CN110879468A - 可佩戴3d增强现实显示器 - Google Patents
可佩戴3d增强现实显示器 Download PDFInfo
- Publication number
- CN110879468A CN110879468A CN201910961573.3A CN201910961573A CN110879468A CN 110879468 A CN110879468 A CN 110879468A CN 201910961573 A CN201910961573 A CN 201910961573A CN 110879468 A CN110879468 A CN 110879468A
- Authority
- CN
- China
- Prior art keywords
- display
- augmented reality
- eyepiece
- optics
- reality display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003190 augmentative effect Effects 0.000 title claims abstract description 27
- 238000003384 imaging method Methods 0.000 claims abstract description 14
- 230000003287 optical effect Effects 0.000 claims description 47
- 230000005855 radiation Effects 0.000 claims description 16
- 210000001747 pupil Anatomy 0.000 claims description 15
- 238000004891 communication Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 23
- 208000013057 hereditary mucoepithelial dysplasia Diseases 0.000 description 18
- 238000013461 design Methods 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 11
- 238000005119 centrifugation Methods 0.000 description 8
- 238000013459 approach Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000008447 perception Effects 0.000 description 6
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 6
- 239000004926 polymethyl methacrylate Substances 0.000 description 6
- 206010052143 Ocular discomfort Diseases 0.000 description 5
- 230000000007 visual effect Effects 0.000 description 5
- 230000006978 adaptation Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000012800 visualization Methods 0.000 description 4
- 208000003464 asthenopia Diseases 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 230000004256 retinal image Effects 0.000 description 3
- 230000004308 accommodation Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 208000003164 Diplopia Diseases 0.000 description 1
- 210000000683 abdominal cavity Anatomy 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001886 ciliary effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 208000029444 double vision Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000004438 eyesight Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/302—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
- H04N13/31—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/08—Catadioptric systems
- G02B17/0856—Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
- G02B17/086—Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors wherein the system is made of a single block of optical material, e.g. solid catadioptric systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/006—Mixed reality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/20—Scenes; Scene-specific elements in augmented reality scenes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/332—Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
- H04N13/344—Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0127—Head-up displays characterised by optical features comprising devices increasing the depth of field
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0129—Head-up displays characterised by optical features comprising devices for correcting parallax
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0132—Head-up displays characterised by optical features comprising binocular systems
- G02B2027/0134—Head-up displays characterised by optical features comprising binocular systems of stereoscopic type
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0179—Display position adjusting means not related to the information to be displayed
- G02B2027/0185—Displaying image at variable distance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2213/00—Details of stereoscopic systems
- H04N2213/002—Eyestrain reduction by processing stereoscopic signals or controlling stereoscopic devices
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Optics & Photonics (AREA)
- Signal Processing (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computer Graphics (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Stereoscopic And Panoramic Photography (AREA)
- Optical Elements Other Than Lenses (AREA)
- Lenses (AREA)
- Eye Examination Apparatus (AREA)
- Eyeglasses (AREA)
- User Interface Of Digital Computer (AREA)
- Lens Barrels (AREA)
- Holo Graphy (AREA)
Abstract
一种可佩戴3D增强现实显示器和方法,其可包括3D集成成像光学器件。
Description
本申请是申请号为2015800230326、发明名称为“可佩戴3D增强现实显示器”的专利申请的分案申请。
技术领域
本发明总体上涉及可佩戴3D增强现实显示器,并且更特别地但不是排外地涉及包括3D集成成像(InI)光学器件的可佩戴3D增强现实显示器。
背景技术
允许在人的现实世界视图上叠加2D或3D数字信息的增强现实(AR)显示器长期以来已被描述为一项重新定义我们感知数字信息且与数字信息相互作用的方式的起改造作用的技术。尽管已经探索了若干个类型的AR显示设备,但是期望形式的AR显示器是轻质的光学看穿式(see-through)头戴式显示器(OST-HMD),其能够实现数字信息到物理世界的直观视图上的光学叠加并且保持对现实世界的看穿式视觉。随着无线网络的迅速增加的带宽、电子器件的小型化以及流行的云计算,当前挑战之一是实现不显眼(unobtrusive)AR显示器,其将OST-HMD、智能电话以及移动计算的功能集成在一副眼镜的体积内。
如果可用的话,这样的AR显示器将有潜力彻底改革许多实践的领域并且渗透生活的结构(fabric),包括医疗、防御和安全、制造、运输、教育和娱乐领域。例如,在医学中,AR技术可使得医生能够在实施手术的同时看到叠加在患者的腹腔上的患者的CT图像;在移动计算中,它可以允许旅行者在街上行走的同时访问他或她视线中的饭店的评论;在军事训练中,它可以允许战士在将3D虚拟对象混入现场训练环境中的环境中有效地训练。
通常,AR技术的大多数关键障碍是由显示器来限定的。缺少高性能、紧凑和低成本AR显示器会限制探索AR技术潜在提供的全范围益处的能力。近年,重要的研究和市场驱动已经朝向克服OST-HMD系统的笨重、类似头盔的外形因数,主要集中于实现紧凑且轻质的外形因数。已经探索了导致OST-HMD显著进步的几个光学技术。例如,大力宣传的googleGlass®是非常紧凑、轻质(~36克)、单眼OST-HMD,提供无障碍即时访问数字信息的益处。尽管它已展示了AR显示器的有前途且令人兴奋的未来前景,但是google Glass®的当前版本在640×360像素的图像分辨率下具有非常窄的FOV(沿对角线近似15°FOV)。这对有效增强许多应用程序中的现实世界视图提供了有限的能力。
尽管这样的承诺,但是现有的OST-HMD仍有许多问题,诸如AR显示器的视觉不适。因此,在实现低成本、高性能、轻质且真正3D OST-HMD系统的同时提供提供增加的视觉舒适度的OST-HMD将是本领域中的进步。
发明内容
在本发明的各方面之一中,本发明可以提供一种3D增强现实显示器,其具有用于提供向用户显示的虚拟3D图像的微显示器。例如,本发明的光学方法可将AR显示系统的光学路径和微InI子系统的光学路径唯一地组合以提供3D光场光源。此方法提供了实现不易受到适应-会聚差异问题影响的AR显示器的潜力。受益于自由形式的光学技术,该方法还可以创建轻质且紧凑的OST-HMD解决方案。
在这点上,在本发明的一个示例性配置中,显示光学器件可被提供用来从微显示器接收光学辐射并且可被配置成从所接收的辐射创建3D光场,即真正光学重构的3D实际或虚拟对象。(如这里所使用的,术语“3D光场”被定义成意指包括看起来要由3D场景发射以创建3D场景的感知的光线集合的3D场景的辐射场)。还可包括与显示光学器件光通信的目镜,其中该目镜被配置成从显示光学器件接收3D光场并将所接收到的辐射递送到该系统的出瞳以提供虚拟显示路径。目镜可包括被配置成从显示光学器件接收3D光场且将所接收到的辐射反射到该系统的出瞳以提供虚拟显示路径的所选表面。该所选表面还可被配置成从不同于微显示器的源接收光学辐射并将这样的光学辐射传输到出瞳以提供看穿式光学路径。该目镜可包括自由形式的棱镜形状。在一个示例性配置中,该显示光学器件可包括集成成像光学器件。
附图说明
当结合附图阅读时,可进一步理解本发明的示例性实施例的前述摘要和后面的详细描述,在附图中:
图1A到1C示意性地图示单眼AR显示器中的适应-会聚提示(图1A);双眼显示器(图1B);以及观看实际对象(图1C);
图2示意性地图示根据本发明的示例性3D-OST-HMD系统的框图,其包括微观集成成像(InI)单元、看穿式光学器件和目镜;
图3示意性地图示用于创建在本发明的设备和方法中使用的3D场景的3D光场的微观InI单元的图;
图4示意性地图示根据本发明的用于创建其中虚拟光场是远心的3D场景的3D光场的替代示例性微观InI(微InI)单元的图;
图5示意性地图示根据本发明的示例性头戴3D集成成像显示系统的图,其集成微InI单元和用于创建3D场景的虚拟光场的传统目镜光学器件;
图6A到6C示意性地图示根据本发明的使用自由形式的光学技术的3D增强现实光学看穿式HMD的示例性设计,其中图6A图示用于3D光场显示器的示例性自由形式目镜,图6B图示校正观察轴线偏离和偏差的示例性自由形式校正镜,以及图6C图示集成光学布局和射线追踪;
图7示意性地图示根据本发明的示例性微InI模块和目镜;
图8图示根据本发明的由微InI和自由形式目镜重构的微显示器、微透镜阵列、3D场景的示例性样机(prototype);
图9图示在本发明的特定示范中使用的实验“3D”图像;以及
图10A到10D展示由放置在图8的样机的目镜处的数码照相机捕获的图像,其中照相机以4m(图10A)聚焦、30cm(图10B)聚焦、移动到出瞳左侧(图10C)以及移动到出瞳右侧(图10D)。
具体实施方式
尽管HMD的目前商业发展,已经作出了非常有限的努力来解决使AR显示器的视觉不适最小化的挑战,这是要求延长的使用时段的应用的极重要的关注。引起视觉不适的关键因素之一是所显示的数字信息与现实世界场景之间的适应-会聚差异,这是大多数现有AR显示器所固有的基本问题。适应提示指的是眼睛的聚焦动作,其中睫状肌改变晶状体的折光能力并因此使对于场景的固定深度的模糊量最小化。与眼睛适应变化相关的是视网膜图像模糊提示,其指的是随着从眼睛的固定点到更近或更远的点的距离变化的图像模糊效应。适应和视网膜图像模糊效应一起被称为聚焦提示。会聚提示指的是眼睛使视觉轴线向内或向外以便在近距离或远距离在感兴趣的3D对象处相交的旋转动作。
适应-会聚失配问题源于在大多数现有AR显示器中图像源是位于离眼睛固定距离处的2D平坦表面的事实。因此,这个类型的AR显示器缺少为要被叠加在位于不同于2D图像源的距离处的实际对象上的数字信息再现(render)正确聚焦提示的能力。它引起下面的三个适应-会聚冲突。(1)存在2D图像平面与现实世界场景之间的适应提示的失配(图1A)。提示眼睛在2D图像平面处适应以便在同时提示眼睛在数字信息被叠加到其上的实际3D对象的深度处适应和会聚的同时观看增强的信息。显示平面和现实世界对象之间的距离间隙可以容易地超越人类视觉系统(HVS)可以同时适应的事物。简单的示例是驾驶辅助的AR显示器的使用,其中眼睛需要时常在AR显示器和从近处(例如仪表板)跨越到远处(例如道路标志)的现实世界对象之间切换注意力。(2)在双眼立体显示中,通过利用双眼差异来再现一对立体图像,可再现增强信息以便在与2D显示表面不同的距离处显现(图1B)。当观看增强信息时,提示眼睛在2D显示表面处适应以便使虚拟显示焦点对准(in focus)但是同时促使眼睛会聚在由双眼差异指示的深度处以融合立体对。在观看自然场景中(图1C),眼睛会聚深度与适应深度相符并且在不同于感兴趣对象的深度处的对象看起来是模糊的。(3)经由立体图像再现的合成对象(不管它们所再现的离用户的距离)看起来都是焦点对准(在观看者集中在图像平面的情况下),或者看起来都模糊(在用户在不同于图像平面的距离处适应的情况下)。所显示的场景的视网膜图像模糊不会随着从眼睛固定点到模拟场景中的不同深度处的其它点的距离而变化。简言之,不正确的聚焦提示可促成观看立体显示的问题,诸如扭曲的深度感知、复视视觉、视觉不适和疲劳以及动眼反应的降级。
