EP0073363B1 - Verdampfer für ein Mehr-Temperaturen Kühlgerät - Google Patents
Verdampfer für ein Mehr-Temperaturen Kühlgerät Download PDFInfo
- Publication number
- EP0073363B1 EP0073363B1 EP19820107148 EP82107148A EP0073363B1 EP 0073363 B1 EP0073363 B1 EP 0073363B1 EP 19820107148 EP19820107148 EP 19820107148 EP 82107148 A EP82107148 A EP 82107148A EP 0073363 B1 EP0073363 B1 EP 0073363B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- evaporator
- side wall
- passage
- piping
- cover plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001816 cooling Methods 0.000 title description 11
- 239000002826 coolant Substances 0.000 claims 8
- 238000007710 freezing Methods 0.000 claims 2
- 238000002347 injection Methods 0.000 claims 1
- 239000007924 injection Substances 0.000 claims 1
- 239000003507 refrigerant Substances 0.000 description 42
- 239000007788 liquid Substances 0.000 description 17
- 238000005057 refrigeration Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 238000010257 thawing Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
- F25B39/022—Evaporators with plate-like or laminated elements
Definitions
- the invention relates to an evaporator according to the preamble of the claim.
- the refrigerant channel in the base plate is formed by two tubes which run parallel to one another and to the outer edges and which open at their respective flow output end into a separate chamber which is arranged in the side wall are.
- Parallel channels lead from these evaporator chambers into further evaporator chambers arranged in the ceiling board, the ceiling board rising from the connecting edge with the side wall to the free end relative to a horizontal plane.
- Separate pipes lead from the refrigerant chambers to another common evaporator chamber in the ceiling board. From there, a line leads directly to another evaporator chamber in the side wall and a separate channel through the side wall to a normal cooling compartment evaporator.
- the refrigerant channel leads from the normal refrigeration compartment evaporator back into the side wall and then also into the further evaporator chamber of the side wall.
- the operation of this evaporator is such that, for. B. after four minutes of operation, a last chamber in the ceiling board is filled with liquid refrigerant, which then flows through a refrigerant channel led over the side wall into a refrigerant channel of the normal cooling compartment evaporator. From there, the still largely liquid refrigerant flows through a refrigerant channel, which is also led back into the side wall, into a refrigerant chamber of the side wall.
- This refrigerant chamber serves as a refrigerant accumulator, in which the liquid refrigerant is only separated from the gaseous refrigerant.
- the refrigerant flowing in from the freezer compartment evaporator can therefore also be predominantly liquid only during the downtime of the compression refrigerator.
- the refrigerant channel continues to be supplied with predominantly liquid refrigerant, especially in the area of the connection point between the freezer compartment evaporator and the main refrigerator compartment evaporator, so that the connection point continues to be strongly cooled.
- a relatively high heating output must be provided in this area. Therefore, a heating conductor is led twice through the connection point and thus a high specific surface heating power is provided in comparison to the remaining surface to be heated.
- An evaporator is also known (GB-A-1 213 644), which is designed as a flat plate with refrigerant channels formed therein.
- a channel section is designed in the plane of the other channel sections as a parallel channel with two transverse channels.
- Pipes for the insertion of electrical heating elements, which are used for defrosting ice or frost layers, run parallel to the individual channel sections in the circuit board of the evaporator.
- an evaporator for a multi-temperature refrigerator in which a box-shaped curved evaporator section is provided for a freezer compartment, to which a plate-shaped normal refrigerator compartment evaporator is connected.
- the box-shaped curved evaporator section is provided with tabs on its rear, free edge, which Have refrigerant channels extending on the inside and are connected to connections of the other refrigeration system.
- an evaporator for a multi-temperature refrigerator which has a freezer compartment evaporator and a downstream main refrigerator compartment evaporator.
- the freezer compartment evaporator is also box-shaped and partially provided with parallel channels which are connected to one another by transverse channels.
- the structure is such that the main cooler evaporator is filled with liquid refrigerant during the operating time, which is sucked back in the downtime of the compressor by generating a vacuum in the freezer evaporator.
- the resulting evaporation cold causes strong icing of the connecting line.
