[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0000789B1 - Verfahren und Vorrichtung zur Erzeugung geladener Teilchen - Google Patents

Verfahren und Vorrichtung zur Erzeugung geladener Teilchen Download PDF

Info

Publication number
EP0000789B1
EP0000789B1 EP78100651A EP78100651A EP0000789B1 EP 0000789 B1 EP0000789 B1 EP 0000789B1 EP 78100651 A EP78100651 A EP 78100651A EP 78100651 A EP78100651 A EP 78100651A EP 0000789 B1 EP0000789 B1 EP 0000789B1
Authority
EP
European Patent Office
Prior art keywords
electrode
ions
electrodes
extracted
dielectric member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100651A
Other languages
English (en)
French (fr)
Other versions
EP0000789A3 (en
EP0000789A2 (de
Inventor
Richard A. Fotland
Jeffrey J. Carrish
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dennison Manufacturing Co
Original Assignee
Dennison Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dennison Manufacturing Co filed Critical Dennison Manufacturing Co
Publication of EP0000789A2 publication Critical patent/EP0000789A2/de
Publication of EP0000789A3 publication Critical patent/EP0000789A3/en
Application granted granted Critical
Publication of EP0000789B1 publication Critical patent/EP0000789B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/385Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material
    • B41J2/41Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material for electrostatic printing
    • B41J2/415Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material for electrostatic printing by passing charged particles through a hole or a slit
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/22Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
    • G03G15/32Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is formed dotwise, e.g. by a thermal head
    • G03G15/321Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is formed dotwise, e.g. by a thermal head by charge transfer onto the recording material in accordance with the image
    • G03G15/323Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is formed dotwise, e.g. by a thermal head by charge transfer onto the recording material in accordance with the image by modulating charged particles through holes or a slit

