[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0239077B1 - Drucker, insbesondere Matrixzeilendrucker - Google Patents

Drucker, insbesondere Matrixzeilendrucker Download PDF

Info

Publication number
EP0239077B1
EP0239077B1 EP87104330A EP87104330A EP0239077B1 EP 0239077 B1 EP0239077 B1 EP 0239077B1 EP 87104330 A EP87104330 A EP 87104330A EP 87104330 A EP87104330 A EP 87104330A EP 0239077 B1 EP0239077 B1 EP 0239077B1
Authority
EP
European Patent Office
Prior art keywords
printing
printing element
printer
printer according
weights
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87104330A
Other languages
English (en)
French (fr)
Other versions
EP0239077A3 (en
EP0239077A2 (de
Inventor
Lev M. Lipkovker
Wolfgang G. Wunderlich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mannesmann Tally Corp
Original Assignee
Mannesmann Tally Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann Tally Corp filed Critical Mannesmann Tally Corp
Publication of EP0239077A2 publication Critical patent/EP0239077A2/de
Publication of EP0239077A3 publication Critical patent/EP0239077A3/de
Application granted granted Critical
Publication of EP0239077B1 publication Critical patent/EP0239077B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J25/00Actions or mechanisms not otherwise provided for
    • B41J25/001Mechanisms for bodily moving print heads or carriages parallel to the paper surface
    • B41J25/006Mechanisms for bodily moving print heads or carriages parallel to the paper surface for oscillating, e.g. page-width print heads provided with counter-balancing means or shock absorbers