- an evaporator for a multi-temperature refrigerator is known (FR-A-1 434 700), which is designed as a box and is assigned only to the freezer compartment.
- the underlying normal cooling compartment of the corresponding cooling device is cooled via the common partition wall adjacent to the freezer compartment.
- the invention has for its object to take measures in an evaporator according to the preamble of the claim, by which icing on the main refrigeration evaporator in the area of the connection point between the freezer evaporator and the main refrigeration evaporator can be avoided with a simple structure by the afterflow of liquid refrigerant during the downtime of the compression refrigerator the main refrigerator compartment evaporator is avoided and thus the additional energy required for defrosting can be significantly reduced or eliminated.
- a type of refrigerant accumulator is created in the base plate by the relatively large volume of the piping provided there, which causes a uniform distribution of the refrigerant over the surface of the base plate and nevertheless already has a section-wise parallel guidance of pipes with crosspieces largely separates liquid and gaseous refrigerant.
- the transverse channel or channels effect a further separation in the subsequent parallel channel led through the side wall, the separated liquid refrigerant flowing back into the base plate.
- the refrigerant channel in the ceiling board is additionally distributed in meandering turns over the surface and the ceiling board rises, liquid refrigerant still contained is evaporated or flows through the turns back down to the parallel channel and into the floor board.
- This mode of operation is particularly effective during the downtimes of the compressor, after which the refrigerant is then driven only by the evaporation.
- An influx of liquid refrigerant into the refrigerant channel led through the side wall to the normal cooling compartment evaporator does not occur because the tubing of the ceiling board at the flow outlet end passes through a point that is higher than the other turns.
- a bottom plate 1 and a slightly inclined ceiling plate 2 together with a vertical side wall 3 form a one-piece freezer evaporator, to which a plate-shaped main refrigerator compartment evaporator 5 connects, which is approximately in the plane of the side wall 3.
- the ceiling board 2 is inclined from its connecting edge 6 to the side wall 3 ascending relative to a horizontal plane.
- a throttle tube 14 is inserted in the ceiling plate 2, through which the refrigerant is introduced into the refrigerant channel 7.
- the refrigerant channel 7 is guided through the ceiling board 2 and the side wall 3 directly and without any turns into the floor board 1.
- the refrigerant channel 7 branches into three sections connected in series with parallel pipes 8 which communicate in groups through a plurality of cross lines 9.
- the parallel winding branches of the tubing in the base plate 1 enable, in particular, the gaseous components to have a separate flow path from the highly fluid-laden channel sections, so that the majority of the liquid components remain in the base plate 1.
- the gaseous fractions flow through a parallel duct 10 leading away from the last branch of the winding, vertically upward through the side wall 3 into the ceiling board 2.
- At least one transverse duct 11 is provided in the parallel duct 10 for further separation of liquid and gaseous refrigerants according to static laws.
- the tubing is uniformly distributed in turns over the surface, the outflow pipe 12 running through the side wall 3 continuously falling down to the connecting neck 4 and further to the turns of the main cooling compartment evaporator 5.
- the ceiling board 2 which is inclined slightly upwards from the connecting edge 6, a further separation between gaseous and liquid refrigerant is achieved by the slope, the liquid refrigerant being returned to the bottom board 1 of the freezer compartment evaporator.
- the connecting neck 4 is therefore no longer acted upon by evaporable refrigerant, so that no significant cooling capacity reaches the main cooling compartment evaporator 5.
- the connecting neck 4 which tends to freeze during operation, is exposed to a significantly lower cold load during the defrosting phase, so that no more ripening or use is possible on it than on the main cooling compartment evaporator 5. There is therefore little or no heating of this connection neck 4, which enables considerable energy savings.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Description
- Die Erfindung betrifft einen Verdampfer gemäß dem Oberbegriff des Patentanspruchs.