Definitions

  • This invention relates to the generation of charged particles, and more particularly, to the generation of ions with high current densities.
  • Ions can be generated in a wide variety of ways. Common techniques include the use of air gap breakdown, corona discharges and spark discharges. Other techniques employ tribo-electricity, radiation (Alpha, Beta, and Gamma, as well as x-rays and ultra-violet light) and microwave breakdown.
  • Air gap breakdown i.e., discharges occurring in small gaps between a stylus or wire and the surface of a dielectric material, are widely employed in the formation of electrostatic images.
  • Representative U.S. patents are G. R. Mott 3.208.076; E. W. Marshall 3.631.509; A. D. Brown, Jr. 3.662.396; A. E. Bliss et al. 3.792.495; R. F. Borelli 3.958.251; and R. T. Lamb 3.725.950.
  • the gap spacing be maintained between about 0.005 and 0.02 mm in order to be able to operate with applied potentials at reasonable levels and maintain charge image integrity. Even then, the latent charge image is not uniform, so that the resultant electrostatically toned image lacks good definition and dot fill.
  • corona discharge from a small diameter wire or a point source is the corona discharge from a small diameter wire or a point source.
  • Illustrative U.S. Patents are P. Lee 3.358.289; Lee F. Frank 3.611.414; A. E. Jvirblis 3.623.123; H. Bresnik 3.765.027; P. J. Magill et al. 3.715.762; and R. A. Fotland 3.961.574.
  • Corona discharges are widely employed in electrostatic precipitation, and are used almost exclusively in electrostatic copiers to charge photoconductive surface prior to exposure. Corona discharges are also extensively employed in electrostatic separators and in electrostatic coating and spraying equipment.
  • corona discharges provide limited currents.
  • the maximum discharge current density heretofore obtained has been on the order of 10 microamperes per square centimeter. This can impose a severe printing speed limitation.
  • coronas can create significant maintenance problems. Corona wires are small and fragile and easily broken. Because of their high operating potentials, they collect dirt and dust and must be frequently cleaned or replaced.
  • An alternative technique for forming high density corona discharges is to use high velocity air streams. For example, if high pressure air is employed with a small orifice at the corona discharge point, current densities as high as 1 000 microamperes per square centimeter are reportedly obtainable (Proceedings of the Conference on Static Electrification, London 1967, Page 139 of The Institute of Physics and Physical Society, London SW1). This technique is awkward, however, and requires both a pressurized air source and critical geometry in order to prevent premature electrical breakdown.
  • Another method of forming ions which is particularly useful in electrostatic applications, uses an electrical spark discharge.
  • Representative U.S. patents are B. E. Byrd 3.321.768; H. Epstein 3.335.322; C. D. Hendricks Jr. 3.545.374; and W. P. Foster 3.362.325.
  • a low energy spark discharge technique is described by Krekow and Schram in IEEE transactions on Electronic Devices, E. D.-21 # 3, Page 189, March 1974.
  • the electrical spark discharge is objectionable, however, where uniform ion currents are desired or required. This is particularly true where the discharge occurs over the surface of a dielectric.
  • NL 7700013 discloses a corona device for charging and discharging dielectric surfaces, of a type including a conductive wire coated with a thick dielectric material, and a flat "shield" electrode contacting or closely spaced from the thick dielectric material.
  • the geometry of the device is not suited to electrostatic imaging, in that the generated ions are not organized in a coherent electrostatic pattern.
  • electrostatic imaging involves the use of a matrix of transversely oriented electrodes.
  • One such device is disclosed in UA-Patent 3 971 465. Such devices have the advantage of providing a multiplexable ion source.
  • FR-2 121 299 discloses a spark plug ion generator, of the type including two electrodes to which an impulse voltage is applied and which electrodes are separated by an air gap.
  • the air gap loses its dielectric characteristics during air gap breakdown, which results in several functional disadvantages.
  • the discharge energy depends on external circuit elements, rather than inherent characteristics of the device.
  • the air gap discharges are not tempered by the "self-quenching" property of a solid dielectric between two electrodes, thus providing less reliable ion generation.
  • Another object is to provide a reliable and stable source of ions.
  • a related object is to provide an ion generating system which does not require critical periodic maintenance.
  • Another related object is to simplify maintenance and eliminate the objectionable characteristics of corona wires, including the fragility and tendency to collect dirt and dust.
  • a further object of the invention is to provide an easily controlled source of ions.
  • a related object is to provide a multiplexable source of ions using different voltage sources to supply an alternating breakdown field and an ion extraction field.
  • Yet another object of the invention is to generate ion currents for use in producing electrostatic images in which charge image integrity is maintained.
  • a related object is to achieve comparatively uniform charge images which can be toned with good definition and dot fill.
  • the invention refers to method and apparatus of generating ions in air which comprises applying alternating potential between first and second electrodes separated by a solid dielectric member.
  • the invention is characterized in that the second electrode has an edge surface disposed opposite an intermediate portion of the first electrode and remote from the edge of the dielectric member to define an air region at the junction of the edge surface and the solid dielectric member so that the alternating potential between the first and second electrode induces ion producing electrical discharges in the air region.
  • Ions thus produced can be extracted from the air region by an ion extraction potential which is applied between the second and a third electrode.