Definitions

  • the invention relates to a printer, in particular a matrix line printer, with a printing abutment on which a recording medium rests, with a printing element carrier which can be moved in a guide parallel to the printing abutment, on which at least one row of printing elements running parallel to the printing abutment is provided, and which has a pendulum drive for straight lines , uniform movements are provided.
  • the matrix printers consist of a printing element carrier, such as, for example, a writing head, a hammer bank or the like, which in turn contains a number of mechanisms for generating printing dots, each of these mechanisms containing a dot formation element.
  • a printing element carrier such as, for example, a writing head, a hammer bank or the like
  • these dot formation elements are aligned along a line which runs at right angles to the direction of movement of the paper through the printer. Since the paper movement is usually vertical, the dot formation elements are arranged on a horizontal line.
  • the paper lies on the platen, for example a platen, and there is an ink ribbon between the dot formation elements and the paper.
  • the dot formation elements are actuated in such a way that they produce one or more dots along the line defined by the dot formation elements.
  • the paper is fed after the printer of each line consisting of dots.
  • a series of successive dot lines then creates a line with characters.
  • the matrix printers are divided into two categories.
  • the first category includes matrix line printers, in which only the dot formation elements are moved back and forth.
  • the second category includes matrix printers in which the entire print head is moved, that is to say both the actuating mechanism and the dot formation elements. Regardless of what category it is, the dot formation mechanisms to be moved back and forth are either mounted on a sled or form such a sled, and this sled is alternately pushed back and forth by a pendulum mechanism.
  • the present invention is applicable to both categories of matrix line printers. While the invention was developed for use with such matrix line printers in which the full write head, i.e. the printing element carrier is moved, but the invention can also be used for those matrix line printers in which only the dot-forming elements are moved back and forth.
  • stepper motors which are designed in a conventional manner, are sufficiently powerful to exclusively include the dot formation elements process, whereby they can be used in the best case for printers in which the print head is moved, but in other cases such stepper motors are not usable.
  • stepper motors are limited in their usability by a limited speed, so that they are undesirable in matrix line printers with a relatively high printing speed, for example of 600 or more lines per minute.
  • stepper motor pendulum drives have resulted in attempts to use constant speed DC and AC motors to reciprocate the print head or print element carrier of printers.
  • One of the major disadvantages of pendulum drives with constant speed motors results from the coupling mechanism which is required to couple the motor to the carriage or pressure element carrier.
  • this coupling mechanism consists of a cam and a cam follower mechanism.
  • These mechanisms are unsuitable for matrix printer pendulum drives because they are subject to mechanical wear.
  • a very precise positioning of the dot-forming elements in relation to a point in time is essential. Mechanical wear is undesirable because it affects the degree of precision. As soon as the positioning accuracy deteriorates, the incorrectly controlled points increase. As a result, the printed characters and images are distorted and / or blurred. Distorted and / or blurred images are of course unacceptable wherever high quality prints are required.
  • Another known printer pendulum drive has a linear motor, in which the axis of movement of the movable motor element (US Pat. No. 4,461,984) runs in a straight line.
  • the pendulum drives with linear motors also have certain disadvantages in their application for high-speed printers.
  • a major disadvantage is the size and cost of such linear motors.
  • the present invention is based on the object of providing a pendulum drive for printers which meets high accuracy requirements, causes low acquisition costs and has relatively small dimensions.
  • the pendulum drive consists of an unbalance vibration exciter which is attached to the pressure element carrier and produces reciprocating movements in the directions of movement and is movable with the pressure element carrier.
  • Such a pendulum drive generates very precise linear movements, is at low cost producible and has relatively small dimensions.
  • the vibration exciter is formed from weights of the same size that can be rotated in opposite directions at the same rotational speed and symmetrically to the directions of movement. This generates a corresponding vibration, which leads to the desired slide displacement in the required operating frequency of the system.
  • the vibration exciter is arranged at one end of the pressure element carrier. This results in a desirable space saving.
  • a bracket is attached to the end of the pressure element carrier, to which a mounting bracket for electric motors attached symmetrically to the directions of movement is attached to the mounting bracket via parallel connecting rods, on the output shaft of which the same-sized, uniformly shaped weights are arranged in a rotationally fixed manner .
  • the mass and the shape of the weights are selected such that they correspond to a predetermined value for the path of movement of the pressure element carrier.
  • weights are asymmetrical in their basic form.
  • the required positioning accuracy of the pressure element carrier is also advantageously achieved in that a Lemniskata / Bernully curve is selected as the path-force curve.
  • a loop curve also called a lemniscate, has the advantage of constant forces with respect to the distance between two predetermined movement distances.
  • the pressure element carrier is supported at the ends on parallel leaf springs and the leaf springs are clamped on the frame.
  • the leaf springs form the aforementioned guide for the slide and are particularly low-friction and energy-saving due to an unbalance vibration exciter.
  • the pendulum drive according to the invention is inexpensive on the one hand, on the other hand it delivers the precise vibrations when the asymmetrical weights are driven at the same speed and when the size and shape of the asymmetrical weights are chosen so that a desired carriage displacement takes place at the desired working frequency.
  • the number of vibrations per unit time is controlled simply by controlling the rotational speed of the asymmetrical weights.
  • the shuttle speed can be controlled easily, which also makes it easy to control the printing speed.
  • FIG. 1 shows the essential drive assemblies of a printer with a pendulum drive according to the invention
  • 2 shows the pendulum drive mechanism shown in FIG. 1 in side view
  • 3 seen the pendulum drive mechanism shown in Fig. 1 from the front
  • Fig. 4 shows the pendulum drive mechanism shown in Fig. 1 in plan view
  • Fig. 5 is a force-vector diagram for the pendulum drive mechanism according to the invention.
  • a pressure element carrier 11 is equipped with a pair of leaf springs 13 and 15 for storage.
  • the pressure element carrier 11 therefore corresponds to the carriage mentioned.
  • the content and structure of the pressure element carrier 11 itself is not part of this invention and is therefore not described in detail.
