | WO1993023194A1 (de) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE59401323D1 (de) * | 1993-09-29 | 1997-01-30 | Sulzer Metco Ag | Brennerkopf für Plasmaspritzgeräte |
US5679167A (en) * | 1994-08-18 | 1997-10-21 | Sulzer Metco Ag | Plasma gun apparatus for forming dense, uniform coatings on large substrates |
TW315340B (de) * | 1995-02-13 | 1997-09-11 | Komatsu Mfg Co Ltd | |
US7334485B2 (en) * | 2002-02-11 | 2008-02-26 | Battelle Energy Alliance, Llc | System, method and computer-readable medium for locating physical phenomena |
US6889557B2 (en) * | 2002-02-11 | 2005-05-10 | Bechtel Bwxt Idaho, Llc | Network and topology for identifying, locating and quantifying physical phenomena, systems and methods for employing same |
US6916502B2 (en) * | 2002-02-11 | 2005-07-12 | Battelle Energy Alliance, Llc | Systems and methods for coating conduit interior surfaces utilizing a thermal spray gun with extension arm |
US7324011B2 (en) * | 2004-04-14 | 2008-01-29 | Battelle Energy Alliance, Llc | Method and system for pipeline communication |
US7276264B1 (en) * | 2002-02-11 | 2007-10-02 | Battelle Energy Alliance, Llc | Methods for coating conduit interior surfaces utilizing a thermal spray gun with extension arm |
SE529053C2 (sv) | 2005-07-08 | 2007-04-17 | Plasma Surgical Invest Ltd | Plasmaalstrande anordning, plasmakirurgisk anordning och användning av en plasmakirurgisk anordning |
SE529058C2 (sv) * | 2005-07-08 | 2007-04-17 | Plasma Surgical Invest Ltd | Plasmaalstrande anordning, plasmakirurgisk anordning, användning av en plasmakirurgisk anordning och förfarande för att bilda ett plasma |
SE529056C2 (sv) | 2005-07-08 | 2007-04-17 | Plasma Surgical Invest Ltd | Plasmaalstrande anordning, plasmakirurgisk anordning och användning av en plasmakirurgisk anordning |
US7928338B2 (en) * | 2007-02-02 | 2011-04-19 | Plasma Surgical Investments Ltd. | Plasma spraying device and method |
US8735766B2 (en) * | 2007-08-06 | 2014-05-27 | Plasma Surgical Investments Limited | Cathode assembly and method for pulsed plasma generation |
US7589473B2 (en) * | 2007-08-06 | 2009-09-15 | Plasma Surgical Investments, Ltd. | Pulsed plasma device and method for generating pulsed plasma |
US9630162B1 (en) | 2007-10-09 | 2017-04-25 | University Of Louisville Research Foundation, Inc. | Reactor and method for production of nanostructures |
US8613742B2 (en) * | 2010-01-29 | 2013-12-24 | Plasma Surgical Investments Limited | Methods of sealing vessels using plasma |
US9089319B2 (en) | 2010-07-22 | 2015-07-28 | Plasma Surgical Investments Limited | Volumetrically oscillating plasma flows |
CN104568185B (zh) * | 2014-12-10 | 2017-03-01 | 中国航天科技集团公司第六研究院第十一研究所 | 高温抽气式测温枪 |
CN115066984A (zh) * | 2020-03-06 | 2022-09-16 | 普莱克斯S.T.技术有限公司 | 用于等离子体电弧喷枪的经修改的阴极装置和保持器组件 |
EP4205515A2 (de) | 2020-08-28 | 2023-07-05 | Plasma Surgical Investments Limited | Systeme, verfahren und vorrichtungen zur erzeugung eines überwiegend radial expandierten plasmaflusses |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1338390A (fr) * | 1962-07-05 | 1963-09-27 | Air Liquide | Tête orientable de générateur de plasma |
US3684911A (en) * | 1970-08-25 | 1972-08-15 | Giancarlo Perugini | Plasma-jet generator for versatile applications |
US3740522A (en) * | 1971-04-12 | 1973-06-19 | Geotel Inc | Plasma torch, and electrode means therefor |
US3914573A (en) * | 1971-05-17 | 1975-10-21 | Geotel Inc | Coating heat softened particles by projection in a plasma stream of Mach 1 to Mach 3 velocity |
US4328257A (en) * | 1979-11-26 | 1982-05-04 | Electro-Plasma, Inc. | System and method for plasma coating |
US4423304A (en) * | 1981-02-20 | 1983-12-27 | Bass Harold E | Plasma welding torch |
US4445021A (en) * | 1981-08-14 | 1984-04-24 | Metco, Inc. | Heavy duty plasma spray gun |
CH647424A5 (en) * | 1982-07-09 | 1985-01-31 | Castolin Sa | Gun extension piece for a powder-spray torch |
US4587397A (en) * | 1983-12-02 | 1986-05-06 | Plasma Energy Corporation | Plasma arc torch |
US4570048A (en) * | 1984-06-29 | 1986-02-11 | Plasma Materials, Inc. | Plasma jet torch having gas vortex in its nozzle for arc constriction |
DE3430383A1 (de) * | 1984-08-17 | 1986-02-27 | Plasmainvent AG, Zug | Plasmaspritzbrenner fuer innenbeschichtungen |