在本发明的各方面之一中,本发明涉及通过将3D光场创建技术与自由形式光学技术组合的OST-HMD设计的新颖方法。本发明的3D光场创建技术通过创建看起来要由3D场景发射的光线集合以及创建3D场景的感知来重构3D场景的辐射场。因此,如这里所使用的,术语“3D光场”被定义成意指包括看起来要由3D场景发射以创建3D场景的感知的光线集合的3D场景的辐射场。所重构的3D场景为HMD观看光学器件创建3D图像源,这能够实现利用3D源替代典型2D显示表面并且因此潜在地克服适应-会聚差异问题。可在本发明的设备和方法中使用能够生成3D光场的任何光学系统。例如,本发明的一个示例性配置将微集成成像(微InI)光学器件用于创建全视差3D光场以便光学地创建3D场景的感知。(本领域技术人员将意识到集成成像(InI)是多视图成像和显示技术,其通过利用针孔、透镜或微透镜阵列来捕获或显示3D场景的光场。在作为显示技术的情况下,微透镜阵列与显示设备组合,这提供每个都具有3D场景的不同视角的信息的一组基本图像。与显示设备组合的微透镜阵列再现由显示设备的不同像素发射的光线束,并且来自不同像素的这些光线束相交并光学地创建看起来发光并占用3D空间的3D点的感知。此方法允许利用所有方向上的全视差信息来重构3D场景的真正3D图像)。能够生成可与本发明一起使用的3D光场的其它光学系统包括但不限于全息显示(M. Lucente, “Interactive three-dimensional holographic displays:seeing the future in depth,” Computer Graphics, 31(2), pp. 63-67, 1997; P. A.Blanche等, “Holographic three-dimensional telepresence using large-areaphotorefractive polymer”, Nature, 468, 80-83, 2010年11月)、多层计算光场显示(G.Wetzstein等, “Tensor Displays: Compressive light field synthesis usingmultilayer displays with directional backlighting,” ACM Transactions onGraphics, 31(4), 2012)、以及体积显示(Blundell, B. G., 和Schwarz, A. J., “Theclassification of volumetric display systems: characteristics andpredictability of the image space,” IEEE Transaction on Visualization andComputer Graphics, 8(1), pp. 66-75, 2002;J. Y. Son, W.H. Son, S.K. Kim, K.H.Lee, B. Javidi, “Three-Dimensional Imaging for Creating Real-World-LikeEnvironments,” Proceedings of IEEE Journal, Vol. 101, issue 1, pp. 190-205,2013年1月)。
微InI系统具有以适合于可穿戴系统的非常紧凑的外形因数实现全视差3D对象重构和可视化的潜力。它可以显著地减轻传统自动立体InI显示器中的大多数限制(这归因于良好约束的观看位置的益处)并且可以被有效地用于解决传统HMD系统中的适应-会聚差异问题。微InI单元可以通过来自3D场景的很多所记录的感知图像的传播光线锥的相交来重构小型化3D场景。通过利用自由形式的光学技术,本发明的方法可以导致紧凑、轻质、护目镜风格的AR显示器,其潜在地更不易受到适应-会聚差异问题和视觉疲劳的影响。作为对现有AR显示器的适应-会聚差异问题的响应,我们开发了具有再现光学重构的3D场景的真正光场的能力的AR显示技术以及由此的对于跨大深度范围放置的数字信息的准确聚焦提示。
创建不易受到适应-会聚差异问题影响的轻质且紧凑OST-HMD解决方案的挑战是解决两个基础问题。第一个是针对与AR显示器中的眼睛会聚深度相关的场景的预期距离提供显示具有正确再现的聚焦提示的3D场景的能力,而不是显示在固定距离的2D平面上。第二个是创建具有与一副眼镜一样引人入胜的外形因数的目镜的光学设计。
图2中图示根据本发明的3D OST-HMD系统的框图。它包括三个主要子系统:光场创建模块(“3D光场创建模块”),其重现从受约束的视区看到的3D场景的全视差光场;目镜,其将重构的3D光场中继到观看者的眼睛中;以及看穿式系统(“看穿式光学器件”),其光学地实现现实世界场景的不显眼的视图。
在本发明各方面之一中,本发明提供一种将用于全视差3D场景光学可视化的3D微InI方法与用于OST-HMD观看光学器件的自由形式的光学技术集成的创新的OST-HMD系统。此方法实现具有全视差光场再现能力的紧凑3D InI光学看穿式HMD(InI-OST-HMD)的开发,其被预期克服持续的适应-会聚差异问题并且大大降低了用户的视觉不适和疲劳体验。
全视差光场创建方法。解决适应-会聚差异问题的重要步骤是提供正确地再现数字信息的聚焦提示(不管其到观看者的距离)而不是将数字信息再现在固定距离2D表面上的能力。在不同的非立体显示方法之中,我们选择使用InI方法,它允许看起来要由从受约束的或不受约束的视区看到的3D场景发射的3D场景的全视差光场的重构。与所有其它技术相比,InI技术要求最小量的硬件复杂性,这使得可能将它与OST-HMD光学系统集成并创建可佩戴真实3D AR显示器。
图3示意性地图示示例性微InI单元300。一组2D基本图像301(每个表示3D场景的不同视角)被显示在高分辨率微显示器310上。通过微透镜阵列(MLA)320,每个基本图像301充当空间上不相干的对象并且基本图像301中的像素发射的锥形射线束相交并完整地创建3D场景的感知,其中对象看起来沿着在参考面处具有深度范围Z0的表面AOB定位,例如以提供发光并占用3D空间的外观。微透镜阵列可被放置成离微显示器310为距离“g”处以创建虚拟或实际3D场景。微InI单元300允许利用全视差信息来光学重构3D表面形状。应该注意的是,基于InI的3D显示器从根本上不同于多视图立体系统来进行操作,其中透镜板用作空间解复用器,以取决于观看者位置来选择场景的适当不连续左眼和右眼平面视图。此类多视图系统产生通常仅具有水平视差的限定数目的双眼视图并且可继续遭受会聚适应冲突。
图4示意性地图示根据本发明的微InI单元400的替代配置,其在表面AOB处创建3D场景的远心3D光场。与图3的配置的主要区别在于附加透镜(透镜430和/或透镜440)的使用,其帮助中继微透镜阵列(MLA)420的孔径并创建远心3D光场。(R. Martínez-Cuenca, H.Navarro, G. Saavedra, B. Javidi, 和M. Martínez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” OpticsExpress, Vol. 15, Issue 24, pp. 16255-16260, 2007年11月21日)。透镜430和透镜440具有相同的焦距f1=f2,其中透镜430直接附着到MLA 420并且透镜440被放置在离开焦距f1处。微显示器410与MLA 420之间的间隙与MLA 420的焦距f0相同。此替代设计的主要优点是重构3D场景的视角的潜在增加、紧凑、容易与HMD观看光学器件集成,并且阻止由MLA 420的微透镜421而不是正确配对的基本图像401和微透镜421所折射的射线创建的翻转图像。
尽管InI方法是有前途的,但是由于下面三个主要限制仍期望改进:(1)低横向和纵向分辨率;(2)窄的场深度(DOF);以及(3)有限的视场角。这些限制受制于微透镜的有限成像能力和有限孔径、大尺寸显示器的差空间分辨率以及宽视角和高空间分辨率之间的权衡关系。传统的InI系统通常产生低横向和深度分辨率和窄DOF。然而,在本发明的可佩戴InI-HMD系统中可以减轻这些限制。首先,具有大像素计数和非常精细像素(例如~5μm像素尺寸)的微显示器可被用在本发明中以替换在传统InI显示器中使用的大像素显示设备(~200-500μm像素尺寸),从而提供空间分辨率的至少50x增益(图7)。其次,由于HMD系统的本质,视区被很好地限制且因此与大尺寸的自动立体积显示器相比数目少得多的基本图像将足以为限制的视区生成全视差光场。第三,为了在InI-HMD系统中产生从40cm到5m深度范围跨越的感知的3D体积,对于由微InI单元重构的中间3D场景来说非常窄的深度范围(例如Z0~3.5mm)就足够了,与在传统的独立InI显示系统中要求至少50cm深度范围可使用相比其更负担得起得多(图7)。最后,通过一起优化微透镜和HMD观看光学器件,整个InI-HMD系统的深度分辨率可以被显著地改进,从而克服独立InI系统的成像限制。
由微InI单元重构的小型化3D场景的光场可被目镜光学器件中继到眼睛中以便观看。目镜光学器件不仅将3D光场有效地耦合到眼睛(出)瞳中,而且还可以放大3D场景以创建看起来在离观看者的有限距离处的虚拟3D显示。
作为示例,图5示意性地图示微InI单元530与传统目镜光学器件540的集成。微InI单元530可包括可以以与图3中图示的那个类似的方式配置的微显示器510和微透镜阵列520。微InI单元530重构小型化3D场景(位于图5中的AOB处),其位于目镜光学器件540的后焦点附近。通过目镜光学器件540,小型化场景可被放大成在A'O'B'处的扩大3D显示,然后可从由目镜光学器件540的出瞳约束的小区域观看该扩大3D显示。归因于重构场景的3D本质,在出瞳内的不同位置处看到不同观看视角。
在用于HMD设计的不同方法之中,自由形式的光学技术在设计紧凑HMD系统中展示出广阔前景。图6A图示根据本发明的可佩戴3D增强现实显示器600的示例性配置的示意图。该可佩戴3D增强现实显示器600包括3D InI单元630和自由形式目镜640。该微 InI单元630可包括可以以与图3中图示的那个类似的方式配置的微显示器610和微透镜阵列620。此配置600采用楔形的自由形式棱镜作为目镜640,通过该目镜640来放大和观看由微InI单元630重构的3D场景。此类目镜640由分别标记为1、2和3的三个自由形式光学表面来形成,该三个自由形式光学表面可以是旋转非对称表面。出瞳是眼睛被放置以观看经放大的3D场景的地方,该经放大的3D场景位于与3D InI单元630的参考面共轭的虚拟参考面上。从位于中间场景处的3D点(例如A)发射的光线首先被位于最靠近参考面的自由形式目镜640的表面3折射。随后,光线经历由表面1'和2的两次连续反射,并最后通过表面1传输且到达系统的出瞳。来自相同对象点的多个射线方向(例如来自点A的3条射线中的每一个)撞击在出瞳的不同位置上并且在眼睛前面重构虚拟3D点(例如 A'),其中多个射线方向中的每一个表示对象的不同视图。
不是需要多个元件,而是将光学路径自然折叠在目镜640的三表面棱镜结构内,当与使用旋转对称元件的设计相比时这帮助大大降低光学器件的总体积和重量。
为了实现用于AR系统的看穿能力,目镜640的表面2可被涂覆为分束镜。可添加自由形式校正镜650以提供具有改进的看穿能力的可佩戴3D增强现实显示器690。该校正镜650可包括两个自由形式表面,其可被附着到目镜640的表面2以校正由自由形式棱镜目镜640引入到现实世界场景的观看轴线偏离和不期望的偏差。来自3D InI单元630所生成的虚拟光场的射线被棱镜目镜640的表面2反射,而来自现实世界场景的射线被传输通过自由形式目镜640和校正镜650,图6C。图6C示意性图示整体可佩戴3D增强现实显示器690的集成和射线追踪。自由形式校正镜650的前表面与棱镜目镜640的表面2的形状相匹配。当校正镜650与棱镜目镜640组合时,校正镜650的后表面4可被优化成使从现实世界场景引入到射线的移动和失真最小化。预期附加的校正镜650不会显著增加整个系统690的占用空间和重量。
因此,在本发明的设备中,自由形式目镜640可对3D表面AOB的光场成像,而不是对2D图像表面成像。在此类InI-HMD系统600、690中,自由形式目镜640可以在与实际对象的光场光学共轭的位置处重构虚拟3D对象A'O'B'的光场,而在传统HMD系统中,目镜创建与2D微显示表面光学共轭的经放大的2D虚拟显示。
示例。
使用现成光学部件来实施根据图6C的配置的InI OST-HMD的概念验证单眼样机(图8)。利用焦距为3.3mm且间距为0.985mm的微透镜阵列(MLA)。(可以从Digital Optics公司、SUSS Microoptics等等购买这些类型的微透镜)。微显示器是0.8''有机发光显示器(OLED),其提供具有9.6μm像素尺寸的1920x1200彩色像素。(通过华盛顿州的贝尔维尤的eMagin公司的EMA-100820)。所使用的自由形式目镜连同看穿式校正器属于在国际专利申请号PCT/US2013/065422中公开的类型,通过参考将其整个内容合并于此。在下面的表中提供目镜640和校正器650的规格。目镜提供40度的视场和大约6.5mm的眼箱(eyebox)。归因于目镜设计的严格远心度,其适于具有合理地低串扰但具有窄的视区的InI设置。值得注意的是,实施本发明中描述的光学方法不需要修改此特定自由形式目镜设计。可为了此目的而设计和优化替代目镜。
对于显示路径的系统规定。
在表1中,表面#2—#4指定自由形式目镜640。表1表面#2和#4表示相同的物理表面
并且与图6A-6C中的目镜表面1相对应。表1表面#3与目镜表面2相对应,并且表1表面#5与图
6A-6C中的目镜表面3相对应。
表面编号 | 表面类型 | Y半径 | 厚度 | 材料 | 折射模式 |
1 (停止) | 球形 | 无穷大 | 0.000 | 折射 | |
2 | XY多边形 | -185.496 | 0.000 | PMMA | 折射 |
3 | XY多边形 | -67.446 | 0.000 | PMMA | 折射 |
4 | XY多边形 | -185.496 | 0.000 | PMMA | 折射 |
5 | XY多边形 | -830.046 | 0.000 | 折射 | |
6 | 球形 | 无穷大 | 0.000 | 折射 |
表1. 目镜的表面规定—AR显示路径。
表面编号 | 表面类型 | Y半径 | X 半径 | 厚度 | 材料 | 折射模式 |
1 (停止) | 球形 | 无穷大 | 无穷大 | 0.000 | 折射 | |
2 | XY多边形 | -185.496 | -185.496 | 0.000 | PMMA | 折射 |
3 | XY多边形 | -67.446 | -67.446 | 0.000 | PMMA | 折射 |
4 | XY多边形 | -67.446 | -67.446 | 0.000 | PMMA | 折射 |
5 | XY多边形 | -87.790 | -87.790 | 10.00 | 折射 | |
6 | 圆柱形 | 无穷大 | -103.400 | 6.5 | NBK7 | 折射 |
7 | 球形 | 无穷大 | 无穷大 | 0.000 | 折射 |
表2. 对于看穿式路径的系统规定。
对于光学看穿式路径的系统规定。
在表2中,表面#2和#3是目镜表面1和3,与显示路径中相同地被建模。表面#4、#5指
定自由形式校正镜650。表面#4是表面#3的准确复制品(目镜表面2)。
Y 半径 | -1.854965E+02 | X**2 * Y**5 | -1.505674E-10 |
圆锥常数 | -2.497467E+01 | X * Y**6 | 0.000000E+00 |
X | 0.000000E+00 | Y**7 | -4.419392E-11 |
Y | 0.000000E+00 | X**8 | 4.236650E-10 |
X**2 | -2.331157E-03 | X**7 * Y | 0.000000E+00 |
X * Y | 0.000000E+00 | X**6 * Y**2 | -1.079269E-10 |
Y**2 | 6.691726E-04 | X**5 * Y**3 | 0.000000E+00 |
X**3 | 0.000000E+00 | X**4 * Y**4 | -1.678245E-10 |
X**2 * Y | -1.066279E-04 | X**3 * Y**5 | 0.000000E+00 |
X Y**2 | 0.000000E+00 | X**2 * Y**6 | 2.198604E-12 |
Y**3 | -2.956368E-05 | X * Y**7 | 0.000000E+00 |
X**4 | -1.554280E-06 | Y**8 | -2.415118E-12 |
X**3 * Y | 0.000000E+00 | X**9 | 0.000000E+00 |
X**2 * Y**2 | 1.107189E-06 | X**8 * Y | 4.113054E-12 |
X * Y**3 | 0.000000E+00 | X**7 * Y**2 | 0.000000E+00 |
Y**4 | 1.579876E-07 | X**6 * Y**3 | -1.805964E-12 |
X**5 | 0.000000E+00 | X**5 * Y**4 | 0.000000E+00 |
X**4 * Y | 1.789364E-07 | X**4 * Y**5 | 9.480632E-13 |