  • the ions can be used for purposes of electrostatic imaging or in other cases where ions are suitable.
  • the extracted ions may be applied to a further member.
  • This further member can be a dielectric surface with a conductive backing.
  • the further member can also be a particulate matter.
  • the extraction is accomplished using a direct voltage.
  • an electrostatic pattern is formed with said extracted ions.
  • the method can be performed in a way that the ions are extracted by a direct voltage applied to the second electrode, with a gap patterned in accordance with the configuration of a character or symbol for which a charge image is desired.
  • the first electrode from an open mesh woven metal screen.
  • first and second electrodes each comprise a multiplicity of electrodes forming cross points in a matrix array, configured such that the second electrodes on one side of the solid dielectric member contain apertures at matrix electrode crossover regions.
  • a further way of performing the method is that the ions are extracted from selected matrix apertures by simultaneously providing both an electrical discharge in said aperture and an external ion extraction field.
  • the method may further comprise the step of collecting the charged particulate matter on a conductive surface.
  • the method may further comprise the step of collecting the charged particulate matter onto plain paper to form a visible image.
  • the apparatus for generating ions in air comprises a solid dielectric member, first and second electrodes being separated by the solid dielectric member and means for applying an alternating potential between the first and second electrode.
  • This apparatus is characterized in that an edge surface of the second . electrode is disposed opposite an intermediate portion of the first electrode and remote from the edge of the dielectric member to define an air region at the junction of the edge surface and the solid dielectric member.
  • the apparatus may be provided with a third electrode to extract ions from the air region.
  • the second electrode preferably comprises a mask electrode, the aperture in said second electrode being patterned in the configuration of a character or symbol for which a charge image is desired.
  • the apparatus may be provided in a way that said first and second electrodes comprise a multiplicity of electrodes contacting a dielectric sheet and forming cross points in a matrix array, configured such that the first electrodes on one side of the dielectric sheet comprise selector bars, and the second electrodes on the other side of said dielectric sheet comprise air breakdown electrodes transversely oriented with respect to the selector bars, with apertures at matrix crossover regions.
  • an ion generator 10 in accordance with the invention is used in producing an air gap breakdown between a solid dielectric 11 and respective conducting electrodes 12-1 and 12-2 using a source 13 of alternating potential.
  • an electric fringing fields E A and Eg in the air gaps 14-a and 14-b exceed the breakdown field of air, an electric discharge occurs which results in the charging of the dielectric 11 in regions 11-a and 11-b adjacent electrode edges.
  • the generator 10 of Figure 1 therefore, produces an air gap breakdown twice per cycle of applied alternating potentials from the source 13 and thus generates an alternating polarity supply of ions.
  • the extraction of ions produced in accordance with the generator 10 of Figure 1 is illustrated by the generator-extractor 20 of Figure 2.
  • the generator 20A includes a dielectric 21 between conducting electrodes 22-1 and 22-2.
  • the electrode 22-1 is encapsulated or surrounded by an insulating material 23. Alternating potential is applied between the conducting electrodes 22-1 and 22-2 by a source 24A.
  • the second electrode 22-2 has a hole 21-h where the desired air gap breakdown occurs relative to a region 21-r of the dielectric 21 to provide a source of ions.
  • the ions in the gap 21-h may be extracted by a direct current potential applied from a source 24-B to provide an external electric field between the electrode 22-2 and a grounded auxiliary electrode 22-3.
  • An illustrative insulating surface to be charged by the ion source in Figure 2 is a dielectric (electrographic) paper 25 consisting of a conducting base 25-P coated with a thin dielectric layer 25-d.
  • the electrode 22-2 When a switch 26 is switched to position X and is grounded as shown, the electrode 22-2 is also at ground potential and no external field is present in the region between the ion generator 20A and the dielectric paper 25. However, when the switch 26 is switched to position y, the potential of the source 24, is applied to the electrode 22-2. This provides an electric field between the ion reservoir 21-r and the backing of dielectric paper 25. The ions extracted from the air gap breakdown region then charge the surface of the dielectric layer 25-d.
  • the generator and ion extractor 20 of Figure 2 is readily employed, for example, in the formation of characters on dielectric paper in high speed electrographic printing. Illustrative sources for the electrographic printing of characters in accordance with the invention are shown in Figures 3 and 4.
  • a character generator 30 is formed by a dielectric member.31 which is sandwiched between an etched conducting sheet 32-1 and a set of counter-electrodes 32-2, 32-3 and 32-4.
  • the etched or mask electrode 32-1 illustratively is shown with etched characters A, B and C.
  • the fringing fields at the edges of the etched characters provide a high density source of ions when an air gap breakdown according to the invention is produced by alternating potential applied between the etched electrode 32-1 and the counterelectrodes.
  • a source of high frequency alternating voltage (not shown) is applied between the etched electrode 32-1 and the associated counter-electrode 32-3. This provides a high density supply of ions in the region of the dielectric 31 at the edges of the etched character B in the mask 32-1.
  • the ions are then extracted and transferred to a suitable dielectric surface, for example the dielectric coated paper 25 of Figure 2, by the application of a direct voltage between the paper backing and the mask 32-1, resulting in the formation of the electrographic latent image B on the dielectric surface of the paper 25.