US4668853A (en) * | 1985-10-31 | 1987-05-26 | Westinghouse Electric Corp. | Arc-heated plasma lance |
-
1993
- 1993-05-11 AT AT93913829T patent/ATE182499T1/de not_active IP Right Cessation
- 1993-05-11 WO PCT/US1993/004439 patent/WO1993023194A1/en active IP Right Grant
- 1993-05-11 EP EP93913829A patent/EP0640022B1/de not_active Expired - Lifetime
- 1993-05-11 DE DE69325802T patent/DE69325802T2/de not_active Expired - Lifetime
- 1993-05-11 JP JP50369794A patent/JP3226541B2/ja not_active Expired - Lifetime
- 1993-05-11 CA CA002134891A patent/CA2134891C/en not_active Expired - Lifetime
- 1993-11-22 US US08/156,388 patent/US5412173A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
CA2134891C (en) | 1999-08-03 |
ATE182499T1 (de) | 1999-08-15 |
US5412173A (en) | 1995-05-02 |
DE69325802T2 (de) | 2000-04-27 |
DE69325802D1 (de) | 1999-09-02 |
JP3226541B2 (ja) | 2001-11-05 |
JPH07507968A (ja) | 1995-09-07 |
EP0640022A1 (de) | 1995-03-01 |
EP0640022A4 (de) | 1995-04-19 |
CA2134891A1 (en) | 1993-11-25 |
WO1993023194A1 (en) | 1993-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0640022B1 (de) | Plasma aus hoher temperatur verbrauchende spritzpistole | |
JP2815418B2 (ja) | プラズマガン | |
US8893651B1 (en) | Plasma-arc vaporization chamber with wide bore | |
EP0457067B1 (de) | Plasmaspritzvorrichtung mit äusserlicher Pulverzuführung | |
CA1326886C (en) | Plasma generating apparatus and method | |
US5408066A (en) | Powder injection apparatus for a plasma spray gun | |
CN112024885B (zh) | 一种等离子弧喷头及具有其的等离子发生装置和三维打印设备 | |
US5144110A (en) | Plasma spray gun and method of use | |
US2960594A (en) | Plasma flame generator | |
EP0775436B1 (de) | Plasmabrenner mit axialer pulverinjektion | |
US3823302A (en) | Apparatus and method for plasma spraying | |
US5837959A (en) | Single cathode plasma gun with powder feed along central axis of exit barrel | |
US5298835A (en) | Modular segmented cathode plasma generator | |
JPH0357833B2 (de) | ||
US4990739A (en) | Plasma gun with coaxial powder feed and adjustable cathode | |
JP3640985B2 (ja) | プラズマ噴射装置に使用されるプラズマ銃ヘッド | |
US3707615A (en) | Nozzle for a plasma generator | |
EP0195409A2 (de) | Plasmapulver-Auftragsschweissbrenner | |
JP3733461B2 (ja) | 複合トーチ型プラズマ発生方法及び装置 | |
WO2006012165A2 (en) | Plasma jet generating apparatus and method of use thereof | |
CA1331088C (en) | Plasma gun having improved anode cooling system | |
JPH09217164A (ja) | プラズマ溶射装置 | |
CN118773536A (zh) | 一种等离子喷枪 | |
JPH0741931A (ja) | プラズマ溶射装置 | |
JPH03169480A (ja) | 高温ガスはんだ付け装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19941121 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 19950301 |
|
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 19960827 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SULZER METCO AG |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19990728 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19990728 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990728 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19990728 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19990728 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19990728 |
|
REF | Corresponds to: |
Ref document number: 182499 Country of ref document: AT Date of ref document: 19990815 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69325802 Country of ref document: DE Date of ref document: 19990902 |
|
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: RITSCHER & SEIFERT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19991028 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19991028 |
|
ET | Fr: translation filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000511 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000511 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20120523 Year of fee payment: 20 Ref country code: DE Payment date: 20120523 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20120522 Year of fee payment: 20 Ref country code: FR Payment date: 20120601 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20120529 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69325802 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20130510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20130514 Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20130510 |