X**3 * Y**2 | 0.000000E+00 | X**3 * Y**6 | 0.000000E+00 |
X**2 * Y**3 | -2.609879E-07 | X**2 * Y**7 | 2.891726E-13 |
X * Y**4 | 0.000000E+00 | X * Y**8 | 0.000000E+00 |
Y**5 | -6.129549E-10 | Y**9 | -2.962804E-14 |
X**6 | -3.316779E-08 | X**10 | -6.030361E-13 |
X**5 * Y | 0.000000E+00 | X**9 * Y | 0.000000E+00 |
X**4 * Y**2 | 9.498635E-09 | X**8 * Y**2 | -7.368710E-13 |
X**3 * Y**3 | 0.000000E+00 | X**7 * Y**3 | 0.000000E+00 |
X**2 * Y**4 | 9.042084E-09 | X**6 * Y**4 | 9.567750E-13 |
X * Y**5 | 0.000000E+00 | X**5 * Y**5 | 0.000000E+00 |
Y**6 | -4.013470E-10 | X**4 * Y**6 | 4.280494E-14 |
X**7 | 0.000000E+00 | X**3 * Y**7 | 0.000000E+00 |
X**6 * Y | -8.112755E-10 | X**2 * Y**8 | -7.143578E-15 |
X**5 * Y**2 | 0.000000E+00 | X * Y**9 | 0.000000E+00 |
X**4 * Y**3 | 1.251040E-09 | Y**10 | 3.858414E-15 |
X**3 * Y**4 | 0.000000E+00 | N-半径 | 1.000000E+00 |
表3. 表1的表面#2和#4的光学表面规定。
Y 离心 | Z 离心 | 阿尔法倾斜 |
6.775E+00 | 2.773E+01 | 7.711E+00 |
表4. 表1的表面#2和#4相对于表1的表面#1的离心。
Y 半径 | -6.744597E+01 | X**2 * Y**5 | -3.464751E-11 |
圆锥常数 | -1.258507E+00 | X * Y**6 | 0.000000E+00 |
X | 0.000000E+00 | Y**7 | -8.246179E-12 |
Y | 0.000000E+00 | X**8 | -2.087865E-11 |
X**2 | -1.300207E-03 | X**7 * Y | 0.000000E+00 |
X * Y | 0.000000E+00 | X**6 * Y**2 | 2.845323E-11 |
Y**2 | 4.658585E-04 | X**5 * Y**3 | 0.000000E+00 |
X**3 | 0.000000E+00 | X**4 * Y**4 | -5.043398E-12 |
X**2 * Y | -1.758475E-05 | X**3 * Y**5 | 0.000000E+00 |
X Y**2 | 0.000000E+00 | X**2 * Y**6 | 2.142939E-14 |
Y**3 | -1.684923E-06 | X * Y**7 | 0.000000E+00 |
X**4 | -1.463720E-06 | Y**8 | 1.607499E-12 |
X**3 * Y | 0.000000E+00 | X**9 | 0.000000E+00 |
X**2 * Y**2 | -1.108359E-06 | X**8 * Y | -1.922597E-12 |
X * Y**3 | 0.000000E+00 | X**7 * Y**2 | 0.000000E+00 |
Y**4 | -1.098749E-07 | X**6 * Y**3 | 1.100072E-13 |
X**5 | 0.000000E+00 | X**5 * Y**4 | 0.000000E+00 |
X**4 * Y | -7.146353E-08 | X**4 * Y**5 | -4.806130E-14 |
X**3 * Y**2 | 0.000000E+00 | X**3 * Y**6 | 0.000000E+00 |
X**2 * Y**3 | -1.150619E-08 | X**2 * Y**7 | -2.913177E-14 |
X * Y**4 | 0.000000E+00 | X * Y**8 | 0.000000E+00 |
Y**5 | 5.911371E-09 | Y**9 | 9.703717E-14 |
X**6 | -5.406591E-10 | X**10 | 2.032150E-13 |
X**5 * Y | 0.000000E+00 | X**9 * Y | 0.000000E+00 |
X**4 * Y**2 | -1.767107E-09 | X**8 * Y**2 | -1.037107E-13 |
X**3 * Y**3 | 0.000000E+00 | X**7 * Y**3 | 0.000000E+00 |
X**2 * Y**4 | -7.415334E-10 | X**6 * Y**4 | 3.602862E-14 |
X * Y**5 | 0.000000E+00 | X**5 * Y**5 | 0.000000E+00 |
Y**6 | -5.442400E-10 | X**4 * Y**6 | -8.831469E-15 |
X**7 | 0.000000E+00 | X**3 * Y**7 | 0.000000E+00 |
X**6 * Y | 6.463414E-10 | X**2 * Y**8 | 2.178095E-15 |
X**5 * Y**2 | 0.000000E+00 | X * Y**9 | 0.000000E+00 |
X**4 * Y**3 | 1.421597E-10 | Y**10 | 1.784074E-15 |
X**3 * Y**4 | 0.000000E+00 | N-半径 | 1.000000E+00 |
表5. 表1的表面#3的光学表面规定。
Y 离心 | Z 离心 | 阿尔法倾斜 |
1.329E+01 | 4.321E+01 | -8.856E+00 |
表6. 表5的表面#3相对于表1的表面#1的离心。
Y 半径 | -8.300457E+02 | X**2 * Y**5 | 4.051880E-08 |
圆锥常数 | -9.675799E+00 | X * Y**6 | 0.000000E+00 |
X | 0.000000E+00 | Y**7 | -3.973293E-09 |
Y | 0.000000E+00 | X**8 | -1.881791E-10 |
X**2 | -1.798206E-04 | X**7 * Y | 0.000000E+00 |
X * Y | 0.000000E+00 | X**6 * Y**2 | 5.519986E-09 |
Y**2 | -2.606383E-03 | X**5 * Y**3 | 0.000000E+00 |
X**3 | 0.000000E+00 | X**4 * Y**4 | 3.822268E-09 |
X**2 * Y | -7.767146E-05 | X**3 * Y**5 | 0.000000E+00 |
X Y**2 | 0.000000E+00 | X**2 * Y**6 | -3.024448E-09 |
Y**3 | -8.958581E-05 | X * Y**7 | 0.000000E+00 |
X**4 | 1.978414E-05 | Y**8 | 2.673713E-11 |
X**3 * Y | 0.000000E+00 | X**9 | 0.000000E+00 |
X**2 * Y**2 | 2.081156E-05 | X**8 * Y | 1.006915E-10 |
X * Y**3 | 0.000000E+00 | X**7 * Y**2 | 0.000000E+00 |
Y**4 | -1.073001E-06 | X**6 * Y**3 | -2.945084E-10 |
X**5 | 0.000000E+00 | X**5 * Y**4 | 0.000000E+00 |
X**4 * Y | 2.585164E-07 | X**4 * Y**5 | 5.958040E-10 |
X**3 * Y**2 | 0.000000E+00 | X**3 * Y**6 | 0.000000E+00 |
X**2 * Y**3 | -2.752516E-06 | X**2 * Y**7 | -3.211903E-10 |
X * Y**4 | 0.000000E+00 | X * Y**8 | 0.000000E+00 |
Y**5 | -1.470053E-06 | Y**9 | 2.296303E-11 |
X**6 | -1.116386E-07 | X**10 | 5.221834E-12 |
X**5 * Y | 0.000000E+00 | X**9 * Y | 0.000000E+00 |
X**4 * Y**2 | -3.501439E-07 | X**8 * Y**2 | 1.135044E-11 |
X**3 * Y**3 | 0.000000E+00 | X**7 * Y**3 | 0.000000E+00 |
X**2 * Y**4 | 1.324057E-07 | X**6 * Y**4 | -1.050621E-10 |
X * Y**5 | 0.000000E+00 | X**5 * Y**5 | 0.000000E+00 |
Y**6 | -9.038017E-08 | X**4 * Y**6 | 5.624902E-11 |
X**7 | 0.000000E+00 | X**3 * Y**7 | 0.000000E+00 |
X**6 * Y | 3.397174E-10 | X**2 * Y**8 | 5.369592E-12 |
X**5 * Y**2 | 0.000000E+00 | X * Y**9 | 0.000000E+00 |
X**4 * Y**3 | -1.873966E-08 | Y**10 | 2.497657E-12 |
X**3 * Y**4 | 0.000000E+00 | N-半径 | 1.000000E+00 |
表7. 表1的表面#5的光学表面规定。
Y离心 | Z 离心 | 阿尔法倾斜 |
.427E+01 | 3.347E+01 | 7.230E+01 |
表8. 表面#5相对于表1的表面#1的离心。
Y半径 | -8.779024E+01 | X**2 * Y**5 | -8.011955E-11 |
圆锥常数 | -7.055198E+00 | X * Y**6 | 0.000000E+00 |
X | 0.000000E+00 | Y**7 | 3.606142E-11 |
Y | 0.000000E+00 | X**8 | 3.208020E-11 |
X**2 | -3.191225E-03 | X**7 * Y | 0.000000E+00 |
X * Y | 0.000000E+00 | X**6 * Y**2 | -2.180416E-11 |
Y**2 | 4.331992E-03 | X**5 * Y**3 | 0.000000E+00 |
X**3 | 0.000000E+00 | X**4 * Y**4 | -3.616135E-11 |
X**2 * Y | -9.609025E-05 | X**3 * Y**5 | 0.000000E+00 |
X Y**2 | 0.000000E+00 | X**2 * Y**6 | -5.893434E-12 |
Y**3 | -2.432809E-05 | X * Y**7 | 0.000000E+00 |
X**4 | -2.955089E-06 | Y**8 | 3.081069E-12 |
X**3 * Y | 0.000000E+00 | X**9 | 0.000000E+00 |
X**2 * Y**2 | 2.096887E-07 | X**8 * Y | 1.267096E-12 |
X * Y**3 | 0.000000E+00 | X**7 * Y**2 | 0.000000E+00 |
Y**4 | -9.184356E-07 | X**6 * Y**3 | -1.848104E-12 |
X**5 | 0.000000E+00 | X**5 * Y**4 | 0.000000E+00 |
X**4 * Y | 3.707556E-08 | X**4 * Y**5 | 5.208420E-14 |
X**3 * Y**2 | 0.000000E+00 | X**3 * Y**6 | 0.000000E+00 |
X**2 * Y**3 | -1.535357E-07 | X**2 * Y**7 | 1.198597E-13 |
X * Y**4 | 0.000000E+00 | X * Y**8 | 0.000000E+00 |
Y**5 | -1.445904E-08 | Y**9 | -6.834914E-14 |
X**6 | -4.440851E-09 | X**10 | -1.706677E-14 |
X**5 * Y | 0.000000E+00 | X**9 * Y | 0.000000E+00 |
X**4 * Y**2 | 1.686424E-09 | X**8 * Y**2 | -1.614840E-14 |
X**3 * Y**3 | 0.000000E+00 | X**7 * Y**3 | 0.000000E+00 |
X**2 * Y**4 | 6.770909E-09 | X**6 * Y**4 | 8.739087E-14 |
X * Y**5 | 0.000000E+00 | X**5 * Y**5 | 0.000000E+00 |
Y**6 | -3.713094E-10 | X**4 * Y**6 | 3.940903E-15 |
X**7 | 0.000000E+00 | X**3 * Y**7 | 0.000000E+00 |
X**6 * Y | -1.316067E-10 | X**2 * Y**8 | 5.435162E-15 |
X**5 * Y**2 | 0.000000E+00 | X * Y**9 | 0.000000E+00 |
X**4 * Y**3 | 7.924387E-10 | Y**10 | -2.259169E-15 |
X**3 * Y**4 | 0.000000E+00 | N-半径 | 1.000000E+00 |
表9. 表2的表面#5的光学表面规定。
Y 离心 | Z 离心 | 阿尔法倾斜 |
3.358E+00 | 4.900E+01 | 6.765E+00 |
表10. 表面#5相对于表2的表面#1的离心。
如在系统规定表(例如表1或2)中使用的,术语“XY多边形”指的是可以通过下面的等式表示的表面:
其中z是沿着局部x, y, z 坐标系的z轴测量的自由形式表面的下垂,c是顶点曲率(CUY),r是径向距离,k是圆锥常数,并且Cj是xmyn的系数。
出于展示的目的,模拟包括数字“3”和字母“D”的3D场景。在视觉空间中,对象“3”和“D”分别位于离开眼睛位置~4米和30cm处。为了清楚地展示聚焦的效果,利用黑线纹理而不是使用清晰的纯色来再现这些字符对象。模拟3D场景的18x11基本图像的阵列(图9),该阵列中的每一个由102 x102个颜色像素组成。微InI单元所重构的3D场景离开MLA大约10mm,并且两个重构目标的间隔在中间重构空间中的深度上为大约3.5mm。
图10A至10D示出利用放置在眼睛位置处的数码照相机捕获的一组图像。为了展示聚焦效果以及看穿式视图,在现实世界视图中,斯内伦字母图和打印的黑白栅格目标被分别放置在离开观看者~4米和30cm处,其分别与对象“3”和“D”的位置对应。
图10A和10B分别展示照相机在斯内伦图和栅格目标上的聚焦效果。当相机聚焦在远的斯内伦图上时对象“3”看起来处于锐聚焦,而当照相机聚焦在近的栅格目标上时对象“D”焦点对准。图10C和10D展示在照相机焦点被设置在近的栅格目标上的同时照相机位置从眼箱的左侧移动到右侧的效果。如所预期的,在这两个视图之间观察到细微的视角变化。尽管人工制品是公认地可见的并且需要进一步的开发,但是结果清楚地展示所提出的用于AR显示器的方法可以产生正确聚焦提示以及大深度范围中的真正3D观看。
这里描述和要求保护的发明在范围上不会受到这里公开的特定实施例的限制,因为这些实施例被旨在作为本发明的若干方面的说明。旨在使任何等同实施例处于本发明的范围之内。实际上,根据前面的描述,除了这里示出和描述的那些之外的本发明的各种修改对本领域技术人员来说将变得显而易见。还旨在使此类修改落入所附权利要求的范围之内。
在说明书中引用许多专利和非专利出版物,通过参考将这些出版物中的每一个的整个公开合并于此。
参考文献
[1] Yano, S., Emoto, M., Mitsuhashi, T., and Thwaites, H., “A study ofvisual fatigue and visual comfort for 3D HDTV/HDTV images,” Displays, 23(4),pp. 191-201, 2002.