- Bei einem bekannten Verdampfer dieser Art (US-A-2 986 901) ist der Kältemittelkanal in der Bodenplatine durch zwei parallel zueinander und zu den Außenkanten verlaufende Rohre gebildet, die an ihrem jeweiligen strömungsausgangsseitigen Ende in eine getrennte Kammer münden, welche in der Seitenwand angeordnet sind. Aus diesen Verdampferkammern führen jeweils Parallelkanäle in weitere in der Deckenplatine angeordnete Verdampferkammern, wobei die Deckenplatine von der Verbindungskante mit der Seitenwand aus zum freien Ende hin gegenüber einer waagerechten Ebene ansteigt. Von den Kältemittelkammern führen getrennte Rohre zu einer weiteren gemeinsamen Verdampferkammer in der Deckenplatine. Von dort führt eine Leitung unmittelbar zu einer weiteren Verdampferkammer in der Seitenwand und ein getrennter Kanal durch die Seitenwand zu einem Normalkühlfachverdampfer. Vom Normalkühlfachverdampfer führt der Kältemittelkanal zurück in die Seitenwand und anschließende ebenfalls in die weitere Verdampferkammer der Seitenwand. Die Arbeitsweise dieses Verdampfers ist so, daß z. B. nach vier Minuten Betriebszeit eine letzte Kammer in der Deckenplatine mit flüssigem Kältemittel gefüllt wird, das anschließend durch einen über die Seitenwand geführten Kältemittelkanal in einen Kältemittelkanal des Normalkühlfachverdampfers fließt. Von dort fließt das noch weitgehend flüssige Kältemittel durch einen ebenfalls in die Seitenwand zurückgeführten Kältemittelkanal in eine Kältemittelkammer der Seitenwand. Dabei dient diese Kältemittelkammer als Kältemittelakkumulator, in dem erst die Trennung des flüssigen vom gasförmigen Kältemittels erfolgt. Bei dieser Ausgestaltung des Verdampfers kann somit während der Stillstandzeit der Kompressionskältemaschine das vom Tiefkühlfachverdampfer nachströmende Kältemittel ebenfalls nur in überwiegendem Maße flüssig sein. Hierdurch wird jedoch der Kältemittelkanal besonders im Bereich der Verbindungsstelle zwischen dem Tiefkühlfachverdampfer und dem Hauptkühlfachverdampfer weiterhin mit überwiegend flüssigem Kältemittel beliefert, so daß die Verbindungsstelle weiterhin stark gekühlt wird. Um jedoch der Gefahr einer hierdurch eintretenden Vereisung der Verbindungsstelle entgegenzuwirken, muß eine verhältnismäßig hohe Beheizungsleistung in diesem Bereich vorgesehen werden. Daher ist ein Heizleiter zweimal durch die Verbindungsstelle geführt und damit eine im Vergleich zur übrigen zu beheizenden Fläche hohe spezifische Flächenheizleistung vorgesehen.
- Es ist auch ein Verdampfer bekannt (GB-A-1 213 644), der als ebene Platte mit darin ausgeformten Kältemittelkanälen ausgebildet ist. Ein Kanalabschnitt ist dabei in der Ebene der übrigen Kanälabschnitte als Parallelkanal mit zwei Querkanälen gestaltet. Parallel zu einzelnen Kanalabschnitten verlaufen in der Platine des Verdampfers Rohre für das Einschieben elektrischer Heizelemente, die für das Abtauen von Eis- oder Reifschichten dienen.
- Daneben ist auch ein Verdampfer für ein Mehr-Temperaturen-Kühlgerät bekannt (FR-A-2451559), bei dem für ein Gefrierfach ein kastenförmig gebogener Verdampferabschnitt vorgesehen ist, an den ein plattenförmiger Normalkühlfachverdampfer angeschlossen ist. Um dabei den Nutzraum im kastenförmigen Verdampferabschnitt nicht durch Rohrabschnitte einzuschränken, die innerhalb des Verdampfers geführt sind und andererseits die Anschlüsse der Kälteanlage für ihre Überwachung auf Dichtigkeit leicht zugänglich zu halten, ist der kastenförmig gebogene Verdampferabschnitt an seinem hinteren, freien Rand mit Laschen versehen, die innenseitig sich erstreckende Kältemittelkanäle aufweisen und mit Anschlüssen der übrigen Kälteanlage verbunden sind.