  • the leaf springs 13 and 15 are preferably made of elongated, flat spring steels, one end of which is attached to the frame 16 of the printer.
  • the leaf springs 13 and 15 are aligned with one another and lie in parallel planes which are separated from one another by the length of the pressure element carrier 11.
  • the pressure element carrier 11 is mounted between the movable ends of the leaf springs 13 and 15 such that it can be moved in a straight line in the directions of movement 17.
  • the directions of movement 17 lie parallel to the longitudinal axis of the pressure element carrier 11 and at right angles to the parallel planes in which the leaf springs 13 and 15 are located.
  • the length of the printing element carrier 11 corresponds essentially to the maximum width of the recording medium 21 that the printer can process.
  • the print element carrier 11 can accommodate up to sixty-six dot printing mechanisms, each of which is designed to operate in the matrix fields of two adjacent characters.
  • the total length of a print time generated by the printer is 132 characters. Since the number of (two) character positions to be detected is rather small in relation to the number of printing mechanisms, the pendulum travel is small compared to the length of the printing element carrier 11.
  • the recording medium 21 lies on an abutment 19 designed as a platen roller without an air gap.
  • Ink source for example an ink ribbon, which lies between the printing element carrier 11 and the recording medium 21.
  • the leaf springs 13 and 15 are located opposite the edge of the recording medium 21.
  • a bracket 31 is mounted at one end of the pressure element carrier 11.
  • the bracket 31 can also be mounted laterally on one of the leaf springs 13 or 15, the bracket 31 being aligned with the pressure element carrier 11.
  • At the outer end of the bracket 31 there is a plate 33.
  • the plate 33 is fastened to the bracket 31 by means of screws 35 (FIG. 4) or as a unit with the bracket 31.
  • the top view of the plate 33 shows a U-shaped arrangement in its cross section. Accordingly, arms 34 extend upwardly from plate 33.
  • One end of four connecting rods 37 is attached to each of the arms 34.
  • the connecting rods 37 have a flat cross section and are preferably made of steel.
  • the connecting rods 37 are fastened to the arms 34 by means of screws 39.
  • the connecting rods 37 are all in a horizontal plane and are spatially separated from one another.
  • a pair of connecting rods 37 is connected to one of the arms 34 and the U-shaped plate 33, respectively.
  • the connecting rods 37 are connected to one another with their associated arms 34 in the region of the upper and lower edges of these arms 34.
  • a bracket 40 is mounted on the outer ends of the connecting rods 37.
  • the bracket 40 is I-shaped and designed in such a way that struts 41 are relatively long in relation to a web 42.
  • the connecting rods 37 are attached to the bracket 40 via four corner brackets 43. Two of the corner brackets 43 are on the top of the bracket 40, two more on the bottom.
  • the corner brackets 43 are fastened to the holding bracket 40 by means of screws 45.
  • the corner brackets 43 themselves are fastened to their respective associated connecting rod 37 by means of screws 47.
  • a pair of electric motors 49 On the underside of the bracket 40 near the outer end of the lower struts 41 is a pair of electric motors 49.
  • the housing of one of the electric motors 49 is connected to the outer end of each of the undersides of the lower struts 41 of the I-shaped bracket 40.
  • the output shafts of the motors 49 are mounted in the upper and lower struts 41 of the bracket 40, which are directly above the housing of the motors 49.
  • Unsymmetrical weights 51 are attached to the output shafts of the motors 40, between the upper and lower struts 41 of the holding bracket 40.
  • the asymmetrical weights 51 form the configuration of an onion fish.
  • the apex of the onion shape is connected to the output shaft of the respective motor 49 and the central plane of the onion-shaped parts lies in a plane of rotation that runs between the corresponding struts 41 of the holding bracket 40.
  • the dimensions of the onion fish shape were chosen so that the asymmetrical weights 51 can rotate freely within the spaces formed by the upper and lower struts 41 of the holding bracket 40.
  • the asymmetrical weights 51 have a thin inner area and a stronger outer area. The thicker outer region means that the center of gravity of the asymmetrical weights 51 is shifted further from the output shaft of the corresponding motor 49. The result of this shift in the center of gravity is the creation of a larger centrifugal force.
  • the asymmetrical weights 51 rotate in opposite directions.
  • the rotation causes the bracket 40 to vibrate in one direction.
  • the vibration of the bracket 40 is transmitted to the pressure element carrier 11 by means of the connecting rods 37 and the bracket 31.
  • the pressure element carrier 11 is also caused to vibrate by the vibrations generated.
  • These vibrations create one in one direction effective force, and the fact that the directions of the pressure element carrier movements are controlled by the leaf springs 13 and 15 cause the transmitted vibrations to produce movements only in the directions of movement 17.
  • the printing element carrier 11 is moved back and forth in front of the pressure abutment 19 or the recording medium 21.
  • DC or AC motors can be considered as motors 49.
  • the vibration frequency is controlled by controlling the rotational speed of the asymmetrical weights 51 and thus also the pendulum speed.
  • the mass and the shape of the asymmetrical weights 51 are selected such that the desired pressure element carrier movement is obtained for the working frequency desired for the system.
  • the respective rotational position of the asymmetrical weights 51 is selected so that the desired displacement path results from this.
  • FIG. 5 is a force vector diagram in the form of a lemniscate, which shows the respective phase and amplitude of the excitation force.
  • F is the vector of excitement; the angle alpha indicates the phase angle of F; a corresponds to the distance between the force vector zero point to the pole points of the asymmetrical weights 51, these points being represented by the letter C.
  • the directions of movement 17 are represented by an arrow with two tips.
  • the force vector is defined by the following equation:
  • the invention is advantageously particularly suitable for driving the printing element carrier 11 within a matrix line printer, which requires different printing speeds. Such differences in print speeds are required when printing text or when printing drawings.
  • text printing mode the dot density is considerably higher than in graphics mode. While on the one hand the dot density is higher, on the other hand the movement of the printing element carrier is slower because more dots have to be printed during the back and forth pass of the printing element carrier.
  • the invention has the advantage that it can be easily adjusted on any special printer by appropriately selecting the mass, the shape and the rotational positions of the asymmetrical weights 51.
  • Such a pendulum drive can, instead of, as shown, be mounted at the end of the pressure element carrier 11 on parts which are fastened in the central region of the pressure element carrier 11.
  • the longitudinal axes of the leaf springs 13 and 15 can not run in vertical planes, but in horizontal planes or in inclined planes.
  • a single unbalance motor could also be used.

Landscapes

  • Character Spaces And Line Spaces In Printers (AREA)
  • Impact Printers (AREA)

Description

  • Die Erfindung betrifft einen Drucker, insbesondere einen Matrixzeilendrucker, mit einem Druckwiderlager, auf dem ein Aufzeichnungsträger aufliegt, mit einem parallel zum Druckwiderlager in einer Führung bewegbaren Druckelementträger, auf dem zumindest eine parallel zum Druckwiderlager verlaufende Druckelementreihe vorgesehen ist, und der mit einem Pendelantrieb für geradlinige, gleichförmige Bewegungen versehen ist.
  • Gegenwärtig werden verschiedene Typen von Matrixdruckern angeboten und verwendet. Im allgemeinen bestehen die Matrixdrucker aus einem Druckelementträger, wie z.B. einem Schreibkopf, einer Hammerbank oder dgl., welche wiederum eine Anzahl von Mechanismen zur Erzeugung von Druckpunkten enthalten, wobei jeder dieser Mechanismen ein Punktbildungselement enthält. Diese Punktbildungselemente sind bei einem Matrixzeilendrucker entlang einer Linie ausgerichtet, die rechtwinklig zur Bewegungsrichtung des Papiers durch den Drucker verläuft. Da die Papierbewegung normalerweise vertikal abläuft, sind die Punktbildungselemente auf einer waagerechten Linie angeordnet. Auf der Seite des Papiers, die den Punktbildungselementen abgewandt ist, liegt das Papier auf dem Druckwiderlager, z.B. einer Schreibwalze auf, und zwischen den Punktbildungselementen und dem Papier befindet sich ein Farbband. Während des Druckvorgangs werden die Punktbildungselemente so betätigt, daß sie entlang der von den Punktbildungselementen definierten Linie einen oder mehrere Punkte erzeugen. Das Papier wird bei Matrixzeilendruckern nach dem Drucker jeder aus Punkten bestehenden Zeile vorgeschoben. Eine Reihe von aufeinanderfolgenden Punktzeilen erzeugt dann eine Zeile mit Schriftzeichen.
  • Die Matrixdrucker werden in zwei Kategorien unterteilt. Zur ersten Kategorie gehören Matrixzeilendrucker, bei welchen nur die Punktbildungselemente hin- und herbewegt werden. Zur zweiten Kategorie gehören Matrixdrucker, bei welchen der gesamte Schreibkopf bewegt wird, also sowohl der Betätigungsmechanismus als auch die Punktbildungselemente. Unabhängig davon, um welche Kategorie es sich handelt, werden die hin-und herzubewegenden Punktbildungsmechanismen entweder auf einem Schlitten montiert oder bilden einen solchen Schlitten, und dieser Schlitten wird durch einen Pendelmechanismus wechselnd hin- und hergeschoben.
  • Die vorliegende Erfindung ist für beide Kategorien von Matrixzeilendruckern verwendbar. Die Erfindung wurde zwar zur Verwendung bei solchen Matrixzeilendruckern entwickelt, in denen der vollständige Schreibkopf, d.h. der Druckelementträger bewegt wird, jedoch kann die Erfindung auch für solche Matrixzeilendrucker benutzt werden, bei denen nur die Punktbildungselemente hin- und herbewegt werden.
  • Es sind bereits verschiedene Arten von Pendelantrieben für die Matrixzeilendrucker-Schlitten vorgeschlagen worden. Bei einer solchen bekannten Bauart dieser Schlitten-Pendelantriebe ist ein Schrittmotor vorgesehen, der so mit dem Schlitten verbunden ist, daß er die schrittweise Bewegung des Schlittens bewirkt. Am Ende jeden Schrittes werden die entsprechenden Punktdruckelemente aktiviert, um Punkte zu erzeugen. Drucken in Vor- und Rückpässen erfolgt dadurch, daß der Schlitten erst in eine Richtung und dann in die entgegengesetzte Richtung bewegt wird. Ein beträchtlicher Nachteil, der sich aus der Verwendung von Schrittmotoren für Matrixzeilendrucker ergibt, liegt darin, daß die auf den herkömmlichen Bedarf ausgelegten Schrittmotoren nicht über ein ausreichendes Leistungsvermögen verfügen, um den Druckelementträger zu verfahren. Demzufolge sind die in herkömmlicher Weise ausgelegten Schrittmotoren zwar ausreichend leistungsfähig, um ausschließlich die Punktbildungselemente zu verfahren, wodurch sie im günstigsten Falle gerade für Drucker verwendet werden können, in welchen der Schreibkopf bewegt wird, in anderen Fällen sind derartige Schrittmotoren jedoch nicht brauchbar. Außerdem sind Schrittmotoren durch eine begrenzte Geschwindigkeit in ihrer Einsatzfähigkeit eingeschränkt, so daß sie in Matrixzeilendruckern mit relativ hoher Druckgeschwindigkeit, z.B. von 600 und mehr Zeilen pro Minute unerwünscht sind.
  • Aus diesen Beschränkungen, die den Schrittmotoren-Pendelantrieben eigen sind, resultierten Versuche, Gleichstrom- und Wechselstrommotoren mit konstanter Geschwindigkeit dazu zu verwenden, den Schreibkopf oder den Druckelementträger von Druckern hin- und herzuverfahren. Eine der wesentlichen Nachteile von Pendelantrieben mit Gleichgeschwindigkeitsmotoren resultiert aus dem Kopplungsmechanismus, der erforderlich ist,um den Motor an den Schlitten bzw. Druckelementträger anzukoppeln. In den meisten Fällen besteht dieser Kopplungsmechanismus aus einer Nocke und einem Nockenstößel-Mechanismus. Diese Mechanismen sind für Matrixdrucker-Pendelantriebe ungeeignet, da sie dem mechanischen Verschleiß unterliegen. Bei Hochgeschwindigkeits-Matrixdruckern ist jedoch eine ganz präzise Positionierung der Punktbildungselemente, bezogen auf einen Zeitpunkt unerläßlich. Mechanischer Verschleiß ist deshalb unerwünscht, weil dadurch der Grad der Präsision beeinträchtigt wird. Sobald die Positionier-Genauigkeit nachläßt, nehmen die fehlgesteuerten Punkte zu. Demzufolge werden die gedruckten Schriftzeichen und Abbildungen verzerrt und/oder verwischt. Verzerrte und/oder verwischte Abbildungen sind natürlich überall dort unannehmbar, wo qualitätiv hochwertige Ausdrucke benötigt werden.
  • Ein weiterer Nachteil bekannter Schlitten-Pendelantriebe auf der Grundlage von Gleichgeschwindigkeitsmotoren oder Nocken/Nockenstößel-Kopplungsmechanismen liegt darin, daß die von diesen erzeugt Weg-Zeitkurve nicht linear ist. Daraus folgt, daß zur Erzielung einer präzisen Punkt-Positionierung relativ aufwendige Systeme zur Messung und Steuerung der Schlittenpositionen erforderlich sind.
  • Um mechanischen Verschleiß und Nachteile der nicht-linearen Kurven der Schlitten-Verschiebung in Abhängigkeit der Zeit und Nachteile der mechanischen Kopplung eines Gleichgeschwindigkeitsmotors an die Druckelemente eines Druckers zu vermeiden, wurde bereits vorgeschlagen, ein Kopplungssystem zu verwenden, das ein Paar elliptischer Antriebsscheiben aufweist (US-Patent 4,387,642/EP 0 044 415). Währenddem der zweinockige, elliptische, nachgeordnete Zahnrad-Kopplungsmechanismus gewisse Vorzüge gegenüber früheren Kopplungsmechanismen aufweist, sind mit ihm auch einige Nachteile verbunden. Z.B. sind derartige Pendelantriebe übermäßig laut, mechanisch relativ kompliziert und in der Herstellung sehr kostspielig.