[2] S.J. Watt, K. Akeley, M.O. Ernst, and M.S. Banks, “Focus Cues AffectPerceived Depth,” J. Vision, 5(10), 834-862, (2005).
[3] D.M. Hoffman, A.R. Girshick, K. Akeley, and M.S. Banks, “Vergence-Accommodation Conflicts Hinder Visual Performance and Cause Visual Fatigue,”J. Vision, 8(3), 1-30, (2008).
[4] G. Lippmann, “Epreuves reversibles donnant la sensation du relief,”Journal of Physics (Paris) 7, 821–825 (1908).
[5] C. B. Burckhardt, “Optimum parameters and resolution limitation ofintegral photography,” J. Opt. Soc. Am. 58, 71–76 (1968).
[6] T. Okoshi, “Optimum design and depth resolution of lens-sheet andprojection-type three-dimensional displays,” Appl. Opt. 10, 2284–2291 (1971).
[7] F. Okano, H. Hoshino, J. Arai y I. Yuyama, “Real-time pickup methodfor a three-dimensional image based on integral photography,” Appl. Opt. 36,1598–1603 (1997).
[8] J. Aran, “Depth-control method for integral imaging,” Optics Letters,33(3): 279-282, 2008.
[9] H. Hua, “Sunglass-like displays become a reality with freeformoptical technology,” SPIE Newsroom, 2012.
[10] H. Hua and C. Gao, A compact, eye-tracked optical see-through head-mounted display, Proc. SPIE 8288, p. 82881F, 2012.
[11] H. Hua, X. Hu, and C. Gao, “A high-resolution optical see-throughhead-mounted display with eyetracking capability,” Optics Express, November2013.
[12] D. Cheng, Y.Wang, H. Hua, and M. M. Talha, Design of an optical see-through headmounted display with a low f-number and large field of view usinga free-form prism, App. Opt. 48 (14), pp. 2655–2668, 2009.
[13] D. Cheng, Y.Wang, H. Hua, and J. Sasian, Design of a wide-angle,lightweight headmounted display using free-form optics tiling, Opt. Lett. 36(11), pp. 2098–2100, 2011.
[14] A. Okuyama and S. Yamazaki, Optical system and image observingapparatus and image pickup apparatus using it, US Patent 5,706,136, 1998.
[15] S. Yamazaki, K. Inoguchi, Y. Saito, H. Morishima, and N. Taniguchi,Thin widefield-of-view HMD with free-form-surface prism and applications,Proc. SPIE 3639,p. 453, 1999.
[16] A. Jones, I. McDowall, Yamada H., M. Bolas, P. Debevec, Renderingfor an Interactive 360º Light Field Display ACM Transactions on Graphics(TOG) –Proceedings of ACM SIGGRAPH 2007, 26(3), 2007.
[17] Tibor Balogh, “The HoloVizio System,” Proceedings of SPIE, VOl 6055,2006.
[18] Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, “Supermulti-view winshield display for long-distance image informationpresentation,” Opt. Express, 19, 704-16, 2011.
[19] Blundell, B. G., and Schwarz, A. J., “The classification ofvolumetric display systems: characteristics and predictability of the imagespace,” IEEE Transaction on Visualization and Computer Graphics, 8(1), pp.66-75, 2002.
[20] P. A. Blanche, et al, “Holographic three-dimensional telepresenceusing large-area photorefractive polymer”, Nature, 468, 80-83, Nov. 2010.
[21] Rolland, J. P., Kureger, M., and Goon, A., “Multifocal planes head-mounted displays,” Applied Optics, 39(19), pp. 3209-14, 2000.
[22] Akeley, K., Watt, S., Girshick, A., and Banks, M., “A stereo displayprototype with multiple focal distances,” Proc. of SIGGRAPH, pp. 804-813,2004.
[23] Schowengerdt, B. T., and Seibel, E. J., “True 3-D scanned voxeldisplays using single or multiple light sources,” Journal of SID, 14(2), pp.135-143, 2006.
[24] S. Liu, H. Hua, D. Cheng, "A Novel Prototype for an Optical See-Through Head-Mounted Display with Addressable Focus Cues," IEEE Transactionson Visualization and Computer Graphics, 16(3), 381-393, (2010).
[25] S. Liu and H. Hua, "A systematic method for designing depth-fusedmulti-focal plane three-dimensional displays," Opt. Express, 18, 11562-11573,(2010)
[26] X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” Journal of Display Technology, December 2013.
[27] Suyama, S., Ohtsuka, S., Takada, H., Uehira, K., and Sakai, S.,“Apparent 3D image perceived from luminance-modulated two 2D images displayedat different depths,” Vision Research, 44: 785-793, 2004.
[28] J. Hong, S. Min, and B. Lee, “Integral floating display systems foraugmented reality,” Applixed Optics, 51(18):4201-9, 2012.
[29] A. Malmone, and H. Fuchs, “Computational augmented realityeyeglasses,” Proc. of ISMAR 2012.
[30] Rolland, J. P., and Hua, H., “Head-mounted display systems,” inEncyclopedia of Optical Engineering (Editors: R. Barry Johnson and Ronald G.Driggers), New York, NY: Marcel Dekker, pp. 1-13, 2005.
[31] H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M.Kuwahara, and K. Aiki, A full-color eyewear display using planar waveguideswith reflection volume holograms, J. Soc. Inf. Display 19 (3), pp. 185–193,2009.
[32] http://www.lumus-optical.com/
[33] http://www.innovega-inc.com
[34] http://www.epson.com/cgi-bin/Store/jsp/Moverio/Home.do
[35] http://www.google.com/glass/start/
[36] M. Martínez-Corral, H. Navarro, R. Martínez-Cuenca, G. Saavedra, andB. Javidi, "Full parallax 3-D TV with programmable display parameters," Opt.Phot. News 22, 50-50 (2011).
[37] J. S. Jang and B. Javidi, "Large depth-of-focus time-multiplexedthree-dimensional integral imaging by use of lenslets with non-uniform focallengths and aperture sizes," Opt. Lett. vol. 28, pp. 1924-1926 (2003).
[38] Chih-Wei Chen, Myungjin Cho, Yi-Pai Huang, and Bahram Javidi,“Improved viewing zones for projection type integral imaging 3D display usingadaptive liquid crystal prism array,” IEEE Journal of Display Technology,2014.
[39] Xiao Xiao, Bahram Javidi,Manuel Martinez-Corral,and Adrian Stern ,“Advances in Three-Dimensional Integral Imaging: Sensing, Display, andApplications,” Applied Optics, 52(4):. 546–560,2013.
[40] J. S. Jang, F. Jin,and B. Javidi, "Three-dimensional integralimaging with large depth of focus by use of real and virtual image fields,"Opt. Lett. 28:1421-23, 2003.
[41]S. Bagheri and B. Javidi, “Extension of Depth of Field UsingAmplitude and Phase Modulation of the Pupil Function,” Journal of OpticsLetters, vol. 33, no. 7, pp. 757-759, 1 April 2008。
Claims (13)
1.一种3D增强现实显示器,包括:
微显示器,用于提供向用户显示的虚拟3D图像;
显示光学器件,被配置成从所述微显示器接收光学辐射并且被配置成根据所接收的辐射在参考面处创建延伸经过深度范围的远心3D光场;以及
与所述显示光学器件光通信的目镜,被配置成从所述显示光学器件接收3D光场,并被配置为在虚拟参考面处创建3D光场的虚拟图像,所述参考面和虚拟参考面跨越所述目镜彼此光学共轭。
2.根据权利要求1所述的3D增强现实显示器,其中所述显示光学器件包括一对透镜,每个透镜具有相同的焦距,其中所述透镜之间的距离等于所述焦距以向所述3D光场提供远心度。
3.根据权利要求1所述的3D增强现实显示器,其中该显示光学器件包括集成成像光学器件。
4.根据权利要求1所述的3D增强现实显示器,其中该目镜包括被配置成从所述显示光学器件接收3D光场且将所接收的辐射反射到出瞳的所选表面,该所选表面还被配置成从不同于微显示器的源接收光学辐射并且将该光学辐射传输到出瞳。
5.根据权利要求1所述的3D增强现实显示器,其中该目镜包括自由形式的棱镜形状。
6.根据权利要求1所述的3D增强现实显示器,其中该目镜包括被配置成从显示光学器件接收光学辐射并折射该光学辐射的第一表面,并且包括被配置成从第一表面接收所折射的光学辐射的第二表面,该第二表面被配置成将光学辐射反射到目镜的第三表面,该第三表面被配置成将从第二表面反射的光学辐射反射到出瞳。
7.根据权利要求6所述的3D增强现实显示器,包括邻近目镜的第二表面设置的校正镜。
8.根据权利要求1所述的3D增强现实显示器,其中该目镜的表面中的一个或多个包括旋转非对称表面。
9.根据权利要求1所述的3D增强现实显示器,其中该目镜包括楔形形状。
11.根据权利要求1所述的3D增强现实显示器,其中该显示光学器件包括全息显示器、多层计算光场显示器和体积显示器中的一个或多个。
12.根据权利要求1所述的3D增强现实显示器,其中该3D光场提供全视差。
13.根据权利要求1所述的3D增强现实显示器,其中所述3D光场提供局部视差。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461948226P | 2014-03-05 | 2014-03-05 | |
US61/948226 | 2014-03-05 | ||
CN201580023032.6A CN106662731B (zh) | 2014-03-05 | 2015-03-05 | 可佩戴3d增强现实显示器 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201580023032.6A Division CN106662731B (zh) | 2014-03-05 | 2015-03-05 | 可佩戴3d增强现实显示器 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110879468A true CN110879468A (zh) | 2020-03-13 |
Family
ID=52697543
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910961573.3A Pending CN110879468A (zh) | 2014-03-05 | 2015-03-05 | 可佩戴3d增强现实显示器 |
CN201580023032.6A Active CN106662731B (zh) | 2014-03-05 | 2015-03-05 | 可佩戴3d增强现实显示器 |
CN201580022973.8A Active CN106537220B (zh) | 2014-03-05 | 2015-03-05 | 具有可变焦点和/或对象识别的可佩戴3d增强现实显示器 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201580023032.6A Active CN106662731B (zh) | 2014-03-05 | 2015-03-05 | 可佩戴3d增强现实显示器 |
CN201580022973.8A Active CN106537220B (zh) | 2014-03-05 | 2015-03-05 | 具有可变焦点和/或对象识别的可佩戴3d增强现实显示器 |
Country Status (11)
Country | Link |
---|---|
US (4) | US10326983B2 (zh) |
EP (3) | EP4016169B1 (zh) |
JP (5) | JP6602797B2 (zh) |
KR (2) | KR102539365B1 (zh) |
CN (3) | CN110879468A (zh) |
AU (4) | AU2015227094B2 (zh) |
BR (1) | BR112016020346A2 (zh) |
CA (2) | CA2941655C (zh) |
IL (2) | IL247588B2 (zh) |
NZ (4) | NZ762222A (zh) |
WO (2) | WO2015134740A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11592650B2 (en) | 2008-01-22 | 2023-02-28 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Head-mounted projection display using reflective microdisplays |
TWI812406B (zh) * | 2022-08-16 | 2023-08-11 | 張朝凱 | 左右眼可分別微調出清晰的人工生成影像的增強現實裝置 |
Families Citing this family (143)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120081800A1 (en) | 2009-04-20 | 2012-04-05 | Dewen Cheng | Optical see-through free-form head-mounted display |
US20110075257A1 (en) | 2009-09-14 | 2011-03-31 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | 3-Dimensional electro-optical see-through displays |
US9244277B2 (en) | 2010-04-30 | 2016-01-26 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Wide angle and high resolution tiled head-mounted display device |
EP3270194B1 (en) | 2012-01-24 | 2020-10-14 | The Arizona Board of Regents on behalf of The University of Arizona | Compact eye-tracked head-mounted display |
CA3102710A1 (en) | 2012-10-18 | 2014-04-24 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Stereoscopic displays with addressable focus cues |
US10262462B2 (en) | 2014-04-18 | 2019-04-16 | Magic Leap, Inc. | Systems and methods for augmented and virtual reality |
BR112016020346A2 (pt) * | 2014-03-05 | 2017-10-31 | Univ Arizona | ?visor de realidade aumentada? |
US11138793B2 (en) | 2014-03-14 | 2021-10-05 | Magic Leap, Inc. | Multi-depth plane display system with reduced switching between depth planes |
US10048647B2 (en) | 2014-03-27 | 2018-08-14 | Microsoft Technology Licensing, Llc | Optical waveguide including spatially-varying volume hologram |
IL235642B (en) | 2014-11-11 | 2021-08-31 | Lumus Ltd | A compact head-up display system is protected by an element with a super-thin structure |
US9759919B2 (en) * | 2015-01-05 | 2017-09-12 | Microsoft Technology Licensing, Llc | Virtual image display with curved light path |
US10176961B2 (en) | 2015-02-09 | 2019-01-08 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Small portable night vision system |
US10061129B2 (en) | 2015-03-15 | 2018-08-28 | Kessler Optics and Photonics Solutions Ltd. | Birefringent ocular for augmented reality imaging |
NZ773813A (en) * | 2015-03-16 | 2022-07-29 | Magic Leap Inc | Methods and systems for diagnosing and treating health ailments |
US9846310B2 (en) * | 2015-06-22 | 2017-12-19 | Innolux Corporation | 3D image display device with improved depth ranges |