- Ferner ist ein Verdampfer für ein Mehr-Temperaturen-Kühlgerät bekannt (DE-A-1 232 598), der einen Tiefkühlfachverdampfer und einen nachgeschalteten Hauptkühlfachverdampfer aufweist. Der Tiefkühlfachverdampfer ist dabei ebenfalls kastenförmig- ausgebildet und teilweise mit Parallelkanälen versehen, die durch Querkanäle miteinander verbunden sind. Dabei ist der Aufbau so getroffen, daß der Hauptkühlfachverdampfer während der Betriebszeit mit flüssigem Kältemittel gefüllt wird, das in der Stillstandszeit des Kompressors durch eine Unterdruckerzeugung im Tiefkühlfachverdampfer zurückgesaugt wird. Die hierdurch entstehende Verdunstungskälte bewirkt eine starke Vereisung der Verbindungsleitung.
- Schließlich ist auch ein Verdampfer für ein Mehr-Temperaturen-Kühlgerät bekannt (FR-A-1 434 700), der als Kasten ausgebildet ist, und nur dem Tiefkühlfach zugeordnet ist. Das darunterliegende Normalkühlfach des entsprechenden Kühlgerätes wird über die an das Tiefkühlfach angrenzende gemeinsame Zwischenwand gekühlt.
- Der Erfindung liegt die Aufgabe zugrunde, bei einem Verdampfer gemäß dem Oberbegriff des Patentanspruchs Maßnahmen zu treffen, durch die bei einfachem Aufbau Vereisungen am Hauptkühlfachverdampfer im Bereich der Verbindungsstelle von Tiefkühlfachverdampfer und Hauptkühlfachverdampfer vermieden werden, indem das Nachströmen von flüssigem Kältemittel während der Stillstandszeit der Kompressionskältemaschine in den Hauptkühlfachverdampfer vermieden wird und damit die erforderliche zusätzliche Energie zur Abtauung wesentlich reduziert oder entfallen kann.
- Die Lösung dieser Aufgabe erfolgt gemäß der Erfindung durch die kennzeichnenden Merkmale des Patentanspruchs.
- Bei einer Ausgestaltung eines Verdampfers gemäß der Erfindung wird in der Bodenplatine durch das relativ große Volumen der dort vorgesehenen Rohrleitungen eine Art Kältemitteiakkumulator geschaffen, der eine gleichmäßige Verteilung des Kältemittels über die Fläche der Bodenplatine bewirkt und trotzdem durch die abschnittsweise Parallelführung von Rohrleitungen mit Querstegen bereits eine weitgehende Trennung von flüssigem und gasförmigem Kältemittel bewirkt.
- Soweit aus der Berohrung der unteren Bodenplatine noch flüssiges Kältemittel mitgenommen wird, bewirken der oder die Querkanäle im anschließenden, durch die Seitenwand geführten Parallelkanal eine weitere Trennung, wobei das abgetrennte flüssige Kältemittel zurück in die Bodenplatine fließt. Nachdem zusätzlich der Kältemittelkanal in der Deckenplatine einzügig in mäanderförmigen Windungen über die Fläche verteilt geführt ist und die Deckenplatine ansteigt, wird noch enthaltenes flüssiges Kältemittel verdampft oder fließt durch die Windungen aufgrund des Gefälles zurück zum Parallelkanal und in die Bodenplatine. Diese Wirkungsweise kommt insbesondere in den Stillstandszeiten des Kompressors zur Wirkung, nachdem dann der Antrieb des Kältemittels nur durch die Verdampfung erfolgt. Ein Einfließen von flüssigem Kältemittel in den durch die Seitenwand zum Normalkühlfachverdampfer geführten Kältemittelkanat tritt dabei nicht ein, weil die Berohrung der Deckenplatine am strömungsausgangsseitigen Ende durch einen Punkt läuft, der höher als die übrigen Windungen liegt.
- Die Erfindung ist nachfolgend anhand der Zeichnung eines Ausführungsbeispiels näher erläutert.
- Eine Bodenplatine 1 und eine demgegenüber leicht geneigte Deckenplatine 2 bilden zusammen mit einer senkrechten Seitenwand 3 einen einstückig hergestellten Tiefkühlfachverdampfer, an den sich über einen Verbindungshals 4 ein plattenförmiger Hauptkühlfachverdampfer 5 anschließt, welcher etwa in der Ebene der Seitenwand 3 steht. Die Deckenplatine 2 ist von ihrer Verbindungskante 6 mit der Seitenwand 3 aus ansteigend gegenüber einer waagerechten Ebene geneigt. An der Verbindungskante 6 ist in der Deckenplatine 2 ein Drosselrohr 14 eingeführt, durch die das Kältemittel in den Kältemittelkanal 7 eingeleitet wird. Der Kältemittelkanal 7 ist durch die Deckenplatine 2 und die Seitenwand 3 direkt und windungsfrei in die Bodenplatine 1 geführt. In der Bodenplatine 1 verzweigt sich der Kältemittelkanal 7 in drei hintereinander geschaltete Abschnitte mit parallelen Rohrleitungen 8, die gruppenweise durch mehrere Querleitungen 9 kommunizieren. Hierdurch wird nicht nur ein großes Volumen für die Aufnahme von Kältemittel sondern aufgrund niedriger Strömungsgeschwindigkeiten in der Druckausgleichsphase des Kältesystems eine Trennung von flüssigem und gasförmigen Kältemittel erreicht. Die parallelen Windungsäste der Berohrung in der Bodenplatine 1 ermöglichen insbesondere den gasförmigen Anteilen einen getrennten Strömungsweg von den stark flüssigkeitsbehafteten Kanalabschnitten, so daß die flüssigen Anteile zum überwiegenden Teil in der Bodenplatine 1 verbleiben. Die gasförmigen Anteile strömen dagegen durch einen vom letzten Windungsast wegführenden Parallelkanal 10 senkrecht durch die Seitenwand 3 nach oben in die Deckenplatine 2. Dabei ist im Parallelkanal 10 zur weiteren Trennung von flüssigem und gasförmigen Kältemittel nach statischen Gesetzmäigkeiten wenigstens ein Querkanal 11 vorgesehen. In der Deckenplatine 2 ist die Berohrung einzügig in Windungen über die Fläche verteilt, wobei das Abströmrohr 12 durch die Seitenwand 3 stetig fallend nach unten zum Verbindungshals 4 und weiter zu den Windungen des Hauptkühlfachverdampfers 5 verläuft. In der Deckenplatine 2, die von der Verbindungskante 6 an leicht nach oben geneigt ist, wird durch die Steigung eine weitere Trennung zwischen gasförmigem und flüssigem Kältemittel erreicht, wobei das flüssige Kältemittel in die Bodenplatine 1 des Tiefkühlfachverdampfers zurückgeführt wird. Somit wird nach der Trennung der Gas- und Flüssigphasen von dem höchsten Punkt 13 durch das Abströmrohr 12 die für den Druckausgleich im Kältemittelsystem erforderliche Kältemittelmasse nur im Gaszustand mit geringer Enthalpie in den Hauptkühlfachverdampfer geleitet. In den Stillstandszeiten des Kompressors wird daher der Verbindungshals 4 nicht mehr mit verdampfbarem Kältemittel beaufschlagt, so daß keine nennenswerte Kälteleistung zum Hauptkühlfachverdampfer 5 gelangt. Dadurch ist der Verbindungshals 4, der im Betrieb erfahrungsgemäß zur Vereisung neigt, während der Abtauphase einer wesentlich geringeren Kältebelastung ausgesetzt, so daß an ihm kein stärkerer Reif - bzw. Einsansatz als am Hauptkühlfachverdampfer 5 möglich ist. Es bedarf daher keiner oder nur geringer Beheizung dieses Verbundungshalses 4, wodurch eine erhebliche Energieeinsparung möglich ist.
Claims (1)
- Verdampfer für ein Mehr-Temperaturen-Kühlgerät, mit einem unterhalb eines Tiefkühlfaches oder Gefrierfaches angeordneten Hauptkühlfach, mit einem dem Tiefkühlfach oder Gefrierfach zugeordneten Verdampfer, der wenigstens in einer Deckenplatine (2), in einer Seitenwand (3) und in einer Bodenplatine (1) als Kältemittelkanal (7) eine Berohrung zur Führung von Kältemittel aufweist, wobei die Einspritzung des expandierten Kältemittels in den Kältemittelkanal (7) in der Deckenplatine (2) erfolgt, die von ihrer Verbindungskante (6) mit der Seitenwand (3) ansteigt und der Kältemittelkanal (7) von der Deckenplatine (2) steil abfallend in der Seitenwand (3) direkt zur Berohrung (8, 9) der Bodenplatine (1) geführt ist, deren Berohrung am strömungsausgangsseitigen Ende in einen stetig steil steigenden, in der Seitenwand (3) verlaufenden Parallelkanal (10) übergeht, der unmittelbar an die Berohrung der Deckenplatine (2) angeschlossen ist, von der das strömungsausgangsseitige Ende (12) der Bohrung stetig fallend durch die Seitenwand (3) zum damit verbundenen Normalkühlfachverdampfer (5) geführt ist, dem im Kältemittelkreislauf der Tiefkühlfachverdampfer in Reihe vorgeschaltet ist, dadurch gekennzeichnet, daß der Kältemittelkanal (7) in der Bodenplatine (1) hintereinandergeschaltete Abschnitte mit parallelen Rohrleitungen (8) aufweist, die gruppenweise durch mehrere Querleitungen (9) kommunizieren, daß vom letzten Abschnitt die Kanalzweige des Parallelkanals (10) wegführen, die über mindestens einen Querkanal (11) in der Seitenwand (3) miteinander verbunden sind, daß der Kältemittelkanal (7) anschließend in der Deckenplatine (2) einzügig in mäanderförmigen Windungen über die Fläche verteilt geführt ist, daß die Windungen parallel zur Verbindungskante (6) verlaufen, daß der Parallelkanal (10) nahe der Verbindungskante (6) an die Berohrung der Deckenplatine (2) angeschlossen ist und daß das strömungsausgangsseitige Ende der Berohrung der Deckenplatine (2) durch einen Punkt (13) läuft, der höher als die übrigen Windungen liegt.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3134300 | 1981-08-29 | ||
DE19813134300 DE3134300A1 (de) | 1981-08-29 | 1981-08-29 | Verdampfer fuer ein kuehlgeraet |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0073363A2 EP0073363A2 (de) | 1983-03-09 |
EP0073363A3 EP0073363A3 (en) | 1983-07-06 |
EP0073363B1 true EP0073363B1 (de) | 1985-06-26 |
Family
ID=6140473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19820107148 Expired EP0073363B1 (de) | 1981-08-29 | 1982-08-07 | Verdampfer für ein Mehr-Temperaturen Kühlgerät |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0073363B1 (de) |
DE (1) | DE3134300A1 (de) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3224452A1 (de) * | 1982-06-30 | 1984-01-05 | Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart | Kuehlmoebel, insbesondere zweitemperaturen-einkreis-kuehlschrank |
DE4141641A1 (de) * | 1991-12-17 | 1993-06-24 | Bosch Siemens Hausgeraete | Zweitemperaturen-einkreiskuehlgeraet |
DE19840427A1 (de) * | 1998-09-04 | 2000-03-09 | Bsh Bosch Siemens Hausgeraete | Verdampferanordnung |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE7431690U (de) * | 1975-07-03 | Bosch Siemens Hausgeraete Gmbh | Verdampfer für Kühlgeräte, Insbesondere Zweitemperaturen-Kühlschränke | |
DE1092939B (de) * | 1957-07-09 | 1960-11-17 | Gen Motors Corp | Anordnung von Kaeltemittelleitungen in Kaeltemaschinen |
US2986901A (en) * | 1959-03-13 | 1961-06-06 | Whirlpool Co | Refrigerant evaporator |
DE1232598B (de) * | 1964-07-10 | 1967-01-19 | Danfoss As | Kaelteanlage mit Verdampfer |
FR1434700A (fr) * | 1964-09-15 | 1966-04-08 | Bosch Gmbh Robert | évaporateur pour machines frigorifiques, notamment pour réfrigérateurs ménagers et machine équipée du dit évaporateur |
DE1254650B (de) * | 1964-12-01 | 1967-11-23 | Danfoss As | Kaelteanlage mit Verdampfer |
US3263440A (en) * | 1964-12-14 | 1966-08-02 | Electrolux Ab | Refrigeration |
DE1476988A1 (de) * | 1966-06-18 | 1970-03-19 | Bosch Hausgeraete Gmbh | Verdampfer fuer Kuehlgeraete,insbesondere fuer Haushalts-Kuehlschraenke |
GB1213644A (en) * | 1967-03-03 | 1970-11-25 | Alcoa Of Great Britain Ltd | Improvements in or relating to heat exchangers |
DE6903900U (de) * | 1969-01-31 | 1969-07-10 | Bauknecht Gmbh G | Kuehlmoebel |
US3717009A (en) * | 1971-04-26 | 1973-02-20 | Gen Motors Corp | Refrigeration evaporator assembly |
DE2231538A1 (de) * | 1971-07-03 | 1973-01-11 | Zanussi A Spa Industrie | Verbesserung an kuehlmoebelverdampfern und herstellungsverfahren dazu |
IT1126976B (it) * | 1979-03-12 | 1986-05-21 | Schmoele Metall R & G | Perfezionamento negli evaporatori per impianti frigoriferi |
-
1981
- 1981-08-29 DE DE19813134300 patent/DE3134300A1/de active Granted
-
1982
- 1982-08-07 EP EP19820107148 patent/EP0073363B1/de not_active Expired
Also Published As
Publication number | Publication date |
---|---|
EP0073363A3 (en) | 1983-07-06 |
DE3134300C2 (de) | 1988-06-01 |
EP0073363A2 (de) | 1983-03-09 |
DE3134300A1 (de) | 1983-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69318810T2 (de) | Kühlanlage | |
DE69208025T2 (de) | Kälteanlagen | |
EP1240466B1 (de) | Kältegerät | |
DE2810972C2 (de) | ||
EP2264385A2 (de) | Kältekreislauf und Verfahren zum Betreiben eines Kältekreislaufes | |
DE2157079A1 (de) | Zweistufige Kälteanlage | |
DE1401509A1 (de) | Kuehlanlage | |
WO2006015741A1 (de) | Kältekreislauf und verfahren zum betreiben eines kältekreislaufes | |
DE1476962A1 (de) | Kuehlschrank mit zwei thermisch isolierten Kammern und mit einem kompressorbetriebenen Kaelteapparat | |
DE2754132C2 (de) | Kühlvorrichtung | |
EP1921401A2 (de) | Verfahren zur Wärmerückgewinnung | |
EP0783658B1 (de) | Verfahren und vorrichtung zum kühlen von gasen | |
DE102008043807B4 (de) | Kälteanlage | |
EP0073363B1 (de) | Verdampfer für ein Mehr-Temperaturen Kühlgerät | |
DE19920726A1 (de) | Kälteanlage | |
DE102019200673A1 (de) | Kältegerät mit automatisch abtaubarem Verdampfer | |
EP0789206B1 (de) | Kältegerät | |
DE102006061155A1 (de) | Kältegerät | |
DE3634010A1 (de) | Absorptionskuehlschrank zur eisherstellung | |
EP1845322B1 (de) | Kühl- und/oder Gefriergerät | |
DE3300683A1 (de) | Kuehlschrank | |
DE3314056A1 (de) | Kuehlgeraet, insbesondere gefrierschrank oder dgl. | |
EP0547316B1 (de) | Zweitemperaturen-Einkreiskühlgerät für den Haushalt | |
WO2009047078A2 (de) | Kältegerät | |
EP1498673A1 (de) | Heissgasabtauverfahren für Kälteanlagen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE FR IT NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): BE FR IT NL |
|
17P | Request for examination filed |
Effective date: 19830804 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): BE FR IT NL |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19860301 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19860430 |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
BERE | Be: lapsed |
Owner name: LICENTIA PATENT-VERWALTUNGS-G.M.B.H. Effective date: 19860831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19890831 |