  • Ein anderer bekannter Drucker-Pendelantrieb weist einen Linearmotor auf, bei welchem die Bewegungsachse des beweglichen Motorelementes (US-Patent 4,461,984) geradlinig verläuft. Aber auch die Pendelantriebe mit Linearmotoren weisen in ihrer Anwendung für Hochgeschwindigkeits-Drucker gewisse Nachteile auf. Ein wesentlicher Nachteil liegt in der Größe und den Anschaffungskosten derartiger Linearmotoren.
  • Der vorliegenden Erfindung ist die Aufgabe zugrundegelegt, einen Pendelantrieb für Drucker zu schaffen, der hohen Genauigkeitsanforderungen entspricht, niedrige Anschaffungskosten verursacht und relativ kleine Abmessungen aufweist.
  • Die gestellte Aufgabe wird bei dem eingangs bezeichneten Drucker erfindungsgemäß dadurch gelöst, daß der Pendelantrieb aus einem an dem Druckelementträger befestigten, in den Bewegungsrichtungen hin- und hergehende Bewegungen erzeugende Unwucht-Schwingungserreger besteht, der mit dem Druckelementträger bewegbar ist. Ein derartiger Pendelantrieb erzeugt sehr genaue lineare Bewegungsabläufe, ist unter niedrigen Kosten herstellbar und weist relativ kleine Abmessungen auf.
  • In Ausgestaltung der Erfindung ist vorgesehen, daß der Schwingungserreger aus symmetrisch zu den Bewegungsrichtungen gegenläufig mit gleicher Drehgeschwindigkeit rotierend bewegbaren gleichgroßen Gewichten gebildet ist. Damit wird eine entsprechende Vibration erzeugt, die zu der gewünschten Schlittenverschiebung in der erforderlichen Arbeitsfrequenz des Systems führt.
  • Nach weiteren Merkmalen der Erfindung ist vorgesehen, daß der Schwingungserreger an einem Ende des Druckelementträgers angeordnet ist. Demzufolge ergibt sich eine wünschenswerte Raumersparnis.
  • In weiterer Verbesserung der Erfindung ist vorgesehen, daß am Ende des Druckelementträgers eine Konsole befestigt ist, an der über parallele Verbindungsstangen ein Haltebügel für symmetrisch zu den Bewegungsrichtungen an dem Haltebügel befestigte Elektromotoren angeschlossen ist, auf deren Abtriebswelle jeweils die gleichgroßen, gleichgeformten Gewichte drehfest angeordnet sind.
  • Nach weiteren Merkmalen der Erfindung ist vorgesehen, daß die Masse und die Form der Gewichte derart gewählt ist, daß diesen ein vorherbestimmter Wert für den Bewegungsweg des Druckelementträgers entspricht.
  • Eine andere Verbesserung besteht darin, daß die Gewichte in ihrer Grundform unsymmetrisch sind.
  • Die geforderte Positioniergenauigkeit des Druckelementträgers wird außerdem vorteilhafterweise dadurch erzielt, daß als Weg-Kraft-Verlauf eine Lemniskata/Bernully-Kurve gewählt ist. Eine derartige Schleifenkurve, oder auch Lemniskate genannt, weist den Vorteil konstanter Kräfte in bezug auf den Abstand von zwei vorherbestimmten Bewegungsabständen auf.
  • Schließlich ist vorteilhaft, daß der Druckelementträger an den Enden auf parallelen Blattfedern abgestützt ist und die Blattfedern am Rahmengestell eingespannt sind. Hier bilden die Blattfedern die erwähnte Führung für den Schlitten und sind durch einen Unwucht-Schwingungserreger besonders reibungsarm sowie kraftspeichernd einsetzbar.
  • Während der erfindungsgemäße Pendelantrieb einerseits kostengünstig ist, liefert er andererseits die präzisen Schwingungen, wenn die unsymmetrischen Gewichte mit derselben Geschwindigkeit angetrieben werden und wenn Größe und Form der unsymmetrischen Gewichte so gewählt werden, daß eine gewünschte Schlittenverschiebung mit der gewünschten Arbeitsfrequenz erfolgt. Die Anzahl der Schwingungen pro Zeiteinheit wird einfach dadurch gesteuert, daß man die Umdrehungsgeschwindigkeit der unsymmetrischen Gewichte steuert. Demzufolge kann die Pendelgeschwindigkeit problemlos gesteuert werden, wodurch sich auch die Druckgeschwindigkeit leicht steuern läßt.
  • Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher beschrieben. Es zeigen:
    Fig. 1 die wesentlichen Antriebsbaugruppen eines Druckers mit Pendelantrieb gemäß der Erfindung,
    Fig. 2 den in Fig. 1 dargestellten Pendelantriebsmechanismus in Seitenansicht,
    Fig. 3 den in Fig. 1 dargestellten Pendelantriebsmechanismus von der Stirnseite her gesehen,
    Fig. 4 den in Fig. 1 dargestellten Pendelantriebsmechanismus in Draufsicht und
    Fig. 5 ein Kraft-Vektor-Diagramm für den erfindungsgemäßen Pendelantriebsmechanismus.
  • Gemäß Fig. 1 ist ein Druckelementträger 11 mit einem Paar Blattfedern 13 und 15 zur Lagerung ausgerüstet. Der Druckelementträger 11 entspricht daher dem erwähnten Schlitten. Inhalt und Aufbau des Druckelementträgers 11 ist selbst nicht Bestandteil dieser Erfindung und ist daher nicht näher beschrieben. Die Blattfedern 13 und 15 bestehen vorzugsweise aus langgestreckten, flachen Federstählen, deren eines Ende jeweils am Rahmengestell 16 des Druckers befestigt ist. Die Blattfedern 13 und 15 sind zueinander ausgerichtet und liegen in parallelen Ebenen, welche durch die Länge des Druckelementträgers 11 voneinander getrennt sind.
  • Hierbei ist der Druckelementträger 11 zwischen den beweglichen Enden der Blattfedern 13 und 15 derart montiert, daß er in den Bewegungsrichtungen 17 geradlinig bewegt werden kann. Die Bewegungsrichtungen 17 liegen parallel zur Längsachse des Druckelementträgers 11 und im rechten Winkel zu den parallelen Ebenen, in denen sich die Blattfedern 13 und 15 befinden.
  • Die Länge des Druckelementträgers 11 entspricht im wesentlichen der maximalen Breite des Aufzeichnungsträgers 21, die der Drucker verarbeiten kann. Für einen Matrixzeilendrucker kann der Druckelementträger 11 bis zu sechsundsechzig Punktdruckmechanismen aufnehmen, von welchen jeder so ausgelegt ist, daß er in den Matrixfeldern von zwei benachbarten Zeichen arbeitet. Die gesamte Länge einer damit erzeugten Druckzeite des Druckers beträgt 132 Zeichen. Da die Anzahl der zu erfassenden (zwei) Zeichenpositionen im Verhältnis zur Anzahl der Druckmechanismen ziemlich klein ist, ist der Pendelweg im Vergleich zur Länge des Druckelementträgers 11 gering.
  • Der Aufzeichnungsträger 21 liegt luftspaltfrei auf einem als Schreibwalze ausgeführten Druckwiderlager 19 auf. Nicht dargestellt ist eine geeignete Farbquelle, z.B. ein Farbband, das zwischen dem Druckelementträger 11 und dem Aufzeichnungsträger 21 liegt. Die Blattfedern 13 und 15 befinden sich dem Rand des Aufzeichnungsträger 21 gegenüberliegend.
  • An einem Ende des Druckelementträgers 11 ist eine Konsole 31 montiert. Die Konsole 31 kann seitlich auch auf einer der Blattfedern 13 bzw. 15 montiert sein, wobei die Konsole 31 zum Druckelementträger 11 ausgerichtet ist. An dem äußeren Ende der Konsole 31 befindet sich eine Platte 33. Die Platte 33 ist mittels Schrauben 35 an der Konsole 31 befestigt (Fig. 4) oder als Einheit mit der Konsole 31 ausgeführt. In Ansicht von oben zeigt die Platte 33 in ihrem Querschnitt eine U-förmige Anordnung. Demzufole sind Arme 34 von der Platte 33 sich erstreckend nach oben gerichtet. An den Armen 34 ist jeweils ein Ende von vier Verbindungsstangen 37 befestigt. Die Verbindungsstangen 37 besitzen einen flachen Querschnitt und sind vorzugsweise aus Stahl hergestellt. Die Verbindungsstangen 37 sind mittels Schrauben 39 an den Armen 34 befestigt. Die Verbindungsstangen 37 liegen sämtlich in einer waagerechten Ebene und sind voneinander räumlich getrennt. Hierbei ist jeweils ein Paar von Verbindungsstangen 37 mit einem der Arme 34 bzw. der U-förmigen Platte 33 verbunden. Außerdem sind die Verbindungsstangen 37 mit ihren zugehörigen Armen 34 im Bereich der oberen und unteren Kanten dieser Arme 34 miteinander verbunden.
  • Auf den äußeren Enden der Verbindungsstangen 37 ist ein Haltebügel 40 montiert. Der Haltebügel 40 ist I-förmig und dahingehend gestaltet, daß Streben 41 im Verhältnis zu einem Steg 42 relativ lang sind. Die Verbindungsstangen 37 sind über vier Eckklammern 43 am Haltebügel 40 befestigt. Zwei der Eckklammern 43 liegen auf der Oberseite des Haltebügels 40, zwei weitere an der Unterseite. Die Eckklammern 43 sind mittels Schrauben 45 am Haltebügel 40 befestigt. Die Eckklammern 43 selbst sind mittels Schrauben 47 an ihrer jeweils zugeordneten Verbindungsstange 37 befestigt.
  • An der Unterseite des Haltebügels 40 nahe dem äußeren Ende der unteren Streben 41 befindet sich ein Paar Elektromotoren 49. Hierbei ist das Gehäuse eines der Elektromotoren 49 jeweils mit dem äußeren Ende jeder der Unterseiten der unteren Streben 41 des I-förmigen Haltebügels 40 verbunden. Die Abtriebswellen der Motoren 49 sind in den oberen und unteren Streben 41 des Haltebügels 40 gelagert, die unmittelbar oberhalb der Gehäuse der Motoren 49 liegen. An den Abtriebswellen der Motoren 40, zwischen den oberen und unteren Streben 41 des Haltebügels 40, sind unsymmetrische Gewichte 51 angebracht.
  • Wie klar aus Fig. 4 zu entnehmen ist, bilden die unsymmetrischen Gewichte 51 die Konfiguration eines Zwiebelfisches. Der Scheitel der Zwiebelfischform ist mit der Abtriebswelle des jeweiligen Motors 49 verbunden und die Mittelebene der zwiebelfischförmigen Teile liegt in einer Rotationsebene, die zwischen den entsprechenden Streben 41 des Haltebügels 40 hindurch verläuft. Die Dimensionen der Zwiebelfischform wurde so gewählt, daß die unsymmetrischen Gewichte 51 innerhalb von durch die oberen und unteren Streben 41 des Haltebügels 40 gebildeten Zwischenräumen, frei rotieren können. Wie klar aus Fig. 3 zu ersehen ist, weisen die unsymmetrischen Gewichte 51 einen dünnen inneren und einen stärkeren äußeren Bereich auf. Der dickere äußere Bereich führt dazu, daß der Schwerpunkt der unsymmetrischen Gewichte 51 weiter von der Abtriebswelle des entsprechenden Motors 49 verschoben wird. Das Ergebnis dieser Schwerpunktverschiebung liegt in der Erzeugung einer größeren Fliehkraft.
  • Sobald die Motoren 49 bestromt werden, drehen sich die unsymmetrischen Gewichte 51 in entgegengesetzten Richtungen. Durch die Drehung wird der Haltebügel 40 zur Vibration in eine Richtung veranlaßt. Die Schwingung des Haltebügels 40 wird mittels der Verbindungsstangen 37 und der Konsole 31 auf den Druckelementträger 11 übertragen. Im Ergebnis wird der Druckelementträger 11 durch die erzeugten Vibrationen ebenfalls in Schwingungen versetzt. Diese Schwingungen erzeugen eine in einer Richtung wirksame Kraft, und der Umstand, daß die Richtungen der Druckelementträger-Bewegungen durch die Blattfedern 13 und 15 gesteuert werden, bewirken, daß die übertragenen Schwingungen Bewegungen nur in den Bewegungsrichtungen 17 erzeugen. Demzufolge wird der Druckelementträger 11 vor dem Druckwiderlager 19 bzw. dem Aufzeichnungsträger 21 hin- und herbewegt.
  • Als Motoren 49 kommen Gleichstrom- oder Wechselstrommotoren in Betracht. In jedem Fall wird die Vibrationsfrequenz durch die Steuerung der Drehgeschwindigkeit der unsymmetrischen Gewichte 51 gesteuert und damit auch die Pendelgeschwindigkeit. Aufgrund der Erfindung wird die Masse und die Form der unsymmetrischen Gewichte 51 dahingehend gewählt, daß man die gewünschte Druckelementträger-Bewegung für die jeweils für das System gewünschte Arbeitsfrequenz erhält.
  • Die jeweilige Drehposition der unsymmetrischen Gewichte 51 wird so gewählt, daß sich daraus der gewünschte Verschiebeweg ergibt.
  • Gemäß Fig. 5 handelt es sich um ein Kräftevektoren-Diagramm in Form einer Lemniskate, welche die jeweilige Phase und Amplitude der Erregungskraft aufzeigt. F ist der Vektor der Erregungskraft; der Winkel alpha zeigt den Phasenwinkel von F an; a entspricht dem Abstand zwischen dem Kraftvektor-Nullpunkt zu den Polpunkten der unsymmetrischen Gewichte 51, wobei diese Punkte durch den Buchstaben C dargestellt sind. Die Bewegungsrichtungen 17 sind durch einen Pfeil mit zwei Spitzen dargestellt. Der Kraftvektor ist durch die nachfolgende Gleichung definiert:
    Figure imgb0001
  • Die Erfindung eignet sich vorteilhafterweise besonders für das Antreiben des Druckelementträgers 11 innerhalb eines Matrixzeilendruckers, der unterschiedliche Druckgeschwindigkeiten erfordert. Derartige Unterschiede in den Druckgeschwindigkeiten werden beim Ausdrucken von Texten oder beim Ausdrucken von Zeichnungen benötigt. Beim Text-Druckbetrieb liegt die Punktdichte erheblich höher als beim Grafikbetrieb. Während einerseits die Punktdichte also höher ist, ist andererseits die Druckelementträger-Bewegung langsamer, weil mehr Punkte während des Vor- und Rückpasses des Druckelementträgers gedruckt werden müssen. Weiterhin weist die Erfindung den Vorteil auf, leicht auf jedem speziellen Drucker eine Abstimmung herbeiführen zu können, indem man die Masse, die Form und die Drehpositionen der unsymmetrischen Gewichte 51 entsprechend wählt.
  • Ein solcher Pendelantrieb kann statt, wie dargestellt, am Ende des Druckelementträgers 11 auch auf Teilen montiert werden, die im mittleren Bereich des Druckelementträgers 11 befestigt sind.
  • Außerdem können die Längsachsen der Blattfedern 13 und 15 auch nicht in vertikalen Ebenen verlaufen, sondern in waagerechten Ebenen oder in schrägen Ebenen. Außerdem könnte auch ein einziger Unwuchtmotor verwendet werden.

Claims (8)

  1. Drucker, insbesondere Matrixzeilendrucker, mit einem Druckwiderlager (19), auf dem ein Aufzeichnungsträger (21) aufliegt, mit einem parallel zum Druckwiderlager (19) in einer Führung bewegbaren Druckelementträger (11), auf dem zumindest eine parallel zum Druckwiderlager (19) verlaufende Druckelementreihe vorgesehen ist, und der mit einem Pendelantrieb für geradlinige, gleichförmige Bewegungen (17) versehen ist,
    dadurch gekennzeichnet,
    daß der Pendelantrieb aus einem an dem Druckelementträger (11) befestigten, in den Bewegungsrichtungen (17) hin- und hergehende Bewegungen erzeugenden Unwucht-Schwingungserreger besteht, der mit dem Druckelementträger (11) bewegbar ist.
  2. Drucker nach Anspruch 1,
    dadurch gekennzeichnet,
    daß der Schwingungserreger aus symmetrisch zu den Bewegungsrichtungen (17) gegenläufig mit gleicher Drehgeschwindigkeit rotierend bewegbaren gleichgroßen Gewichten (51) gebildet ist.
  3. Drucker nach den Ansprüchen 1 oder 2,
    dadurch gekennzeichnet,
    daß der Schwingungserreger an einem Ende des Druckelementträgers (11) angeordnet ist.
  4. Drucker nach den Ansprüchen 1 bis 3,
    dadurch gekennzeichnet,
    daß am Ende des Druckelementträgers (11) eine Konsole (31) befestigt ist, an der über parallele Verbindungsstangen (37) ein Haltebügel (40) für symmetrisch zu den Bewegungsrichtungen (17) an dem Haltebügel (40) befestigte Elektromotoren (49) angeschlossen ist, auf deren Abtriebswelle jeweils die gleichgroßen, gleichgeformten Gewichte (51) drehfest angeordnet sind.
  5. Drucker nach den Ansprüchen 1 bis 4,
    dadurch gekennzeichnet,
    daß die Masse und die Form der Gewichte (51) derart gewählt ist, daß diesen ein vorherbestimmter Wert für den Bewegungsweg des Druckelementträgers (11) entspricht.
  6. Drucker nach den Ansprüchen 1 bis 5,
    dadurch gekennzeichnet,
    daß die Gewichte (51) in ihrer Grundform unsymmetrisch sind.
  7. Drucker nach den Ansprüchen 1 bis 6,
    dadurch gekennzeichnet,
    daß als Weg-Kraft-Verlauf eine Lemniskata/Bernully-Kurve (Fig. 5) gewählt ist.
  8. Drucker nach den Ansprüchen 1 bis 7,
    dadurch gekennzeichnet,
    daß der Druckelementträger (11) an den Enden auf parallelen Blattfedern (15) abgestützt ist und die Blattfedern (15) am Rahmengestell (16) eingespannt sind.
EP87104330A 1986-03-26 1987-03-24 Drucker, insbesondere Matrixzeilendrucker Expired - Lifetime EP0239077B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/844,092 US4741267A (en) 1986-03-26 1986-03-26 Shuttle drive for reciprocably mounted line printer carriages
US844092 1986-03-26

Publications (3)

Publication Number Publication Date
EP0239077A2 EP0239077A2 (de) 1987-09-30
EP0239077A3 EP0239077A3 (en) 1989-03-15
EP0239077B1 true EP0239077B1 (de) 1991-05-08

Family

ID=25291794

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87104330A Expired - Lifetime EP0239077B1 (de) 1986-03-26 1987-03-24 Drucker, insbesondere Matrixzeilendrucker

Country Status (5)

Country Link
US (1) US4741267A (de)
EP (1) EP0239077B1 (de)
JP (1) JPS62233258A (de)
CA (1) CA1272154A (de)
DE (1) DE3769821D1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941405A (en) * 1987-12-16 1990-07-17 Dataproducts Corporation Driving mechanism for reciprocating print shuttle
JPH04286656A (ja) * 1991-03-15 1992-10-12 Y E Data Inc インパクトドットラインプリンタのハンマバンク揺動装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4127334A (en) * 1976-10-18 1978-11-28 Oki Electric Industry Co., Ltd. Dot printer
US4227455A (en) * 1978-12-29 1980-10-14 International Business Machines Corporation Suspension arrangement for an oscillating body
US4278019A (en) * 1979-07-16 1981-07-14 International Business Machines Corporation All-points addressable dot printer
JPS582075B2 (ja) * 1979-08-14 1983-01-13 日本電信電話株式会社 プリンタ
US4349828A (en) * 1980-02-04 1982-09-14 Xerox Corporation Method and apparatus for oscillating an array of marking elements
US4481880A (en) * 1980-10-06 1984-11-13 Hitachi Koki Company Limited Dot printer
JPS5812781A (ja) * 1981-07-16 1983-01-24 Seiko Epson Corp 小型プリンタ
US4400104A (en) * 1981-12-23 1983-08-23 International Business Machines Corp. Shuttle printer and drive mechanism
US4402620A (en) * 1981-12-23 1983-09-06 International Business Machines Corp. Compact shuttle printer mechanism
EP0082329B1 (de) * 1981-12-23 1986-09-03 International Business Machines Corporation Druckmechanismus auf einem zusammengedrängten Schwingrahmen
JPS5993359A (ja) * 1982-11-19 1984-05-29 Oki Electric Ind Co Ltd シヤトル型ラインプリンタ
JPS59176063A (ja) * 1983-03-25 1984-10-05 Toshiba Corp ドツトプリンタ
US4573363A (en) * 1983-10-17 1986-03-04 Mannesmann Tally Corporation Vibration isolating coupling
US4599007A (en) * 1984-10-09 1986-07-08 Hossein Khorsand Reciprocating drive mechanism

Also Published As

Publication number Publication date
EP0239077A3 (en) 1989-03-15
US4741267A (en) 1988-05-03
EP0239077A2 (de) 1987-09-30
DE3769821D1 (de) 1991-06-13
JPS62233258A (ja) 1987-10-13
CA1272154A (en) 1990-07-31

Similar Documents

Publication Publication Date Title
DE2534936A1 (de) Punktrasterdrucker
DE3112079C2 (de) Vorrichtung zum Abheben des Druckkopfes von der Druckgegenlage
DE2365899C3 (de) Mosaik-Druckkopf-Anordnung
DE2630931B2 (de) Antriebseinrichtung für einen Nadeldrucker
EP0047883A2 (de) Punktdruckvorrichtung, insbesondere für Matrix-Zeilendrucker
DE2134655B2 (de) Betätigungsvorrichtung für mit hoher Geschwindigkeit zu bewegende Getriebeteile
EP0044415B1 (de) Pendelmechanismus für geradlinige Hin- und Herbewegungen eines Matrixdrucker-Schlittens bzw.-Wagens
EP0052066B1 (de) Matrixdrucker und zugehöriger Nadeldruckkopf
DE3003279C2 (de)
DE1806714A1 (de) Druckwerk zum fliegenden Abdrucken von Zeichen
DE2716617C2 (de) Nadeldruckkopf
EP0041916A2 (de) Verfahren und Druckkopf zum Erzeugen von Druckzeichen nach dem Matrix-Druckverfahren
EP0012860B1 (de) Aufhängungsvorrichtung für einen mit Resonanzfrequenz schwingenden Körper
DE2059154A1 (de) Einrichtung zum seriellen Drucken
DE2658123B2 (de) Schreibwerk mit einer Typenscheibe
CH639899A5 (de) Aufschlagdrucker.
DE2817623A1 (de) Drahtdrucker
EP0145881B1 (de) Schwingungen dämpfende Kupplung, insbesondere für Matrixdrucker
EP0239077B1 (de) Drucker, insbesondere Matrixzeilendrucker
DE2506871A1 (de) Drucker
DE2230224C2 (de) Druckhammereinheit
DE3739446C2 (de) Punktzeilendrucker
DE2249125C2 (de) Drucker mit einer Auswählanordnung für Druckelemente
DE2503112B2 (de) Parallel-Rasterdrucker
EP0098316B1 (de) Schwingrahmen-Vorrichtung für die Druckelemente eines Matrix-Zeilendruckers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19890425

17Q First examination report despatched

Effective date: 19901016

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 3769821

Country of ref document: DE

Date of ref document: 19910613

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 87104330.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960219

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960222

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19970331

Ref country code: CH

Effective date: 19970331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19971001

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19971001

EUG Se: european patent has lapsed

Ref document number: 87104330.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010214

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010313

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010322

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050324