US10210844B2 (en) | 2015-06-29 | 2019-02-19 | Microsoft Technology Licensing, Llc | Holographic near-eye display |
US10213688B2 (en) * | 2015-08-26 | 2019-02-26 | Warner Bros. Entertainment, Inc. | Social and procedural effects for computer-generated environments |
WO2017039820A1 (en) | 2015-09-05 | 2017-03-09 | Leia Inc. | Light concentrating backlight and near-eye display system using same |
CA2999261C (en) | 2015-09-23 | 2022-10-18 | Magic Leap, Inc. | Eye imaging with an off-axis imager |
KR102348588B1 (ko) * | 2015-10-16 | 2022-01-07 | 레이아 인코포레이티드 | 멀티빔 회절 격자-기반 니어-아이 디스플레이 |
CN105371780B (zh) * | 2015-11-06 | 2018-04-24 | 西北大学 | 基于集成成像系统的光学三维相关识别装置及识别方法 |
EP3403129B1 (en) * | 2016-01-16 | 2023-09-13 | LEIA Inc. | Multibeam diffraction grating-based head-up display |
US10788791B2 (en) | 2016-02-22 | 2020-09-29 | Real View Imaging Ltd. | Method and system for displaying holographic images within a real object |
US11663937B2 (en) | 2016-02-22 | 2023-05-30 | Real View Imaging Ltd. | Pupil tracking in an image display system |
WO2017145158A1 (en) | 2016-02-22 | 2017-08-31 | Real View Imaging Ltd. | Zero order blocking and diverging for holographic imaging |
US10795316B2 (en) | 2016-02-22 | 2020-10-06 | Real View Imaging Ltd. | Wide field of view hybrid holographic display |
US11320900B2 (en) | 2016-03-04 | 2022-05-03 | Magic Leap, Inc. | Current drain reduction in AR/VR display systems |
JP7152312B2 (ja) | 2016-03-25 | 2022-10-12 | マジック リープ, インコーポレイテッド | 仮想および拡張現実システムおよび方法 |
CA3019946C (en) | 2016-04-08 | 2023-02-28 | Magic Leap, Inc. | Augmented reality systems and methods with variable focus lens elements |
US10215983B2 (en) | 2016-07-19 | 2019-02-26 | The Board Of Trustees Of The University Of Illinois | Method and system for near-eye three dimensional display |
WO2018052590A2 (en) | 2016-08-12 | 2018-03-22 | Arizona Board Of Regents On Behalf Of The University Of Arizona | High-resolution freeform eyepiece design with a large exit pupil |
IL266070B2 (en) * | 2016-10-21 | 2023-10-01 | Magic Leap Inc | System and method for displaying image content on multiple depth planes by providing multiple intrapupillary parallax fields of view |
US10254542B2 (en) | 2016-11-01 | 2019-04-09 | Microsoft Technology Licensing, Llc | Holographic projector for a waveguide display |
US10636063B1 (en) | 2016-11-08 | 2020-04-28 | Wells Fargo Bank, N.A. | Method for an augmented reality value advisor |
EP4036620A1 (en) | 2016-11-08 | 2022-08-03 | Lumus Ltd. | Light-guide device with optical cutoff edge and corresponding production methods |
GB2557229A (en) | 2016-11-30 | 2018-06-20 | Cambridge Entpr Ltd | Multi-depth augmented reality display |
GB2557230B (en) | 2016-11-30 | 2019-09-25 | Jaguar Land Rover Ltd | Multi-depth augmented reality display |
GB2557227A (en) | 2016-11-30 | 2018-06-20 | Jaguar Land Rover Ltd | Multi-depth display apparatus |
GB2557231B (en) * | 2016-11-30 | 2020-10-07 | Jaguar Land Rover Ltd | Multi-depth display apparatus |
CN114325903B (zh) * | 2016-12-08 | 2024-11-05 | 北京耐德佳显示技术有限公司 | 一种自由曲面棱镜组及使用其的近眼显示装置 |
US20190056600A1 (en) | 2016-12-31 | 2019-02-21 | Lumus Ltd | Eye tracker based on retinal imaging via light-guide optical element |
US11022939B2 (en) | 2017-01-03 | 2021-06-01 | Microsoft Technology Licensing, Llc | Reduced bandwidth holographic near-eye display |
US10499997B2 (en) | 2017-01-03 | 2019-12-10 | Mako Surgical Corp. | Systems and methods for surgical navigation |
US11601638B2 (en) * | 2017-01-10 | 2023-03-07 | Intel Corporation | Head-mounted display device |
KR102664388B1 (ko) | 2017-01-23 | 2024-05-08 | 삼성전자주식회사 | 영상 디스플레이 장치 |
WO2018138714A1 (en) * | 2017-01-28 | 2018-08-02 | Lumus Ltd. | Augmented reality imaging system |
CN114690429A (zh) | 2017-02-23 | 2022-07-01 | 奇跃公司 | 基于偏振转换的可变焦虚拟图像设备 |
KR102611752B1 (ko) * | 2017-03-09 | 2023-12-07 | 아리조나 보드 오브 리전츠 온 비해프 오브 더 유니버시티 오브 아리조나 | 통합 이미징 및 도파관 프리즘을 구비한 헤드 장착 광 필드 디스플레이 |
CN110914741A (zh) * | 2017-03-09 | 2020-03-24 | 亚利桑那大学评议会 | 自由形式棱镜和具有增加视场的头戴式显示器 |
CA3055542A1 (en) * | 2017-03-09 | 2018-09-13 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Head-mounted light field display with integral imaging and relay optics |
CN106647094B (zh) * | 2017-03-17 | 2019-01-15 | 京东方科技集团股份有限公司 | 光场显示装置 |
CN108319015B (zh) * | 2017-04-21 | 2023-02-10 | 北京耐德佳显示技术有限公司 | 视网膜投影式近眼显示装置 |
US20200201038A1 (en) * | 2017-05-15 | 2020-06-25 | Real View Imaging Ltd. | System with multiple displays and methods of use |
KR102389330B1 (ko) | 2017-05-26 | 2022-04-22 | 구글 엘엘씨 | 확장된 수용 범위 조정이 가능한 근거리 안구 디스플레이 |
EP3566093A1 (en) * | 2017-05-26 | 2019-11-13 | Google LLC | Near-eye display with extended accommodation range adjustment |
JP2020522737A (ja) * | 2017-05-27 | 2020-07-30 | ムン キ イ, | 鏡を利用した透明なめがね型ディスプレイ |
US10712567B2 (en) | 2017-06-15 | 2020-07-14 | Microsoft Technology Licensing, Llc | Holographic display system |
US10629105B2 (en) * | 2017-06-15 | 2020-04-21 | Google Llc | Near-eye display with frame rendering based on reflected wavefront analysis for eye characterization |
CN107450188A (zh) * | 2017-08-31 | 2017-12-08 | 深圳珑璟光电技术有限公司 | 一种3d近眼显示装置及方法 |
CN109581678A (zh) * | 2017-09-29 | 2019-04-05 | 中强光电股份有限公司 | 近眼光场显示装置及近眼显示装置 |
US10930709B2 (en) | 2017-10-03 | 2021-02-23 | Lockheed Martin Corporation | Stacked transparent pixel structures for image sensors |
CN107656371A (zh) * | 2017-10-16 | 2018-02-02 | 苏州耐德佳天成光电科技有限公司 | 具有视度调节功能的光学系统 |
KR102666265B1 (ko) | 2017-11-02 | 2024-05-14 | 피씨엠에스 홀딩스, 인크. | 라이트 필드 디스플레이에서 조리개 확장을 위한 방법 및 시스템 |
US10510812B2 (en) | 2017-11-09 | 2019-12-17 | Lockheed Martin Corporation | Display-integrated infrared emitter and sensor structures |
CN207965356U (zh) * | 2017-11-14 | 2018-10-12 | 塔普翊海(上海)智能科技有限公司 | 一种近眼可透视头显光学系统 |
US10586360B2 (en) * | 2017-11-21 | 2020-03-10 | International Business Machines Corporation | Changing view order of augmented reality objects based on user gaze |
US11282133B2 (en) | 2017-11-21 | 2022-03-22 | International Business Machines Corporation | Augmented reality product comparison |
RU2686576C1 (ru) | 2017-11-30 | 2019-04-29 | Самсунг Электроникс Ко., Лтд. | Компактное устройство голографического дисплея |
EP3729168A4 (en) * | 2017-12-18 | 2021-07-28 | LEIA Inc. | CLOSE TO EYE DISPLAY BASED ON MULTI-BEAM ELEMENTS, SYSTEM AND PROCESS |
CN107861247B (zh) * | 2017-12-22 | 2020-08-25 | 联想(北京)有限公司 | 光学部件及增强现实设备 |
CN108196374A (zh) * | 2017-12-26 | 2018-06-22 | 张家港康得新光电材料有限公司 | 显示装置 |
CN109991739B (zh) * | 2017-12-29 | 2024-09-10 | 深圳点石创新科技有限公司 | 车载抬头显示器 |
KR102521557B1 (ko) * | 2018-01-04 | 2023-04-14 | 삼성전자주식회사 | 스크롤 입력에 기반하여 이미지 표시를 제어하는 전자 장치 및 방법 |
CN115052139B (zh) | 2018-01-19 | 2023-09-08 | 交互数字Vc控股公司 | 一种用于显示视频的方法和显示设备 |
US10690910B2 (en) | 2018-02-07 | 2020-06-23 | Lockheed Martin Corporation | Plenoptic cellular vision correction |
US11616941B2 (en) | 2018-02-07 | 2023-03-28 | Lockheed Martin Corporation | Direct camera-to-display system |
US10594951B2 (en) | 2018-02-07 | 2020-03-17 | Lockheed Martin Corporation | Distributed multi-aperture camera array |
US10838250B2 (en) * | 2018-02-07 | 2020-11-17 | Lockheed Martin Corporation | Display assemblies with electronically emulated transparency |
US10129984B1 (en) | 2018-02-07 | 2018-11-13 | Lockheed Martin Corporation | Three-dimensional electronics distribution by geodesic faceting |
US10979699B2 (en) | 2018-02-07 | 2021-04-13 | Lockheed Martin Corporation | Plenoptic cellular imaging system |
US10652529B2 (en) | 2018-02-07 | 2020-05-12 | Lockheed Martin Corporation | In-layer Signal processing |
US10951883B2 (en) | 2018-02-07 | 2021-03-16 | Lockheed Martin Corporation | Distributed multi-screen array for high density display |
WO2019164745A1 (en) * | 2018-02-20 | 2019-08-29 | Pcms Holdings, Inc. | Multifocal optics for light field displays |
CN108375840B (zh) * | 2018-02-23 | 2021-07-27 | 北京耐德佳显示技术有限公司 | 基于小型阵列图像源的光场显示单元及使用其的三维近眼显示装置 |
US10678056B2 (en) | 2018-02-26 | 2020-06-09 | Google Llc | Augmented reality light field head-mounted displays |
WO2019182592A1 (en) * | 2018-03-22 | 2019-09-26 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Methods of rendering light field images for integral-imaging-based light filed display |
CN118573835A (zh) | 2018-03-23 | 2024-08-30 | 交互数字Vc控股公司 | 在dibr系统(mfp-dibr)中产生立体视点的基于多焦面的方法 |
TWI651545B (zh) * | 2018-03-26 | 2019-02-21 | 國立中興大學 | 可變化成像距離的成像裝置 |
KR102055901B1 (ko) * | 2018-03-27 | 2019-12-13 | 한국과학기술원 | 초점조절 집적영상 증강현실 디스플레이 및 그 제어 방법 |
KR20190118846A (ko) | 2018-04-11 | 2019-10-21 | 한국과학기술연구원 | 다초점 증강현실 장치 |
KR102594527B1 (ko) | 2018-04-27 | 2023-10-25 | 테세랜드 엘엘씨 | 인간 시각 적응형 광 필드 디스플레이 |
CN112513710A (zh) * | 2018-05-17 | 2021-03-16 | 普拉赞株式会社 | 增强现实显示设备 |
IL259518B2 (en) | 2018-05-22 | 2023-04-01 | Lumus Ltd | Optical system and method for improving light field uniformity |
CN110554593B (zh) * | 2018-05-31 | 2021-01-26 | 京东方科技集团股份有限公司 | 全息光学元件及其制作方法、像重建方法、增强现实眼镜 |
KR102664392B1 (ko) | 2018-06-28 | 2024-05-08 | 삼성전자주식회사 | 디스플레이 장치 |
WO2020010018A1 (en) | 2018-07-05 | 2020-01-09 | Pcms Holdings, Inc. | Method and system for near-eye focal plane overlays for 3d perception of content on 2d displays |
US11966055B2 (en) | 2018-07-19 | 2024-04-23 | Magic Leap, Inc. | Content interaction driven by eye metrics |
KR102673817B1 (ko) | 2018-07-30 | 2024-06-10 | 삼성전자주식회사 | 3차원 영상 표시 장치 및 영상 처리 방법 |
KR102546321B1 (ko) | 2018-07-30 | 2023-06-21 | 삼성전자주식회사 | 3차원 영상 표시 장치 및 방법 |
CN112868227B (zh) * | 2018-08-29 | 2024-04-09 | Pcms控股公司 | 用于基于镶嵌周期性层的光场显示的光学方法及系统 |
US10567743B1 (en) * | 2018-09-24 | 2020-02-18 | Cae Inc. | See-through based display method and system for simulators |
US10567744B1 (en) * | 2018-09-24 | 2020-02-18 | Cae Inc. | Camera-based display method and system for simulators |
KR102135888B1 (ko) * | 2018-11-01 | 2020-07-20 | 서울대학교산학협력단 | 프로젝션 장치 |
TW202026685A (zh) | 2018-11-08 | 2020-07-16 | 以色列商魯姆斯有限公司 | 具有反射鏡的光導顯示器 |
US10866413B2 (en) | 2018-12-03 | 2020-12-15 | Lockheed Martin Corporation | Eccentric incident luminance pupil tracking |
US11543565B2 (en) | 2018-12-04 | 2023-01-03 | Beijing Boe Technology Development Co., Ltd. | Display panel, display device and display method |
US10838214B2 (en) * | 2018-12-14 | 2020-11-17 | Facebook Technologies, Llc | Angle compensating lens and display |
CN111435199A (zh) * | 2018-12-26 | 2020-07-21 | 施轩杰 | 一种空间显示方案 |
US10621858B1 (en) | 2019-02-06 | 2020-04-14 | Toyota Research Institute, Inc. | Systems and methods for improving situational awareness of a user |
KR20200098034A (ko) * | 2019-02-11 | 2020-08-20 | 삼성전자주식회사 | 가상 현실 유저 인터페이스를 제공하기 위한 전자 장치 및 그의 동작 방법 |