  • a suitable dielectric surface for example the dielectric coated paper 25 of Figure 2
  • the matrix ion generator 40 Figure 4 may be employed.
  • the generator 40 makes use of a dielectric sheet 41 with a set of apertured air gap breakdown electrodes 42-1 through 42-4 on one side and a set of selector bars 43-1 through 43-4 on the other side, with a separate selector being provided for each different aperture 45 in each different finger electrode 42-1 to 42-4.
  • Matrix location 45 23 is printed by simultaneously applying a high frequency potential between selector bar 43-3 and ground and a direct current potential between finger electrode 42-2 and a dielectric receptor member's counterelectrode. Unselected fingers as well as the dielectric members counter-electrode are maintained at ground potential.
  • the number of required voltage electrodes is significantly reduced. If, for example, it is desired to print a dot matrix array across a 20 mm wide area at a dot matrix resolution of 200 dots per 25 mm, 1600 separate electrodes would be required if multiplexing were not employed. By utilizing the array of Figure 4 with, for example, 20 alternating frequency selector bars, only 80 finger electrodes would be required and the total number of electrodes is reduced from 1600 to 100.
  • the invention may be employed to form a rectangular area of charge using geometry of the module 50 shown in Figure 5.
  • Charging electrodes 52-1 and 52-2 are separated from the electrode 52-3 by a dielectric member 51, with the electrode 52-3 potted in an insulator 55.
  • the region between the electrode 52-1 and 52-2 provides a slot in which an air gap-discharge is formed when a high frequency alternating potential is applied between electrodes 52-1 and 52-2 and electrode 52-3.
  • the charging array of Figure 5 may be employed in a plain paper copier to replace the coronas normally found in such a copier.
  • FIG. 6 illustrates schematically a plain paper copier employing charging arrays of the kind shown in Figure 5.
  • a copier drum 61 is charged using a charging element 62-1, having the configuration shown in Figure 5. If the drum is selenium or a selenium alloy and it is desired to charge the surface, for example, to a positive potential of 600 volts, then the slotted electrode 62-1 is maintained at 600 volts. After charging, the drum 61 is discharged with an optical image provided by a scanner at station 63. The resulting latent electrostatic image is toned at station 66 and the toner is transferred to a plain paper sheet 68, using a transfer ion generator 62-2 according to Figure 5, with the slotted electrode again maintained at a positive potential.
  • the latent residual electrostatic image in the surface of the drum and any uncharged toner may be electrically discharged by employing a discharge unit 62-3, also according to Figure 5.
  • a discharge unit 62-3 also according to Figure 5.
  • the slotted electrode is maintained at ground potential and any residual charge on the surface of the drum and toner causes ions to be extracted from the air gap breakdown in the slot, thus effectively discharging the surface.
  • a cleaning brush 64 is employed to remove residual toner remaining on the surface and the drum is then ready to be recharged.
  • a dot matrix charging head 65 which may be configured according to Figure 4. This permits a plain paper copier to be employed as a printer. In that event the drum 61 is discharged at station 63 and recharged by the dot matrix printing head 65, permitting the machine 60 to function both as a copier and a printer. In addition, the apparatus 60 may function simultaneously as a copier and printer where overlays are desired.
  • Strips of 25 microns stainless steel foil are laminated on both sides of Corning (registered trademark) code 8871 capacitor ribbon glass.
  • the stainless foil is coated with resist and photo etched with a pattern similar to that shown in Figure 4, with holes or apertures in the fingers approximately 0,15 mm in diameter. This provides a charging head which can be employed to generate latent electrostatic dot matrix character images on dielectric paper according to Figure 2.
  • Charging occurs only when there is simultaneously a potential of negative 400 volts on the fingers containing the holes and an alternating potential of 2 kilovolts peak at a frequency of 500 kilohertz supplied between the finger and the counter electrode.
  • a spacing of 0,02 mm is maintained between the print head assembly and the dielectric surface of the electrophotographic sheet.
  • the duration of the print pulse is 20 microseconds. Under these conditions, it is found that a latent electrostatic image of approximately 300 volts is produced on the dielectric sheet. This image is subsequently toned and fused to provide a dense dot matrix character image.
  • the ion current extracted from this charging head, as collected by an electrode spaced 0,2 mm away from the head, is found to be 1 milliampere per square centimeter.
  • Example I is repeated employing a polyimide dielectric rather than capacitor glass. As before, a 25 microns stainless steel foil is laminated on both sides to 25 microns thick Kapton (registered trademark) polyimide film. Results equivalent to those of Example I are obtained at an applied high frequency potential of 1,5 kilovolts peak.
  • Kapton registered trademark
  • An electrostatic charging head of the type shown in Figure 3 is fabricated employing 25 microns stainless steel foil laminated to both sides of 25 microns polyimide film. Results equivalent to those of Example I are obtained at
  • An electrostatic charging head of the type shown in Figure 3 is fabricated employing 25 microns stainless steel foil laminated to both sides of 25 microns polyimide sheet.
  • 2,54 mm high characters are etched in the foil on one side of the foil as indicated in Figure 3.
  • bridges 25 to 50 microns in thickness are left unetched.
  • the character stroke width is etched to 150 microns. Printing is carried out by applying the potentials of Example II with a pulse width of 40 microseconds. The toned images exhibit sharp edges and high optical density.
  • the character stroke width in the image is 0,3 mm.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Electrophotography Using Other Than Carlson'S Method (AREA)
  • Elimination Of Static Electricity (AREA)

Claims (22)

1. Verfahren zum Erzeugen von Ionen in Luft, wobei ein Wechselpotential zwischen ersten und zweiten Elektroden angelegt wird, die durch ein festes dielektrisches Glied voneinander getrennt sind, dadurch gekennzeichnet, daß die zweite Elektrode eine Randfläche aufweist, die gegenüberliegend einem Zwischenabschnitt der ersten Elektrode und entfernt von dem Rand des dielektrischen Gliedes angeordnet ist, um einen Luftbereich an der Verbindung der Randoberfläche und des festen dielektrischen Gliedes zu begrenzen, so daß das Wechselpotential zwischen der ersten und zweiten Elektrode Ionen erzeugende elektrische Entladungen in dem Luftbereich induziert.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein lonen-Extraktionspotential zwischen der zweiten und einer dritten Elektrode angelegt wird, um lonen. abzuziehen, die durch die elektrischen Entladungen in dem Luftbereich erzeugt werden.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die extrahierten Ionen an einem weiteren Glied angelegt werden.
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die extrahierten Ionen zu einer dielektrischen Oberfläche mit leitender Unterlage gebracht werden.
5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die extrahierten Ionen an ein teilchenförmiges Material angelegt werden.
6. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Ionen durch eine Gleichspannung abgezogen werden.
7. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß ein elektrostatisches Muster mit den extrahierten Ionen gebildet wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Ionen durch eine Gleichspannung entnommen werden, die an die zweite Elektrode angelegt ist, wobei ein Spalt in Übereinstimmung mit der Ausbildung eines Zeichens oder Symbols ausgeführt wird, für welches ein Ladungsbild gewünscht ist.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die erste Elektrode ein offenmaschiges gewebtes Metallsieb umfaßt.
10. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das aufgeladene teilchenförmige Material unter der Wirkung eines elektrischen Feldes physikalisch bewegt wird.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die ersten und zweiten Elektroden je eine Vielzahl von Elektroden umfassen, welche Kreuzungspunkte in einer Matrixanordnung bilden, welche so ausgebildet ist, daß die zweiten Elektroden an einer Seite des festen dielektrischen Gliedes Öffnungen an Matrixelektrodenkreuzungsbereichen enthalten.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß die Ionen von gewählten Matrixkreuzungsöffnungen durch gleichzeitiges Schaffen einer elektrischen Entladung in der Öffnung und eines äußeren lonenextraktionsfeldes abgezogen werden.
13. Verfahren zum Erzeugen und Entnehmen von Ionen nach Anspruch 12, zum elektrostatischen Drucken, dadurch gekennzeichnet, daß ein elektrostatisches latentes Bild mit den extrahierten Ionen gebildet wird, und daß das elektrostatische latente Bild abgestuft und fixiert (fused) wird.
14. Verfahren zum elektrostatischen Drucken nach Anspruch 13, wobei das elektrostatische latente Bild auf einer dielektrischen Schicht ausgebildet wird, dadurch gekennzeichnet, daß nachfolgend das abgestufte elektrostatische latente Bild auf glattes Papier übertragen wird.
15. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß das aufgeladene partikelförmige Material auf einer leitenden Oberfläche gesammelt wird.
16. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß das aufgeladene teilchenförmige Material auf glattem Papier gesammelt wird, um ein sichtbares Bild zu formen.
17. Vorrichtung zum Erzeugen von lonen in Luft, wobei ein festes dielektrisches Glied, von dem festen dielektrischen Glied voneinander getrennte erste und zweite Elektroden und eine Einrichtung zum Anlegen eines Wechselpotentials zwischen der ersten und zweiten Elektrode vorgesehen sind, dadurch gekennzeichnet, daß eine Randoberfläche der zweiten Elektrode gegenüberliegend einem mittleren Abschnitt der ersten Elektrode und entfernt von dem Rand des dielektrischen Gliedes angeordnet ist, um an der Verbindung der Randoberfläche und des festen dielektrischen Gliedes einen Luftbereich zu begrenzen.
18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, daß eine dritte Elektrode vorgesehen ist, um lonen aus dem Luftbereich abzuziehen.
19. Vorrichtung nach einem der Ansprüche 17 oder 18 zum elektrostatischen Bildentwerfen, dadurch gekennzeichnet, daß die zweite Elektrode eine Abschirmelektrode umfaßt und daß die Öffnung in dieser zweiten Elektrode in der Ausbildung eines Zeichens oder Symbols gemustert ist, für welches ein Ladungsbild gewünscht ist.
20. Vorrichtung nach einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, daß die ersten und zweiten Elektroden eine Vielzahl von Elektroden umfassen, welche ein dielektrisches Blatt berühren und Kreuzungspunkte in einer Matrixanordnung bilden, daß die ersten Elektroden an einer Seite des dielektrischen Blattes Wählerschienen umfassen und die zweiten Elektroden an der anderen Seite dieses dielektrischen Blattes Luftdurchschlagelektroden einschließen, welche in Bezug auf die Wählerschienen quer ausgerichtet sind, wobei an den Matrixkreuzungsbereichen Öffnungen vorgesehen sind.
21. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, daß die gesamte Randoberfläche der zweiten Elektrode gegenüberliegend einem Zwischenabschnitt der ersten Elektrode angeordnet ist.
22. Vorrichtung nach einem der Ansprüche 17 bis 21, dadurch gekennzeichnet, daß die Elektroden in Verbindung mit dem festen dielektrischen Glied stehen.
EP78100651A 1977-08-12 1978-08-11 Verfahren und Vorrichtung zur Erzeugung geladener Teilchen Expired EP0000789B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/824,252 US4155093A (en) 1977-08-12 1977-08-12 Method and apparatus for generating charged particles
US824252 1992-01-22

Publications (3)

Publication Number Publication Date
EP0000789A2 EP0000789A2 (de) 1979-02-21
EP0000789A3 EP0000789A3 (en) 1979-03-07
EP0000789B1 true EP0000789B1 (de) 1984-08-15

Family

ID=25240954

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100651A Expired EP0000789B1 (de) 1977-08-12 1978-08-11 Verfahren und Vorrichtung zur Erzeugung geladener Teilchen

Country Status (9)

Country Link
US (1) US4155093A (de)
EP (1) EP0000789B1 (de)
JP (1) JPS5453537A (de)
AU (1) AU522601B2 (de)
BR (1) BR7805182A (de)
CA (1) CA1108685A (de)
DE (1) DE2862435D1 (de)
ES (1) ES472517A1 (de)
MX (1) MX145196A (de)

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4320408A (en) * 1978-10-06 1982-03-16 Fuji Photo Film Co., Ltd. Method of forming electrostatic image
US4365549A (en) * 1978-12-14 1982-12-28 Dennison Manufacturing Company Electrostatic transfer printing
US4338615A (en) * 1980-06-02 1982-07-06 Texas Instruments Incorporated Electrostatic printer having LED array write head
NZ198031A (en) * 1980-08-21 1988-11-29 Dennison Mfg Co Electrostatic printer: charged particles extracted from glow discharge
US4381327A (en) * 1980-10-06 1983-04-26 Dennison Manufacturing Company Mica-foil laminations
US4409604A (en) * 1981-01-05 1983-10-11 Dennison Manufacturing Company Electrostatic imaging device
US4628227A (en) * 1980-10-06 1986-12-09 Dennison Manufacturing Company Mica-electrode laminations for the generation of ions in air
US4408214A (en) * 1981-08-24 1983-10-04 Dennison Manufacturing Company Thermally regulated ion generation
JPS5944797A (ja) * 1982-09-07 1984-03-13 増田 閃一 物体の静電的処理装置
US4558334A (en) * 1983-06-06 1985-12-10 Fotland Richard A Electrostatic imaging device
JPH0642100B2 (ja) * 1984-02-28 1994-06-01 富士ゼロックス株式会社 平型帯電器の取付装置
EP0156622B1 (de) * 1984-03-22 1988-06-01 Kabushiki Kaisha Toshiba Ionenflussmodulator
JPH0679858B2 (ja) * 1984-03-30 1994-10-12 株式会社東芝 イオン流変調装置
GB2156597B (en) * 1984-03-26 1987-09-23 Canon Kk Charging or discharging a member
GB2156598B (en) * 1984-03-26 1988-03-02 Canon Kk Device and method for charging or discharging
JPS60201366A (ja) * 1984-03-26 1985-10-11 Canon Inc 除・帯電方法
JPS6136781A (ja) * 1984-07-30 1986-02-21 Canon Inc 画像形成装置
CA1276908C (en) * 1984-10-15 1990-11-27 Shoji Ikeda Excitation apparatus with discharge between opposing electrodes separated by dielectric member
JPH0630907B2 (ja) * 1985-02-13 1994-04-27 キヤノン株式会社 静電記録方法
JPS6150114A (ja) * 1985-08-01 1986-03-12 Seiko Epson Corp 印写装置
US4660059A (en) * 1985-11-25 1987-04-21 Xerox Corporation Color printing machine
JPH0721668B2 (ja) * 1985-12-14 1995-03-08 キヤノン株式会社 除・帯電方法
US4858062A (en) * 1986-06-04 1989-08-15 Canon Kabushiki Kaisha Charging device
US4665439A (en) * 1986-06-05 1987-05-12 North American Philips Consumer Electronics Corp. Piecewise recursive vertical filter for PIP feature
US4761669A (en) * 1987-05-21 1988-08-02 Xerox Corporation Highlight color printing
US4841146A (en) * 1987-08-03 1989-06-20 Xerox Corporation Self-cleaning scorotron with focused ion beam
US4763141A (en) * 1987-08-03 1988-08-09 Xerox Corporation Printing apparatus with improved ion focus
JPH01101567A (ja) * 1987-10-14 1989-04-19 Fuji Xerox Co Ltd 放電装置
JPH01141061A (ja) * 1987-11-27 1989-06-02 Fuji Xerox Co Ltd 放電ヘッド
US4951070A (en) * 1988-03-22 1990-08-21 501 Delphax Systems Charge transfer imaging cartridge mounting and printer
US4837591A (en) * 1988-05-02 1989-06-06 Xerox Corporation Highlight color imaging by depositing positive and negative ions on a substrate
JPH02130568A (ja) * 1988-11-10 1990-05-18 Toshiba Corp イオン発生装置
US4891656A (en) * 1988-12-14 1990-01-02 Delphax Systems Print cartridge with non-divergent electrostatic field
JPH02163775A (ja) * 1988-12-16 1990-06-25 Matsushita Electric Ind Co Ltd 記録装置
US5138348A (en) * 1988-12-23 1992-08-11 Kabushiki Kaisha Toshiba Apparatus for generating ions using low signal voltage and apparatus for ion recording using low signal voltage
US4875062A (en) * 1988-12-27 1989-10-17 Eastman Kodak Company Ion projection print head
US4924092A (en) * 1989-03-03 1990-05-08 Electro-Technic Products Company Corona generating system
US5014076A (en) * 1989-11-13 1991-05-07 Delphax Systems Printer with high frequency charge carrier generation
US5162179A (en) * 1990-04-17 1992-11-10 Armstrong World Industries, Inc. Electrographic structure and process
US5083145A (en) * 1990-06-27 1992-01-21 Xerox Corporation Non-arcing blade printer
JP2523369Y2 (ja) * 1990-07-04 1997-01-22 東陶機器株式会社 オゾン発生装置
US5202705A (en) * 1990-10-05 1993-04-13 Fuji Xerox Co., Ltd. Electrostatic latent image forming device having a ceramic insulating layer
KR930702658A (ko) * 1991-05-08 1993-09-09 이차크 포메란츠 비접촉 인쇄, 판독 및 영상용 장치
US5508727A (en) * 1991-05-08 1996-04-16 Imagine, Ltd. Apparatus and method for pattern generation on a dielectric substrate
DE69232275D1 (de) * 1991-05-08 2002-01-17 Cubital America Inc Gerät zur Informationsübertragung
US6043830A (en) * 1991-05-08 2000-03-28 Cubital, Ltd. Apparatus for pattern generation on a dielectric substrate
US5418105A (en) * 1993-12-16 1995-05-23 Xerox Corporation Simultaneous transfer and fusing of toner images
DE69514963T2 (de) 1994-06-30 2000-06-29 Canon K.K., Tokio/Tokyo Elektrografisches Gerät und Bilderzeugungsverfahren
US5706162A (en) * 1994-12-14 1998-01-06 Xerox Corporation Corona generating device
US6148724A (en) * 1994-12-20 2000-11-21 Moore Business Forms, Inc. Selective flexographic printing
US5587584A (en) * 1996-03-28 1996-12-24 Xerox Corporation Apparatus for charging a film on the internal surface of a drum
US5655186A (en) * 1996-03-28 1997-08-05 Xerox Corporation Light blocking ion charging apparatus
US5659176A (en) * 1996-03-28 1997-08-19 Xerox Corporation Scanning corotron
US5723863A (en) * 1996-03-28 1998-03-03 Xerox Corporation Ion charging apparatus with light blocking capability
US6028615A (en) * 1997-05-16 2000-02-22 Sarnoff Corporation Plasma discharge emitter device and array
US6081286A (en) * 1998-05-02 2000-06-27 Fotland; Richard Allen Method and apparatus for high speed charge image generation
US6239823B1 (en) 1998-06-11 2001-05-29 Richard Allen Fotland Electrostatic latent image forming printhead having separate discharge and modulation electrodes
US6160565A (en) * 1998-12-11 2000-12-12 Moore U.S.A., Inc. Print cartridge RF return current control
US6278470B1 (en) 1998-12-21 2001-08-21 Moore U.S.A. Inc. Energy efficient RF generator for driving an electron beam print cartridge to print a moving substrate
US6493529B1 (en) 1999-07-05 2002-12-10 Ricoh Company, Ltd. Charging device with walls surrounding the electrodes which reduce ozone emissions
US6386684B1 (en) 2000-08-23 2002-05-14 Logical Imaging Solutions, Inc. Curved print head for charged particle generation
US6501494B2 (en) 2001-05-09 2002-12-31 Xerox Corporation Thin film printhead with layered dielectric
US6476835B1 (en) * 2001-05-10 2002-11-05 Xerox Corporation Coplanar thin film printhead
US6414702B1 (en) 2001-06-29 2002-07-02 Xerox Corporation Printhead with plasma suppressing electrodes
JP3438054B2 (ja) * 2001-08-07 2003-08-18 シャープ株式会社 イオン発生素子
US6444960B1 (en) 2002-01-11 2002-09-03 Xerox Corporation Heading element for charging devices
JP2004273315A (ja) * 2003-03-10 2004-09-30 Sharp Corp イオン発生装置、空気調節装置および荷電装置
US7862970B2 (en) * 2005-05-13 2011-01-04 Xerox Corporation Toner compositions with amino-containing polymers as surface additives
US7623144B2 (en) * 2007-01-29 2009-11-24 Hewlett-Packard Development Company, L.P. Apparatus for electrostatic imaging
US8830282B2 (en) * 2007-06-28 2014-09-09 Hewlett-Packard Development Company, L.P. Charge spreading structure for charge-emission apparatus
WO2009067096A1 (en) * 2007-11-19 2009-05-28 Hewlett-Packard Development Company, L.P. Method and apparatus for improving printed image density
US7985523B2 (en) 2008-12-18 2011-07-26 Xerox Corporation Toners containing polyhedral oligomeric silsesquioxanes
US8084177B2 (en) * 2008-12-18 2011-12-27 Xerox Corporation Toners containing polyhedral oligomeric silsesquioxanes
WO2011005256A1 (en) 2009-07-08 2011-01-13 Hewlett-Packard Development Company, L.P. Printhead fabrication methods and printheads
US10152927B2 (en) 2014-01-31 2018-12-11 Hewlett-Packard Development Company, L.P. E-paper imaging via addressable electrode array
DE102015118287B3 (de) 2015-10-27 2017-01-12 Intravis Gmbh Verfahren und Vorrichtung zur Prüfung von Prüfobjekten auf das Vorliegen von Beschädigungen

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3005930A (en) * 1957-08-12 1961-10-24 Westinghouse Electric Corp Electric discharge apparatus
US3133193A (en) * 1962-01-22 1964-05-12 Du Pont Corona discharge apparatus for the surface treatment of plastic resins
US3438053A (en) * 1964-07-20 1969-04-08 Burroughs Corp Electrographic print-head having an image-defining multisegmented control electrode
DE1303276B (de) * 1964-08-18 Philips Nv
DE1266521B (de) * 1966-06-24 1968-04-18 Philips Patentverwaltung Funkenerzeuger mit Isolator in Form von Pasten
US3513351A (en) * 1968-06-26 1970-05-19 Atomic Energy Commission Duoplasmatron-type ion source including a gas reservoir
US3787876A (en) * 1968-11-15 1974-01-22 Electroprint Inc Aperture controlled electrostatic image reproduction
US3715762A (en) * 1970-09-04 1973-02-06 Ibm Method and apparatus for generating electrostatic images using ionized fluid stream
DE2100393A1 (de) * 1971-01-07 1972-07-20 Philips Patentverwaltung Elektrodenanordnung zur Informationsübertragung beim elektrostatischen Druck
US3735183A (en) * 1971-05-19 1973-05-22 Ferranti Ltd Gaseous discharge display device with a layer of electrically resistive material
JPS4839243A (de) * 1971-09-29 1973-06-09
US3765027A (en) * 1971-12-30 1973-10-09 Xerox Corp Ion lens recording system
GB1438503A (en) * 1972-06-08 1976-06-09 Lucas Industries Ltd Spark discharge plugs
DE2253625C3 (de) * 1972-11-02 1979-11-08 Philips Patentverwaltung Gmbh, 2000 Hamburg Elektrodenanordnung für den elektrostatischen Matrixdruck
JPS599907B2 (ja) * 1973-03-20 1984-03-06 キヤノン株式会社 静電記録装置
DE2332354A1 (de) * 1973-06-26 1975-01-16 Philips Patentverwaltung Druckvorrichtung zur elektrostatischen aufzeichnung
JPS543731B2 (de) * 1973-07-11 1979-02-26
JPS5511262B2 (de) * 1974-05-21 1980-03-24
US3971465A (en) * 1974-11-27 1976-07-27 Burroughs Corporation Self-scanning electrostatic print head for a dot matrix printer
US3968405A (en) * 1975-04-14 1976-07-06 Testone Anthony Quintin Static electricity suppressor with patterned coating and method of making
US4087807A (en) * 1976-02-12 1978-05-02 Owens-Illinois, Inc. Write pulse wave form for operating gas discharge device
US4057723A (en) * 1976-01-23 1977-11-08 Xerox Corporation Compact corona charging device

Also Published As

Publication number Publication date
JPH024904B2 (de) 1990-01-30
MX145196A (es) 1982-01-13
US4155093A (en) 1979-05-15
ES472517A1 (es) 1979-03-16
EP0000789A3 (en) 1979-03-07
BR7805182A (pt) 1979-04-24
JPS5453537A (en) 1979-04-26
DE2862435D1 (en) 1984-09-20
CA1108685A (en) 1981-09-08
AU3883678A (en) 1980-02-14
EP0000789A2 (de) 1979-02-21
AU522601B2 (en) 1982-06-17

Similar Documents

Publication Publication Date Title
EP0000789B1 (de) Verfahren und Vorrichtung zur Erzeugung geladener Teilchen
US4365549A (en) Electrostatic transfer printing
US4267556A (en) Electrostatic transfer printing employing ion emitting print head
US4409604A (en) Electrostatic imaging device
US5777576A (en) Apparatus and methods for non impact imaging and digital printing
EP0752317B1 (de) Tonerprojektionsdrucker mit Mitteln um die Tonerverstreuung zu reduzieren
WO1983000751A1 (en) Thermally regulated ion generation
US4402000A (en) Electrographic recording method and apparatus with control of toner quantity at recording region
US3234904A (en) Device for tesiprinting
EP0166494B1 (de) Gewalzte dielektrische Elektrode
GB2042278A (en) Forming electrostatic images
US3818492A (en) Recording of information in bit form
US4137537A (en) Electrostatic transfer process and apparatus for carrying out the same
US4161141A (en) Two side multi roller toner station for electrographic non-impact printer
EP0340998B1 (de) Spitzlicht-Farbbilderzeugung durch Ablagerung von positiven und negativen Ionen auf einen Träger
US4165686A (en) Two-sided non-impact printing system
US5245502A (en) Semi-conductor corona generator for production of ions to charge a substrate
JPH0262862B2 (de)
US4879569A (en) Multiple source charged particle generation
US5083145A (en) Non-arcing blade printer
GB2079067A (en) Apparatus and method for generating ions
EP0753412A1 (de) Tonerprojektionsdrucker mit verbesserter Steuerelektrodenstruktur
JP3741781B2 (ja) 静電装置
CA1147013A (en) Electrostatic printing and copying
WO1987002451A1 (en) Electrostatic imaging by modulation of ion flow

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE CH DE FR GB NL SE

AK Designated contracting states

Designated state(s): BE CH DE FR GB NL SE

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB NL SE

REF Corresponds to:

Ref document number: 2862435

Country of ref document: DE

Date of ref document: 19840920

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900717

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900720

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900727

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900831

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19910831

Ref country code: BE

Effective date: 19910831

BERE Be: lapsed

Owner name: DENNISON MANUFACTURING CY

Effective date: 19910831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ITCP It: supplementary protection certificate

Spc suppl protection certif: CCP 454

EUG Se: european patent has lapsed

Ref document number: 78100651.5

Effective date: 19920306

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970702

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970812

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970827

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19980810

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 19980810