WO2020176783A1 (en) | 2019-02-28 | 2020-09-03 | Magic Leap, Inc. | Display system and method for providing variable accommodation cues using multiple intra-pupil parallax views formed by light emitter arrays |
KR20210143823A (ko) * | 2019-03-20 | 2021-11-29 | 매튜 이. 워드 | 마이크로 led 어레이를 갖는 mems 구동 광학 패키지 |
CN109870820B (zh) * | 2019-03-26 | 2023-10-17 | 成都工业学院 | 针孔反射镜阵列集成成像增强现实装置及方法 |
US10698201B1 (en) | 2019-04-02 | 2020-06-30 | Lockheed Martin Corporation | Plenoptic cellular axis redirection |
WO2020212835A1 (en) | 2019-04-15 | 2020-10-22 | Lumus Ltd. | Method of fabricating a light-guide optical element |
EP3736796A1 (en) * | 2019-05-07 | 2020-11-11 | Wooptix S.L. | Method and optical system for characterizing displays |
US11288873B1 (en) | 2019-05-21 | 2022-03-29 | Apple Inc. | Blur prediction for head mounted devices |
GB201907574D0 (en) | 2019-05-29 | 2019-07-10 | Purelifi Ltd | Light communication system and method |
CN112565165B (zh) * | 2019-09-26 | 2022-03-29 | 北京外号信息技术有限公司 | 基于光通信装置的交互方法和系统 |
WO2020247763A1 (en) | 2019-06-07 | 2020-12-10 | Pcms Holdings, Inc. | Optical method and system for light field displays based on distributed apertures |
US11917121B2 (en) | 2019-06-28 | 2024-02-27 | Interdigital Madison Patent Holdings, Sas | Optical method and system for light field (LF) displays based on tunable liquid crystal (LC) diffusers |
EP4014483A4 (en) * | 2019-08-12 | 2023-06-28 | Arizona Board of Regents on behalf of the University of Arizona | Optical design and optimization techniques for 3d light field displays |
WO2021030034A1 (en) | 2019-08-15 | 2021-02-18 | Apple Inc. | Depth mapping using spatial multiplexing of illumination phase |
US20210105451A1 (en) * | 2019-12-23 | 2021-04-08 | Intel Corporation | Scene construction using object-based immersive media |
CN111323921A (zh) * | 2020-03-17 | 2020-06-23 | 京东方科技集团股份有限公司 | 一种镜筒组件及头戴式显示装置 |
CN111277808B (zh) * | 2020-03-24 | 2021-02-05 | 欧拓飞科技(珠海)有限公司 | 一种虚拟现实增强设备及方法 |
US11763472B1 (en) * | 2020-04-02 | 2023-09-19 | Apple Inc. | Depth mapping with MPI mitigation using reference illumination pattern |
KR102284743B1 (ko) * | 2020-05-14 | 2021-08-03 | 한국과학기술연구원 | 초점심도 확장 영상표시장치 및 그 제어방법 |
EP4172959A4 (en) * | 2020-06-30 | 2024-07-17 | 3M Innovative Properties Company | APPARATUS AND METHOD FOR AUGMENTED REALITY EARPHONE |
US20230418087A1 (en) * | 2020-11-24 | 2023-12-28 | Creal Sa | High-resolution light-field projector |
CN116888519A (zh) * | 2021-02-18 | 2023-10-13 | 见真实股份有限公司 | 具有高效率的近眼光场显示系统和使用该近眼光场显示系统来投影投影虚拟像素的方法 |
US11860369B2 (en) | 2021-03-01 | 2024-01-02 | Lumus Ltd. | Optical system with compact coupling from a projector into a waveguide |
EP4305487A1 (en) * | 2021-03-09 | 2024-01-17 | Arizona Board of Regents on behalf of The University of Arizona | Devices and methods for enhancing the performance of integral imaging based light field displays using time-multiplexing schemes |
JP7567594B2 (ja) | 2021-03-19 | 2024-10-16 | 株式会社Jvcケンウッド | 表示装置、表示制御方法、及び表示制御プログラム |
WO2022196809A1 (ja) * | 2021-03-19 | 2022-09-22 | 株式会社Jvcケンウッド | 表示装置、表示制御方法、及び表示制御プログラム |
JP7567593B2 (ja) | 2021-03-19 | 2024-10-16 | 株式会社Jvcケンウッド | 表示装置、表示制御方法、及び表示制御プログラム |
KR20220145668A (ko) * | 2021-04-22 | 2022-10-31 | 삼성전자주식회사 | 자유형상 곡면을 포함하는 디스플레이 장치 및 그 동작 방법 |
US11822088B2 (en) | 2021-05-19 | 2023-11-21 | Lumus Ltd. | Active optical engine |
US11493773B2 (en) | 2021-06-07 | 2022-11-08 | Panamorph, Inc. | Near-eye display system |
WO2023021732A1 (ja) | 2021-08-20 | 2023-02-23 | ソニーグループ株式会社 | 表示装置及び表示方法 |
EP4374204A4 (en) | 2021-08-23 | 2024-09-18 | Lumus Ltd | METHODS OF MANUFACTURING COMPOUND LIGHT GUIDE OPTICAL ELEMENTS HAVING INCORPORATED COUPLING REFLECTORS |
WO2024029212A1 (ja) * | 2022-08-03 | 2024-02-08 | ソニーグループ株式会社 | 立体画像表示装置および立体画像表示方法 |
KR102555165B1 (ko) * | 2022-10-04 | 2023-07-12 | 인하대학교 산학협력단 | 단안 비디오에서 뉴럴 레이디언스 기반의 라이트필드 합성 방법 및 시스템 |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002148559A (ja) * | 2000-11-15 | 2002-05-22 | Mixed Reality Systems Laboratory Inc | 画像観察装置及びそれを用いた画像観察システム |
US20020060850A1 (en) * | 2000-09-22 | 2002-05-23 | Tetsuhide Takeyama | Observing optical system and imaging optical system |
US20020063913A1 (en) * | 2000-09-29 | 2002-05-30 | Tohru Nakamura | Observation optical system using volume hologram |
CN1950747A (zh) * | 2004-05-05 | 2007-04-18 | 图象公司 | 多源高性能立体投影系统 |
US7457017B2 (en) * | 1997-07-08 | 2008-11-25 | Kremen Stanley H | Screens to be used with a system for the magnification and projection of images in substantially three-dimensional format |
CN101359089A (zh) * | 2008-10-08 | 2009-02-04 | 北京理工大学 | 轻小型大视场自由曲面棱镜头盔显示器光学系统 |
US20090262182A1 (en) * | 2007-10-15 | 2009-10-22 | The University Of Connecticut | Three-dimensional imaging apparatus |
CN101688767A (zh) * | 2006-12-21 | 2010-03-31 | 庄臣及庄臣视力保护公司 | 镜片的干涉测量法测试以及用于该方法的系统与装置 |
EP2180364A1 (en) * | 2008-10-23 | 2010-04-28 | Robert Bosch Gmbh | A display and a method of operating a display |
WO2011044460A1 (en) * | 2009-10-09 | 2011-04-14 | Massachusetts Institute Of Technology | System, method and apparatus for phase contrast enhanced multiplexing of images |
CN102213899A (zh) * | 2010-04-02 | 2011-10-12 | 精工爱普生株式会社 | 投影仪 |
US20120013988A1 (en) * | 2010-07-16 | 2012-01-19 | Hutchin Richard A | Head mounted display having a panoramic field of view |
CN102566049A (zh) * | 2010-11-08 | 2012-07-11 | 微软公司 | 用于扩展现实显示的自动可变虚拟焦点 |
CN102833487A (zh) * | 2012-08-08 | 2012-12-19 | 中国科学院自动化研究所 | 面向视觉计算的光场成像装置和方法 |
WO2013049248A2 (en) * | 2011-09-26 | 2013-04-04 | Osterhout Group, Inc. | Video display modification based on sensor input for a see-through near-to-eye display |
CN103064136A (zh) * | 2013-01-16 | 2013-04-24 | 福州大学 | 用于集成成像3d显示的组合微透镜阵列及其制作方法 |
WO2013157228A1 (ja) * | 2012-04-19 | 2013-10-24 | パナソニック株式会社 | 光音響撮像装置 |
US20130286053A1 (en) * | 2012-04-25 | 2013-10-31 | Rod G. Fleck | Direct view augmented reality eyeglass-type display |
JP5397980B2 (ja) * | 2008-09-11 | 2014-01-22 | 独立行政法人情報通信研究機構 | 立体映像撮影装置および立体映像撮影方法 |
CN103605210A (zh) * | 2013-11-07 | 2014-02-26 | 四川大学 | 一种虚模式集成成像3d显示装置 |
CN103700686A (zh) * | 2013-12-16 | 2014-04-02 | 深圳市华星光电技术有限公司 | 具有景深效果的3d显示面板及其显示方法 |
CN104755968A (zh) * | 2012-10-26 | 2015-07-01 | 高通股份有限公司 | 透视式近眼显示器 |
CN204592780U (zh) * | 2015-03-24 | 2015-08-26 | 杭州华宏压铸有限公司 | 监控摄像头的安装支架 |
Family Cites Families (177)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3632184A (en) | 1970-03-02 | 1972-01-04 | Bell Telephone Labor Inc | Three-dimensional display |
JPS503354A (zh) | 1973-05-11 | 1975-01-14 | ||
EP0066402B1 (en) | 1981-05-29 | 1985-09-11 | Gec Avionics Limited | Night vision goggles |
US4669810A (en) | 1984-02-03 | 1987-06-02 | Flight Dynamics, Inc. | Head up display system |
US4753522A (en) | 1985-06-03 | 1988-06-28 | Ricoh Company, Ltd. | Plastic lens assembly for use in copying machines |
US4863251A (en) | 1987-03-13 | 1989-09-05 | Xerox Corporation | Double gauss lens for a raster input scanner |
US5880888A (en) | 1989-01-23 | 1999-03-09 | Hughes Aircraft Company | Helmet mounted display system |
JPH02200074A (ja) | 1989-01-30 | 1990-08-08 | Nippon Hoso Kyokai <Nhk> | イメージインテンシファイア付固体撮像装置 |
GB8916206D0 (en) | 1989-07-14 | 1989-11-08 | Marconi Gec Ltd | Helmet systems |
JP2692996B2 (ja) | 1989-12-25 | 1997-12-17 | オリンパス光学工業株式会社 | 結像レンズ |
US5109469A (en) | 1990-11-01 | 1992-04-28 | Itt Corporation | Phosphor screen for correcting luminous non-uniformity and method for making same |
US5172275A (en) | 1990-12-14 | 1992-12-15 | Eastman Kodak Company | Apochromatic relay lens systems suitable for use in a high definition telecine apparatus |
DE4291016T1 (zh) | 1991-04-22 | 1993-05-13 | Evans & Sutherland Computer Corp., Salt Lake City, Utah, Us | |
DE69325607T2 (de) | 1992-04-07 | 2000-04-06 | Raytheon Co | Breites spektrales Band virtuelles Bildanzeige optisches System |
US6008781A (en) | 1992-10-22 | 1999-12-28 | Board Of Regents Of The University Of Washington | Virtual retinal display |
US5526183A (en) | 1993-11-29 | 1996-06-11 | Hughes Electronics | Helmet visor display employing reflective, refractive and diffractive optical elements |
US5416315A (en) | 1994-01-24 | 1995-05-16 | Night Vision General Partnership | Visor-mounted night vision visor |
JP3396074B2 (ja) * | 1994-04-01 | 2003-04-14 | オリンパス光学工業株式会社 | 映像表示装置 |
US7262919B1 (en) | 1994-06-13 | 2007-08-28 | Canon Kabushiki Kaisha | Head-up display device with curved optical surface having total reflection |
US5621572A (en) | 1994-08-24 | 1997-04-15 | Fergason; James L. | Optical system for a head mounted display using a retro-reflector and method of displaying an image |
JP3486468B2 (ja) * | 1994-10-21 | 2004-01-13 | オリンパス株式会社 | プリズム光学系 |
JPH08160345A (ja) | 1994-12-05 | 1996-06-21 | Olympus Optical Co Ltd | 頭部装着式ディスプレイ装置 |
US5625495A (en) | 1994-12-07 | 1997-04-29 | U.S. Precision Lens Inc. | Telecentric lens systems for forming an image of an object composed of pixels |
JP3658034B2 (ja) | 1995-02-28 | 2005-06-08 | キヤノン株式会社 | 画像観察光学系及び撮像光学系 |
US5818632A (en) | 1995-04-13 | 1998-10-06 | Melles Griot, Inc | Multi-element lens system |
US5577729A (en) | 1995-04-24 | 1996-11-26 | Sabour; Max T. | Head movement detector |
JP3599828B2 (ja) | 1995-05-18 | 2004-12-08 | オリンパス株式会社 | 光学装置 |
JPH09105885A (ja) * | 1995-10-12 | 1997-04-22 | Canon Inc | 頭部搭載型の立体画像表示装置 |
JP3556389B2 (ja) | 1996-05-01 | 2004-08-18 | 日本電信電話株式会社 | ヘッドマウントディスプレイ装置 |
EP1798592A3 (en) | 1996-01-17 | 2007-09-19 | Nippon Telegraph And Telephone Corporation | Optical device and three-dimensional display device |
JPH09218375A (ja) | 1996-02-08 | 1997-08-19 | Canon Inc | 疲労判定方法及びそれを用いた観察装置 |
JPH09219832A (ja) | 1996-02-13 | 1997-08-19 | Olympus Optical Co Ltd | 画像表示装置 |
US5959780A (en) | 1996-04-15 | 1999-09-28 | Olympus Optical Co., Ltd. | Head-mounted display apparatus comprising a rotationally asymmetric surface |
US5880711A (en) | 1996-04-24 | 1999-03-09 | Sony Corporation | Three-dimensional image display method and its display apparatus |
JP3758265B2 (ja) | 1996-04-24 | 2006-03-22 | ソニー株式会社 | 3次元画像表示方法とその表示装置 |
US6028606A (en) | 1996-08-02 | 2000-02-22 | The Board Of Trustees Of The Leland Stanford Junior University | Camera simulation system |
GB9618720D0 (en) * | 1996-09-07 | 1996-10-16 | Philips Electronics Nv | Electrical device comprising an array of pixels |
JP3924348B2 (ja) | 1996-11-05 | 2007-06-06 | オリンパス株式会社 | 画像表示装置 |
US6034823A (en) | 1997-02-07 | 2000-03-07 | Olympus Optical Co., Ltd. | Decentered prism optical system |
US6760169B2 (en) | 1997-05-07 | 2004-07-06 | Olympus Corporation | Prism optical element, image observation apparatus and image display apparatus |
JPH10307263A (ja) | 1997-05-07 | 1998-11-17 | Olympus Optical Co Ltd | プリズム光学素子及び像観察装置 |
JPH10319342A (ja) * | 1997-05-15 | 1998-12-04 | Olympus Optical Co Ltd | 眼球投影型映像表示装置 |
AU1050599A (en) | 1997-11-05 | 1999-05-24 | Omd Devices Llc | Focus error correction apparatus |
WO1999030199A1 (en) | 1997-12-11 | 1999-06-17 | Koninklijke Philips Electronics N.V. | Image display device and head-mounted display comprising such a device |
US6236521B1 (en) | 1998-02-09 | 2001-05-22 | Canon Kabushiki Kaisha | Objective lens and image pickup device using the same |
US6198577B1 (en) | 1998-03-10 | 2001-03-06 | Glaxo Wellcome, Inc. | Doubly telecentric lens and imaging system for multiwell plates |
JP3279265B2 (ja) | 1998-03-26 | 2002-04-30 | 株式会社エム・アール・システム研究所 | 画像表示装置 |
US6704149B2 (en) | 1998-04-21 | 2004-03-09 | Minolta Co., Ltd. | Lens optical system |
JPH11326820A (ja) | 1998-05-18 | 1999-11-26 | Olympus Optical Co Ltd | 観察光学系及びそれを用いた観察装置 |
JP2000075240A (ja) | 1998-08-26 | 2000-03-14 | Mr System Kenkyusho:Kk | 複合表示装置 |
JP2000199853A (ja) | 1998-10-26 | 2000-07-18 | Olympus Optical Co Ltd | 結像光学系及び観察光学系 |
US6281862B1 (en) | 1998-11-09 | 2001-08-28 | University Of Washington | Scanned beam display with adjustable accommodation |
JP2000171714A (ja) | 1998-12-07 | 2000-06-23 | Olympus Optical Co Ltd | 結像光学系 |
US6433760B1 (en) | 1999-01-14 | 2002-08-13 | University Of Central Florida | Head mounted display with eyetracking capability |
JP4550184B2 (ja) | 1999-07-02 | 2010-09-22 | オリンパス株式会社 | 観察光学系 |
JP2000231060A (ja) | 1999-02-12 | 2000-08-22 | Olympus Optical Co Ltd | 結像光学系 |
JP2000249974A (ja) | 1999-03-02 | 2000-09-14 | Canon Inc | 表示装置及び立体表示装置 |
WO2000060398A1 (fr) | 1999-04-02 | 2000-10-12 | Olympus Optical Co., Ltd. | Systeme optique de visualisation et afficheur d'image contenant ce systeme |
EP1054280A3 (en) | 1999-05-20 | 2004-08-18 | Konica Corporation | Zoom lens |
JP2001066543A (ja) | 1999-08-25 | 2001-03-16 | Canon Inc | 複合光学装置 |
JP2001215441A (ja) * | 2000-02-07 | 2001-08-10 | Mixed Reality Systems Laboratory Inc | 画像観察装置 |
US6243199B1 (en) | 1999-09-07 | 2001-06-05 | Moxtek | Broad band wire grid polarizing beam splitter for use in the visible wavelength region |
JP3391342B2 (ja) | 1999-10-29 | 2003-03-31 | ミノルタ株式会社 | 撮像レンズ装置 |
JP2001145127A (ja) | 1999-11-12 | 2001-05-25 | Shunichi Suda | 3次元画像表示装置 |
JP3854763B2 (ja) | 1999-11-19 | 2006-12-06 | キヤノン株式会社 | 画像表示装置 |
KR100360592B1 (ko) | 1999-12-08 | 2002-11-13 | 동부전자 주식회사 | 반도체 장치 및 그 제조 방법 |
JP2001238229A (ja) * | 2000-02-21 | 2001-08-31 | Nippon Hoso Kyokai <Nhk> | 立体画像撮影装置及び立体画像表示装置並びに立体画像撮影表示システム |
US20010048561A1 (en) | 2000-08-24 | 2001-12-06 | Heacock Gregory L. | Virtual imaging system for small font text |
KR100386725B1 (ko) | 2000-07-31 | 2003-06-09 | 주식회사 대양이앤씨 | 헤드 마운트 디스플레이용 광학 시스템 |
JP3658295B2 (ja) | 2000-08-09 | 2005-06-08 | キヤノン株式会社 | 画像表示装置 |
ATE345650T1 (de) | 2000-09-07 | 2006-12-15 | Actuality Systems Inc | Volumetrische bildanzeigevorrichtung |
US6563648B2 (en) | 2000-10-20 | 2003-05-13 | Three-Five Systems, Inc. | Compact wide field of view imaging system |
JP4943580B2 (ja) | 2000-12-25 | 2012-05-30 | オリンパス株式会社 | 結像光学系 |
US20020114077A1 (en) | 2001-01-23 | 2002-08-22 | Bahram Javidi | Integral three-dimensional imaging with digital reconstruction |
JP3658330B2 (ja) | 2001-02-21 | 2005-06-08 | キヤノン株式会社 | 複合表示装置及びそれを用いたヘッドマウントディスプレイ装置 |
JP2002258208A (ja) | 2001-03-01 | 2002-09-11 | Mixed Reality Systems Laboratory Inc | 光学素子及びそれを用いた複合表示装置 |
US6529331B2 (en) | 2001-04-20 | 2003-03-04 | Johns Hopkins University | Head mounted display with full field of view and high resolution |
US6731434B1 (en) | 2001-05-23 | 2004-05-04 | University Of Central Florida | Compact lens assembly for the teleportal augmented reality system |
US6999239B1 (en) | 2001-05-23 | 2006-02-14 | Research Foundation Of The University Of Central Florida, Inc | Head-mounted display by integration of phase-conjugate material |
US6963454B1 (en) | 2002-03-01 | 2005-11-08 | Research Foundation Of The University Of Central Florida | Head-mounted display by integration of phase-conjugate material |
JP4751534B2 (ja) | 2001-07-24 | 2011-08-17 | 大日本印刷株式会社 | 光学系及びそれを用いた装置 |
JP4129972B2 (ja) | 2002-02-18 | 2008-08-06 | オリンパス株式会社 | 偏心光学系 |
KR100509370B1 (ko) | 2002-12-30 | 2005-08-19 | 삼성테크윈 주식회사 | 촬영 렌즈 |
DE10306578A1 (de) | 2003-02-17 | 2004-08-26 | Carl Zeiss | Anzeigevorrichtung mit elektrooptischer Fokussierung |
MXPA05009442A (es) | 2003-03-05 | 2005-11-23 | 3M Innovative Properties Co | Lente difractivo. |
JP4035476B2 (ja) | 2003-04-23 | 2008-01-23 | キヤノン株式会社 | 走査光学系、走査型画像表示装置および画像表示システム |
US7152977B2 (en) | 2003-04-24 | 2006-12-26 | Qubic Light Corporation | Solid state light engine optical system |
US7077523B2 (en) | 2004-02-13 | 2006-07-18 | Angstorm Inc. | Three-dimensional display using variable focusing lens |
US20070246641A1 (en) | 2004-02-27 | 2007-10-25 | Baun Kenneth W | Night vision system with video screen |
US7339737B2 (en) | 2004-04-23 | 2008-03-04 | Microvision, Inc. | Beam multiplier that can be used as an exit-pupil expander and related system and method |
WO2006012679A1 (en) * | 2004-08-03 | 2006-02-09 | Silverbrook Research Pty Ltd | Head mounted display with wave front modulator |
US7542209B2 (en) | 2004-09-01 | 2009-06-02 | Optical Research Associates | Compact head mounted display devices with tilted/decentered lens element |
JP4639721B2 (ja) * | 2004-09-22 | 2011-02-23 | 株式会社ニコン | 三次元映像表示装置 |
JP4560368B2 (ja) | 2004-10-08 | 2010-10-13 | キヤノン株式会社 | 眼検出装置および画像表示装置 |
US7249853B2 (en) | 2005-04-13 | 2007-07-31 | Eastman Kodak Company | Unpolished optical element with periodic surface roughness |
US7405881B2 (en) | 2005-05-30 | 2008-07-29 | Konica Minolta Holdings, Inc. | Image display apparatus and head mount display |
US7360905B2 (en) | 2005-06-24 | 2008-04-22 | Texas Instruments Incorporated | Compact optical engine for very small personal projectors using LED illumination |
JP2007101930A (ja) | 2005-10-05 | 2007-04-19 | Matsushita Electric Ind Co Ltd | 立体像要素画像作成表示方法および立体像表示装置 |
US20070109505A1 (en) | 2005-10-05 | 2007-05-17 | Matsushita Electric Industrial Co., Ltd. | Projection three-dimensional display apparatus |
US7486341B2 (en) * | 2005-11-03 | 2009-02-03 | University Of Central Florida Research Foundation, Inc. | Head mounted display with eye accommodation having 3-D image producing system consisting of, for each eye, one single planar display screen, one single planar tunable focus LC micro-lens array, one single planar black mask and bias lens |
US7522344B1 (en) | 2005-12-14 | 2009-04-21 | University Of Central Florida Research Foundation, Inc. | Projection-based head-mounted display with eye-tracking capabilities |
EP1983884B1 (en) | 2006-01-26 | 2016-10-26 | Nokia Technologies Oy | Eye tracker device |
US7499217B2 (en) * | 2006-03-03 | 2009-03-03 | University Of Central Florida Research Foundation, Inc. | Imaging systems for eyeglass-based display devices |
KR101255209B1 (ko) | 2006-05-04 | 2013-04-23 | 삼성전자주식회사 | 인터레이스 방식으로 영상을 디스플레이 하는 고해상도입체 영상 디스플레이 장치 |
US20070273983A1 (en) | 2006-05-26 | 2007-11-29 | Hebert Raymond T | Devices, methods, and systems for image viewing |
KR100961305B1 (ko) | 2006-06-08 | 2010-06-04 | 가부시키가이샤 시마즈세이사쿠쇼 | 촬상장치 |
JP2006276884A (ja) | 2006-06-16 | 2006-10-12 | Olympus Corp | 偏心プリズム光学系 |
US7515345B2 (en) | 2006-10-09 | 2009-04-07 | Drs Sensors & Targeting Systems, Inc. | Compact objective lens assembly |
US8243127B2 (en) * | 2006-10-27 | 2012-08-14 | Zecotek Display Systems Pte. Ltd. | Switchable optical imaging system and related 3D/2D image switchable apparatus |
WO2008089417A2 (en) | 2007-01-18 | 2008-07-24 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | A polarized head-mounted projection display |
JP4607208B2 (ja) * | 2007-05-23 | 2011-01-05 | コワングウーン ユニバーシティー リサーチ インスティテュート フォー インダストリー コーオペレーション | 立体映像ディスプレイ方法 |
JP4906680B2 (ja) | 2007-11-02 | 2012-03-28 | キヤノン株式会社 | 画像表示装置 |
US20090160985A1 (en) * | 2007-12-10 | 2009-06-25 | The University Of Connecticut | Method and system for recognition of a target in a three dimensional scene |
US20090168010A1 (en) | 2007-12-27 | 2009-07-02 | Igor Vinogradov | Adaptive focusing using liquid crystal lens in electro-optical readers |
CA2712059A1 (en) | 2008-01-22 | 2009-07-30 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Head-mounted projection display using reflective microdisplays |
JP5169253B2 (ja) | 2008-01-29 | 2013-03-27 | ブラザー工業株式会社 | 画像表示装置 |
FR2928034B1 (fr) | 2008-02-26 | 2010-03-19 | New Imaging Technologies Sas | Capteur matriciel pour tube amplificateur de lumiere |
JP5329882B2 (ja) | 2008-09-17 | 2013-10-30 | パイオニア株式会社 | ディスプレイ装置 |
JP5341462B2 (ja) | 2008-10-14 | 2013-11-13 | キヤノン株式会社 | 収差補正方法、画像処理装置および画像処理システム |
JP5464839B2 (ja) | 2008-10-31 | 2014-04-09 | キヤノン株式会社 | 画像表示装置 |
CN101424788A (zh) | 2008-12-09 | 2009-05-06 | 中国科学院长春光学精密机械与物理研究所 | 一种眼镜式头盔显示器光学系统 |
US8331032B2 (en) | 2009-02-19 | 2012-12-11 | Drs Rsta, Inc. | Compact objective lens assembly for simultaneously imaging multiple spectral bands |
JP5394108B2 (ja) | 2009-03-27 | 2014-01-22 | 日本放送協会 | 3次元映像表示装置 |
US20120081800A1 (en) | 2009-04-20 | 2012-04-05 | Dewen Cheng | Optical see-through free-form head-mounted display |
US8441733B2 (en) | 2009-04-24 | 2013-05-14 | David Kessler | Pupil-expanded volumetric display |
GB0909126D0 (en) | 2009-05-27 | 2009-07-01 | Qinetiq Ltd | Eye tracking apparatus |
US20110075257A1 (en) * | 2009-09-14 | 2011-03-31 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | 3-Dimensional electro-optical see-through displays |
JP2011085769A (ja) | 2009-10-15 | 2011-04-28 | Canon Inc | 撮像表示装置 |
WO2011060525A1 (en) | 2009-11-19 | 2011-05-26 | Esight Corporation | Image magnification on a head mounted display |
US8467133B2 (en) | 2010-02-28 | 2013-06-18 | Osterhout Group, Inc. | See-through display with an optical assembly including a wedge-shaped illumination system |
US9182596B2 (en) | 2010-02-28 | 2015-11-10 | Microsoft Technology Licensing, Llc | See-through near-eye display glasses with the optical assembly including absorptive polarizers or anti-reflective coatings to reduce stray light |
AU2011220382A1 (en) | 2010-02-28 | 2012-10-18 | Microsoft Corporation | Local advertising content on an interactive head-mounted eyepiece |
US9244277B2 (en) | 2010-04-30 | 2016-01-26 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Wide angle and high resolution tiled head-mounted display device |
DE102010028900B4 (de) | 2010-05-11 | 2019-08-01 | Carl Zeiss Ag | Okularsystem sowie Anzeigesystem mit einem solchen Okularsystem |
JP6149339B2 (ja) * | 2010-06-16 | 2017-06-21 | 株式会社ニコン | 表示装置 |
JP2013530714A (ja) | 2010-07-16 | 2013-08-01 | マックギル テクノロジー リミテッド | 小出し装置 |
US20120019557A1 (en) | 2010-07-22 | 2012-01-26 | Sony Ericsson Mobile Communications Ab | Displaying augmented reality information |
DE102010040030B4 (de) | 2010-08-31 | 2017-02-02 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Objektiv und Bildaufnahmesystem |
JP5603716B2 (ja) | 2010-09-06 | 2014-10-08 | オリンパス株式会社 | プリズム光学系、プリズム光学系を用いた画像表示装置及び撮像装置 |
JP2012088549A (ja) * | 2010-10-20 | 2012-05-10 | Nippon Hoso Kyokai <Nhk> | 立体画像撮像装置、立体画像表示装置、および立体画像撮像表示装置 |
US8503087B1 (en) | 2010-11-02 | 2013-08-06 | Google Inc. | Structured optical surface |
JP5652747B2 (ja) * | 2010-11-12 | 2015-01-14 | 株式会社ニコン | 光学系、画像表示装置及び画像撮像装置 |
US10156722B2 (en) | 2010-12-24 | 2018-12-18 | Magic Leap, Inc. | Methods and systems for displaying stereoscopy with a freeform optical system with addressable focus for virtual and augmented reality |
US9348143B2 (en) | 2010-12-24 | 2016-05-24 | Magic Leap, Inc. | Ergonomic head mounted display device and optical system |
US20120160302A1 (en) | 2010-12-27 | 2012-06-28 | Jeffrey Michael Citron | Trough shaped fresnel reflector solar concentrator |
CA2828407A1 (en) | 2011-02-28 | 2012-09-07 | Osterhout Group, Inc. | Light control in head mounted displays |
TWI490587B (zh) | 2011-04-12 | 2015-07-01 | Ability Entpr Co Ltd | 光學變焦鏡頭 |
US11640050B2 (en) | 2011-10-19 | 2023-05-02 | Epic Optix Inc. | Microdisplay-based head-up display system |
EP3270194B1 (en) * | 2012-01-24 | 2020-10-14 | The Arizona Board of Regents on behalf of The University of Arizona | Compact eye-tracked head-mounted display |
JP6111635B2 (ja) | 2012-02-24 | 2017-04-12 | セイコーエプソン株式会社 | 虚像表示装置 |
US8985803B2 (en) | 2012-03-21 | 2015-03-24 | Microsoft Technology Licensing, Llc | Freeform-prism eyepiece with illumination waveguide |
JP6056171B2 (ja) * | 2012-03-29 | 2017-01-11 | 富士通株式会社 | 立体画像表示装置及び方法 |
US20130285885A1 (en) * | 2012-04-25 | 2013-10-31 | Andreas G. Nowatzyk | Head-mounted light-field display |
US20130300634A1 (en) * | 2012-05-09 | 2013-11-14 | Nokia Corporation | Method and apparatus for determining representations of displayed information based on focus distance |
US8989535B2 (en) * | 2012-06-04 | 2015-03-24 | Microsoft Technology Licensing, Llc | Multiple waveguide imaging structure |
US8754829B2 (en) | 2012-08-04 | 2014-06-17 | Paul Lapstun | Scanning light field camera and display |
DE102013001097A1 (de) * | 2012-08-10 | 2014-02-13 | Johnson Controls Gmbh | Head-up-Display und Verfahren zum Betrieb eines Head-up-Displays |
JP6019918B2 (ja) | 2012-08-17 | 2016-11-02 | セイコーエプソン株式会社 | 虚像表示装置 |
KR20150054967A (ko) | 2012-09-11 | 2015-05-20 | 매직 립, 인코포레이티드 | 인체공학적 헤드 마운티드 디스플레이 디바이스 및 광학 시스템 |
CA3102710A1 (en) | 2012-10-18 | 2014-04-24 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Stereoscopic displays with addressable focus cues |
US9189021B2 (en) * | 2012-11-29 | 2015-11-17 | Microsoft Technology Licensing, Llc | Wearable food nutrition feedback system |
US9858721B2 (en) | 2013-01-15 | 2018-01-02 | The University Of North Carolina At Chapel Hill | Methods, systems, and computer readable media for generating an augmented scene display |
US20150262424A1 (en) * | 2013-01-31 | 2015-09-17 | Google Inc. | Depth and Focus Discrimination for a Head-mountable device using a Light-Field Display System |
US9201193B1 (en) | 2013-02-18 | 2015-12-01 | Exelis, Inc. | Textured fiber optic coupled image intensified camera |
TWI625551B (zh) | 2013-03-15 | 2018-06-01 | 傲思丹度科技公司 | 具有改良之視角深度及解析度之三維光場顯示器及方法 |
US9405124B2 (en) | 2013-04-09 | 2016-08-02 | Massachusetts Institute Of Technology | Methods and apparatus for light field projection |
CN103605214A (zh) * | 2013-11-21 | 2014-02-26 | 深圳市华星光电技术有限公司 | 立体显示装置 |
US9857591B2 (en) | 2014-05-30 | 2018-01-02 | Magic Leap, Inc. | Methods and system for creating focal planes in virtual and augmented reality |
WO2015095737A2 (en) | 2013-12-19 | 2015-06-25 | The University Of North Carolina At Chapel Hill | Optical see-through near-eye display using point light source backlight |
JP6264878B2 (ja) | 2013-12-24 | 2018-01-24 | セイコーエプソン株式会社 | 導光装置、虚像表示装置及び導光装置の製造方法 |
US10244223B2 (en) | 2014-01-10 | 2019-03-26 | Ostendo Technologies, Inc. | Methods for full parallax compressed light field 3D imaging systems |
EP3107476B1 (en) | 2014-02-21 | 2024-04-24 | The University of Akron | Imaging and display system for guiding medical interventions |
BR112016020346A2 (pt) | 2014-03-05 | 2017-10-31 | Univ Arizona | ?visor de realidade aumentada? |
CN106664400B (zh) | 2014-05-30 | 2020-08-04 | 奇跃公司 | 用于显示虚拟和增强现实的立体视觉的方法和系统 |
WO2016033317A1 (en) | 2014-08-29 | 2016-03-03 | Arizona Board Of Regent On Behalf Of The University Of Arizona | Ultra-compact head-up displays based on freeform waveguide |
US20160239985A1 (en) | 2015-02-17 | 2016-08-18 | Osterhout Group, Inc. | See-through computer display systems |
WO2018052590A2 (en) | 2016-08-12 | 2018-03-22 | Arizona Board Of Regents On Behalf Of The University Of Arizona | High-resolution freeform eyepiece design with a large exit pupil |
-
2015
- 2015-03-05 BR BR112016020346A patent/BR112016020346A2/pt not_active IP Right Cessation
- 2015-03-05 CA CA2941655A patent/CA2941655C/en active Active
- 2015-03-05 JP JP2016573686A patent/JP6602797B2/ja active Active
- 2015-03-05 NZ NZ762222A patent/NZ762222A/en not_active IP Right Cessation
- 2015-03-05 EP EP21203008.4A patent/EP4016169B1/en active Active
- 2015-03-05 IL IL247588A patent/IL247588B2/en unknown
- 2015-03-05 NZ NZ724519A patent/NZ724519A/en not_active IP Right Cessation
- 2015-03-05 EP EP15711362.2A patent/EP3114526B1/en active Active
- 2015-03-05 AU AU2015227094A patent/AU2015227094B2/en not_active Ceased
- 2015-03-05 WO PCT/US2015/018951 patent/WO2015134740A1/en active Application Filing
- 2015-03-05 CN CN201910961573.3A patent/CN110879468A/zh active Pending
- 2015-03-05 NZ NZ762223A patent/NZ762223A/en not_active IP Right Cessation
- 2015-03-05 WO PCT/US2015/018948 patent/WO2015134738A1/en active Application Filing
- 2015-03-05 NZ NZ724518A patent/NZ724518A/en not_active IP Right Cessation
- 2015-03-05 JP JP2016573687A patent/JP6630465B2/ja active Active
- 2015-03-05 CA CA2941653A patent/CA2941653C/en active Active
- 2015-03-05 KR KR1020167027636A patent/KR102539365B1/ko active IP Right Grant
- 2015-03-05 CN CN201580023032.6A patent/CN106662731B/zh active Active
- 2015-03-05 US US15/122,492 patent/US10326983B2/en active Active
- 2015-03-05 KR KR1020167027627A patent/KR102561425B1/ko active IP Right Grant
- 2015-03-05 AU AU2015227092A patent/AU2015227092B2/en not_active Ceased
- 2015-03-05 US US15/122,497 patent/US10469833B2/en active Active
- 2015-03-05 CN CN201580022973.8A patent/CN106537220B/zh active Active
- 2015-03-05 IL IL247587A patent/IL247587B2/en unknown
- 2015-03-05 EP EP15711363.0A patent/EP3114527B1/en active Active
-
2019
- 2019-05-01 US US16/400,370 patent/US10805598B2/en active Active
- 2019-10-01 AU AU2019240590A patent/AU2019240590B2/en not_active Ceased
- 2019-10-09 JP JP2019185568A patent/JP7102382B2/ja active Active
- 2019-12-07 JP JP2019221755A patent/JP6965330B2/ja active Active
-
2020
- 2020-09-16 US US17/022,602 patent/US11350079B2/en active Active
-
2021
- 2021-07-19 AU AU2021205131A patent/AU2021205131A1/en not_active Abandoned
- 2021-10-20 JP JP2021171269A patent/JP7369507B2/ja active Active
Patent Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7457017B2 (en) * | 1997-07-08 | 2008-11-25 | Kremen Stanley H | Screens to be used with a system for the magnification and projection of images in substantially three-dimensional format |
US20020060850A1 (en) * | 2000-09-22 | 2002-05-23 | Tetsuhide Takeyama | Observing optical system and imaging optical system |
US20020063913A1 (en) * | 2000-09-29 | 2002-05-30 | Tohru Nakamura | Observation optical system using volume hologram |
JP2002148559A (ja) * | 2000-11-15 | 2002-05-22 | Mixed Reality Systems Laboratory Inc | 画像観察装置及びそれを用いた画像観察システム |
CN1950747A (zh) * | 2004-05-05 | 2007-04-18 | 图象公司 | 多源高性能立体投影系统 |
CN101688767A (zh) * | 2006-12-21 | 2010-03-31 | 庄臣及庄臣视力保护公司 | 镜片的干涉测量法测试以及用于该方法的系统与装置 |
US20090262182A1 (en) * | 2007-10-15 | 2009-10-22 | The University Of Connecticut | Three-dimensional imaging apparatus |
JP5397980B2 (ja) * | 2008-09-11 | 2014-01-22 | 独立行政法人情報通信研究機構 | 立体映像撮影装置および立体映像撮影方法 |
CN101359089A (zh) * | 2008-10-08 | 2009-02-04 | 北京理工大学 | 轻小型大视场自由曲面棱镜头盔显示器光学系统 |
EP2180364A1 (en) * | 2008-10-23 | 2010-04-28 | Robert Bosch Gmbh | A display and a method of operating a display |
WO2011044460A1 (en) * | 2009-10-09 | 2011-04-14 | Massachusetts Institute Of Technology | System, method and apparatus for phase contrast enhanced multiplexing of images |
CN102213899A (zh) * | 2010-04-02 | 2011-10-12 | 精工爱普生株式会社 | 投影仪 |
US20120013988A1 (en) * | 2010-07-16 | 2012-01-19 | Hutchin Richard A | Head mounted display having a panoramic field of view |
CN102566049A (zh) * | 2010-11-08 | 2012-07-11 | 微软公司 | 用于扩展现实显示的自动可变虚拟焦点 |
WO2013049248A2 (en) * | 2011-09-26 | 2013-04-04 | Osterhout Group, Inc. | Video display modification based on sensor input for a see-through near-to-eye display |
WO2013157228A1 (ja) * | 2012-04-19 | 2013-10-24 | パナソニック株式会社 | 光音響撮像装置 |
US20130286053A1 (en) * | 2012-04-25 | 2013-10-31 | Rod G. Fleck | Direct view augmented reality eyeglass-type display |
CN102833487A (zh) * | 2012-08-08 | 2012-12-19 | 中国科学院自动化研究所 | 面向视觉计算的光场成像装置和方法 |
CN104755968A (zh) * | 2012-10-26 | 2015-07-01 | 高通股份有限公司 | 透视式近眼显示器 |
CN103064136A (zh) * | 2013-01-16 | 2013-04-24 | 福州大学 | 用于集成成像3d显示的组合微透镜阵列及其制作方法 |
CN103605210A (zh) * | 2013-11-07 | 2014-02-26 | 四川大学 | 一种虚模式集成成像3d显示装置 |
CN103700686A (zh) * | 2013-12-16 | 2014-04-02 | 深圳市华星光电技术有限公司 | 具有景深效果的3d显示面板及其显示方法 |
CN204592780U (zh) * | 2015-03-24 | 2015-08-26 | 杭州华宏压铸有限公司 | 监控摄像头的安装支架 |
Non-Patent Citations (4)
Title |
---|
HONG HUA 等: "A compact eyetracked optical see-through head-mounted display", 《PROC. OF SPIE》 * |
JISOO HONG 等: "Integral floating display systems for augmented reality", 《APPLIED OPTICS》 * |
M. LUCENTE等: "Interactive three-dimensional holographic displays: seeing the future in depth", 《COMPUTER GRAPHICS》 * |
R. MARTINEZ-CUENCA 等: "Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system", 《OPTICS FXPRFSS》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11592650B2 (en) | 2008-01-22 | 2023-02-28 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Head-mounted projection display using reflective microdisplays |
TWI812406B (zh) * | 2022-08-16 | 2023-08-11 | 張朝凱 | 左右眼可分別微調出清晰的人工生成影像的增強現實裝置 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11350079B2 (en) | Wearable 3D augmented reality display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |