CN102448395B - 感应加热的手术工具 - Google Patents
感应加热的手术工具 Download PDFInfo
- Publication number
- CN102448395B CN102448395B CN201080022651.0A CN201080022651A CN102448395B CN 102448395 B CN102448395 B CN 102448395B CN 201080022651 A CN201080022651 A CN 201080022651A CN 102448395 B CN102448395 B CN 102448395B
- Authority
- CN
- China
- Prior art keywords
- operation tool
- conductor
- thermal
- coating
- energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 114
- 239000004020 conductor Substances 0.000 claims abstract description 443
- 238000000034 method Methods 0.000 claims abstract description 101
- 238000000576 coating method Methods 0.000 claims description 460
- 239000011248 coating agent Substances 0.000 claims description 449
- 230000005307 ferromagnetism Effects 0.000 claims description 384
- 239000007787 solid Substances 0.000 claims description 119
- 230000003750 conditioning effect Effects 0.000 claims description 101
- 239000000463 material Substances 0.000 claims description 58
- 230000005540 biological transmission Effects 0.000 claims description 31
- 230000008569 process Effects 0.000 claims description 28
- 239000007788 liquid Substances 0.000 claims description 26
- 230000001105 regulatory effect Effects 0.000 claims description 19
- 238000007747 plating Methods 0.000 claims description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 12
- 230000003213 activating effect Effects 0.000 claims description 11
- 239000010410 layer Substances 0.000 claims description 10
- 230000007704 transition Effects 0.000 claims description 10
- 229910000859 α-Fe Inorganic materials 0.000 claims description 9
- 235000010627 Phaseolus vulgaris Nutrition 0.000 claims description 8
- 244000046052 Phaseolus vulgaris Species 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 8
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 8
- 229910052721 tungsten Inorganic materials 0.000 claims description 8
- 239000010937 tungsten Substances 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 239000011247 coating layer Substances 0.000 claims description 7
- 239000010409 thin film Substances 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- 238000012546 transfer Methods 0.000 claims description 5
- -1 Magnetitum Inorganic materials 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 4
- 229910000889 permalloy Inorganic materials 0.000 claims description 4
- 239000004033 plastic Substances 0.000 claims description 4
- 229920003023 plastic Polymers 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 3
- 229910016697 EuO Inorganic materials 0.000 claims description 3
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 3
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims description 3
- 229910016629 MnBi Inorganic materials 0.000 claims description 3
- 229910016964 MnSb Inorganic materials 0.000 claims description 3
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical group [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- 239000000853 adhesive Substances 0.000 claims description 3
- 230000001070 adhesive effect Effects 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 239000000560 biocompatible material Substances 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 3
- 239000002223 garnet Substances 0.000 claims description 3
- 238000009413 insulation Methods 0.000 claims description 3
- MTRJKZUDDJZTLA-UHFFFAOYSA-N iron yttrium Chemical compound [Fe].[Y] MTRJKZUDDJZTLA-UHFFFAOYSA-N 0.000 claims description 3
- 230000010363 phase shift Effects 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 230000000644 propagated effect Effects 0.000 claims description 2
- 230000008520 organization Effects 0.000 abstract description 62
- 230000000694 effects Effects 0.000 abstract description 47
- 230000023597 hemostasis Effects 0.000 abstract description 29
- 238000001816 cooling Methods 0.000 abstract description 15
- 230000004044 response Effects 0.000 abstract description 14
- 230000009286 beneficial effect Effects 0.000 abstract description 9
- 210000001519 tissue Anatomy 0.000 description 209
- 238000005520 cutting process Methods 0.000 description 90
- 230000006870 function Effects 0.000 description 61
- 238000002679 ablation Methods 0.000 description 37
- 230000008859 change Effects 0.000 description 33
- 230000008901 benefit Effects 0.000 description 31
- 230000005291 magnetic effect Effects 0.000 description 29
- 230000010355 oscillation Effects 0.000 description 29
- 238000003466 welding Methods 0.000 description 20
- 230000006378 damage Effects 0.000 description 19
- 230000005294 ferromagnetic effect Effects 0.000 description 17
- 239000000523 sample Substances 0.000 description 17
- 230000006698 induction Effects 0.000 description 16
- 238000012544 monitoring process Methods 0.000 description 15
- 210000004204 blood vessel Anatomy 0.000 description 13
- 238000002604 ultrasonography Methods 0.000 description 13
- 210000003128 head Anatomy 0.000 description 12
- 210000003038 endothelium Anatomy 0.000 description 11
- 230000001276 controlling effect Effects 0.000 description 8
- 239000012212 insulator Substances 0.000 description 8
- 208000037816 tissue injury Diseases 0.000 description 8
- 230000008016 vaporization Effects 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 238000013461 design Methods 0.000 description 7
- 238000009834 vaporization Methods 0.000 description 7
- 230000004913 activation Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000004744 fabric Substances 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- 238000011010 flushing procedure Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000002356 single layer Substances 0.000 description 6
- 238000001356 surgical procedure Methods 0.000 description 6
- 206010027476 Metastases Diseases 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 238000003763 carbonization Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 235000013372 meat Nutrition 0.000 description 5
- 238000004904 shortening Methods 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 230000000007 visual effect Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 241001232809 Chorista Species 0.000 description 4
- 208000032843 Hemorrhage Diseases 0.000 description 4
- 208000027418 Wounds and injury Diseases 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 230000036541 health Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 230000009401 metastasis Effects 0.000 description 4
- 210000003205 muscle Anatomy 0.000 description 4
- 229910001000 nickel titanium Inorganic materials 0.000 description 4
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 4
- 210000003101 oviduct Anatomy 0.000 description 4
- 208000011117 substance-related disease Diseases 0.000 description 4
- 239000002028 Biomass Substances 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000000740 bleeding effect Effects 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 208000014674 injury Diseases 0.000 description 3
- 210000004185 liver Anatomy 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- BKUKXOMYGPYFJJ-UHFFFAOYSA-N 2-ethylsulfanyl-1h-benzimidazole;hydrobromide Chemical compound Br.C1=CC=C2NC(SCC)=NC2=C1 BKUKXOMYGPYFJJ-UHFFFAOYSA-N 0.000 description 2
- 206010003658 Atrial Fibrillation Diseases 0.000 description 2
- 229910001021 Ferroalloy Inorganic materials 0.000 description 2
- 208000037062 Polyps Diseases 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 210000003484 anatomy Anatomy 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 238000010291 electrical method Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000008713 feedback mechanism Effects 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000002262 irrigation Effects 0.000 description 2
- 238000003973 irrigation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000005404 monopole Effects 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000005408 paramagnetism Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 230000033912 thigmotaxis Effects 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 241000272470 Circus Species 0.000 description 1
- 208000012661 Dyskinesia Diseases 0.000 description 1
- 229910000863 Ferronickel Inorganic materials 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 208000000592 Nasal Polyps Diseases 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 235000004869 Tussilago farfara Nutrition 0.000 description 1
- 240000000377 Tussilago farfara Species 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003994 anesthetic gas Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 208000029028 brain injury Diseases 0.000 description 1
- 210000000621 bronchi Anatomy 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000012799 electrically-conductive coating Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 239000002874 hemostatic agent Substances 0.000 description 1
- 206010020718 hyperplasia Diseases 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000002357 laparoscopic surgery Methods 0.000 description 1
- 238000002647 laser therapy Methods 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000009347 mechanical transmission Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000006386 memory function Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004899 motility Effects 0.000 description 1
- 239000003158 myorelaxant agent Substances 0.000 description 1
- 208000016366 nasal cavity polyp Diseases 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 208000014081 polyp of colon Diseases 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 238000007674 radiofrequency ablation Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical compound FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/08—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
- A61B18/082—Probes or electrodes therefor
- A61B18/085—Forceps, scissors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/3209—Incision instruments
- A61B17/3211—Surgical scalpels, knives; Accessories therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/08—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/08—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
- A61B18/082—Probes or electrodes therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/08—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
- A61B18/10—Power sources therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0067—Catheters; Hollow probes characterised by the distal end, e.g. tips
- A61M25/0082—Catheter tip comprising a tool
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00137—Details of operation mode
- A61B2017/00141—Details of operation mode continuous, e.g. wave
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00831—Material properties
- A61B2017/00876—Material properties magnetic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00973—Surgical instruments, devices or methods, e.g. tourniquets pedal-operated
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B2017/320069—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic for ablating tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B2017/32007—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with suction or vacuum means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B2017/320082—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic for incising tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00059—Material properties
- A61B2018/00071—Electrical conductivity
- A61B2018/00077—Electrical conductivity high, i.e. electrically conducting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00059—Material properties
- A61B2018/00089—Thermal conductivity
- A61B2018/00095—Thermal conductivity high, i.e. heat conducting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00107—Coatings on the energy applicator
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00107—Coatings on the energy applicator
- A61B2018/0013—Coatings on the energy applicator non-sticking
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00589—Coagulation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00595—Cauterization
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00601—Cutting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00619—Welding
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00642—Sensing and controlling the application of energy with feedback, i.e. closed loop control
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00642—Sensing and controlling the application of energy with feedback, i.e. closed loop control
- A61B2018/00654—Sensing and controlling the application of energy with feedback, i.e. closed loop control with individual control of each of a plurality of energy emitting elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00702—Power or energy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00714—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00755—Resistance or impedance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00791—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00791—Temperature
- A61B2018/00803—Temperature with temperature prediction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/0091—Handpieces of the surgical instrument or device
- A61B2018/00916—Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device
- A61B2018/00958—Handpieces of the surgical instrument or device with means for switching or controlling the main function of the instrument or device for switching between different working modes of the main function
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
- A61B2018/128—Generators therefor generating two or more frequencies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1405—Electrodes having a specific shape
- A61B2018/1407—Loop
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1405—Electrodes having a specific shape
- A61B2018/1412—Blade
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Otolaryngology (AREA)
- Plasma & Fusion (AREA)
- Biophysics (AREA)
- Cardiology (AREA)
- Pulmonology (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Dentistry (AREA)
- Mechanical Engineering (AREA)
- Vascular Medicine (AREA)
- Epidemiology (AREA)
- Surgical Instruments (AREA)
Abstract
将振荡电能输送到电导体,例如导线或导管,其在选择区域中沿圆周涂覆有铁磁性材料。利用高频电能,铁磁性材料在加热和冷却方面具有快速响应,加热和冷却能通过能控制的功率输送来调节。铁磁性材料能在很多手术程序中用于分离组织、凝固、组织破坏或获得其他期望的组织作用。热、电外科和机械模态能组合在手术工具中。在第一模式中的可能损坏性的作用能通过使用第二模态最小化。在一个示例中,热止血因而能辅助电外科应用来避免与止血单极电外科波形相关的不利的组织作用,同时保留使用单极切割波形的有益效果。
Description
技术领域
本发明涉及手术工具。更具体地,本发明涉及用于开放和微创(minimallyinvasive)手术程序以及介入手术和治疗程序中的可热调节的工具。
背景技术
手术通常涉及切割、修复和/或去除组织或其他材料。这些应用通常通过切割组织、熔合组织或组织破坏来进行。
目前用于切割、凝固、干燥、消融或电灼组织的电外科模态具有不尽如人意的负作用和缺陷。
单极和双极电外科模态通常具有与“超出端头之外(beyondthetip)”作用相关的缺点。这些作用是通过使交变电流经过与电导器械或探针接触的组织造成的。被认为由这两种模态电肌肉刺激造成的一种作用为电肌肉刺激,其可能中断手术程序,并且需要施用肌肉松弛药。
单极手术器械需要使电流通过患者。返回电极放置在患者身体上,通常放置在患者大腿上。电从“刀”电极传导经过组织,并且经过返回电极返回。还存在其他形式的单极器械,例如利用身体的电容效应来用作返回电极或地的单极器械。
低电压高频率的波形将用于切割,但是几乎没有止血作用。高电压波形将引起相邻的组织止血并且凝固。因此,当期望止血时,使用高电压。由于电必须经过患者,因此高电压火花通常具有比切割更深的组织作用。对组织的损害从实际凝固点延伸开。而且,存在对返回电极烧伤的抱怨。但是,电压的任何减小会降低止血的有效性。而且,火花或电弧的温度不能精确控制,这可能导致不期望的目标组织炭化。
双极手术器械可能造成类似于单极装置的问题和组织损伤,例如发出火花、炭化、更深的组织作用和电流损伤,其远离能量施加点并且进入患者相邻组织中,由于例如神经、肌肉、脂肪和骨等组织类型的不同电导率而造成不同的作用。但是,电流更多地,但是不完全地被限制在双极电极之间。这些电极也通常更昂贵,因为必须制造至少两个精密电极而非一个单极电极。
电烙电阻加热元件减少了由其他电外科方法造成的与炭化和更深组织损伤相关的缺点。但是,这样的装置通常存在其他的折衷,例如有效功率传输和加热及冷却时间控制方面的滞后。很多电阻加热元件具有缓慢的加热和冷却时间,这使得外科医生很难在穿过组织或围绕组织操作而不造成附带的损伤。
组织破坏器械通常将组织加热到预定温度持续一定时间段,以杀死或消融该组织。在对一些组织的控制加热中,激光被导向到吸收帽,以达到预定温度并且保持预定温度预定时间量。虽然这提供加热的有益效果,但是由于激光硬件的复杂性和花费而比较昂贵。
在另一种组织破坏程序中,将微波天线阵列插入组织中。这些阵列由使微波能量进入并且加热组织的器械驱动。虽然这样的装置通常能有效杀死或消融期望的组织,但是其通常造成比期望区域更深的组织作用。另外,这些程序可能需要昂贵的设备。
使用电阻加热工具进行的组织破坏除了具有缓慢加热和冷却的特性外,还可能产生不期望的附带的组织损伤。
已经作为替代方案对使用在陶瓷中的铁氧体磁珠或合金混合物进行了测试。当被与通过导体的高频电流相关的磁场激励时,陶瓷中的铁氧体磁珠和合金混合物可非常快速地达到高的温度。但是,与这些材料的使用相关的一个主要问题是,大的温差可能使材料断裂,特别是当其与液体接触或与液体脱离接触时。换句话说,如果热的铁氧体手术器械由较冷的液池急冷,例如由血液或其他体液急冷,则材料的相应温度快速下降,并且可能造成材料断裂。这些断裂不仅由于磁场被破坏而使工具丧失其作为热源的有效性,而且可能需要将材料从患者体内取出。显然,非常不期望需要将铁氧体制品的小碎片从患者体内取出。因而,需要改进的热手术工具。
发明内容
本发明的一个目的是提供一种改进的可热调节的手术或治疗工具和使用所述工具的方法。
根据本发明一个方面,热手术工具系统设置有在导体上的铁磁性涂层和用于在涂层位置处产生热的振荡电能源。振荡电能可引起铁磁性涂层感应加热。而且,由于短的热效等待时间,外科医生可能够快速打开或关闭手术或治疗工具。这样可提供允许外科医生仅在期望位置处快速传送热作用的优点,这也可防止在等待工具冷却时发生不期望的热作用的意外传送。
根据本发明另一方面,热手术工具系统可构造成使传送到铁磁性元件的功率传送可由外科医生以接近实时方式改变,以获得不同的组织作用,包括止血、组织焊接和组织破坏。
根据本发明另一方面,热手术工具系统设置有功率控制机构,其使外科医生能够快速调节供到手术或治疗工具的功率,以根据提供到工具的功率大小获得期望组织的组织焊接、切割、消融、汽化等。
根据本发明另一方面,带涂层导体可由发电机驱动。
根据本发明一个方面,热手术工具系统设置有在导体上的铁磁性涂层和用于在涂层位置处产生热的振荡电能源。振荡电能源可使引起铁磁性涂层感应加热,以由此使得能够实现组织切割、消融等。
根据本发明另一方面,可进行受控的热组织破坏。
根据本发明另一方面,带涂层的导体可结合在导管或内窥镜中,导管或内窥镜也可通过通道提供感测、观察、抽吸、冲洗、热固性材料的输送或热熔化或消融材料的去除等功能。
根据本发明另一方面,可使用导管来将具有铁磁性涂层的导体传送到要获得期望治疗效果的区域中。
根据本发明另一方面,铁磁性涂层的加热可通过改变带涂层导体几何形状来控制。
根据本发明另一方面,多个铁磁性导体可布置在主几何体上,每一个导体单独控制,以使铁磁性导体可同时提供不同的组织作用。
根据本发明的另一方面,铁磁性涂层的加热可通过改变传输到导体的功率的特征参数来控制。
根据本发明一个方面,热手术工具系统设置有在导体上的铁磁性涂层和用于在涂层位置处产生热同时通过使用第二能量模式产生另外的组织作用的振荡电能源。振荡电能源可使引起铁磁性涂层感应加热(感应热模式)。而且,由于短的热效等待时间,外科医生可能够快速打开和关闭手术或治疗工具的感应热模式。这样可提供以下优点:允许外科医生仅在期望位置处传送热作用,这也可防止在等待工具冷却时发生不期望的热作用的意外传送。同时,可通过第二模式同时或连续地传送相似或不同的组织作用。如果传送相似的组织作用,则两种模式的使用可使效率提高。如果传送不同的组织作用,则两种模式可彼此互补,以可减少单一模式的缺点。
根据本发明另一方面,热手术工具系统可构造成使感应热模式和/或第二模式可由外科医生以接近实时方式改变来获得不同的组织作用,包括止血、组织焊接和组织破坏。
根据本发明另一方面,可通过利用与第二模式结合的感应热模式的有益效果来进行受控的热组织破坏。具有铁磁性涂层的导体可用作切割、损伤或消融探针的部件,其中铁磁性涂层提供加热,以及用作用于使单极电外科能量在组织中传送的传导路径。
根据本发明另一方面,第二模式可包括单极或双极RF元件,例如单极或双极RF电外科器械,其可用于切割和凝固组织。虽然RF电外科器械非常有效,但是其易于在用于封闭时在切割范围之外造成组织损伤。因而,RF单极或双极电外科器械可与具有铁磁性涂层的导体结合使用,所述具有铁磁性涂层的导体封闭由RF器械切割的组织。
根据本发明又一个实施例,多模式手术工具可包括用于切割和/或处理组织的热和超声工具。
根据本发明,提供了一种手术工具,包括:
电导体;
铁磁性材料的涂层,其布置在所述导体的至少一部分上;
其中,所述铁磁性材料的涂层在被加热及然后浸没在液体中时将不会断裂。
可选地,所述铁磁性材料的涂层相对于所述导体而言较薄。
可选地,所述铁磁性材料的涂层在所述导体的厚度的0.01%和50%之间。
可选地,所述铁磁性材料的涂层在所述导体的厚度的0.1%和20%之间。
可选地,所述铁磁性材料的涂层厚度在0.05微米和500微米之间。
可选地,所述手术工具具有布置在所述导体上的多个铁磁性涂层。
可选地,所述手术工具还包括构造成将振荡电能输送到所述导体的电源。
可选地,所述手术工具还包括电路,所述电路包括阻抗匹配电路,所述阻抗匹配电路构造用于将所述电源连接到所述导体。
根据本发明,还提供了一种能热调节的手术工具,包括电导体和覆盖所述电导体的至少一部分的铁磁性涂层;
其中,所述铁磁性涂层在所述电导体的厚度的0.1%和20%之间,
其中,所述铁磁性涂层在被加热及然后浸没在液体中时将不会断裂。
可选地,所述能热调节的手术工具还包括电源,所述电源构造用于向所述电导体输送振荡电能。
可选地,所述能热调节的手术工具还包括一个或多个接头,所述接头具有第一端和第二端,每一个接头构造用于从第一端向附接到所述第二端的所述电导体输送振荡电能,并且还构造用于限制从所述第二端向所述第一端的热传递。
可选地,所述能热调节的手术工具还包括在所述导体和所述铁磁性涂层之间的热绝缘涂层。
可选地,所述铁磁性涂层选自包括NiFe合金、NIRONTM、Co、Fe、FeOFe2O3、NiOFe2O3、CuOFe2O3、MgOFe2O3、MnBi、Ni、MnSb、MnOFe2O3、Y3Fe5O12、CrO2、MnAs、Gd、Dy、EuO、磁石、PermalloyTM、钇铁石榴石、铝和锌的组。
可选地,所述导体厚度在0.01毫米和1毫米之间。
可选地,所述导体厚度在0.125毫米和0.5毫米之间。
可选地,所述铁磁性涂层在导体的厚度的0.01%和50%之间。
可选地,所述铁磁性涂层在导体的厚度的0.1%和20%之间。
可选地,所述导体选自包括铜、钨、钛、不锈钢和铂的组。
可选地,所述导体还包括两个或更多个异种导体的接合部。
可选地,所述能热调节的手术工具还包括传感器,所述传感器构造用于测量所述接合部处的一个或多个信号并且将所述一个或多个信号与温度相关联。
可选地,所述铁磁性涂层还包括交替的导体材料和铁磁性材料的层。
可选地,所述振荡电能构造用于在所述导体的由铁磁性材料涂敷的部分处以最大电流和最小电压输送。
可选地,所述铁磁性涂层围绕所述导体沿圆周布置。
可选地,所述铁磁性涂层不对称地减薄。
可选地,所述能热调节的手术工具还包括镀有铁磁性材料薄膜的至少一根其他导线。
可选地,所铁磁性涂层和所述电导体的至少一部分也涂覆有薄层耐高温不粘材料。
可选地,所述铁磁性涂层和所述电导体的至少一部分也由导热生物相容材料涂覆。
可选地,所述能热调节的手术工具还包括与所述铁磁性涂层相邻布置的传感器。
可选地,所述能热调节的手术工具还包括手柄,所述电导体穿过所述手柄,至所述电导体的延伸超出所述手柄之外的一部分,并且其中,所述铁磁性涂层覆盖延伸超出所述手柄之外的电导体的所述一部分。
可选地,所述能热调节的手术工具还包括:主几何体,其中,所述电导体布置在所述主几何体上。
可选地,所述主几何体选自包括镊子、手术刀、压舌板、球形、尖头几何体和导管的组。
可选地,所述主几何体还包括在由所述导体形成的路径之间的非毗邻材料部分。
可选地,所述主几何体还包括位于所述主几何体中的孔。
可选地,所述导体嵌入所述主几何体中。
可选地,所述电导体布置在所述主几何体的一侧上。
可选地,所述能热调节的手术工具还包括用户控制装置,其构造用于调节从所述电源向所述电导体输送的振荡电能。
可选地,所述电源进一步构造用于将关于电流状态的数据传送到用户控制装置;并且
所述用户控制装置进一步构造用于接收关于电流状态的数据,并且将控制数据传送到所述电源。
根据本发明,还提供了一种能热调节的手术器械,包括:
小直径电导体,其具有近端和远端,其中,所述近端构造用于连接到提供射频能量的电路;和
铁磁性材料薄镀层,其围绕所述电导体沿圆周布置,其中,所述铁磁性材料构造成具有足够高的居里温度以包括期望的治疗温度范围集合;并且
铁磁性涂层的厚度为0.05毫米或更小,
其中,所述铁磁性涂层在被加热及然后浸没在液体中时将不会断裂。
可选地,所述铁磁性涂层的厚度介于大致0.5微米至大致500微米之间。
可选地,所述的能热调节的手术器械还包括与所述手柄结合的插座,所述插座构造用于接纳小直径电导体。
可选地,所述的能热调节的手术工具还包括插头,所述插头构造用于接纳所述小直径电导体和附接到所述插座。
可选地,所述插头构造用于单次使用。
可选地,所述手术工具还包括构造用于向所述小直径电导体输送功率的发生器,所述发生器包括负载预测模块,其构造用于预测具有铁磁性材料薄镀层的小直径电导体的负载特性。
可选地,所述插头还包括构造用于将负载特性传送到所述负载预测模块的数据模块。
可选地,所述负载预测模块还构造用于利用预测的负载特性来预测为获得期望温度所需的功率输出。
根据本发明,还提供了一种用于形成手术器械的方法,所述方法包括:
选择主几何体;
使用铁磁性材料涂覆导体,其中,涂层足够薄以便在被加热及然后浸没在液体中时将不会断裂;和
将所述导体布置在所述主几何体上。
可选地,所述的方法还包括以下步骤:在所述导体上提供构造用于接收振荡电能的电接头。
根据本发明,还提供了一种能热调节的手术工具,包括:
施放器和具有电导体的圈套器,所述导体形成环,并且至少部分布置在所述施放器中;和至少一个铁磁性涂层,其覆盖所述电导体的至少一部分,其中,所述铁磁性涂层足够薄以便在被加热及暴露至大得足以引起铁氧体磁珠断裂的温差时将不会断裂。
可选地,所述的能热调节的手术工具还包括电源,其构造用于向所述电导体输送振荡电能。
可选地,所述振荡电能构造用于被调谐成将更大的功率输送到所述至少一个涂层。
可选地,调谐至少部分通过调节所述振荡电能的频率实现。
可选地,调谐至少部分通过调节所述电源的负载匹配来实现。
可选地,所述至少一个铁磁性涂层包括沿所述环布置的多个铁磁性涂层。
根据本发明,还提供了一种能热调节的手术工具,包括:
导管,所述导管包括:
主体,其限定具有第一端的中心通道;
导体,其沿所述导管的至少一部分延伸,并且构造用于向所述第一端输送功率;
铁磁性涂层,其覆盖所述导体的靠近所述第一端的部分,其中,所述铁磁性涂层足够薄以便在被加热及暴露至大得足以引起铁氧体磁珠断裂的温差时将不会断裂;和
接头,其构造用于附接到向所述导管输送振荡电流的电源。
可选地,所述导管还包括基底。
可选地,所述基底选自包括高温塑料和玻璃的组。
可选地,所述导体的至少一部分镀在所述基底上。
可选地,所述铁磁性涂层的至少一部分镀在所述导体上。
可选地,所述导体包括中心通道。
可选地,所述导管还包括:传感器通道,其位于所述中心通道中,并且构造用于将传感数据返回到操作者。
可选地,所述导管还包括输送通道,其中,物质能从该通道抽吸或排出。
根据本发明,还提供了一种能热调节的手术工具,包括:
电导体,其具有第一部分和第二部分;
铁磁性涂层,其覆盖所述电导体的在所述第一部分和所述第二部分之间的至少一部分以便将有效加热限制于小区域而非整个电导体,其中,所述铁磁性涂层足够薄以便在被加热及暴露至当从空气过渡到液体时的温差时将不会断裂。
可选地,所述的能热调节的手术工具还包括发生器,其构造用于向所述电导体输送波形,其中,所述发生器还构造用于通过使包括最小电压和最大电流的驻波出现在铁磁性涂层处来阻抗匹配所述电导体。
可选地,所述发生器还构造用于提供在ISM频带中的至少一个波形。
可选地,所述发生器还构造用于提供频率在5兆赫和24千兆赫之间的至少一个波形。
可选地,所述发生器还构造用于提供频率在40兆赫和928兆赫之间的至少一个波形。
可选地,所述的能热调节的手术工具还包括传感器,其靠近所述铁磁性涂层布置。
可选地,所述发生器构造用于从所述传感器接收信号,并且将所述波形调节到对应于设置温度。
可选地,所述发生器构造用于测量与所述导体相关的指标,所述指标与温度相关,并且所述发生器构造用于观察所述指标,并且将所述波形调节到对应于期望温度。
可选地,所述指标选自包括阻抗、电压、电流、反射能量、驻波比(SWR)和相位移的组中的一个或多个。
可选地,所述发生器还包括构造用于预测具有所述铁磁性涂层的电导体的负载特性的模块。
可选地,所述发生器构造用于检测工具中的故障。
根据本发明,还提供了一种用于能热调节的手术工具的电源,包括:
脚踏开关;
占空比控制装置,其与所述脚踏开关连通;
振荡器,其与所述占空比控制装置连通;
功率放大器,其与所述振荡器连通;
手持手术工具,其与所述功率放大器连通,并且进一步包括:
电导体;和
铁磁性涂层,其覆盖所述电导体的至少一部分,其中,所述铁磁性涂层足够薄以便在被加热及浸没在液体中时将不会断裂。
可选地,所述功率放大器还包括E级放大器。
根据本发明,还提供了一种多模式手术工具,包括电外科电极和热元件,其中,所述热元件为具有铁磁性涂层的导体,并且,其中所述铁磁性涂层足够薄以便在被加热及暴露至当从空气过渡到液体时的温差时将不会断裂。
可选地,所述电外科电极是单极电极。
可选地,所述热元件与所述电外科电极分开。
可选地,所述热元件也用作所述电外科电极。
可选地,所述的多模式手术工具还包括多路传输信号。
可选地,所述多路传输信号还包括单极信号。
可选地,所述多路传输信号还包括感应加热信号,其中,所述感应加热信号在5MHz和24GHz之间。
根据本发明,还提供了一种多模式手术工具,包括:
端头,其包括电导体;
铁磁性涂层,其覆盖所述电导体的至少一部分,所述铁磁性涂层选自将使一些频率的振荡电能转变为热能并且将使其他频率的振荡电能传送到组织中的那些铁磁性涂层,
其中,所述铁磁性涂层足够薄以便在被加热及暴露至当从空气过渡到液体时的温差时将不会断裂。
可选地,所述的多模式手术工具还包括用于将多路传输信号传送到所述电导体中的装置。
可选地,所述铁磁性涂层构造用于同时将热能和振荡电能传播到组织中。
根据本发明,还提供了一种能热调节的多模式手术端头,包括:
电缆;
电外科元件,其构造用于从所述电缆接收功率;以及
热元件,所述热元件包括:
小直径电导体,其具有近端和远端,其中,所述近端构造用于从所述电缆接收射频能量;
铁磁性材料薄镀层,其围绕所述电导体沿圆周布置,其中,所述铁磁性材料构造成具有的居里温度足够高以包括期望的治疗温度范围集合,其中,所述铁磁性材料薄镀层足够薄以便在被加热及暴露至当从空气过渡到液体时的温差时将不会断裂;和
电外科元件,其构造用于从所述电缆接收功率,并且构造用于向附近组织中释放射频能量。
可选地,所述电外科元件为单极元件。
可选地,其中所述电外科元件为双极电极。
可选地,所述小直径电导体与所述电外科元件分开。
可选地,所述小直径电导体也用作所述电外科元件。
可选地,所述的能热调节的多模式手术端头还包括多路输出信号,并且所述多路传输信号还包括双极信号。
可选地,所述的能热调节的多模式手术端头还包括电源,和用于选择地单独或共同地激活所述电外科元件和所述热元件的控制装置。
可选地,所述的能热调节的多模式手术端头还包括:
至少两个臂,其中所述双极电极布置在所述至少两个臂中的一个上;
返回双极电极,其布置在所述至少两个臂中的一个上。
根据本发明,还提供了一种能调节的多模式手术工具,包括:
主体,其构造用于振荡;
导体,其围绕所述主体的至少一部分放置;
铁磁性涂层,其覆盖所述导体的一部分,其中,所述铁磁性涂层足够薄以便在被加热及暴露至当从空气过渡到液体时的温差时将不会断裂;和
电源,其向所述导体输送振荡电流。
可选地,所述主体包括超声变幅杆。
可选地,所述的多模式手术工具还包括电源,其用于提供振荡电能,由此使所述主体振荡,并且提供对所述铁磁性涂层的加热。
可选地,所述电源还包括用于提供能量来使所述主体振荡和用于提供对所述铁磁性涂层的加热的独立源。
可选地,所述独立源构造用于在重叠的时间段过程中操作。
可选地,所述独立源构造用于在分开的时间段操作。
可选地,所述主体具有孔。
可选地,所述主体具有多个孔。
可选地,所述多个孔中的第一孔构造用于抽吸,所述多个孔中的第二孔构造用于冲洗。
可选地,所述超声变幅杆还包括压电换能器。
附图说明
参照编号的附图来示出和描述本发明的多个实施例,附图中:
图1显示了根据本发明原理的一种热手术工具系统的立体图;
图2显示了根据本发明的一种热手术工具系统的一个替代实施例的立体图;
图3显示了根据本发明原理的一种热手术工具系统的简图;
图4A显示了一种具有热防护末端、散热器和无线通讯装置的热手术工具系统;
图4B显示了一种具有阻抗匹配网络的热手术工具系统;
图5A显示了根据本发明一个方面的一种具有单层铁磁性涂层的导体端头的放大侧剖视图;
图5B是图5A的具有铁磁性涂层的导体的电学等效表示;
图6显示了根据本发明一个方面的一种带热绝缘体的具有单层铁磁性涂层的导体端头的放大侧剖视图;
图7A显示了根据本发明一个方面的一种带有环形几何体的具有铁磁性涂层的导体手术工具端头的放大图;
图7B显示了根据本发明一方面的一种带有大体方形几何体的具有铁磁性涂层的导体手术工具端头的放大图;
图7C显示了一种带有尖头几何体的具有铁磁性涂层的导体手术工具端头的放大图;
图7D显示了一种带有不对称环形几何体的具有铁磁性涂层的导体手术工具端头的放大图;
图7E显示了一种带有钩状几何体的具有铁磁性涂层的导体手术工具端头的放大图,其中,凹入部可用于治疗作用,包括切割;
图7F显示了一种带有钩状几何体的具有铁磁性涂层的导体手术工具端头的放大图,其中,凸出部可用于治疗作用,包括切割;
图7G显示了一种带有角状几何体的具有铁磁性涂层的导体手术工具端头的放大图;
图8显示了一种缩回的圈套器的剖视图;
图9A显示了一种伸出的圈套器的侧视图;
图9B显示了一种伸出的圈套器的一个替代实施例的侧视图;
图10A显示了一种带有环形几何体和线性排列涂层的具有铁磁性涂层的导体手术工具的放大图;
图10B显示了一种带有交替钩状几何体和线性阵列的具有铁磁性涂层的导体手术工具的放大图;
图11显示了一种具有涂层阵列的缩回的圈套器的剖视图;
图12显示了一种具有线性涂层阵列的伸出的圈套器的侧视图;
图13显示了一种具有单层铁磁性涂层的导体手术工具的在铁磁性涂层区域中的轴向剖视图;
图14A显示了一种具有多层铁磁性涂层的导体手术工具端头的立体图;
图14B显示了图14A中的具有多层铁磁性涂层的导体手术工具端头的侧剖视图;
图15显示了图14A中所示的具有多层铁磁性涂层的导体手术工具端头的轴向剖视图;
图16显示了根据本发明一个方面的一种显示出电磁通量线的平直侧部圆柱状几何体的具有铁磁性涂层的导体的剖视图;
图17显示了根据本发明另一方面的一种封闭的导体端头;
图18A显示了根据本发明一个方面的一种具有单边铁磁性涂层的导体手术端头;
图18B显示了一种具有双边铁磁性涂层的导体手术端头;
图18C显示了一种具有三线铁磁性涂层的导体手术端头;
图18D显示了用于图18A到18C中所示端头的容器;
图19A显示了一种具有备选感应铁磁性热功能的通常冷的切割手术刀;
图19B显示了一种具有备选感应铁磁性热功能的通常冷的切割手术刀的一个替代实施例;
图20A显示了一种具有压舌板状几何体的热手术工具;
图20B显示了一种呈镊子构型的具有压舌板状几何体的热手术工具;
图20C显示了图20A的热手术工具的俯视图,其中具有铁磁涂层的导体在主几何体上;
图20D显示了图20A的的热手术工具的俯视图,其中具有铁磁涂层的导体嵌在主几何体中;
图21A显示了一种具有球状几何体和水平绕组的热手术工具;
图21B显示了一种具有球形几何体和马蹄构型绕组的热手术工具的一个替代实施例;
图21C显示了一种具有球形几何体和竖直取向的热手术工具的一个替代实施例;
图22A显示了一种具有尖头几何体的热手术工具;
图22B显示了一种呈镊子构型的具有尖头几何体的热手术工具;
图22C显示了一种具有两个不同的可激活热区的热手术工具;
图23A显示了一种导管的立体图,其具有围绕导管端头布置的具有铁磁性涂层的导体的线圈;
图23B显示了一种具有铁磁性涂层的导体手术导管端头的立体图;
图24显示了一种具有铁磁性涂层的导体手术导管端头的一个替代实施例的侧视图;
图25显示了一种布置在内窥镜中的具有铁磁性涂层的导体手术端头的一个替代实施例;
图26显示了一种组织消融工具;
图27显示了一种具有单极模态和热模态的多模式手术工具;
图28A显示了一种在组织中,例如在肝中的转移灶(metastasis)内的多模式组织消融工具;
图28B显示了图28A的消融探针的放大图;
图28C显示了一种具有传感器的消融探针的放大图;
图28D显示了一种多端头消融探针的放大图;
图29显示了一种具有双极模态和热模态的多模式手术工具;
图30显示了一种多模式镊子的侧视图;
图31A显示了镊子端头的一个替代实施例的放大图;
图31B显示了一种具有涂层的镊子端头的示意图;
图32A显示了一种具有热模态和超声模态的多模式手术工具;
图32B显示了一种带有钩状主几何体的具有热模态和超声模态的多模式手术工具;
图32C显示了一种带有传感器的具有热模态和超声模态的多模式手术工具;
图32D显示了一种带有第二端头的具有热模态和超声模态的多模式手术工具;
图33显示了一种带有抽吸/冲洗功能和传感器的具有热模态和超声模态的多模式手术工具;
图34显示了与组织作用相关的热线谱。
应意识到,附图是示例性的,并不限制由所附权利要求限定的本发明的范围。所示的实施例实现了本发明的多个方面和目的。应意识到,单幅图中不可能清楚地显示本发明的每一个元件和方面,因此,给出多幅图来更清楚地分开示例说明本发明的多个细节。同样地,不是每一个实施例需要实现本发明的全部优点。
具体实施方式
现在将参考本文提供的附图标记来讨论本发明和附图,以使本领域技术人员能够实现本发明。附图和以下描述是对本发明多个方面的示例,不旨在缩小所附权利要求的范围。
当在本文中使用时,术语“铁磁性的”、“铁磁体”和“铁磁性”等指任何能够通过磁感应产生热的铁磁性类材料,包括但不限于铁磁体和铁氧磁材料。
现在来看图1,显示了总体以10标示的热手术工具系统的立体图。如将在下面更详细讨论的,热工具系统优选使用具有铁磁性涂层的导体来处理或破坏组织(即上皮组织焊接、体内平衡、消融等)。
应意识到,热手术工具利用热来切入组织,而不以与使用传统手术刀划过组织的锋利边缘相同的方式切割组织。虽然本发明的实施例可制成具有相对锋利的边缘,以形成切割刀刃,但是不需要一定这样,因为本文讨论的被加热的涂层将会在无需切割刀刃或锋利的边缘的情况下分离组织。但是,为了方便,当讨论分离组织时,仍使用术语切割。
在显示为热手术工具系统10的实施例中,控制机构,例如脚踏开关20,用于控制由电源子系统30产生的输出能量。来自电源子系统30的能量可通过射频(RF)或振荡电能沿电缆40送到手持手术工具50,手持手术工具50包括导体60,其横截面沿外周涂覆有铁磁性涂层65。铁磁性涂层65可通过围绕导线66布置的铁磁性材料中的感应和相应磁滞损耗而将电能转变为可用的热能。(虽然为了便于提及而使用“导线”,但是应可意识到,导体材料不一定是导线,并且本领域技术人员应熟悉根据本发明原理工作的多个导体)。
将磁场(或磁化作用)施加到铁磁性涂层可产生开环的B-H曲线(也称为开环的磁滞回线),导致磁滞损耗和由此得到的热能。电沉积薄膜,例如镍-铁涂层,如PERMALLOYTM,可形成无规排列的微晶阵列,形成无规排列的晶畴(domain),所述晶畴一起可在高频电流通过导体时具有开环的磁滞曲线。
RF能量可沿导体表面以已知为“集肤效应”的方式传送。导体表面中的交变RF电流产生交变磁场,其可将铁磁性涂层65中的晶畴励磁。随着晶畴随电流的每一次振荡重新排列,涂层中的磁滞损耗可能引起感应加热。
从信号源一直到端头并且包括端头的RF导体可形成特定频率下的谐振电路(也称为调谐电路)。端头中的变化使电路“失谐”。因而,如果铁磁性涂层65或导线66损坏时,电路可能变得失谐。该失谐将降低铁磁性涂层65的加热效率,从而温度将大大降低。降低的温度应确保破损后几乎没有或没有组织损伤。
破损或其他故障也可通过传感器检测。正常电路操作的中断可因此被检测到,并且使手术系统关闭。在一个实施例中,监控电流。如果检测到电流的突然意外增大,则系统可关闭,因为铁磁性涂层可能不再消耗其应消耗的功率。同样地,可监控阻抗,并且将阻抗用作系统故障的指示。
应可理解,手持手术工具50可包括对正在施加的功率的指示器,并且可甚至包括用于控制功率的机构。因而,例如,一系列灯52可用于指示功率水平,或手持手术工具50可包括开关、转盘、按钮组、触摸板或滑块54,其与电源30通讯来调节功率并且因此影响铁磁性涂层65处的温度来在组织上获得不同作用。这些指示器可显示电流状态,电流状态可由电源表示并且被通过电源传达给使用者可调节的控制装置。虽然控制装置显示在脚踏开关20或手持手术工具50上,但是其也可被包括在电源子系统30或甚至分开的控制器械中。可使用安全装置,例如按钮或触摸板,其必须被接触以驱动手持手术工具50,并且安全装置可包括安全开关。
虽然铁磁性涂层65通过感应加热,但是由于其居里温度,其还提供温度最高限度(temperaturecap)。居里温度是材料变成顺磁性以使每一个磁畴相对于磁场的排列降低到使涂层磁性消失的程度的温度。当材料变成顺磁性时,由感应产生的热可能显著降低或甚至停止。如果提供足够的功率来达到居里温度,则这使铁磁性材料的温度稳定在居里温度周围。一旦温度降低到居里温度以下,感应可再次开始,引起将材料一直加热到居里温度。因而,铁磁性涂层的温度可通过施加足够的功率来在感应加热过程中达到居里温度,但是不可能超过居里温度。
热手术工具系统10允许功率输出可调节以调节工具的温度及其作用在组织上的作用。该可调节性使外科医生能够精确控制可通过手持手术工具50获得的作用。组织作用,例如切割、止血、组织焊接、组织汽化和组织炭化在不同温度下进行。通过使用脚踏开关20(或一些其他使用者控制装置)来调节功率输出,外科医生(或其他医生等)可调节输送到铁磁性涂层65的功率,并且因此控制组织作用来获得期望结果。
热功率传送可通过以下方式控制:通过改变交变电流波形的振幅、频率或占空比,或改变电路来影响驱动具有铁磁性涂层的导体的驻波,这可通过由脚踏开关20、电源子系统30或手持手术工具50上的控制装置接收的输入来实现。
例如,已知需要不同的温度来在组织上引起不同的作用。如将在下面更详细说明的,一些温度可用于进行焊接组织,而其他温度将导致切割、组织消融和汽化。
本发明的一个优点是,其使外科医生能够控制用于系统的功率,这最终影响可施加到组织上的铁磁性涂层65处的温度。功率可通过多种方法进行调节。可使用脉宽调制来改变加热铁磁性涂层65的时间长短,由此控制温度。可使用振幅调制来同样控制通过系统的功率,由此控制铁磁性涂层65的最终温度动态特性。由于包括端头在内的从信号源到端头的RF导体可形成特定频率下的谐振电路(也称为调谐电路),因此端头中的变化使电路“失谐”。因而,可使用频率调制来有效地瞬时使电路失谐,由此最终控制用于组织焊接、切割等的温度。示例性电路可使用锁相回路或频率合成器来调节频率。
供给系统的功率可通过调节结构,例如脚踏开关20,来控制。脚踏开关可具有多个设定点,其给外科医生指示正在供给的功率。这可例如通过使得脚踏开关具有五个位置,每一个位置需要更大的力来实现。所需力的改变将提醒外科医生正在施用的温度范围。
功率控制器,例如脚踏开关,也可用于给外科医生发送关于施用在铁磁性涂层65处的功率水平或涂层处具有的可用于输送到组织的能量的信号。这可以是声音或视觉指示器22,其给外科医生信号来指示功率水平。例如,如果提供五种功率水平,则声音提醒可指示正在施用的功率水平。一声鸣响用于水平或范围1,两声鸣响用于水平或范围2,三声鸣响用于水平或范围3,等。类似地,可使用五种不同的声音信号音色来指示五种功率水平。
同样,工具50可包括正在施用的功率的指示,并且甚至可包括用于控制功率的机构。因而,例如,可使用一系列灯52来指示功率水平,或工具50可包括与电源30连通的开关、转盘、按钮组、触摸板或滑块54,以调节功率并且由此影响铁磁性涂层65处的温度从而在组织上具有不同作用。虽然控制装置显示为在脚踏开关20或工具50上,但是其也可包括在功率子系统30中或甚至分开的控制器械中。同样地,可采用例如按钮或触摸板等必须被接触以驱动工具50的安全部件,例如安全开关。
感应加热所实现的另一个优点在于铁磁性材料可在几分之一秒内(通常短达四分之一秒)被加热至切割温度。另外,因为涂层具有较低质量、导体具有小的热质、以及由于手持手术工具50的构造因而将加热局限于较小区域,材料将非常快速地冷却(例如大约二分之一秒)。这为外科医生提供了精确的热工具,同时降低了由于在热工具并未被激活时接触组织所引起的意外组织损伤。
应意识到,加热和冷却手持手术工具50所需的时间长短将部分取决于导体60和铁磁性涂层65的相对尺寸和手术工具的结构的热容量。例如,上述用于加热和冷却手持手术工具50的时间可通过直径约0.375mm的钨导体和围绕所述钨导体的约0.0375mm厚和两厘米长的镍铁合金(例如可得自WestHaven,Connecticut的Enthone,Inc的NIRONTM)铁磁性涂层获得。
本发明的一个优点是不需要锋利的边缘。当功率没有供到手术工具时,如果工具跌落或误操作,工具不会不慎切割患者或外科医生的组织。如果功率没有正被供到导线66和涂层65,则可触碰工具的“切割”部分而没有受伤的风险。这与如果误操作可能伤害患者或外科医生的切割刀片形成鲜明对比。
其他附加装置也可在各位置中设置在手持件上。这可包括传感器杆12,其包括用于记录温度的传感器或用于照亮手术区域的灯。
现在来看图2,显示了热手术系统10的一个替代实施例的立体图。在图2中,电源30容纳在脚踏开关20中。根据应用和所需功率,对于低功率应用可甚至完全由电池驱动器械。用于低功率要求的一个替代实施例可包括电池、功率调节装置和功率输出装置,全部自备在手持手术工具50的手柄51中。而且,可采用无线通讯模块来从手持手术工具50发送和接收信息,包括状态和控制设置信息,其使使用者能够监控系统性能并且从手持手术工具50自身遥控地改变功率设置。
我们的理解是,这种热技术方案可提供优于当前可得到的单极和双极电系统的优点,因为热损坏可保持于非常接近带涂层区域的铁磁性表面,而单极和双极电组织消融可能常常使组织损伤达远离接触点的一定距离。我们的理解是,这种方法还可克服基于电阻加热的其他热装置的缺点,所述电阻加热的装置可能需要更多的时间来加热和冷却,并且因而存在更大的患者风险,同时在加热点处可能具有更高的功率要求。
而且,沿导体一小段布置的薄铁磁性涂层65可减少对身体中其他非目标材料的加热,例如当在心脏中进行房颤消融时对血液的加热—如果凝块形成,这可导致并发症。由于导线66的小的热质和将加热局限于由工具构造(即铁磁性涂层65和相邻结构)所提供的小区域,就沿远离铁磁性涂层65位置的方向提供了用于热传递的缩短的热路径。该缩短的热路径可使得热仅精确施加到期望点处。由于仅该技术自身没有类似于单极或双极技术利用火花或电弧,因此也减少了例如患者体内或周围的麻醉气体由火花点燃的风险。
热手术工具系统10可用于多种治疗装置—包括封闭、“切割”或分离组织、凝结或汽化组织。在一种构型中,热手术工具系统10可象刀或封闭器一样使用,其中,外科医生通过将铁磁性涂层65移动穿过组织来主动“切割”或封闭组织。本文公开的实施例的热作用可具有显著的优点,包括与单极和双极RF能量装置相关的作用相比较,即使没有消除,也大大减少了深组织作用。
在另一种构型中,具有铁磁性涂层的导体60可插入病灶中,并且根据监控温度设置到特定功率输出或变化的功率输出。可监控病灶和周围组织上的热作用,直到获得期望的热作用或注意到不期望的作用。具有铁磁性涂层的导体的应用的一个优点是,与微波或热激光疗法相比较其可能更具成本效益,并且避免了微波病灶破坏的不期望的组织作用。因而,例如,外科医生可将具有铁磁性涂层的导体插入肿瘤或其他待破坏组织中,并且精确控制由激活手持手术工具50造成的组织损伤。
可使用传感器来监控手持手术工具50、电路径或组织的情况,例如红外检测器或传感器杆12。例如,装置或组织的温度可能在进行程序时很重要。热电偶、异种金属接头、热敏电阻器形式的传感器或其他温度传感器可检测铁磁性涂层65或组织处或附近的温度。传感器可以是装置的部分,例如作为导体的一部分或靠近铁磁性涂层设置的热电偶,或与手持手术工具50分开,例如设置在组织或铁磁性涂层65附近的分开的端头。一些传感器可测量与期望测量值相关联但不是直接相关的指标。温度也可与组织作用相关联,参见图27中。监控的其他有用情况包括但不限于在涂层处输出的功率、颜色、光谱吸收、光谱反射、温度范围、含水量、组织和导体之间的接近程度、组织类型、传递的热量、组织状态、阻抗、电阻、返回电流、驻波比(SWR)、反射功率、电抗、中心频率、相移、电压、电流和视觉反馈(即照相机、光纤或其他可视化装置)。
电源可构造用于响应于传感器反馈。根据期望应用而定,传感器可提供关于调节或确定电源输出的有用信息。在一个实施例中,传感器向电源发送温度示数。电源可然后增加或减小功率输出,以保持在期望温度范围或附近。在另一个实施例中,传感器在组织消融过程中将含水量示数传送到电源。如果含水量下降到期望水平,则电源可减小功率设置,因为组织可能被充分干燥。其他传感器可提供有用输入,该输入可要求电源上其他设置改变,例如波形、持续时间、定时或功率设置。
手持手术工具50可构造用于重复消毒或单个患者使用。较复杂的装置可用于重复消毒,而较简单的装置可能对于单个患者使用更有用。
用于处理或切割组织的方法可包括以下步骤:选择具有切割刃和与所述切割刃相邻布置的导体的手术工具,所述导体的至少一部分涂覆有铁磁性材料;使用所述切割刃切割组织;和向所述导体施加振荡电能,以加热铁磁性材料,并且由此处理切割的组织。
所述方法的任选的步骤可包括以下步骤:在切割组织内引起止血;使用加热的铁磁性材料来切割组织;或使用加热的铁磁性材料来引起血管内皮焊接。
现在参照图3,显示了可调节热手术工具系统10的一个实施例的示意图。输送到铁磁性涂层65的功率输送通过调制高频波形来控制。调制的波形允许以根据期望功率输送可调节地改变、允许或阻挡波形的部分的形式来控制功率输送。
图3中,初始波形110被通过调制器120传送,调制器120从脚踏开关20接收命令。由振荡器130产生具有期望频率的波形,并且该波形由调制器120调制,调制器120可包括但不限于,一个或多个振幅、频率或占空比调制,包括其组合。然后将所得信号由放大器140放大。将放大的信号穿过调谐电缆150传送,调谐电缆150的意思是将电缆调谐来提供在手持手术工具50的铁磁性涂层65的位置处具有最大电流和最小电压的驻波。替代地,可不调谐电缆150,但是可在手柄51中设置电路,以与作为电源30的负载的具有铁磁性涂层的导体60阻抗匹配。
可通过相对于放大器140确定铁磁性涂层的位置(例如电缆长度),并且将高频信号调谐为近似谐振驻波,以使电流在铁磁性涂层65处最大化,来调谐热手术工具系统10。
应意识到,手术工具可在动态环境中操作。因而,当在本文中使用时,近似驻波意思是可调谐电路来使信号可接近最佳驻波,但不可获得该驻波,可仅获得该波很短时间,或可连续地获得驻波更长时间。同样地,没有近似修饰的“驻波”的任何使用在热手术工具的范围内应理解为近似驻波。
用于实现这样的电流最大化的一种方法是将具有铁磁性涂层的导体60连接到电缆150,电缆150实际上长度为四分之一波长的奇数倍,并且连接到放大器140的输出。具有谐振驻波的电路的设计旨在优化到铁磁性涂层的功率输送。但是,在一个实施例中,电源30可设置在铁磁性涂层65的位置处(或紧邻铁磁性涂层65),并且可利用全部在单个手持电池驱动器械中的电部件实现调谐。替代地,阻抗匹配需要的电部件可设置在放大器140的输出级。而且,电部件,例如电容器或电感器可在导线66连接到电缆150的位置处并联或串联连接到具有铁磁性涂层的导体60,以完成谐振电路。
动态负载问题可能由具有铁磁性涂层的导体60与各种组织的相互作用造成。这些问题可通过在负载位置处最大化的电流驻波(或至少一种驻波或波形)最小化。可使用多种不同频率,包括从5MHz到24GHz,优选在40MHz和928MHz之间的频率。
在一些受管制国家,可能优选选择ISM带中的频率,例如中心频率为6.78MHz,13.56MHz,27.12MHz,40.68MHz,433.92MHz,915MHz,2.45GHz,5.80GHz,24.125GHz,61.25GHz,122.5GHz,245GHz的频带。在一个实施例中,振荡器130使用40.68MHz的ISM带频率,E级放大器140和一定长度的同轴电缆150,其全部可被优化以用于向带铁磁性涂层的钨导体60进行功率输送,所述带铁磁性涂层的钨导体60具有铁磁性涂层65,铁磁性涂层65的厚度在0.05微米和500微米之间,并且优选在1微米和50微米之间。可用的估计值可为从导体直径的10%开始铁磁性涂层的厚度,并且可达5cm长。但是,铁磁性涂层可在可能期望加热处沿导体的长度或沿导体的多个区域布置。(铁磁性涂层65可由镍铁(NiFe)合金形成,例如得自WestHaven,Connecticut的Ehthone,Inc的NIRONTM,或其他铁磁性涂层,包括Co,Fe,FeOFe2O3,NiOFe2O3,CuOFe2O3,MgOFe2O3,MnBi,Ni,MnSb,MnOFe2O3,Y3Fe5O12,CrO2,MnAs,Gd,Dy,EuO,磁石,钇铁石榴石,铝,PERMALLOYTM,和锌。)
导体的尺寸、铁磁性涂层的尺寸、相关的厚度、形状、主几何体形状、成分、电源和其他特性可根据程序类型和外科医生偏好选择。例如,脑外科医生可能期望设计用于在脑中快速应用的位于轻型手持包装中的小的器械,而整形外科医生可能需要更大的装置,其具有更大的可用功率来在肌肉上操作。
导体可由铜、钨、钛、不锈钢、铂和可导电的其他材料形成。导体的考虑因素包括但不限于机械强度、热膨胀、导热性、导电性/电阻率、刚度和柔性。可能期望形成不止一种材料的导线66。两个异种材料的连接可形成热电偶。如果将热电偶放置在铁磁性涂层附近或其内,热电偶提供用于该装置的温度反馈机构。而且,一些导体可具有与温度相关的电阻率,这也可用于测量温度。
电源30的调谐也可将铁磁性涂层65的位置处辐射到患者内的高频能量减小到接近零,因为电压低,理论上为零。这与需要将地垫应用到患者的单极装置,或双极装置,形成对照,所述单极和双极装置都使电流通过组织自身。这些作用的缺点在文献中是公知的。
在本文讨论的很多这些实施例中,电缆长度、频率、电容和电感的组合也可用于通过调谐电源30来调节效率和工具几何形状,以将最大功率输送到铁磁性涂层65,并且因此将最大的热传送到组织。调谐的系统还提供固有安全性的有益效果:如果导体损坏,则系统将失谐,使功率输送效率下降,并且如果由适当的安全电路监控,则可甚至关闭。
输送到患者组织的功率大小可通过几种方式修改,以提供对组织作用的精确控制。电源30可如上所述包括用于功率输送的调制器120。另一个实施例利用由于改变导线66及其穿过的铁磁性涂层65的几何形状改变磁场,例如由磁铁造成的改变。磁铁放置在铁磁性涂层65附近将类似地改变感应作用,并且由此改变热作用。
不同形式的调制可用于控制功率输送。脉宽调制基于铁磁性涂层用作热积分器的原理。振幅调制可通过改变连续波形来控制功率输送,以仅输送期望功率。频率调制可“使电路失谐”或改变驻波比,使传输中发生损失,从而不使全部功率输送到负载。
虽然调制已经作为控制功率输送的方法进行了讨论,但是可使用其他方法来控制功率输送。在一个实施例中,工具的输出功率和相应温度通过将驱动电路调谐或失谐来控制,驱动电路包括导线66和具有铁磁性涂层的导体60。
将功率输送到可热调节工具的方法包括以下步骤:选择手术工具,所述手术工具包括构造成使振荡电信号具有近似驻波的导体,所述驻波在负载处具有最大电流和最小电压,所述负载包括涂敷于导体上的铁磁性材料;将振荡电信号输送到负载;和使电信号不再发送到负载。
该方法可任选地包括以下步骤:提供频率在5MHz和24GHz之间的振荡电信号;或提供选自以下中心频率的组的振荡电信号:6.78MHz,13.56MHz,27.12MHz,40.68MHz,433.92MHz,915MHz,2.45GHz,5.80GHz,24.125GHz,61.25GHz,122.5GHz,245GHz。
切割组织的方法可包括以下步骤:选择具有布置在其一部分上的铁磁性涂层的导体;将铁磁性涂层布置成与组织接触;和将振荡电信号输送到导体,以加热铁磁性涂层和切割组织。
所述方法可任选地包括选择振荡电信号的功率输出的步骤。功率输出可对应于铁磁性涂层处的温度范围或期望组织作用。温度范围可选择用于相应的切割、止血、血管内皮焊接、组织汽化、组织消融和组织炭化的组织作用。
用于切割组织的一种替代方法可包括以下步骤:选择具有布置在其一部分上的铁磁性涂层的导体,所述导体与插头相关联;将所述插头放入构造用于功率输送的插座中;将铁磁性涂层布置成与组织接触;和将振荡电信号通过插头输送到导体,以加热铁磁性涂层和切割组织。
所述方法可任选地包括以下步骤:使用之后将插头取下;传送导体和铁磁性涂层的特性;访问插头中的计算机芯片;或传送对应于查阅数据表中的特性的电阻值。
用于进行手术的方法可包括以下步骤:选择包括具有铁磁性涂层的导体的负载;通过来自电源的振荡电能向所述导体输送功率;和使负载的阻抗与发生器的阻抗匹配。
所述方法可任选地包括以下步骤:改变电源的输出阻抗以与负载匹配;改变振荡电能的频率;调节电源来获得振荡电能中的驻波;最大化导体处的电流;选择部件来在导体处获得驻波;或选择一定长度的电缆来将电源连接到电导体以在导体处获得驻波。
用于处理组织的方法可包括以下步骤:选择具有布置在其一部分上的铁磁性涂层的导体;将铁磁性涂层布置成与组织接触;将振荡电信号输送到导体,以加热铁磁性涂层和处理组织;和调节使用者控制装置来改变输送的功率。
用于切割的方法可包括以下步骤:选择导体,所述导体的一部分具有布置于其上的铁磁性涂层;将振荡电信号输送到所述导体,以在铁磁性涂层中产生磁滞现象,并且由此加热铁磁性涂层;和将所述加热的涂层应用到待切割的物质,以由此切割物质。
现在来看图4A,显示了具有接头的热手术工具系统10,所述接头附接到线导体的相对的第一端和第二端。图4A中所示的导体可由防热端子280形成,例如提供热绝缘的压接接头。也可包括一个或多个散热器282和无线通讯装置286。线导体220可通过端子280和/或散热器282在导体的相对的第一和第二端处连接到手持手术工具50。所述导体的部分可延伸到手柄中防热端子内,而导体的铁磁性涂层部分可延伸超出手柄。端子280可具有较差的导热性,以使端子280减小从导体到手持手术工具50中的热传递。相反,散热器282可从端子280获取任何残余热,并且将残余热消散到其他介质中,包括空气。除了压接,接头和连接部也可通过引线接合、点焊和其他焊接方法实现。
可能期望防止热传播,因为手持手术工具50的其他被加热部分可能造成不期望的烧伤,甚至传播到手持手术工具50的操作者。在一个实施例中,端子280用于传导电流,但是防止或减少热传导超出具有铁磁性涂层的导体。
热手术工具还可无线通讯。在一个实施例中,用于监控和调节功率水平的用户界面可容放在遥控无线联接装置284中。无线联接装置可与容纳在热手术工具系统10中的无线模块286通讯,热手术工具系统10包括手持手术工具50、控制系统(例如脚踏开关20)和/或电源子系统30。通过将控制界面和显示器容放在分开的装置中,可降低手持手术工具50部分的成本。类似地,外部装置可配备更大的处理能力、存储量,并且因此具有更好的控制和数据分析算法。
现在来看图4B,显示了具有阻抗匹配网络的热手术工具系统。阻抗匹配网络可将信号源的输出阻抗和负载的输入阻抗匹配。该阻抗匹配可有助于最大化负载的功率,并且最小化来自负载的反射。
在一个实施例中,阻抗匹配网络可以是平衡-不平衡变换器281。这可能有助于功率传递,因为平衡-不平衡变换器281可将具有铁磁性涂层的导体端子287的阻抗与放大器电缆端子283(这里显示为同轴电缆接头)的阻抗匹配。在该构型中,一些平衡-不平衡变换器能够用作散热器,并且提供热隔离,以防止由线导体220传递的来自铁磁性涂层65的热能向导体端287热传播。适当匹配的电路也可设置在陶瓷基底上,以进一步根据基底的成分而定将热吸收远离系统的其余部分或将热与系统的其余部分隔绝。
应意识到,图4A和4B中讨论的这些元件可与本文所示的实施例中的任何一个结合使用。
现在来看图5A,显示了具有铁磁性涂层的导体的纵向截面。当交变电流67通过导体66时,围绕导体66感应出时变的磁场68。时变的磁场68受到铁磁性涂层65的抵抗,使铁磁性涂层65以热的形式消散对时变的磁场68的感抗。如果铁磁性涂层65到达其居里温度,则铁磁性涂层65的磁阻性能大大降低,导致大大降低对时变磁场68的抵抗。由于铁磁性涂层65具有非常少的质量,因此磁场使铁磁性涂层65快速加热。同样地,铁磁性涂层65与导体66相比质量较小,并且,因此,由于从热铁磁性涂层65到较凉并且较大的导体66以及从热铁磁性涂层65到周围环境的热传递的作用,因此热将从其快速消散。
应意识到,虽然附图显示了实心圆形横截面,但是导体横截面可具有各种几何形状。例如,导体可以是中空管状,以使其减少热质。无论为实心还是中空,导体也可成形为具有椭圆形、三角形、方形或矩形横截面。
如还可从图5A清楚看到的是,铁磁性涂层可在导体的第一部分(或者说近端部分)和第二部分(或者说远端部分)之间。这可具有将有效加热限制于小区域而非整个导体的优点。电源也可连接到第一部分和第二部分,以将铁磁性涂层包括在提供功率的电路中。
使用手术工具的方法可包括以下步骤:选择导体,并且在所述导体上镀铁磁性涂层。
所述方法的可任选的步骤可包括:根据期望的程序选择铁磁性涂层布置在其一部分上的导体的尺寸;根据期望的程序选择铁磁性涂层布置在其一部分上的导体的热质;从环形、实心环、方形、尖头、钩状和角状形状的组选择导体;构造振荡电信号来将涂层加热到37到600摄氏度之间;构造振荡电信号来将涂层加热到40到500摄氏度之间;使涂层加热到约58-62摄氏度之间,以引起血管内皮焊接;使涂层加热到在约70-80摄氏度之间,以促进组织止血;使涂层加热到约80-200摄氏度之间,以促进组织消融和封闭;使涂层加热到约200-400摄氏度之间,以形成组织切口;或使涂层加热到约400-500摄氏度之间,以使组织消融和汽化。治疗可包括切割组织、促使止血、消融组织或血管内皮焊接。
现在来看图5B,显示了图5A的具有铁磁性涂层的导体的电学等效表示法。铁磁性涂层表示为具有动态电阻74的变压器72。具有铁磁性涂层的导体的电感根据通过导体的电流变化。在低操作频率下,涂层的电感将具有较小的影响。在高操作频率下,涂层的电感将具有较大的影响。而且,不同的具有铁磁性涂层的导体端头构型将具有不同的电感特性。因此,需要提供将放大器输出与具有不同阻抗的负载匹配的装置。
多种装置可用于获得期望的阻抗匹配。连续可调的匹配网络可随着负载的改变来改变匹配阻抗,试图使其保持最佳以用于向负载的功率传送。因而,发生器可通过该网络总是具有向负载的最佳功率传送。这可包括调节网络的电容、电感或频率。
该器械的有利的设计是采用实现期望治疗加热范围所需的来自放大器的最小功率水平。对例如返回电流、驻波比(SWR)或反射功率等信号特性的连续监控对于保持瞬时加热和冷却性能以及在几分之一秒内获得期望温度都是实用的电学方法。
在一个实施例中,监控SWR。通过监控和返回来优化SWR,可优化针对各种具有铁磁性涂层的导体端头的功率输送。
代替测量负载特性,负载可预特性化。因而,可使放大器的输出阻抗根据之前测量中发现的负载的预测特性来改变。在一个实施例中,手柄或手持件电缆接头可具有插座,其可与具有铁磁性涂层的导体的插头匹配。该插头可在数据模块中包含识别附接到插头的具有铁磁性涂层的导体的预测负载特性的信息。该数据模块可然后将特性传送到发生器或发生器控制装置。因而该系统可通过包含在插头中的信息预测并且匹配负载特性。该信息可进一步辅助系统预测输出功率与温度的相互关系。可通过具有包括电部件例如电阻的插头来获得类似的匹配,所述电部件与具有铁磁性涂层的导体的构型相关联并且用于识别具有铁磁性涂层的导体的构型。在该情况下,发生器电路将读取电阻的值,该值识别具有铁磁性涂层的导体并且自动调节驱动设置。
代替具有可变调谐的发生器,可采用具有固定输出阻抗的驱动器来驱动具有适当匹配的输入阻抗以优化功率传送的具有铁磁性涂层的导体。由于该匹配网络是静态的,因此其可以多种方式构造。一种特别简单的方法是在发生器和负载之间使用指定的固定长度的电缆,将负载设置在可输送最大功率的最佳位置处。该方法需要向手术工具投入更多的设计精力,但是最终形成实际上更简单的发生器,即构建更少部件和更廉价的系统。而且,可使用平衡-非平衡变换器来实现上述的阻抗匹配。这些方法可有效地维持通过具有铁磁性涂层的导体的恒定电流。
在热负载为动态的应用中,由于手术环境的变化的导热性,可使用多种方式来实现和维持期望的组织作用。连续可调的放大器可在热负载改变时改变功率水平,以试图保持足够获得和维持期望组织作用的向负载的功率输送。通过前面描述的阻抗匹配网络,发生器可通过该网络始终具有到负载的最佳功率输送。如果变化的热负载改变具有铁磁性涂层的导体的阻抗,则铁磁性涂层的功率输出可通过连续调节驱动作为其负载的铁磁性材料的网络来保持,从而将材料保持在优化的加热模式中。这可包括调节该网络的电容、电感或频率。
用于驱动代表变化阻抗的负载的具有铁磁性涂层的导体的类似于如上所述方法的方法可用于适应各种具有铁磁性涂层的导体,其在变化的手术环境中(包括与各种组织和液体的相互作用)改变其阻抗。对例如返回电流、驻波比(SWR)或反射功率等信号特性的连续监控是对保持瞬时加热和冷却性能以及在几分之一秒内获得期望温度都实用的电学方法。
在一个实施例中,监控SWR。通过监控并且再调谐来优化SWR,可在手术环境和从铁磁性涂层离开的热传递发生变化时优化功率输送。快速再调谐可实际上在至少10Hz下获得,其允许在手术装置移入和移出湿手术环境并且进入空气中时针对温度进行动态响应。
应意识到,虽然附图显示了实心圆形横截面,但是导体横截面可具有各种几何形状。例如,导体可以是中空管状,以使其减少热质。无论为实心还是中空,导体也可成形为具有椭圆形、三角形、方形或矩形横截面。
现在来看图6,显示了具有热绝缘体310的单层切割端头的放大纵剖视图。一层热绝缘体310可设置在铁磁性涂层65和导体66之间。设置一层热绝缘体310可有助于通过减少热质以及通过将热传递限制于导体66来快速加热和冷却(也成为热响应时间)所述工具。
可针对期望应用来调节热绝缘体的厚度和成分来改变功率输送和热响应时间。热绝缘体310的较厚的涂层可更好地将导体66与铁磁性涂层65隔绝,但是与热绝缘体310的较薄涂层相比较,较厚的涂层可能需要更高功率,以感应出足够使铁磁性涂层加热的磁场。
在图7A-7G中所示的实施例中显示了多个实施例,其中,手术端头210为包括线导体220的工具,所述线导体220长度的一部分具有较薄的一层铁磁性涂层65。如图7A-7G中所示,铁磁性涂层65可以是围绕线导体220的圆周涂层。当线导体220由高频振荡器激励时,铁磁性涂层65将在由其居里温度提供的绝对极限下根据输送的功率通过感应加热。由于铁磁性涂层65的较小的厚度,和在铁磁性涂层65位置处导线的高频电导率的调谐效率,铁磁性涂层65将在电流被引导通过线导体220时非常快速地(即,非常短的几分之一秒)加热,并且在电流停止时快速冷却(即几分之一秒)。
现在来看图7A、7B、7C、7D、7E、7F和7G,显示了具有铁磁性涂层的导体手术端头210a、210b、210c、210d、210e、210f和210g。在这些实施例中的每一个中,线导体220的一部分弯曲,并且涂覆有铁磁性涂层65,以使铁磁性涂层65仅在期望进行加热处暴露于组织。图7A和7B为环形形状,其可根据工具相对于组织的取向用于组织切割或切除。图7A示出了圆形几何体,图7B示出了方形几何体。图7C显示了用于加热端头应用的尖头几何体,其可制成非常小,因为组织切割、消融和止血仅需要小的接触点。图7D显示了具有环形几何体的不对称工具,其中,铁磁性涂层65仅布置在工具的一侧。图7E显示了钩状几何体,其中铁磁性涂层65布置在钩的凹入部上。图7F显示了钩状几何体,其中铁磁性涂层65布置在钩的凸出部上。图7G显示了角状几何体,其可用于类似于手术刀的情形。使用在线导体220上的铁磁性涂层65的这些不同的几何体,可允许手术端头在工作时非常精确地作用,并且在不工作时防止损伤。
在一个代表性实施例中,电导体可具有0.01毫米到1毫米的直径,并且优选具有0.125毫米到0.5毫米的直径。电导体可以是钨、铜、其他金属和导电非金属,或其组合,例如接合来还形成用于温度测量的热电偶的两种异种金属。电导体还可以是薄导体涂层,例如围绕非金属杆、纤维或管(例如玻璃或高温塑料)散布的铜,并且导电材料又可涂覆一薄层铁磁性材料。磁性薄膜围绕导电电线形成闭合的磁路。薄磁性薄膜可具有电线横截面直径的约0.01-50%,并且优选约0.1%到20%的厚度。由于涂层与电线靠得很近,因此小电流可在涂层中产生高磁场,并且导致非常高的温度。由于该薄膜的磁导率较高,并且其紧密结合到电导体,因此低水平的电流可导致非常大的磁滞损耗。
因此可使用低交变电流水平在高频率下操作,以获得高达居里温度的快速感应加热。相同的最小热质允许热在电流中断时快速在组织和/或导体中衰减。具有低热质的工具提供了在约37摄氏度到600摄氏度之间,并且优选在40摄氏度到500摄氏度之间的治疗范围进行温度调节的快速手段。
虽然前面已经将居里温度描述为温度帽,但是相反,这里可选择具有超过期望治疗需要的居里温度的材料,并且可将温度调节低于该居里温度。
虽然图7A到7G中显示了一些端头几何体,但是可设计使用具有铁磁性涂层的导体60的多种不同形状。
现在来看图8,显示了处于缩回位置的圈套器350的剖视图。铁磁性涂层设置在形成圈套器环355的导体上,然后放置在外套360中。当缩回时,圈套器环355可搁置在外套360中(或一些其他施放器中,包括管、环或设计用于在缩回时减小圈套器宽度的其他几何体)。外套360将圈套器环355挤压在其中空体中。外套360可然后插入可能存在目标组织的腔体中。当外套360到达期望位置时,圈套器环355可伸出在外套360外部,并且最终类似于图9A中布署。在一个实施例中,可推或拉导体365来使圈套器环355伸出和缩回。
现在来看图9A,显示了处于伸出位置的圈套器350的侧视图。当伸出时,圈套器355的环可以几种不同的方式使用。在一个实施例中,圈套器环355可基本上围绕目标组织放置,以使组织位于圈套器环355中。然后可如上面所讨论的将铁磁性涂层感应加热。然后将圈套器环355缩回到外套360中,以使目标组织从与目标组织相邻的组织分离和去除。可选择期望温度范围或功率水平,以用于止血、增加组织分离效率或其他期望设置。例如,在一个实施例中,圈套器350构造用于鼻腔息肉去除。
在另一种用途中,圈套器350可构造用于组织破坏。当位于期望腔体中时,可伸出圈套器,以使圈套器环355的一部分接触目标组织。可然后感应加热圈套器环355,以实现期望的组织作用。例如,在一个实施例中,外套可靠近心脏放置或放置在心脏中,并且将圈套器环355感应加热来中断心脏中传导的非正常区域,例如房颤消融手术。
现在来看图9B,显示了圈套器351的一个替代实施例。施放器可以是环361,代替图9A中所示的外套。类似于外套,环361可用于将圈套器环推入细长位置中。可使用各种装置来在使用过程中将环保持在位。
分离组织的方法可包括以下步骤:选择具有布置在其一部分上的铁磁性涂层的导体;将具有铁磁性涂层的导体的部分放置在管中;将管插入腔体中;在腔体内布署导体内的具有铁磁性涂层的导体部分;将振荡电信号输送到导体,以加热铁磁性涂层,同时,加热的铁磁性涂层与目标组织接触。
可任选的步骤可包括:布署步骤进一步包括将铁磁性涂层基本上围绕目标组织放置;将所述导体的铁磁性涂层部分缩回到管中;使目标组织内止血;将导体成形为弯曲几何形状,以使导体的一部分保持在管中;和使弯曲几何形状的铁磁性材料覆盖部分与目标组织接触。
去除组织的方法可包括以下步骤:选择导体,所述导体包括具有布置于其上的铁磁性导体的至少一部分;和将铁磁性导体围绕所述组织的至少一部分放置,并且拉动铁磁性导体与组织接触,以使铁磁性导体切割组织。
可任选的步骤可包括:使用具有成阵列的多个铁磁性导体的导体,或使振荡电信号通过所述导体,同时使铁磁性材料与组织接触。
现在来看图10A,显示了具有环形几何体和涂层线性阵列的切割端头的放大图。虽然上面的实施例公开了导体上的连续铁磁性涂层,但是在另一个实施例中,在单个导体上存在不止一个由间隙分隔的涂层。这称为铁磁性元件的线性阵列(铁磁性元件的并行阵列的示例可参见图18A-18C中)。
在一个实施例中,环形几何体270a可具有多个铁磁性涂层65、65’和65”,其在线导体220上由间隙分隔。在图10B中所示的另一个实施例中,显示了在线导体220上具有替代钩形几何体270b和铁磁性涂层65和65’的线性阵列的切割端头的放大图。该线性阵列可包括允许构建期望的热几何体的灵活性的优点。
导体220可由具有形状记忆功能的合金,例如Nitinol(镍钛合金)形成。Nitinol或其他形状记忆合金导体可在一个温度下弯曲为一种形状,然后在加热到高于其变形温度下返回到其初始形状。因而,医生可在较低温度下使其变形用于特定用途,然后使用铁磁性涂层来将导体加热以使其返回到其初始构型。例如,形状记忆合金导体可用于形成圈套器,其在加热时改变形状。同样,蛇形形状导体可由Nitinol或其他形状记忆合金制成,以在使用过程中在指定温度下具有一种形状,并且在较高温度下具有第二形状。另一个示例是可在加热时改变形状来使其自身从导管或内窥镜驱出,然后在冷却时能够缩回的导体。
在另一个实施例中,铁磁性涂层可按使线性阵列中的各个涂层可通过调谐振荡电能接收更大能量的方式形成。调谐可通过调节频率和通过电源进行的与特定铁磁性涂层的负载匹配实现。
各个涂层的频率响应可通过改变各个涂层的物理特性来影响。这些物理特性可包括成分、厚度、长度和与其他涂层的接近程度。通过改变每一个涂层的物理特性,各个涂层可在用于该涂层的最佳频率下消耗更多的功率。其他涂层可在相同频率下消耗更少的功率或不消耗功率。因而,可根据发生器输出的频率寻址各个元件。
现在来看图11,显示了具有涂层线性阵列的处于缩回位置的圈套器工具370的剖视图。在一些实施例中,一些铁磁性涂层可能缺乏弹性来有效地弯曲到缩回位置中。因此,各个涂层段375可由间隙380分隔,以使导体365可弯曲,同时涂层段375可保持刚性。
同样地,圈套器工具370可伸出,如图12中所示。涂层段375之间的间隙380可调节,以使间隙380中的热作用类似于涂层段。因而,具有线性阵列的圈套器工具370的作用可类似于具有图8和9中柔性涂层的圈套器。
现在来看图13,显示了铁磁性涂层区域中的单层切割端头的剖视图。铁磁性涂层65布置在线导体220上。铁磁性涂层65具有几个优点。首先,铁磁性涂层65在受到热应力时没有铁氧体磁珠那么脆,铁氧体磁珠在加热及然后浸没在液体中时具有断裂倾向。已经观察到具有铁磁性涂层的导体60在经受反复液体浸没之后完好而没有损坏。而且,铁磁性涂层65具有快速加热和快速冷却的品质。这是可能的,因为磁场作用于少量的铁磁性涂层65,以使功率集中在较小区域上。快速冷却是可能的,因为在加热过程中起作用的是少量的热质。同样,可改变铁磁性涂层65的成分来获得不同的居里温度,居里温度将提供该装置的最大自限制热上限属性。
现在来看图14A、14B和15,显示了多层手术工具端头。图14A的沿221线的剖视图可形成图14B,其显示了线导体220和220’与铁磁性涂层65和65’的交替层。可通过将交替的导体220和220’材料以及铁磁性涂层65和65’的薄层分层来提供热容量,同时仍保持快速加热和冷却的优点。图15显示了从图14A沿线390的轴向剖视图。也可看到导体220和220’以及铁磁性涂层65和65’的交替层。
现在来看图16,显示了平直侧部圆柱状几何体。可制造平直表面180来在导体66上形成相对于围绕导体66其余部分的较厚镀层来说铁磁性涂层的薄镀层182。该薄镀层182可导致在该平直表面180中有选择地首先开始加热。感应加热可以与可透磁涂层中的磁通密度成比例。在一个实施例中,不对称减薄涂层具有小横截面厚度,并且可以热形式产生更高的磁滞损耗。因而,与具有减小的磁通密度190的较冷的相对侧相比较,可以较低功率在具有较高磁通密度192的平直表面180处获得治疗温度。优点是,可促进组织界面处的快速热响应和优化的热量分布。
现在来看图17,铁磁性涂层65也可构造成将温度升高集中在铁磁性涂层65外侧,这进一步缩短较高功率应用中冷却铁磁性涂层65所需的时间。该构型的示例显示在图17中,其中,由电流流动230和230’(箭头)产生的场可在围绕两根导体的铁磁性涂层65中相对于彼此具有抵消作用,使环形导体441之间的铁磁性材料保持比外周处的铁磁性材料更冷。
现在来看图18A-18D,显示了几个手术端头194的几何体。图18A中显示了具有镀有薄膜磁材料196的单根小直径电导线的手术端头194a。图18B中显示了具有镀有薄膜磁材料196’的两根小直径电导线的手术端头194b。图18C中显示了具有镀有薄膜磁材料196”的三根小直径电导线的手术端头194c。因而可预期,端头几何体可包括镀有薄膜磁材料的多根小直径电导线。由于具有铁磁性涂层的导体质量很少,使该设计保持对动态手术环境很重要的瞬时加热响应(快速开始,快速结束)。因而可能构造具有两根或多根间隔开的导线的扁平叉(tine)作为实际的单热或多热工具。而且,端头194a,194b和194c也可互换,如图18D中所示,其具有用于图18A-C中的端头194的插座198。应意识到,发生器系统可构造用于调节共同输送到两根或多根导体的功率,并且可设置用于该用途的用户控制装置(如其他图中所示)。
铁磁性涂层65可用于直接接触组织,或者,不沾涂层,例如TEFLON(PTFE)或类似材料,可涂敷在铁磁性涂层和导体上,以防止粘附到组织。或者,铁磁性涂层可使用另一种材料涂覆,例如金,以提高生物相容性,和/或抛光,以在拉动穿过组织时减小阻力。铁磁性涂层也可由导热材料涂覆,以增进热传递。实际上,可选择单层涂层来具有多种期望特性。
现在来看图19到22,具有铁磁性涂层的导体可附接到主几何体。主几何体可提供用于具有铁磁性涂层的导体的附接表面或内部位置。因而,导体上的铁磁性涂层的优点可与主几何体及其相应材料的优点结合。主几何体可根据多种原因进行选择,包括但不限于材料强度、刚度、热导率、热传递阻力、表面积或其他功能。
当在本文中使用时,主几何体是指一种结构,具有铁磁性涂层的导体可附接到其并且其限定工具的形状。例如,主几何体可为探针端部的球形形状、手术刀、镊子的尖叉或压舌板的面。导体几何体因此可布置在主几何体上,可延伸穿过主几何体中的孔,和/或嵌入主几何体中。例如,主几何体可以是手术刀,而导体几何体可以是主几何体上的带铁磁性涂层导线的蛇形形状。
现在来看图19A和19B,显示了具有替代感应铁磁热功能的冷切割手术刀223。冷切割手术刀223可用于通过具有切割刃的刀片进行切割,并且具有在需要时(例如为了凝结)激活的辅助热功能。在图19A和19B中所示的实施例中,这通过将具有铁磁性涂层的线导体220设置在手术刀状主几何体的侧部上来实现,所示手术刀状主几何体可切割组织而无需激活导体或铁磁性涂层65。冷切割手术刀223可按常规使用来在组织中进行切割。但是,如果患者开始流血,则冷切割手术刀223的操作者可激活具有铁磁性涂层的导体,并且将冷切割手术刀223的侧部(并且相应地,将具有铁磁性涂层的导体)放置在流血组织上。热作用可于是使组织封闭并且停止流血。在具有铁磁性涂层的导体停止激活之后,手术刀操作者可于是返回利用冷切割手术刀的优点进行切割。
使用这样的冷切割手术刀223具有几个优点。该双用途工具不需要冷切割手术刀223操作者取出一个工具并用它代替另一个工具而造成进一步损坏和耽搁的风险。由于铁磁性涂层65,冷切割手术刀223也可在铁磁性涂层65的区域中具有快速热响应时间(加热和冷却时间),以使冷切割手术刀223可用于目标区域上,并且缩短等待时间。在可能期望加热整个冷切割手术刀的情况下,可通过去除刀片的中部222(如图19B中所示),形成刀片的不连续部分来进一步缩短热响应时间,所述刀片的不连续部分可出现在导体路径之间或与导体路径相邻。去除刀片的中部222可进一步减少热质,并且相应地缩短热响应时间。
在与图19B相关的一个实施例中,铁磁性涂层可限制到手术刀的一部分,例如冷切割手术刀223的端头。这种限制将仅使端点加热,同时将主几何体的其余部分保持在较低温度。通过将加热限制于该加热主几何体的靠近铁磁性涂层的一部分,可提供更高的精度和在更小空间中的使用。同样地,具有铁磁性涂层的线导体220可横跨冷切割手术刀223的表面形成图案,例如锯齿或蛇形图案,以增加该表面的加热覆盖范围。
手术刀作用也可通过具有铁磁性涂层的线导体220的热作用增强。在一个实施例中,手术刀可具有多个部分,所述多个部分具有对应于每部分的不同温度范围。例如,供到手术刀片的能量可用于切割,而供到刀片侧面的能量可用于凝结组织壁。在另一个实施例中,具有铁磁性涂层的线导体220可被激活以在移动穿过更费力组织时提供附加的切割能力。在另一个实施例中,具有铁磁性涂层的导体可被激活以与手术刀片结合提供更顺利的切割过程。用户控制装置可用于选择由电源输送的功率设置,其可与期望的温度或组织作用相关。
电源可以多种不同方式寻址各个涂层及其相关的导体。在一个实施例中,导体具有单独的电源线,但是共用公共地。在另一个实施例中,导体具有单独的电源线和地线。另一个实施例使用频率调制来寻址各个涂层。一种数字式实施例中使用三个导体。一个导体用于通讯,涂层围绕所述导体接收功率,而另两个为电源信号和地信号。替代数字电路消除了通讯电路,而是在电源线上发送前导识别信号,以使电路可识别功率,并且将功率引导到正确电路。事实上,这些技术不是互相排斥的,而是可结合并且一起使用。例如,在一些电路比其他电路需要更低功率的情况下,电路的组合可能是有利的。
现在来看图20A,显示了具有压舌板状几何体的热手术工具。压舌板224可在沿着如图所示的压舌板形状的周边的线导体220上具有铁磁性涂层65。在一个替代实施例中,线导体220的带铁磁性涂层部分可形成横跨几何体表面的图案,以使该表面由线导体220的带铁磁性涂层部分更均匀地覆盖。
压舌板几何体可用于多种组织作用和程序。在一个实施例中,压舌板用于在手术过程中止血或组织焊接。在已经进行切割之后,如果需要,压舌板可用于切割的组织来实现止血或均匀组织焊接。在另一个实施例中,压入组织中的压舌板和热能用于组织消融。
现在来看图20B,以镊子的形式显示了具有压舌板状几何体的热手术工具。压舌板镊子225可组合使用,以使每一个压舌板具有单独的功率控制,或镊子可具有共同的功率控制。在其他实施例中,镊子也可仅在所述镊子的一个压舌板上进行加热。这样的工具可用于夹持血管来阻止血液流动,然后通过热止血和切割血管。
现在来看图20C和20D,以两个不同的实施例显示了图20A的侧视图。铁磁性涂层和线导体可以几种方式附接到主几何体。在图20C中所示的一个实施例中,铁磁性涂层65和导体可附接到主几何体的表面。或者,在20D中,铁磁性涂层65和导体可嵌入主几何体中。根据期望作用而定,图20A、20B、20C和20D中图示的工具可以应用到组织,以使得工具的设置带铁磁性涂层的导体的侧部可接触组织,或相对侧可应用到组织。
现在来看图21A、21B和21C,显示了具有球形几何体的热手术工具。在一个实施例中,水平缠绕球226或竖直缠绕球231可如图21A和图21C中所示使用具有铁磁性涂层65的线导体220从内部或外部缠绕。在另一个实施例中,如图21B中所示,球形几何体227可容纳具有以另一种形状例如马蹄形状制备的铁磁性涂层的线导体220。在这些实施例中,可形成球形加热元件,其可用于凝结或在组织的大表面积上提供热作用。球也可有效用于组织消融,因为其可沿大部分方向(如果不是所有方向)来辐射热能。
现在来看图22A,显示了具有尖头几何体的手术工具。该尖头工具228可在沿着如图所示尖头工具形状的周边的线导体220上具有铁磁性涂层65。在一个替代实施例中,线导体220的带铁磁性涂层的部分可横跨几何体的尖头表面形成图案,以使尖头表面由线导体220的带铁磁性涂层的部分更均匀地覆盖。尖头工具228可特别用于进行穿过组织层的切割,在切割的同时提供凝结手段,例如在围绕用于腹腔镜手术的套管针插入位置处使组织凝结。
现在来看图22B,以镊子的形式显示了具有尖头几何体的热手术工具。尖头镊子229可组合使用,以使每一个尖头几何体具有单独的功率控制,或镊子可具有共同的功率控制。这样的工具可构造用于在小血管结扎中实现止血和切割。
虽然以单个形式显示了一些主几何体,但是主几何体可组合使用。这可包括两个或更多个相同的主几何体或不同的主几何体,包括镊子应用。每一个主几何体可被共同控制功率或对于每一个主几何体具有单独的功率控制装置。而且,实心主几何体可类似于上面所示的手术刀主几何体来改变,以使主几何体的部分可被去除来减少热质,并且相应地缩短热响应时间。
虽然一些主几何体显示具有对称构造,但是主几何体可具有不对称或方向性构造,以使几何体的仅一部分起作用。这可通过仅将铁磁性涂层设置在位于主几何体的期望起作用区域上的导体线部分上来实现。例如,如果具有铁磁性涂层的导体没有对称设置在压舌板结构上,则压舌板几何体可构造成在一个区域中起作用。这可进一步通过在几何体的期望起作用部分上,例如表面上,提供图案,例如锯齿形或蛇形图案,来增进。
在另一个实施例中,主几何体的一部分可被激活。通过使用附接到主几何体不同部分的具有铁磁性涂层65的多个导体,主几何体的一部分可选择地被激活。例如,手术刀几何体232可分为图22C中所示的端头部分234和表面部分236。手术刀操作者可于是根据期望的表面区域选择仅激活端头或将端头与手术刀几何体表面共同激活。同样,在镊子应用中,镊子可分为内部部分和外部部分。如果镊子操作者期望去除由镊子包围的某物,例如息肉,则可激活内部部分,而外部部分保持不激活。如果空隙的相对侧需要封闭,则可激活镊子的外表面。
通过使用附接到主几何体不同部分的具有铁磁性涂层65的多个导体和分开控制的电源,主几何体的不同部分可同时被激活用于不同用途或作用。例如,主几何体的边缘部分可被激活用于切割,而刀片部分可被激活用于止血。
处理组织的方法可因而包括以下步骤:选择其上布置导体的主几何体,所述导体具有布置在其一部分上的铁磁性涂层;将铁磁性涂层布置成与组织接触;和将振荡电信号输送到所述导体,以加热所述铁磁性涂层并且处理组织。
所述方法的可任选的步骤可包括从以下组选择主几何体:手术刀、压舌板、球和尖头几何体。组织的处理可包括切割、止血、消融或血管内皮焊接。
用于组织破坏的方法可包括以下步骤:选择具有布置在其一部分上的铁磁性涂层的导体;和将振荡电信号输送到所述导体,以加热所述铁磁性涂层并且破坏组织。
所述方法的可任选的步骤可包括:监控所述组织和在已经进行期望的组织破坏时或要防止不期望的组织作用时停止将振荡电信号输送到所述导体。
用于形成手术器械的方法可包括以下步骤:选择主几何体;将导体使用铁磁性材料涂覆;和将所述导体布置在所述主几何体上。
所述方法的可任选的步骤可包括:在所述导体上提供构造用于接收振荡电能的电接头。
现在来看图23A,显示了导管270,其具有至少部分涂覆有围绕所述导管端头布置的铁磁性材料的导体220。根据期望的治疗效果,铁磁性涂层65的绕组的位置可代之以位于导管端头的内部,或周长约为导管中心通道260周长的单圈具有铁磁性涂层的导体可设置在导管端头的端部处。
图23B中显示了另一种带铁磁性涂层的导管270。虽然在一些实施例中导体可以是线、线圈或环形结构,但是也可成形带铁磁性涂层的导管270,其用作具有铁磁性涂层65的替代导体250。在该实施例中,导管可包括由绝缘体间隔开的两个同轴导体。在导管270的远端头,可涂敷导电涂层,以由同轴导体形成连续电路。铁磁性涂层可如图23B中所示围绕靠近导管远端头的外径表面散布,或散布在导管端部上,在连接同轴导体的环形表面上。这允许带铁磁性涂层的导管270执行其他功能,例如冲洗、抽吸、感测、或允许通过穿过中心通道260的光纤观察进入情况,这在很多介入手术以及开放和微创手术程序中很常见。而且,导管的中心内腔可用于提供对其他感测特征的访问,所述感测特征包括但不限于阻抗和pH。
应意识到,导管270或内窥镜可设置有双极电极和/或热元件。因而,这样的导管或内窥镜的优点可与本文讨论的多模式手术工具结合。
现在来看图24,显示了具有铁磁性涂层的导体手术工具导管端头288的一个替代实施例的侧视图。在一个实施例中,导管可包括设置在基底285上的具有铁磁性涂层的导体,基底285形成具有中心通道的主体。铁磁性涂层可包括在导体289之上的镀铁磁性涂层275。镀层可设置在基底285外部,以使热作用被引向外部。这可使导管端头向组织壁施加热组织作用。
在另一个实施例中,基底内部可容纳导体289和铁磁性涂层275,以使热作用被引向内部。内部涂层可允许将可熔化固体传送到期望区域,例如在输卵管封闭和骨缝术应用中。
或者,铁磁性涂层275可包围通向中心通道260的入口,以可在端头前部引导热作用。在中心通道260入口的前部引导热能可有助于采集组织样品或去除材料,例如息肉。
镀层可通过多种方法实现。基底285可由多种材料挤出、模制或形成,所述多种材料包括高温热塑性材料、玻璃或其他适当的基底材料。实际的镀层可通过电镀、化学镀、气相沉积或蚀刻或其某种组合来实现。因而,通过镀层工艺,导管端头288可成形为具有位于带连续通路的导体280上的铁磁性涂层275。
导管也可具有多个通道。一个通道可以是用于具有铁磁性涂层的导体的布署通道。另一个通道可用于一个或多个传感器或源,或甚至每一个传感器或源位于其自己的通道中,例如温度传感器、照明光源和内窥镜。其他通道可包括物质输送、冲洗或抽吸,所述物质包括与处理(例如骨缝术或输卵管封闭)相关的物质。实际上,铁磁性涂层可有助于这样的物质的熔化,并且所述涂层可针对一个或多个特定通道处,而不是整个导管。
现在来看图25,显示了具有在发光源266旁的柱状透镜式或排布纤维束式观察通道262的内窥镜240。显示了环形凝固器/切割器264,其包括具有铁磁性涂层的导体65。在多种腹腔镜程序中的例如结肠息肉切除术或封闭及切割应用等圈套器应用中期望这样的改造。其他感测模式包括近场肿瘤细胞检测或红外加热监控。类似于所述内窥镜240的工具构型可在可通过导管内腔被传送到目标组织的工具中实现。
在一个实施例中,可使肿瘤细胞在暴露于紫外光时由荧光材料标记。内窥镜240可包括光源266,和位于通道262内将检测到的荧光返回的传感器或光学器件。可于是将内窥镜240的铁磁性涂层65部分对准标记的组织,以进行破坏。
在另一个实施例中,材料在凝固状态围绕目标组织或骨沉积。当输送时,材料在由上面所述的内窥镜240激活的位置处熔化至相应构造。使用该实施例的示例包括输卵管封闭和骨缝术。而且,该材料可通过使用相同或相似内窥镜240进行熔化来去除,并且通过内窥镜240的中心内腔被抽吸。在另一种应用中,材料可以液体形式输送,并且通过由内窥镜240感应的加热过程固化。
或者,导体可以是纤维束的一部分。纤维可容纳在导管中,或以其他方式一起成束。导体可具有铁磁性涂层,而其他纤维可具有其他用途,包括视觉观察、感测、抽吸或冲洗。
组织消融的方法可包括以下步骤:选择具有由铁磁性材料覆盖的导体的导管;使由铁磁性材料覆盖的导体接触待消融组织;和将功率输送到由铁磁性材料覆盖的导体。
可任选的步骤可包括:通过内窥镜的辅助使导管对准组织;选择布置在导管上的具有铁磁性涂层的导体;选择容纳在导管中的具有铁磁性涂层的导体;使具有铁磁性涂层的导体从导管布署;或使具有铁磁性涂层的导体接触待消融的组织。
将物质输送到体内的方法可包括以下步骤:选择带有具有铁磁性涂层的导体的导管;将物质放置在导管中;将所述导管插入体内;和使功率输送到具有铁磁性涂层的导体。
可任选的步骤可包括:选择用于骨缝术的物质;选择用于输卵管封闭的物质;或在所述导管中熔化所述物质。
用于处理组织的方法可包括以下步骤:选择带有具有铁磁性涂层的导体的导管;使所述导管与组织接触;和选择功率设置。温度范围可对应于期望组织作用的温度范围。期望的组织作用可选自包括血管内皮焊接、止血、烧灼、封闭、切割、消融或汽化的组。实际上,功率设置可对应于期望的组织作用。
现在来看图26,显示了组织消融工具290。在通常的组织消融应用中,将臂或叉295插入不期望的组织中。可激活一个或多个端头300来使组织温度升高到期望水平保持期望时间量。在激活来成功保持温度达期望时间量之后,或注意到不期望的作用之后,使一个或多个端头300停止激活,并且从组织取出。
在一个实施例中,导体220可容纳在具有端头300的一个或多个臂或叉295中,端头300可包括铁磁性涂层65。端头300可插入组织中,并且进行温度控制,直到发生组织破坏或发生一种或多种不期望的组织作用。组织作用可以通过叉295中或外部的传感器监控。
传感器可以多种方式设置。在一个实施例中,传感器设置在叉中、远离铁磁性涂层端头300。在另一个实施例中,一个端头300可具有铁磁性涂层,而另一个端头300可不具有涂层,但是其中容纳传感器。传感器可监控组织作用或返回被观察或处理信号。这可包括例如温度传感器、照相机和远距离成像装置等传感器。在另一个实施例中,温度可通过外部成像监控。
传感器可因而形成反馈环路的一部分。通过监控一种或多种组织作用,消融工具可自调节功率设置。该自调节可允许系统在低于居里温度下操作,并且仍保持期望的组织作用和/或温度范围。
在使用不止一个端头300的情况下,具有铁磁性涂层65的端头300可单独控制,以使热分布集中在期望区域中。这也可容许第二叉监控组织作用,同时主叉用于进行加热功能。
电源可单独寻址每一个叉。在一个实施例中,电源对每一个叉进行温度监控。当组织被破坏时,组织的含水量可降低。当含水量降低时,组织可能不需要相同量的热能。因而,当组织被破坏时,电源可监控温度,并且将较低的功率或不将功率输送到显示出现温度尖峰信号或变化的端头300。
虽然图26中已经显示了多端头组织消融工具的示意图,但是单个组织消融工具可以类似于图7C的构型制造。
除了用于组织中的优点,该手术工具还可自清洁。在一个实施例中,当在空气中激活时,工具可获得足够使组织碎片炭化或汽化的温度。
虽然上述实施例已经公开了根据本发明原理的仅以感应加热模式操作的铁磁性导体,但是热手术系统可与其他技术结合来形成多模式手术器械。多模式手术器械可利用多种能量模态的优点,同时可能通过自身减少每一种模态的某些固有缺点。(虽然讨论了几个示例,但是应意识到,多模式手术模态可实际上通过修改上面讨论的实施例中的任何一个实现)。
当在本文中使用时,多路传输意思是将两种或多种信号在单个通道上传送。在很多情况下,该通道可以是电线或电缆,并且信号可独立或同时加在该单个通道上。
可组合不同的模态。热模态可由产生热能的热元件形成,并且包括但不限于感应加热、传导加热和电阻加热装置。电外科模态可由将电能传送到目标组织中的电外科元件形成,并且包括但不限于单极和双极模态。机械模态可由可将机械能以压力波(也称为超声能)的形式传送到目标组织中的超声元件形成,并且包括但不限于超声组织破坏。这些模态组合起来可具有不同的优点。
感应加热可由物质对磁或电力的抵抗产生。感应加热可包括例如如上所述的铁磁效应或其中物质可能抵抗电场中的变化的铁电效应等作用。
当在本文中使用时,“传导加热”或“传导加热元件”指热能从热源通过一个或多个介于中间的元件到终结点的传递。例如,手术工具可利用热传递来使热能从例如铁磁性感应加热器等热源通过介于中间的元件例如导线传递到手术端头,终结点。传递加热的过程可类似于上面描述的散热器;热传递仅针对组织而不是其他介质。还可参见结合图4A对散热器的描述。
电阻加热也可用作热模态。电阻加热元件可抵抗电流通过,因而以热能的形式消耗功率。
在单极手术模态中,外科医生可利用单个电极来使电流通过身体。通常,第二电极附接到背部、腿部或手术台来形成完整回路。但是,一些单极装置也可在没有返回电极的情况下以低功率高频电流操作,因为身体自身的电容用作移动电流的返回路径。
在双极手术模态中,电流可通过多个电极施加到患者。在一个实施例中,电流通过在镊子的相对叉上的电极施加。镊子之间的组织可因而被加热。
在超声组织破坏模态中,超声振动用于切割或破坏或消融机械能传送经过的区域中的组织。在一个实施例中,手持件容纳在组织中机械传送超声振动的振动部件或结构。
据信,这些模态可具有以一种模态使用时的优点和缺点。但是,当多种模态一起使用时,可能减少一些缺点,并且可获得一些潜在的优点。
现在来看图27,显示了具有单极模态和热模态的多模式手术工具500。该多模式手术工具500可包括手持件505、第二电极510和电源515。电源515可提将两种信号提供给手持件505,以在手术端头525中激活热模态和单极模态。单极模态可于是使电流通过组织(通常通过患者身体)到达第二电极。
在多路传输实施例中,可通过滤波器531防止单极信号使用电缆530作为返回路径。滤波器可防止单极信号沿电缆530返回,但是允许热信号沿电缆530返回。虽然滤波器531显示在电源515和手持件505之间,但是其可结合在沿信号路径的任何位置,包括结合在电源内、手持件内或在仅接着铁磁性涂层的返回路径上。
信号可以多种不同方式多路传输。信号可由专用的信号发生器产生,在放大器之前多路传输,在放大器之后多路传输,或甚至在手持件处多路传输。
手持件505可包括手柄520和手术端头525。在一些实施例中,电缆530可连接在手持件505和电源515之间。手持件也可容纳用于使手术端头操作的控制装置,例如按钮535。
手术端头可以几种不同的方式构造。一种手术端头可接收多路传输信号。另一种手术端头可能需要分离的信号通路和结构。因而,信号工具可具有电外科电极,例如单极电极,和作为分开结构的热元件。这些结构可完全分离、相邻或重叠。
在多路传输实施例中,手术端头可由导体上的单层铁磁性涂层构成。铁磁性涂层接收对应于单极模态和感应加热模态的两种波形。单极波形通过铁磁性涂层传送到患者,而感应加热波形(或信号)在铁磁性涂层处转变为热能。由于其阻断单极电信号返回路径,因此滤波器可确保单极信号传送到组织。单极波形可在200kHz和2MHz之间。优选地,单极信号可在350kHz和800kHz之间。感应加热波形可例如在5MHz到24GHz之间,优选在40MHz和928MHz之间。
在一个实施例中,单极信号在350kHz和800kHz之间。感应加热波形在40.68MHzISM频带中。波形由电源515多路传输,并且沿电缆530传送到手持件520。(或者,也可使用波形的其他多路传输方法,例如在电源之后结合两根传送信号的导线或其他多路传输方法)。
手持件520将电缆530连接到手术端头525,手术端头525可由导体上的铁磁性涂层构成。铁磁性涂层将40.68MHz的信号转变为热能,而将350kHz到800kHz的单极信号传送通过组织,并且最终传送到第二电极510。
单极模态可保持切割的优点,而感应加热模态引起止血,并且可减小将手术端头拉动穿过组织所需的力。因而,在使用时,外科医生可使用适用于切割的RF波形,同时利用涂层部分的热接触来封闭或止血。因而可最小化与RF凝固或电灼波形或混合波形相关的深组织作用,同时保持RF切割的有益效果。组合器械还可构造成具有分开的RF频率或电流通路,以使铁磁感应加热和电外科切割都得到优化。
在一个分开信号通路实施例中,手术端头525可由布置在热结构上的单极电极构成。来自热结构的热,例如具有铁磁性涂层的导体,可通过电极传递到组织。在一些实施例中,热结构通过电绝缘的导热涂层与单极电极分隔。电极和热结构可具有单独的电连接,以使正确的信号可传送到每一个。
电极也可紧邻热结构布置。在一个实施例中,单极电极布置成使电极首先遇到组织,由此切割和消融组织。后续的热结构可然后遇到刚切割或消融的组织,并且施加热止血。因而,显而易见的是,这些模态可完全独立地同时用于相同的组织上,或者,根据手术器械构型和医生期望的作用一个模态紧接着另一个模态应用。
虽然上面的实施例讨论了使用单极模态进行切割,使用热模态进行止血的多模式手术工具500,但是应意识到,每一种模态可适用于其他相同或不相同的组织作用。例如,在一个实施例中,单极电极和热元件同时激活。单极电极波形和热元件波形可都被优化以用于切割。这可使切入穿过组织更容易并且更有效。在另一个实施例中,热结构可用于切割,并且单极电极可用于止血。
单极多模式装置可共同或分别使用每一种模态的功能。实际上,可分开调节振荡器。在一个实施例中,单极模态和热模态在不同时刻激活。单极模态被激活用于切割组织。如果需要止血,则可根据需要激活热部分,并且可保持不激活,直到外科医生要求。
电源515可分别或共同控制这些模态。例如,按压按钮535可使两种模态共同激活。或者,按钮535可构造用于激活一种或两种模态。但是,电源也可通过分开的可分开调节的控制装置540控制到每一种模态的功率输送。
多模式手术工具可布置在导管上。导管可允许具有更多的功能,例如感测、视觉反馈、冲洗、抽吸或物质输送。实际上,导管可根据期望应用而为柔性的或刚性的。
使用可热调节的手术工具的方法可包括以下步骤:产生形成近似驻波的第一振荡电信号,所述近似驻波基本上在沿导体布置的第一负载处具有最大电流和最小电压,所述导体具有由用于在组织中产生热作用的铁磁性材料涂覆的一部分导体;和沿导体产生第二振荡电信号,以在组织中产生电外科组织作用。
所述方法可包括可任选的以下步骤:在组织中产生止血作用;使组织切割;在单个导体中产生第一振荡电信号和第二振荡电信号;或在重叠的时间段产生第一振荡电信号和第二振荡电信号。实际上,导体可包括单极电极。
用于切割和封闭组织的方法可包括以下步骤:选择手术工具,所述工具具有铁磁性涂层布置在其一部分上的导体,所述工具还具有电极;将所述电极布置成与组织接触;使所述铁磁性涂层布置成与组织接触;将振荡电信号输送到电极,以切割组织;和将振荡电信号输送到导体,以加热铁磁性涂层和封闭组织。
所述方法可包括以下可任选步骤:加热铁磁性涂层来提供止血,和选择单极电极。
现在来看图28A、28B和28C,显示了损伤或消融探针420。损伤探针可放置在病灶中,并且加热到特定温度达特定时间段。通常,期望杀死或消融病灶,同时使其他组织最小程度地受影响。在该方法过程中,监控加热进程,以使任何未预见的非正常现象可引起程序中止,而不是进一步损伤患者的组织。该进程称为热成形作用。铁磁性涂层自身可生物相容,或如果不,则其可具有至少一部分被覆盖在第二涂层(例如生物相容材料或不粘材料)。在一个实施例中,铁磁性感应端头422可由金涂层覆盖(有时称为帽)。金端头涂层可以是生物相容的,而且具有更高的导热性,因此对于更缓慢的瞬时加热和成形作用是实用的。虽然可实用金,但是也可使用其他生物相容材料,例如银。如果覆盖单极电极,导电涂层可辅助单极能量的传送。
探针420可通过使用不止一种模态来操作。在一个实施例中,电极可优化用于进行切割,以插入组织中,同时优化热元件以用于组织消融。电极和热元件都可容纳在端头422中或附近。因而电外科元件可允许器械插入期望的组织中,而热部分可用于消融。同样地,该工具也可构造用于RF组织消融和热切割。
在使用探针420的方法的一个实施例中,所述探针420可立体定向引导到组织中,以选择地损伤功能路径。常见的示例包括在运动障碍、疼痛和抑郁治疗中功能性立体定向脑损伤。与常用的单模态单极电极和单模态双极电极探针结构相比较的一个优点是,病灶的形状可通过热传导性能和/或电阻抗性能控制,赋予临床医生更好地调节组织中成形作用的能力。或者,通过类似的设计,通常采用更高的温度,实现用于组织的预期逐步热破坏的消融。这样的实施例可容易地适应于各种器官中的肿瘤转移的处理。多模态的另一个优点可能是在电和热作用同时进行的情况下,赋予对准组织的能力,而不是选择单模态的较不完美的对准。
如图28A中所示,损伤或消融探针420可设置在组织中(例如肝426等器官中)的转移灶内。当在肝等中时,一种或两种模态可使转移灶424加热到期望温度达期望时间段。热模态可使端头422加热。温度包络线的形状可通过温度感测或例如超声等外部方式检测。同样地,也可测量电模态的电作用,例如阻抗测量。在经过一段时间后,可将探针420从病灶取出。因而可杀死肿瘤的不期望的组织,同时最小化对周围组织的伤害。分散组织消融作用可通过代表性地监控组织中的电阻抗变化的来优化,如在支气管热整形术、前列腺肥大和体积缩小(损伤)中所示例说明的。
现在来看图28B,显示了图28A的消融探针的放大图。探针可具有细长主体421,其末端为多模式端头420,例如铁磁性材料涂覆的导体423。多模式端头420可包括如图28C中所示的传感器425。在图28D中所示的一个实施例中,消融探针可包括第一多模式端头420和第二端头427。在一个实施例中,第一端头可包括多模式功能,第二端头427可容纳传感器。在另一个实施例中,第一和第二端头(也称为主端头和辅端头)可包含多模式端头。
组织消融的方法可包括以下步骤:选择具有电外科模态和热模态的端头;将所述端头插入不期望的组织中;和在不期望的组织中激活一种或多种模态。
用于处理组织的方法可包括以下步骤:选择手术手持件,和在至少58摄氏度下从所述手持件向组织传送热能,以及从所述手持件向组织传送电能以由此处理组织。
应意识到,具有铁磁性涂层的多模式手术端头可具有的相关居里温度足够大以包括没有与居里温度相交的期望的治疗温度范围集合。
现在来看图29,显示了具有双极模态和热模态的多模式手术工具550。电源515可通过电缆530向多模式镊子555提供双极和热信号。双极信号可采用双极波形通过第一镊子端头560传送经过组织进入第二镊子端头560中。热信号可通过在所述镊子端头560中的一个或多个内的加热元件转变为热能。
多模式镊子将加热模态和双极电外科模态结合到多模式镊子端头560中。镊子端头560可允许使用电外科元件进行切割,并且使用热部分进行封闭,以由此提供对组织的改善的切割和封闭。手术工具也可允许通过两种模态共同或根据需要将其他组织作用应用到组织。换句话说,可在不同时间或可同时使用电外科模态和热模态。例如,医生可使用双极元件接触组织来切割组织,直到他或她遇到不期望的出血,此时,他或她可将热元件与出血组织相邻布置,并且激活热模态进行止血。这可在停止双极模态之后进行,或在双极模态仍使用时进行(例如,在医生切割组织时紧跟着双极模态)。可设置控制装置540来防止两者同时或重叠使用,或用户可控制何时使用每一种模态。
同样地,手术工具也可使用两种模态来施加相似的组织作用或不同的组织作用。可提供例如手持件控制装置561等控制装置来允许医生选择地使用双极模态、热模态或两种模态。
在单极多路传输环境中时,可通过滤波器533来防止双极信号使用热元件的电返回路径。相反,电外科信号可被引导经过组织以进入返回路径。
现在来看图30,显示了多模式镊子400的侧视图。在一个实施例中,镍-铁合金用于铁磁性感应加热和电外科模态。镍-铁合金将低温切割电流波形传送到组织自身中,同时吸收高频能量进行感应加热。低温切割电流可具有非常低的止血性能,但是也最小化伤害。因而,低温切割电流是期望的切割模态。为了补救缺乏的止血性能,由铁磁性涂层进行接触热封闭避免了可用于电外科中的凝固或电灼波形的深接触干燥和破坏作用。因而,增加铁磁性封闭元件提供改善的切割和封闭。
可使用多模式镊子的各种适应性修改方案来获得期望作用。组合式器械可多路传输RF频率或使用分开的电流路径404来优化热和电外科模态。可开发各种端头几何体用于这样的混合式器械,包括在端头处包有磁性薄膜的涂覆双极材料镊子。端头可具有涂层402或部分涂层来辅助信号传导或减少凝固累积量。RF能量传送也可通过在手术过程中增加导电材料来增进,例如添加盐溶液。
现在来看图31A,显示了镊子端头410的一个替代实施例的放大图。在一个实施例中,止血镊子在第一镊子叉414上包括铁磁性加热源412,在相对叉414’中包括热传感器。可记录热传感器的反馈,以达到并且保持最佳组织作用。可因而调节温度,并且调节功率输送来获得期望作用。
将双极模态增加到镊子端头410可改善单一的热模态。传感器可继续记录叉414或414’处的温度,但是其输出可用于对两种模态的调节作出决定。
类似于单极-热混合式装置,双极-热装置可包括双极电极和热元件。双极模态和热模态可根据需要一起或单独使用。因而,外科医生可从多模态的有益效果来选择。例如,为了避免深组织作用,外科医生可避免与止血有关的混合的双极波形,而是相反,使用镊子的结合热模态进行止血。在另一个实施例中,外科医生可使用热模态来切割软组织,但是可在到达更大阻力的组织时,选择使用切割波形来增加双极模态。
传感器可设置在多模式装置中,以检测温度或组织作用。来自传感器的信息可于是用于调节多模式装置的输出。在一个实施例中,传感器可检测组织炭化。可于是通知发生器减小输送到可造成炭化的双极或热系统的功率。
现在来看图31B,显示了具有涂层的镊子叉414的示意图。在一个实施例中,铁磁性涂层上的不粘覆盖层416,例如Teflon,可显著减少凝固累积和对器械清洁的需要。但是涂层的随意涂敷也可能由于其导热性能而抑制快速温度获取和快速下降的动态特性。通过根据重要特性,包括热质和厚度,来选择涂层材料,可实现期望的温度保持特性。而且,不导电涂层可仅为局部的,因而减小电外科电阻,但是保留类似Teflon的不导电涂层的有益效果。
双极多模式手术工具也可布置在导管上。导管可以是刚性或柔性的。导管也可构造用于抽吸、冲洗、物质输送、视觉反馈、通过传感器感测或其他应用。
处理组织的方法可包括以下步骤:选择具有电外科模态和热模态的手术工具;将端头布置成与组织接触;和激活所述模态中的至少一种。
所述方法可任选地包括以下步骤:选择期望的温度范围;选择双极模态;选择对应于期望组织作用的功率设置;利用具有铁磁性涂层的导体选择热模态;激活第一模态进行切割;激活第二模态进行血管内皮焊接和止血中的至少一种;激活这些模态,使这些模态的作用时间重叠;或包括激活这些模态以防止这些模态的作用时间重叠。
切割组织的方法可包括以下步骤:选择具有双极模态和感应加热模态的手术工具;激活双极模态进行切割;将端头布置成与组织接触;和激活感应加热模态进行血管内皮焊接和止血中的至少一种。
所述方法可任选地包括以下步骤:包括保持双极模态激活,同时激活加热模态,以由此切割组织并且基本上同时进行止血;或使用具有一对臂的手术器械,双极电极和热元件位于相同的臂上。
现在来看图32A,显示了具有热模态和超声模态的多模式手术工具430。功率提供到超声换能器431(其驱动负载)来产生主体434的超声波运动,如由箭头432所示,主体434可包括超声变幅杆435。在操作过程中,主体434可使用超声能破坏组织,即可切割或辅助破碎不期望的组织。或者,具有铁磁性涂层的导体可通过低频机械振动能来激活。
当组织由超声(或振动)能破坏时,在主体434的端头处,热元件,例如涂覆铁磁性涂层的导线或涂覆铁磁性涂层的导体436可被加热来获得期望的热作用,例如止血。(铁磁性涂层用作用于如上讨论的波形的负载)。
虽然上面的示意图显示为线性操作,但是可使用其他几何运动。例如,在一个实施例中,主体以圆形运动振荡。所述旋转可围绕由箭头432所示的轴线为中心。在另一个实施例中,主体可沿箭头432的轴线方向振荡,以及圆形地围绕箭头432所示的轴线振荡。
使用中,电源将感应加热信号,即如上讨论的波形,提供到导体436,以提供热模态。同时和/或独立地,提供超声信号,即驱动超声换能器433或超声换能器叠堆(433和433’)(例如压电换能器)的信号来使主体运动,以产生超声运动。因而,主体434可在施用热处理之前、过程中或之后提供超声处理。
工具可用于切割、止血、血管内皮焊接、组织消融或其组合。在一个实施例中,超声模态可用于切割,而热模态可用于止血。在另一个实施例中,超声模态用于将端头插入组织中,热模态用于组织消融。
现在来看图32B,显示了具有热模态和超声模态以及钩状主几何体437的多模式手术工具。多模式工具430也可包括主几何体,热元件可附接到主几何体。同样地,热元件可构造用于多种组织作用。
现在来看图32C,传感器439被增加到图32A。类似于已经讨论的其他传感器,该传感器可检测组织作用,或甚至装置的温度。同样地,该传感器可用作对可用模态(包括功率输送)进行控制的控制装置中的反馈机构。
现在来看图32D,第二端头441可靠近第一端头436设置。第二端头也可容纳一个或多个传感器或另一种模态,包括多模式端头。
现在来看图33,显示了具有热模态和超声模态以及抽吸/冲洗功能的多模式手术工具569。工具569包括具有多个控制装置540的电源515,控制装置540可单独寻址来通过电缆530向手持件570提供能量和控制泵(如果需要)进行冲洗或抽吸。手持件570包括振荡体580和热元件585。
电源515可提供超声和热信号来驱动各自的负载(即振荡体580和热元件585)。(可使用与图32中所示实施例相同的电源)。电源515可向手持件570提供单独的或多路传输的信号。每一个信号可由控制装置540、按钮591单独控制,或在一些情况下通过激活手持件来一起控制。实际上,也可以相同的方式,单独或一起控制抽吸作用。
除了用于产生超声和热能的信号,电源515可构造用于提供抽吸功能,例如通过内腔或抽吸孔590,通过手持件570的柄575,以及通过管/缆线530,通往容器。在图33中所示的实施例中,容器可容纳在电源515中。
手持件570可包括柄575、主体580(其形成内腔、孔或导管)和手术端头585。在一个实施例中,柄575包括致动器或控制装置591,其产生主体或导管580的端头的超声振动。导管580的端头可包括加热元件,例如具有铁磁性涂层的导体585。当超声或热能施加到组织时,导管孔590可抽吸任何破坏的组织(包括脂肪)或相关作用。
在一个实施例中,多模式手术工具569可提供输送或冲洗机构。在一个实施例中,物质可放置在导管内腔590中。可使用超声模式来破坏足够的组织,以到达待沉积物质的目标输送位置。在目标位置处,可激活多模式手术工具569的热元件,以使物质可熔化,并且可沉积在输送位置处。如果需要,热元件可在工具插入或取出过程中用于止血或组织焊接。
同样地,工具569可用于通过导管输送其他物质。虽然上面很多讨论集中在抽吸上,但是该工具可用于通过导管输送物质。例如,工具569可用于输送盐溶液、药物等,如果需要,包括以加热状态输送。
在一个实施例中,导管可具有多个孔。一个孔可构造用于抽吸,而另一个孔可构造用于冲洗。
类似于上面讨论的其他实施例,可使用各种传感器593。其可布置在主体580中,或可插入穿过内管590。这可通过端口592实现。应意识到,传感器可以是温度传感器,监控组织状态的传感器,用于可视化的装置,即照相机、CCD传感器或光纤导线等。另外,电源515可制成对传感器做出反应,例如调节来将热元件585中的热保持在用于组织中期望作用的期望范围,所述期望作用包括止血、血管焊接、烧灼、切割或消融。
向可热调节多模式手术工具输送功率的方法可包括以下步骤:将第一振荡信号输送到导体,所述导体构造成使第一振荡信号形成基本上在第一负载处具有最大电流和最小电压的近似驻波,所述负载包括导体的由铁磁性材料覆盖的部分;和向第二电接头输送第二振荡信号,所述第二电接头构造成使第二振荡电信号驱动超声换能器,以由此使第二负载以超声方式运动。
该方法可包括以下任选步骤:将第一负载与组织相邻放置,并且其中第一振荡电信号将热元件加热到在组织中进行止血的温度,并且第二振荡电信号使第二负载切割组织;与第一负载和第二负载相邻施加抽吸作用,以抽吸切割的组织;或在通讯通道中将第一振荡信号和第二振荡信号多路传输到第一负载和第二负载。
用于切割和封闭组织的方法包括以下步骤:选择具有导体的手术工具,所述导体具有布置在其一部分上的铁磁性涂层,以及驱动主体的换能器;将所述主体和铁磁性涂层布置成与组织接触;将振荡电信号输送到换能器以切割组织;和将振荡电信号输送到导体以加热铁磁性涂层并且向组织施加热。
所述方法也可包括以下任选步骤:加热铁磁性涂层来促使组织止血或选择超声换能器。
用于组织消融的方法可包括以下步骤:选择具有超声模态和热模态的端头;将所述端头插入不期望的组织中;和在不期望的组织中激活一种或多种模态。
所述方法可包括以下可任选步骤:选择作为热模态的铁磁性涂层,和从靠近不期望的组织的区域抽吸残余物。
应意识到,以上讨论的用于热元件的各种波形可与本文讨论的实施例中的每一个一起使用。另外,应意识到,关于这些传感器和响应于传感器的控制方面可应用到实施例中的每一个,并且因此不针对每一个详细重复。同样,如果需要,全部实施例可使用热元件的各方面,例如不粘涂层的使用和热元件的形成。
在本发明的实施例的使用中可注意到几个优点。在一个实施例中,当用于实体器官中,例如脑中时,可实现与组织超声破坏和抽吸作用相关的最佳热止血作用,以用于肿瘤摧毁。或者,与单独的超声作用相比较,可更优化地实现腹腔镜血管解剖和分离。
虽然导管仅针对超声模态进行了讨论,但是应注意到,导管的实施例可应用到多模式能量模态中的任何一个,并且获得每一种由抽吸、传感器等提供的有益效果。同样地,超声和热多模式导管实施例的很多有益效果可通过其他多模式实施例实现。本领域技术人员将认识到对这样的实施例的修改形式,以提供这些多模态处理。
现在来看图34,公开了温度谱。组织可在不同的温度下作出不同的反应,因而温度范围将导致对组织的不同的处理。特定组织的处理由于包括组织类型和患者差异的不统一而稍微变化。已经发现下面的温度是有用的。血管内皮焊接可在58-62摄氏度最佳。不出现粘着现象的组织止血可在70-80摄氏度下获得最佳。在更高的温度下,可更快速地进行组织烧灼和封闭,但是凝固组织可累积在器械上。组织切割可在200摄氏度实现,但是在边缘处由于汽化具有一些阻力。组织消融和汽化可在400-500摄氏度范围内快速进行。因而,通过控制温度,可控制装置给予的组织“处理”,例如血管内皮焊接、组织切割、止血和组织消融。
根据上面公开的温度谱,对应于期望温度范围的功率输送设置可包括在功率输送开关中。在一个实施例中,脚踏开关可具有几个档,这些档给外科医生指明当前设置的可能的端头温度范围。
应意识到,根据本发明的热手术工具系统将具有多种多样的用途。不仅其可用于人类,而且也可用于切割其他动物的组织,例如在兽医背景下或简单地将组织或生物质切割为碎片用于其他用途,所述组织或生物质例如为用于移植的组织或生物质。
手术系统的一些实施例可在手术中也可具有广泛应用。环形几何体可在切割、凝固和活检应用中具有优点。刀片几何体可具有用于切割和止血应用的优点。尖头几何体可在解剖和凝固应用中具有优点,并且特别地,在神经解剖和凝固应用中具有优点。但是,几何体的应用可通过直径、长度、材料特性和上面讨论的其他特性而进一步构造和修改以适于应用。
虽然以上主要在手术工具和活组织处理(虽然也可用于死组织上)领域描述了本发明,但是应可理解,根据本发明制造的工具和本文讨论的方法可具有其他用途。例如,切割工具可形成用于切肉。无论肉是新鲜的还是冷冻的,该工具都可用。例如,加热到高温的切割刀片将切穿冷冻肉。但是,当不再提供功率时,“切割”边缘对于触摸是安全的。同样,使用止血设置切肉将轻微烧灼肉的外部,锁入汁液。本领域技术人员将根据本说明理解本文讨论的器械的其他用途。
因而公开了一种改进的可热调节的手术工具和方法。应意识到,可对本发明进行多种改变而不偏离权利要求的范围。
Claims (99)
1.一种手术工具,包括:
电导体;
铁磁性材料的涂层,其布置在所述导体的至少一部分上;
其中,所述铁磁性材料的涂层在被加热及然后浸没在液体中时将不会断裂。
2.根据权利要求1所述的手术工具,其中,所述铁磁性材料的涂层相对于所述导体而言较薄。
3.根据权利要求1所述的手术工具,其中,所述铁磁性材料的涂层在所述导体的厚度的0.01%和50%之间。
4.根据权利要求1所述的手术工具,其中,所述铁磁性材料的涂层厚度在0.05微米和500微米之间。
5.根据权利要求1所述的手术工具,具有布置在所述导体上的多个铁磁性涂层。
6.根据权利要求1所述的手术工具,还包括构造成将振荡电能输送到所述导体的电源。
7.根据权利要求6所述的手术工具,还包括电路,所述电路包括阻抗匹配电路,所述阻抗匹配电路构造用于将所述电源连接到所述导体。
8.一种能热调节的手术工具,包括电导体和覆盖所述电导体的至少一部分的铁磁性涂层;
其中,所述铁磁性涂层在所述电导体的厚度的0.1%和20%之间,
其中,所述铁磁性涂层在被加热及然后浸没在液体中时将不会断裂。
9.根据权利要求8所述的能热调节的手术工具,还包括电源,所述电源构造用于向所述电导体输送振荡电能。
10.根据权利要求9所述的能热调节的手术工具,还包括一个或多个接头,所述接头具有第一端和第二端,每一个接头构造用于从第一端向附接到所述第二端的所述电导体输送振荡电能,并且还构造用于限制从所述第二端向所述第一端的热传递。
11.根据权利要求8所述的能热调节的手术工具,还包括在所述导体和所述铁磁性涂层之间的热绝缘涂层。
12.根据权利要求8所述的能热调节的手术工具,其中,所述铁磁性涂层选自包括NiFe合金、NIRONTM、Co、Fe、FeOFe2O3、NiOFe2O3、CuOFe2O3、MgOFe2O3、MnBi、Ni、MnSb、MnOFe2O3、Y3Fe5O12、CrO2、MnAs、Gd、Dy、EuO、磁石、PermalloyTM、钇铁石榴石、铝和锌的组。
13.根据权利要求8所述的能热调节的手术工具,其中,所述导体厚度在0.01毫米和1毫米之间。
14.根据权利要求8所述的能热调节的手术工具,其中,所述导体厚度在0.125毫米和0.5毫米之间。
15.根据权利要求8所述的能热调节的手术工具,其中,所述导体选自包括铜、钨、钛、不锈钢和铂的组。
16.根据权利要求8所述的能热调节的手术工具,其中,所述导体还包括两个或更多个异种导体的接合部。
17.根据权利要求16所述的能热调节的手术工具,还包括传感器,所述传感器构造用于测量所述接合部处的一个或多个信号并且将所述一个或多个信号与温度相关联。
18.根据权利要求8所述的能热调节的手术工具,其中,所述铁磁性涂层还包括交替的导体材料和铁磁性材料的层。
19.根据权利要求9所述的能热调节的手术工具,其中,所述振荡电能构造用于在所述导体的由铁磁性材料涂敷的部分处以最大电流和最小电压输送。
20.根据权利要求8所述的能热调节的手术工具,其中,所述铁磁性涂层围绕所述导体沿圆周布置。
21.根据权利要求20所述的能热调节的手术工具,其中,所述铁磁性涂层不对称地减薄。
22.根据权利要求8所述的能热调节的手术工具,还包括镀有铁磁性材料薄膜的至少一根其他导线。
23.根据权利要求8所述的能热调节的手术工具,其中,所铁磁性涂层和所述电导体的至少一部分也涂覆有薄层耐高温不粘材料。
24.根据权利要求8所述的能热调节的手术工具,其中,所述铁磁性涂层和所述电导体的至少一部分也由导热生物相容材料涂覆。
25.根据权利要求8所述的能热调节的手术工具,还包括与所述铁磁性涂层相邻布置的传感器。
26.根据权利要求8所述的能热调节的手术工具,还包括手柄,所述电导体穿过所述手柄,至所述电导体的延伸超出所述手柄之外的一部分,并且其中,所述铁磁性涂层覆盖所述电导体的延伸超出所述手柄之外的所述一部分。
27.根据权利要求8所述的能热调节的手术工具,还包括:
主几何体,其中,所述电导体布置在所述主几何体上。
28.根据权利要求27所述的能热调节的手术工具,其中,所述主几何体选自包括镊子、手术刀、压舌板、球形、尖头几何体和导管的组。
29.根据权利要求27所述的能热调节的手术工具,其中,所述主几何体还包括在由所述导体形成的路径之间的非毗邻材料部分。
30.根据权利要求27所述的能热调节的手术工具,其中,所述主几何体还包括位于所述主几何体中的孔。
31.根据权利要求27所述的能热调节的手术工具,其中,所述导体嵌入所述主几何体中。
32.根据权利要求27所述的能热调节的手术工具,其中,所述电导体布置在所述主几何体的一侧上。
33.根据权利要求9所述的能热调节的手术工具,还包括用户控制装置,其构造用于调节从所述电源向所述电导体输送的振荡电能。
34.根据权利要求33所述的能热调节的手术工具,其中:
所述电源进一步构造用于将关于电流状态的数据传送到用户控制装置;并且
所述用户控制装置进一步构造用于接收关于电流状态的数据,并且将控制数据传送到所述电源。
35.一种能热调节的手术器械,包括:
小直径电导体,其具有近端和远端,其中,所述近端构造用于连接到提供射频能量的电路;和
铁磁性材料薄镀层,其围绕所述电导体沿圆周布置,其中,所述铁磁性材料构造成具有足够高的居里温度以包括期望的治疗温度范围集合;并且
铁磁性涂层的厚度为0.05毫米或更小,
其中,所述铁磁性涂层在被加热及然后浸没在液体中时将不会断裂。
36.根据权利要求35所述的能热调节的手术器械,其中,所述铁磁性涂层的厚度介于大致0.5微米至大致500微米之间。
37.根据权利要求35所述的能热调节的手术器械,还包括与所述手柄结合的插座,所述插座构造用于接纳小直径电导体。
38.根据权利要求37所述的能热调节的手术工具,还包括插头,所述插头构造用于接纳所述小直径电导体和附接到所述插座。
39.根据权利要求38所述的能热调节的手术工具,其中,所述插头构造用于单次使用。
40.根据权利要求38所述的能热调节的手术工具,其中,发生器包括负载预测模块,其构造用于预测具有铁磁性材料薄镀层的小直径电导体的负载特性。
41.根据权利要求40所述的能热调节的手术工具,其中,所述插头还包括构造用于将负载特性传送到所述负载预测模块的数据模块。
42.根据权利要求41所述的能热调节的手术工具,其中,所述负载预测模块还构造用于利用预测的负载特性来预测为获得期望温度所需的功率输出。
43.一种用于形成手术器械的方法,所述方法包括:
选择主几何体;
使用铁磁性材料涂覆导体,其中,涂层足够薄以便在被加热及然后浸没在液体中时将不会断裂;和
将所述导体布置在所述主几何体上。
44.根据权利要求43所述的方法,还包括以下步骤:在所述导体上提供构造用于接收振荡电能的电接头。
45.一种能热调节的手术工具,包括:
施放器和具有电导体的圈套器,所述导体形成环,并且至少部分布置在所述施放器中;和至少一个铁磁性涂层,其覆盖所述电导体的至少一部分,其中,所述铁磁性涂层足够薄以便在被加热及暴露至大得足以引起铁氧体磁珠断裂的温差时将不会断裂。
46.根据权利要求45所述的能热调节的手术工具,其中,还包括电源,其构造用于向所述电导体输送振荡电能。
47.根据权利要求46所述的能热调节的手术工具,其中,所述振荡电能构造用于被调谐成将更大的功率输送到所述至少一个涂层。
48.根据权利要求47所述的能热调节的手术工具,其中,调谐至少部分通过调节所述振荡电能的频率实现。
49.根据权利要求47所述的能热调节的手术工具,其中,调谐至少部分通过调节所述电源的负载匹配来实现。
50.根据权利要求45所述的能热调节的手术工具,其中,所述至少一个铁磁性涂层包括沿所述环布置的多个铁磁性涂层。
51.一种能热调节的手术工具,包括:
导管,所述导管包括:
主体,其限定具有第一端的中心通道;
导体,其沿所述导管的至少一部分延伸,并且构造用于向所述第一端输送功率;
铁磁性涂层,其覆盖所述导体的靠近所述第一端的部分,其中,所述铁磁性涂层足够薄以便在被加热及暴露至大得足以引起铁氧体磁珠断裂的温差时将不会断裂;和
接头,其构造用于附接到向所述导管输送振荡电流的电源。
52.根据权利要求51所述的能热调节的手术工具,其中,所述导管还包括基底。
53.根据权利要求52所述的能热调节的手术工具,其中,所述基底选自包括高温塑料和玻璃的组。
54.根据权利要求52所述的能热调节的手术工具,其中,所述导体的至少一部分镀在所述基底上。
55.根据权利要求54所述的能热调节的手术工具,其中,所述铁磁性涂层的至少一部分镀在所述导体上。
56.根据权利要求51所述的能热调节的手术工具,其中,所述导体包括中心通道。
57.根据权利要求51所述的能热调节的手术工具,其中,所述导管还包括:
传感器通道,其位于所述中心通道中,并且构造用于将传感数据返回到操作者。
58.根据权利要求57所述的能热调节的手术工具,其中,所述导管还包括输送通道,其中,物质能从该通道抽吸或排出。
59.一种能热调节的手术工具,包括:
电导体,其具有第一部分和第二部分;
铁磁性涂层,其覆盖所述电导体的在所述第一部分和所述第二部分之间的至少一部分以便将有效加热限制于小区域而非整个电导体,其中,所述铁磁性涂层足够薄以便在被加热及暴露至当从空气过渡到液体时的温差时将不会断裂。
60.根据权利要求59所述的能热调节的手术工具,还包括发生器,其构造用于向所述电导体输送波形,其中,所述发生器还构造用于通过使包括最小电压和最大电流的驻波出现在铁磁性涂层处来阻抗匹配所述电导体。
61.根据权利要求59所述的能热调节的手术工具,其中,所述发生器还构造用于提供在ISM频带中的至少一个波形。
62.根据权利要求59所述的能热调节的手术工具,其中,所述发生器还构造用于提供频率在5兆赫和24千兆赫之间的至少一个波形。
63.根据权利要求59所述的能热调节的手术工具,其中,所述发生器还构造用于提供频率在40兆赫和928兆赫之间的至少一个波形。
64.根据权利要求60所述的能热调节的手术工具,还包括传感器,其靠近所述铁磁性涂层布置。
65.根据权利要求64所述的能热调节的手术工具,其中,所述发生器构造用于从所述传感器接收信号,并且将所述波形调节到对应于设置温度。
66.根据权利要求59所述的能热调节的手术工具,其中,所述发生器构造用于测量与所述导体相关的指标,所述指标与温度相关,并且所述发生器构造用于观察所述指标,并且将所述波形调节到对应于期望温度。
67.根据权利要求66所述的能热调节的手术工具,其中,所述指标选自包括阻抗、电压、电流、反射能量、驻波比(SWR)和相位移的组中的一个或多个。
68.根据权利要求59所述的能热调节的手术工具,其中,所述发生器还包括构造用于预测具有所述铁磁性涂层的电导体的负载特性的模块。
69.根据权利要求59所述的能热调节的手术工具,其中,所述发生器构造用于检测工具中的故障。
70.一种用于能热调节的手术工具的电源,包括:
脚踏开关;
占空比控制装置,其与所述脚踏开关连通;
振荡器,其与所述占空比控制装置连通;
功率放大器,其与所述振荡器连通;
手持手术工具,其与所述功率放大器连通,并且进一步包括:
电导体;和
铁磁性涂层,其覆盖所述电导体的至少一部分,其中,所述铁磁性涂层足够薄以便在被加热及浸没在液体中时将不会断裂。
71.根据权利要求70所述的能热调节的手术工具,其中,所述功率放大器还包括E级放大器。
72.一种多模式手术工具,包括电外科电极和热元件,其中,所述热元件为具有铁磁性涂层的导体,并且,其中所述铁磁性涂层足够薄以便在被加热及暴露至当从空气过渡到液体时的温差时将不会断裂。
73.根据权利要求72所述的多模式手术工具,其中,所述电外科电极是单极电极。
74.根据权利要求72所述的多模式手术工具,其中,所述热元件与所述电外科电极分开。
75.根据权利要求72所述的多模式手术工具,其中,所述热元件也用作所述电外科电极。
76.根据权利要求75所述的多模式手术工具,还包括多路传输信号。
77.根据权利要求76所述的多模式手术工具,其中,所述多路传输信号还包括单极信号。
78.根据权利要求77所述的多模式手术工具,其中,所述多路传输信号还包括感应加热信号,其中,所述感应加热信号在5MHz和24GHz之间。
79.一种多模式手术工具,包括:
端头,其包括电导体;
铁磁性涂层,其覆盖所述电导体的至少一部分,所述铁磁性涂层选自将使一些频率的振荡电能转变为热能并且将使其他频率的振荡电能传送到组织中的那些铁磁性涂层,
其中,所述铁磁性涂层足够薄以便在被加热及暴露至当从空气过渡到液体时的温差时将不会断裂。
80.根据权利要求79所述的多模式手术工具,还包括用于将多路传输信号传送到所述电导体中的装置。
81.根据权利要求79所述的多模式手术工具,其中,所述铁磁性涂层构造用于同时将热能和振荡电能传播到组织中。
82.一种能热调节的多模式手术端头,包括:
电缆;
电外科元件,其构造用于从所述电缆接收功率;以及
热元件,所述热元件包括:
小直径电导体,其具有近端和远端,其中,所述近端构造用于从所述电缆接收射频能量;
铁磁性材料薄镀层,其围绕所述电导体沿圆周布置,其中,所述铁磁性材料构造成具有的居里温度足够高以包括期望的治疗温度范围集合,其中,所述铁磁性材料薄镀层足够薄以便在被加热及暴露至当从空气过渡到液体时的温差时将不会断裂;和
电外科元件,其构造用于从所述电缆接收功率,并且构造用于向附近组织中释放射频能量。
83.根据权利要求82所述的能热调节的多模式手术端头,其中,所述电外科元件为单极元件。
84.根据权利要求82所述的能热调节的多模式手术端头,其中所述电外科元件为双极电极。
85.根据权利要求82所述的能热调节的多模式手术端头,其中,所述小直径电导体与所述电外科元件分开。
86.根据权利要求82所述的能热调节的多模式手术端头,其中,所述小直径电导体也用作所述电外科元件。
87.根据权利要求86所述的能热调节的多模式手术端头,还包括多路输出信号,并且所述多路传输信号还包括双极信号。
88.根据权利要求82所述的能热调节的多模式手术端头,还包括电源,和用于选择地单独或共同地激活所述电外科元件和所述热元件的控制装置。
89.根据权利要求84所述的能热调节的多模式手术端头,还包括:
至少两个臂,其中所述双极电极布置在所述至少两个臂中的一个上;
返回双极电极,其布置在所述至少两个臂中的一个上。
90.一种能调节的多模式手术工具,包括:
主体,其构造用于振荡;
导体,其围绕所述主体的至少一部分放置;
铁磁性涂层,其覆盖所述导体的一部分,其中,所述铁磁性涂层足够薄以便在被加热及暴露至当从空气过渡到液体时的温差时将不会断裂;和
电源,其向所述导体输送振荡电流。
91.根据权利要求90所述的多模式手术工具,其中,所述主体包括超声变幅杆。
92.根据权利要求90所述的多模式手术工具,还包括电源,其用于提供振荡电能,由此使所述主体振荡,并且提供对所述铁磁性涂层的加热。
93.根据权利要求92所述的多模式手术工具,其中,所述电源还包括用于提供能量来使所述主体振荡和用于提供对所述铁磁性涂层的加热的独立源。
94.根据权利要求93所述的多模式手术工具,其中,所述独立源构造用于在重叠的时间段过程中操作。
95.根据权利要求93所述的多模式手术工具,其中,所述独立源构造用于在分开的时间段操作。
96.根据权利要求90所述的多模式手术工具,其中,所述主体具有孔。
97.根据权利要求96所述的多模式手术工具,其中,所述主体具有多个孔。
98.根据权利要求97所述的多模式手术工具,其中,所述多个孔中的第一孔构造用于抽吸,所述多个孔中的第二孔构造用于冲洗。
99.根据权利要求91所述的多模式手术工具,其中,所述超声变幅杆还包括压电换能器。
Applications Claiming Priority (31)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17020309P | 2009-04-17 | 2009-04-17 | |
US17022009P | 2009-04-17 | 2009-04-17 | |
US17020709P | 2009-04-17 | 2009-04-17 | |
US61/170,220 | 2009-04-17 | ||
US61/170,207 | 2009-04-17 | ||
US61/170,203 | 2009-04-17 | ||
US12/647,340 US8419724B2 (en) | 2009-04-17 | 2009-12-24 | Adjustable ferromagnetic coated conductor thermal surgical tool |
US12/647,329 US8372066B2 (en) | 2009-04-17 | 2009-12-24 | Inductively heated multi-mode surgical tool |
US12/647,344 | 2009-12-24 | ||
US12/647,302 | 2009-12-24 | ||
US12/647,358 US8506561B2 (en) | 2009-04-17 | 2009-12-24 | Catheter with inductively heated regions |
US12/647,358 | 2009-12-24 | ||
US12/647,350 | 2009-12-24 | ||
US12/647,363 US8292879B2 (en) | 2009-04-17 | 2009-12-24 | Method of treatment with adjustable ferromagnetic coated conductor thermal surgical tool |
US12/647,340 | 2009-12-24 | ||
US12/647,344 US8377052B2 (en) | 2009-04-17 | 2009-12-24 | Surgical tool with inductively heated regions |
US12/647,374 | 2009-12-24 | ||
US12/647,371 | 2009-12-24 | ||
US12/647,355 US8430870B2 (en) | 2009-04-17 | 2009-12-24 | Inductively heated snare |
US12/647,329 | 2009-12-24 | ||
US12/647,302 US8523850B2 (en) | 2009-04-17 | 2009-12-24 | Method for heating a surgical implement |
US12/647,355 | 2009-12-24 | ||
US12/647,371 US8523852B2 (en) | 2009-04-17 | 2009-12-24 | Thermally adjustable surgical tool system |
US12/647,350 US9730749B2 (en) | 2009-04-17 | 2009-12-24 | Surgical scalpel with inductively heated regions |
US12/647,380 | 2009-12-24 | ||
US12/647,363 | 2009-12-24 | ||
US12/647,374 US8491578B2 (en) | 2009-04-17 | 2009-12-24 | Inductively heated multi-mode bipolar surgical tool |
US12/647,380 US8414569B2 (en) | 2009-04-17 | 2009-12-24 | Method of treatment with multi-mode surgical tool |
US12/647,376 | 2009-12-24 | ||
US12/647,376 US8523851B2 (en) | 2009-04-17 | 2009-12-24 | Inductively heated multi-mode ultrasonic surgical tool |
PCT/US2010/031114 WO2010120944A2 (en) | 2009-04-17 | 2010-04-14 | Inductively heated surgical tool |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102448395A CN102448395A (zh) | 2012-05-09 |
CN102448395B true CN102448395B (zh) | 2015-11-25 |
Family
ID=42981559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201080022651.0A Expired - Fee Related CN102448395B (zh) | 2009-04-17 | 2010-04-14 | 感应加热的手术工具 |
Country Status (9)
Country | Link |
---|---|
US (21) | US8523852B2 (zh) |
EP (2) | EP2419037B1 (zh) |
JP (3) | JP2012523923A (zh) |
KR (2) | KR20120039522A (zh) |
CN (1) | CN102448395B (zh) |
AU (2) | AU2010236417B2 (zh) |
CA (1) | CA2758947A1 (zh) |
ES (2) | ES2923668T3 (zh) |
WO (1) | WO2010120944A2 (zh) |
Families Citing this family (710)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6814739B2 (en) | 2001-05-18 | 2004-11-09 | U.S. Endoscopy Group, Inc. | Retrieval device |
US10835307B2 (en) | 2001-06-12 | 2020-11-17 | Ethicon Llc | Modular battery powered handheld surgical instrument containing elongated multi-layered shaft |
US9955994B2 (en) | 2002-08-02 | 2018-05-01 | Flowcardia, Inc. | Ultrasound catheter having protective feature against breakage |
US7335180B2 (en) | 2003-11-24 | 2008-02-26 | Flowcardia, Inc. | Steerable ultrasound catheter |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
DE202004021947U1 (de) | 2003-09-12 | 2013-05-13 | Vessix Vascular, Inc. | Auswählbare exzentrische Remodellierung und/oder Ablation von atherosklerotischem Material |
US7758510B2 (en) | 2003-09-19 | 2010-07-20 | Flowcardia, Inc. | Connector for securing ultrasound catheter to transducer |
US8182501B2 (en) | 2004-02-27 | 2012-05-22 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical shears and method for sealing a blood vessel using same |
US11896225B2 (en) | 2004-07-28 | 2024-02-13 | Cilag Gmbh International | Staple cartridge comprising a pan |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
US8215531B2 (en) | 2004-07-28 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a medical substance dispenser |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US9974607B2 (en) | 2006-10-18 | 2018-05-22 | Vessix Vascular, Inc. | Inducing desirable temperature effects on body tissue |
US8396548B2 (en) | 2008-11-14 | 2013-03-12 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
PL1802245T3 (pl) | 2004-10-08 | 2017-01-31 | Ethicon Endosurgery Llc | Ultradźwiękowy przyrząd chirurgiczny |
CN101511292B (zh) | 2005-03-28 | 2011-04-06 | 明诺医学有限公司 | 用于选择性地治疗动脉粥样硬化和其他目标组织的内腔电组织表征和调谐射频能量 |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US7934630B2 (en) | 2005-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US7669746B2 (en) | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US20070191713A1 (en) | 2005-10-14 | 2007-08-16 | Eichmann Stephen E | Ultrasonic device for cutting and coagulating |
US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
US7621930B2 (en) | 2006-01-20 | 2009-11-24 | Ethicon Endo-Surgery, Inc. | Ultrasound medical instrument having a medical ultrasonic blade |
US20110295295A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument having recording capabilities |
US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US20110024477A1 (en) | 2009-02-06 | 2011-02-03 | Hall Steven G | Driven Surgical Stapler Improvements |
US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US8322455B2 (en) | 2006-06-27 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Manually driven surgical cutting and fastening instrument |
US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
US7506791B2 (en) | 2006-09-29 | 2009-03-24 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with mechanical mechanism for limiting maximum tissue compression |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
CA2666663C (en) | 2006-10-18 | 2016-02-09 | Minnow Medical, Inc. | System for inducing desirable temperature effects on body tissue |
AU2007310988B2 (en) | 2006-10-18 | 2013-08-15 | Vessix Vascular, Inc. | Tuned RF energy and electrical tissue characterization for selective treatment of target tissues |
US9232959B2 (en) | 2007-01-02 | 2016-01-12 | Aquabeam, Llc | Multi fluid tissue resection methods and devices |
US20220096112A1 (en) | 2007-01-02 | 2022-03-31 | Aquabeam, Llc | Tissue resection with pressure sensing |
US8840603B2 (en) | 2007-01-10 | 2014-09-23 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US8652120B2 (en) | 2007-01-10 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US11039836B2 (en) | 2007-01-11 | 2021-06-22 | Cilag Gmbh International | Staple cartridge for use with a surgical stapling instrument |
US20080169333A1 (en) | 2007-01-11 | 2008-07-17 | Shelton Frederick E | Surgical stapler end effector with tapered distal end |
US8211099B2 (en) * | 2007-01-31 | 2012-07-03 | Tyco Healthcare Group Lp | Thermal feedback systems and methods of using the same |
US7669747B2 (en) | 2007-03-15 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Washer for use with a surgical stapling instrument |
US8226675B2 (en) | 2007-03-22 | 2012-07-24 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US20080234709A1 (en) | 2007-03-22 | 2008-09-25 | Houser Kevin L | Ultrasonic surgical instrument and cartilage and bone shaping blades therefor |
US8142461B2 (en) | 2007-03-22 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8057498B2 (en) | 2007-11-30 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument blades |
US8911460B2 (en) | 2007-03-22 | 2014-12-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8893946B2 (en) | 2007-03-28 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Laparoscopic tissue thickness and clamp load measuring devices |
US8496653B2 (en) | 2007-04-23 | 2013-07-30 | Boston Scientific Scimed, Inc. | Thrombus removal |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US11857181B2 (en) | 2007-06-04 | 2024-01-02 | Cilag Gmbh International | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US8591521B2 (en) | 2007-06-08 | 2013-11-26 | United States Endoscopy Group, Inc. | Retrieval device |
US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
US8523889B2 (en) | 2007-07-27 | 2013-09-03 | Ethicon Endo-Surgery, Inc. | Ultrasonic end effectors with increased active length |
US8808319B2 (en) | 2007-07-27 | 2014-08-19 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8882791B2 (en) | 2007-07-27 | 2014-11-11 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US9044261B2 (en) | 2007-07-31 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Temperature controlled ultrasonic surgical instruments |
US8512365B2 (en) | 2007-07-31 | 2013-08-20 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8430898B2 (en) | 2007-07-31 | 2013-04-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8252012B2 (en) | 2007-07-31 | 2012-08-28 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument with modulator |
AU2008308606B2 (en) | 2007-10-05 | 2014-12-18 | Ethicon Endo-Surgery, Inc. | Ergonomic surgical instruments |
US10010339B2 (en) | 2007-11-30 | 2018-07-03 | Ethicon Llc | Ultrasonic surgical blades |
US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
BRPI0901282A2 (pt) | 2008-02-14 | 2009-11-17 | Ethicon Endo Surgery Inc | instrumento cirúrgico de corte e fixação dotado de eletrodos de rf |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US7866527B2 (en) | 2008-02-14 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
US8758391B2 (en) | 2008-02-14 | 2014-06-24 | Ethicon Endo-Surgery, Inc. | Interchangeable tools for surgical instruments |
US11272927B2 (en) | 2008-02-15 | 2022-03-15 | Cilag Gmbh International | Layer arrangements for surgical staple cartridges |
US9615826B2 (en) | 2010-09-30 | 2017-04-11 | Ethicon Endo-Surgery, Llc | Multiple thickness implantable layers for surgical stapling devices |
EP3622910B1 (en) | 2008-03-06 | 2024-07-10 | AquaBeam LLC | Tissue ablation and cautery with optical energy carried in fluid stream |
US9089360B2 (en) | 2008-08-06 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US8058771B2 (en) | 2008-08-06 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic device for cutting and coagulating with stepped output |
US9089700B2 (en) | 2008-08-11 | 2015-07-28 | Cibiem, Inc. | Systems and methods for treating dyspnea, including via electrical afferent signal blocking |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
CN102271603A (zh) | 2008-11-17 | 2011-12-07 | 明诺医学股份有限公司 | 得知或未得知组织形态的选择性能量积累 |
US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
US8444036B2 (en) | 2009-02-06 | 2013-05-21 | Ethicon Endo-Surgery, Inc. | Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector |
WO2010090940A1 (en) | 2009-02-06 | 2010-08-12 | Ethicon Endo-Surgery, Inc. | Driven surgical stapler improvements |
US8597287B2 (en) * | 2009-03-17 | 2013-12-03 | Stryker Corporation | Method and system for varying output intensity of energy applied to an electrosurgical probe |
US9131977B2 (en) | 2009-04-17 | 2015-09-15 | Domain Surgical, Inc. | Layered ferromagnetic coated conductor thermal surgical tool |
US9265556B2 (en) | 2009-04-17 | 2016-02-23 | Domain Surgical, Inc. | Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials |
US9107666B2 (en) | 2009-04-17 | 2015-08-18 | Domain Surgical, Inc. | Thermal resecting loop |
US9078655B2 (en) | 2009-04-17 | 2015-07-14 | Domain Surgical, Inc. | Heated balloon catheter |
US8523852B2 (en) | 2009-04-17 | 2013-09-03 | Domain Surgical, Inc. | Thermally adjustable surgical tool system |
DE102009002768A1 (de) * | 2009-04-30 | 2010-11-04 | Celon Ag Medical Instruments | Materialschicht und Elektrochirurgiesystem für die elektrochirurgische Gewebefusion |
US8551096B2 (en) | 2009-05-13 | 2013-10-08 | Boston Scientific Scimed, Inc. | Directional delivery of energy and bioactives |
US9700339B2 (en) | 2009-05-20 | 2017-07-11 | Ethicon Endo-Surgery, Inc. | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US8319400B2 (en) | 2009-06-24 | 2012-11-27 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8663220B2 (en) | 2009-07-15 | 2014-03-04 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8461744B2 (en) | 2009-07-15 | 2013-06-11 | Ethicon Endo-Surgery, Inc. | Rotating transducer mount for ultrasonic surgical instruments |
US9017326B2 (en) | 2009-07-15 | 2015-04-28 | Ethicon Endo-Surgery, Inc. | Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments |
IN2012DN01917A (zh) | 2009-09-08 | 2015-07-24 | Salient Surgical Tech Inc | |
US20110071356A1 (en) * | 2009-09-24 | 2011-03-24 | Gyrus Ent, L.L.C. | Repeatably flexible surgical instrument |
US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
USRE47996E1 (en) | 2009-10-09 | 2020-05-19 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US10441345B2 (en) * | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US9168054B2 (en) | 2009-10-09 | 2015-10-27 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US9039695B2 (en) * | 2009-10-09 | 2015-05-26 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
US8579928B2 (en) | 2010-02-11 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Outer sheath and blade arrangements for ultrasonic surgical instruments |
US8961547B2 (en) | 2010-02-11 | 2015-02-24 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with moving cutting implement |
US8951272B2 (en) | 2010-02-11 | 2015-02-10 | Ethicon Endo-Surgery, Inc. | Seal arrangements for ultrasonically powered surgical instruments |
US8469981B2 (en) | 2010-02-11 | 2013-06-25 | Ethicon Endo-Surgery, Inc. | Rotatable cutting implement arrangements for ultrasonic surgical instruments |
US8531064B2 (en) | 2010-02-11 | 2013-09-10 | Ethicon Endo-Surgery, Inc. | Ultrasonically powered surgical instruments with rotating cutting implement |
US9259234B2 (en) | 2010-02-11 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with rotatable blade and hollow sheath arrangements |
US8486096B2 (en) | 2010-02-11 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Dual purpose surgical instrument for cutting and coagulating tissue |
JP2013523318A (ja) | 2010-04-09 | 2013-06-17 | べシックス・バスキュラー・インコーポレイテッド | 組織の治療のための発電および制御の装置 |
JP5590958B2 (ja) * | 2010-04-28 | 2014-09-17 | オリンパス株式会社 | 形状記憶合金アクチュエータ |
GB2480498A (en) | 2010-05-21 | 2011-11-23 | Ethicon Endo Surgery Inc | Medical device comprising RF circuitry |
US9849024B2 (en) * | 2010-06-11 | 2017-12-26 | Oasis Medical Solutions | Apparatus for therapeutic cooling and warming of a body portion of a human or mammal |
US20110308271A1 (en) * | 2010-06-18 | 2011-12-22 | Biocision, Inc. | Specimen freezing rate regulator device |
US20130091890A1 (en) * | 2010-06-28 | 2013-04-18 | Biocision, Llc | Specimen freezing rate regulator device |
US8920417B2 (en) | 2010-06-30 | 2014-12-30 | Medtronic Advanced Energy Llc | Electrosurgical devices and methods of use thereof |
US8906012B2 (en) | 2010-06-30 | 2014-12-09 | Medtronic Advanced Energy Llc | Electrosurgical devices with wire electrode |
US8795327B2 (en) | 2010-07-22 | 2014-08-05 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument with separate closure and cutting members |
US9192431B2 (en) | 2010-07-23 | 2015-11-24 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
US8783543B2 (en) | 2010-07-30 | 2014-07-22 | Ethicon Endo-Surgery, Inc. | Tissue acquisition arrangements and methods for surgical stapling devices |
WO2012031256A2 (en) * | 2010-09-03 | 2012-03-08 | Domain Surgical, Inc. | Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US9364233B2 (en) | 2010-09-30 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Tissue thickness compensators for circular surgical staplers |
US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
US9788834B2 (en) | 2010-09-30 | 2017-10-17 | Ethicon Llc | Layer comprising deployable attachment members |
US11849952B2 (en) | 2010-09-30 | 2023-12-26 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
US9386988B2 (en) | 2010-09-30 | 2016-07-12 | Ethicon End-Surgery, LLC | Retainer assembly including a tissue thickness compensator |
US8978954B2 (en) | 2010-09-30 | 2015-03-17 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising an adjustable distal portion |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
US9241714B2 (en) | 2011-04-29 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator and method for making the same |
US9232941B2 (en) | 2010-09-30 | 2016-01-12 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising a reservoir |
US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
WO2012139084A2 (en) * | 2011-04-08 | 2012-10-11 | Domain Surgical, Inc. | Layered ferromagnetic coated conductor thermal surgical tool |
CA2868742A1 (en) | 2011-04-08 | 2013-07-18 | Domain Surgical, Inc. | Impedance matching circuit |
US8932279B2 (en) | 2011-04-08 | 2015-01-13 | Domain Surgical, Inc. | System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue |
US8968293B2 (en) | 2011-04-12 | 2015-03-03 | Covidien Lp | Systems and methods for calibrating power measurements in an electrosurgical generator |
CN104053407B (zh) | 2011-04-29 | 2016-10-26 | 伊西康内外科公司 | 包括定位在其可压缩部分内的钉的钉仓 |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
US9259265B2 (en) | 2011-07-22 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Surgical instruments for tensioning tissue |
KR102060691B1 (ko) | 2011-09-06 | 2020-02-11 | 브리티시 아메리칸 토바코 (인베스트먼츠) 리미티드 | 가열식 흡연가능 재료 |
WO2013040255A2 (en) * | 2011-09-13 | 2013-03-21 | Domain Surgical, Inc. | Sealing and/or cutting instrument |
US20130066349A1 (en) * | 2011-09-13 | 2013-03-14 | Applied Nanotech Holdings, Inc. | Stimulated voc characterization |
JP2015506729A (ja) * | 2011-12-06 | 2015-03-05 | ドメイン・サージカル,インコーポレーテッド | 外科手術器具への電力供給を制御するシステム及び方法 |
WO2013119545A1 (en) | 2012-02-10 | 2013-08-15 | Ethicon-Endo Surgery, Inc. | Robotically controlled surgical instrument |
US9044230B2 (en) | 2012-02-13 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
EP3351196A1 (en) | 2012-02-29 | 2018-07-25 | Procept Biorobotics Corporation | Automated image-guided tissue resection and treatment |
CN104334098B (zh) | 2012-03-28 | 2017-03-22 | 伊西康内外科公司 | 包括限定低压强环境的胶囊剂的组织厚度补偿件 |
CN104321024B (zh) | 2012-03-28 | 2017-05-24 | 伊西康内外科公司 | 包括多个层的组织厚度补偿件 |
BR112014024194B1 (pt) | 2012-03-28 | 2022-03-03 | Ethicon Endo-Surgery, Inc | Conjunto de cartucho de grampos para um grampeador cirúrgico |
US8945113B2 (en) * | 2012-04-05 | 2015-02-03 | Covidien Lp | Electrosurgical tissue ablation systems capable of detecting excessive bending of a probe and alerting a user |
US9237921B2 (en) | 2012-04-09 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US9724118B2 (en) | 2012-04-09 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Techniques for cutting and coagulating tissue for ultrasonic surgical instruments |
US9439668B2 (en) | 2012-04-09 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Switch arrangements for ultrasonic surgical instruments |
US9241731B2 (en) | 2012-04-09 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Rotatable electrical connection for ultrasonic surgical instruments |
US9226766B2 (en) | 2012-04-09 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Serial communication protocol for medical device |
CN104519817B (zh) | 2012-04-24 | 2017-11-10 | 西比姆公司 | 用于颈动脉体摘除的血管内导管和方法 |
EP2854681A4 (en) | 2012-06-01 | 2016-02-17 | Cibiem Inc | PERCUTANEOUS METHODS AND DEVICES FOR CAROTIDE BODY ABLATION |
WO2013181660A1 (en) | 2012-06-01 | 2013-12-05 | Cibiem, Inc. | Methods and devices for cryogenic carotid body ablation |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
US20140005718A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Multi-functional powered surgical device with external dissection features |
US9408606B2 (en) | 2012-06-28 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Robotically powered surgical device with manually-actuatable reversing system |
US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
US9649111B2 (en) | 2012-06-28 | 2017-05-16 | Ethicon Endo-Surgery, Llc | Replaceable clip cartridge for a clip applier |
US20140005705A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical instruments with articulating shafts |
JP6290201B2 (ja) | 2012-06-28 | 2018-03-07 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | 空クリップカートリッジ用のロックアウト |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
BR112014032776B1 (pt) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | Sistema de instrumento cirúrgico e kit cirúrgico para uso com um sistema de instrumento cirúrgico |
US11202631B2 (en) | 2012-06-28 | 2021-12-21 | Cilag Gmbh International | Stapling assembly comprising a firing lockout |
US9226767B2 (en) | 2012-06-29 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Closed feedback control for electrosurgical device |
US20140005702A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with distally positioned transducers |
US9283045B2 (en) | 2012-06-29 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Surgical instruments with fluid management system |
US9408622B2 (en) | 2012-06-29 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9351754B2 (en) | 2012-06-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US9820768B2 (en) | 2012-06-29 | 2017-11-21 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
US9198714B2 (en) | 2012-06-29 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Haptic feedback devices for surgical robot |
US9326788B2 (en) | 2012-06-29 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Lockout mechanism for use with robotic electrosurgical device |
US9393037B2 (en) | 2012-06-29 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9283033B2 (en) | 2012-06-30 | 2016-03-15 | Cibiem, Inc. | Carotid body ablation via directed energy |
RU2640564C2 (ru) | 2012-08-02 | 2018-01-09 | Бард Периферэл Васкьюлар | Ультразвуковая катетерная система |
GB201217067D0 (en) | 2012-09-25 | 2012-11-07 | British American Tobacco Co | Heating smokable material |
IN2015DN02432A (zh) | 2012-09-28 | 2015-09-04 | Ethicon Endo Surgery Inc | |
US9585600B2 (en) * | 2012-10-02 | 2017-03-07 | Covidien Lp | Magnetic field viewing film for tracking in-situ surgical applications |
US10201365B2 (en) | 2012-10-22 | 2019-02-12 | Ethicon Llc | Surgeon feedback sensing and display methods |
US9095367B2 (en) | 2012-10-22 | 2015-08-04 | Ethicon Endo-Surgery, Inc. | Flexible harmonic waveguides/blades for surgical instruments |
US20140135804A1 (en) | 2012-11-15 | 2014-05-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic and electrosurgical devices |
US9757185B2 (en) | 2012-11-29 | 2017-09-12 | Gyrus Acmi, Inc. | Quadripolar forceps |
CN103083082B (zh) * | 2012-12-25 | 2015-01-07 | 北京天助基业科技发展有限公司 | 可快速致热的医用器具 |
US10231867B2 (en) | 2013-01-18 | 2019-03-19 | Auris Health, Inc. | Method, apparatus and system for a water jet |
GB2510166B (en) * | 2013-01-28 | 2015-05-20 | Cook Medical Technologies Llc | Thrombus removal apparatus |
CN103055419B (zh) * | 2013-02-06 | 2014-10-15 | 浙江康明特体育用品有限公司 | 颈椎康复器 |
US9269544B2 (en) * | 2013-02-11 | 2016-02-23 | Colorado State University Research Foundation | System and method for treatment of biofilms |
RU2669463C2 (ru) | 2013-03-01 | 2018-10-11 | Этикон Эндо-Серджери, Инк. | Хирургический инструмент с мягким упором |
MX368026B (es) | 2013-03-01 | 2019-09-12 | Ethicon Endo Surgery Inc | Instrumento quirúrgico articulable con vías conductoras para la comunicación de la señal. |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
US20140263541A1 (en) | 2013-03-14 | 2014-09-18 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising an articulation lock |
US10226273B2 (en) | 2013-03-14 | 2019-03-12 | Ethicon Llc | Mechanical fasteners for use with surgical energy devices |
US9241728B2 (en) | 2013-03-15 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument with multiple clamping mechanisms |
WO2014148590A1 (ja) * | 2013-03-22 | 2014-09-25 | 吉野川電線株式会社 | 電熱ヒータおよびその製造方法 |
US9482658B2 (en) | 2013-03-25 | 2016-11-01 | Ohio University | Test system and method for determining thermal effects of tissue ablation on an ex vivo tissue |
US10405857B2 (en) | 2013-04-16 | 2019-09-10 | Ethicon Llc | Powered linear surgical stapler |
BR112015026109B1 (pt) | 2013-04-16 | 2022-02-22 | Ethicon Endo-Surgery, Inc | Instrumento cirúrgico |
WO2014201165A1 (en) | 2013-06-11 | 2014-12-18 | Auris Surgical Robotics, Inc. | System for robotic assisted cataract surgery |
CN103284788B (zh) * | 2013-06-19 | 2015-06-10 | 上海安通医疗科技有限公司 | 射频消融仪及射频消融系统 |
US10426661B2 (en) | 2013-08-13 | 2019-10-01 | Auris Health, Inc. | Method and apparatus for laser assisted cataract surgery |
US20150053737A1 (en) | 2013-08-23 | 2015-02-26 | Ethicon Endo-Surgery, Inc. | End effector detection systems for surgical instruments |
CN106028966B (zh) | 2013-08-23 | 2018-06-22 | 伊西康内外科有限责任公司 | 用于动力外科器械的击发构件回缩装置 |
KR101491846B1 (ko) * | 2013-08-27 | 2015-02-11 | 해림씨앤씨 주식회사 | 내시경적 점막하 박리술의 시술기구 |
US9572591B2 (en) | 2013-09-03 | 2017-02-21 | United States Endoscopy Group, Inc. | Endoscopic snare device |
US9872700B2 (en) | 2013-09-03 | 2018-01-23 | United States Endoscopy Group, Inc. | Endoscopic snare device |
US10058345B2 (en) | 2013-09-09 | 2018-08-28 | Terumo Cardiovascular Systems Corporation | Single-pass endoscopic vessel harvesting |
US9814514B2 (en) | 2013-09-13 | 2017-11-14 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
US10219856B2 (en) | 2013-09-30 | 2019-03-05 | Donald J. Geisel | Heated resonant cutting device and method of use thereof |
US9265926B2 (en) | 2013-11-08 | 2016-02-23 | Ethicon Endo-Surgery, Llc | Electrosurgical devices |
US9949785B2 (en) * | 2013-11-21 | 2018-04-24 | Ethicon Llc | Ultrasonic surgical instrument with electrosurgical feature |
GB2521228A (en) | 2013-12-16 | 2015-06-17 | Ethicon Endo Surgery Inc | Medical device |
GB2521229A (en) | 2013-12-16 | 2015-06-17 | Ethicon Endo Surgery Inc | Medical device |
US9795436B2 (en) | 2014-01-07 | 2017-10-24 | Ethicon Llc | Harvesting energy from a surgical generator |
US9962161B2 (en) | 2014-02-12 | 2018-05-08 | Ethicon Llc | Deliverable surgical instrument |
BR112016019387B1 (pt) | 2014-02-24 | 2022-11-29 | Ethicon Endo-Surgery, Llc | Sistema de instrumento cirúrgico e cartucho de prendedores para uso com um instrumento cirúrgico de fixação |
EP3116408B1 (en) | 2014-03-12 | 2018-12-19 | Cibiem, Inc. | Ultrasound ablation catheter |
US9554854B2 (en) | 2014-03-18 | 2017-01-31 | Ethicon Endo-Surgery, Llc | Detecting short circuits in electrosurgical medical devices |
BR112016021943B1 (pt) | 2014-03-26 | 2022-06-14 | Ethicon Endo-Surgery, Llc | Instrumento cirúrgico para uso por um operador em um procedimento cirúrgico |
US9750499B2 (en) | 2014-03-26 | 2017-09-05 | Ethicon Llc | Surgical stapling instrument system |
US10013049B2 (en) | 2014-03-26 | 2018-07-03 | Ethicon Llc | Power management through sleep options of segmented circuit and wake up control |
US10004497B2 (en) | 2014-03-26 | 2018-06-26 | Ethicon Llc | Interface systems for use with surgical instruments |
US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
US10092310B2 (en) | 2014-03-27 | 2018-10-09 | Ethicon Llc | Electrosurgical devices |
US9737355B2 (en) | 2014-03-31 | 2017-08-22 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
US9913680B2 (en) | 2014-04-15 | 2018-03-13 | Ethicon Llc | Software algorithms for electrosurgical instruments |
JP6532889B2 (ja) | 2014-04-16 | 2019-06-19 | エシコン エルエルシーEthicon LLC | 締結具カートリッジ組立体及びステープル保持具カバー配置構成 |
US9801627B2 (en) | 2014-09-26 | 2017-10-31 | Ethicon Llc | Fastener cartridge for creating a flexible staple line |
US11517315B2 (en) | 2014-04-16 | 2022-12-06 | Cilag Gmbh International | Fastener cartridges including extensions having different configurations |
US20150297222A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
BR112016023825B1 (pt) | 2014-04-16 | 2022-08-02 | Ethicon Endo-Surgery, Llc | Cartucho de grampos para uso com um grampeador cirúrgico e cartucho de grampos para uso com um instrumento cirúrgico |
CN106456176B (zh) | 2014-04-16 | 2019-06-28 | 伊西康内外科有限责任公司 | 包括具有不同构型的延伸部的紧固件仓 |
CA2945796A1 (en) | 2014-04-17 | 2015-10-22 | Boston Scientific Scimed, Inc. | Devices and methods for therapeutic heat treatment |
ES2871448T3 (es) | 2014-05-12 | 2021-10-28 | Gyrus Acmi Inc D B A Olympus Surgical Tech America | Dispositivo electroquirúrgico calentado resistivamente |
US10357306B2 (en) | 2014-05-14 | 2019-07-23 | Domain Surgical, Inc. | Planar ferromagnetic coated surgical tip and method for making |
FR3023464B1 (fr) * | 2014-07-08 | 2017-02-03 | Seb Sa | Revetement antiadhesif comprenant au moins une couche de decor fonctionnel et article muni d'un tel revetement |
US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
CN105979893B (zh) * | 2014-08-05 | 2019-07-09 | 奥林巴斯株式会社 | 治疗用处置系统 |
BR112017004361B1 (pt) | 2014-09-05 | 2023-04-11 | Ethicon Llc | Sistema eletrônico para um instrumento cirúrgico |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
US10016199B2 (en) | 2014-09-05 | 2018-07-10 | Ethicon Llc | Polarity of hall magnet to identify cartridge type |
US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
MX2017003960A (es) | 2014-09-26 | 2017-12-04 | Ethicon Llc | Refuerzos de grapas quirúrgicas y materiales auxiliares. |
US10076325B2 (en) | 2014-10-13 | 2018-09-18 | Ethicon Llc | Surgical stapling apparatus comprising a tissue stop |
US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
CN104458392B (zh) * | 2014-10-22 | 2018-03-27 | 中国人民解放军总医院第一附属医院 | 一种可调节温度的无线加热镊子套系统 |
US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
TWI549711B (zh) * | 2014-11-14 | 2016-09-21 | 財團法人金屬工業研究發展中心 | 深層感磁熱消融裝置 |
CA2967829A1 (en) | 2014-11-19 | 2016-05-26 | Advanced Cardiac Therapeutics, Inc. | Systems and methods for high-resolution mapping of tissue |
SG11201703943VA (en) | 2014-11-19 | 2017-06-29 | Advanced Cardiac Therapeutics Inc | Ablation devices, systems and methods of using a high-resolution electrode assembly |
EP3220841B1 (en) | 2014-11-19 | 2023-01-25 | EPiX Therapeutics, Inc. | High-resolution mapping of tissue with pacing |
US11076455B2 (en) * | 2014-11-25 | 2021-07-27 | Omg, Inc. | Induction heating tool for membrane roofing |
US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
US10188385B2 (en) | 2014-12-18 | 2019-01-29 | Ethicon Llc | Surgical instrument system comprising lockable systems |
US9968355B2 (en) | 2014-12-18 | 2018-05-15 | Ethicon Llc | Surgical instruments with articulatable end effectors and improved firing beam support arrangements |
MX2017008108A (es) | 2014-12-18 | 2018-03-06 | Ethicon Llc | Instrumento quirurgico con un yunque que puede moverse de manera selectiva sobre un eje discreto no movil con relacion a un cartucho de grapas. |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US10299858B2 (en) | 2014-12-23 | 2019-05-28 | Cook Medical Technologies Llc | Variable thickness electrosurgical snare |
US10245095B2 (en) | 2015-02-06 | 2019-04-02 | Ethicon Llc | Electrosurgical instrument with rotation and articulation mechanisms |
US10180463B2 (en) | 2015-02-27 | 2019-01-15 | Ethicon Llc | Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band |
US10321907B2 (en) | 2015-02-27 | 2019-06-18 | Ethicon Llc | System for monitoring whether a surgical instrument needs to be serviced |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
AU2016226262B2 (en) * | 2015-03-02 | 2020-05-07 | KAIO Therapy, LLC | Systems and methods for providing alternating magnetic field therapy |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
US9901342B2 (en) | 2015-03-06 | 2018-02-27 | Ethicon Endo-Surgery, Llc | Signal and power communication system positioned on a rotatable shaft |
US9924961B2 (en) | 2015-03-06 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Interactive feedback system for powered surgical instruments |
US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
JP2020121162A (ja) | 2015-03-06 | 2020-08-13 | エシコン エルエルシーEthicon LLC | 測定の安定性要素、クリープ要素、及び粘弾性要素を決定するためのセンサデータの時間依存性評価 |
US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
US10052044B2 (en) | 2015-03-06 | 2018-08-21 | Ethicon Llc | Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures |
US10617412B2 (en) | 2015-03-06 | 2020-04-14 | Ethicon Llc | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
US9808246B2 (en) | 2015-03-06 | 2017-11-07 | Ethicon Endo-Surgery, Llc | Method of operating a powered surgical instrument |
US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
US9636164B2 (en) | 2015-03-25 | 2017-05-02 | Advanced Cardiac Therapeutics, Inc. | Contact sensing systems and methods |
US10213201B2 (en) | 2015-03-31 | 2019-02-26 | Ethicon Llc | Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw |
US20160287279A1 (en) | 2015-04-01 | 2016-10-06 | Auris Surgical Robotics, Inc. | Microsurgical tool for robotic applications |
US10034684B2 (en) | 2015-06-15 | 2018-07-31 | Ethicon Llc | Apparatus and method for dissecting and coagulating tissue |
US11020140B2 (en) | 2015-06-17 | 2021-06-01 | Cilag Gmbh International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
US10357303B2 (en) | 2015-06-30 | 2019-07-23 | Ethicon Llc | Translatable outer tube for sealing using shielded lap chole dissector |
US10034704B2 (en) | 2015-06-30 | 2018-07-31 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
US10765470B2 (en) | 2015-06-30 | 2020-09-08 | Ethicon Llc | Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters |
US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
US10154852B2 (en) | 2015-07-01 | 2018-12-18 | Ethicon Llc | Ultrasonic surgical blade with improved cutting and coagulation features |
US10117700B2 (en) | 2015-08-05 | 2018-11-06 | Terumo Cardiovascular Systems Corporation | Endoscopic vessel harvester with blunt and active ring dissection |
US10045809B2 (en) | 2015-08-05 | 2018-08-14 | Terumo Cardiovascular Systems Corporation | Endoscopic vessel harvester with blunt and active dissection |
US10835249B2 (en) | 2015-08-17 | 2020-11-17 | Ethicon Llc | Implantable layers for a surgical instrument |
US20170055584A1 (en) | 2015-08-31 | 2017-03-02 | British American Tobacco (Investments) Limited | Article for use with apparatus for heating smokable material |
US20170055575A1 (en) | 2015-08-31 | 2017-03-02 | British American Tobacco (Investments) Limited | Material for use with apparatus for heating smokable material |
US11924930B2 (en) * | 2015-08-31 | 2024-03-05 | Nicoventures Trading Limited | Article for use with apparatus for heating smokable material |
GB2541946B (en) * | 2015-09-07 | 2020-10-28 | Creo Medical Ltd | Electrosurgical snare |
US10363036B2 (en) | 2015-09-23 | 2019-07-30 | Ethicon Llc | Surgical stapler having force-based motor control |
US10327769B2 (en) | 2015-09-23 | 2019-06-25 | Ethicon Llc | Surgical stapler having motor control based on a drive system component |
US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US20170086909A1 (en) | 2015-09-30 | 2017-03-30 | Ethicon Endo-Surgery, Llc | Frequency agile generator for a surgical instrument |
US10736633B2 (en) | 2015-09-30 | 2020-08-11 | Ethicon Llc | Compressible adjunct with looping members |
US10980539B2 (en) | 2015-09-30 | 2021-04-20 | Ethicon Llc | Implantable adjunct comprising bonded layers |
US10307160B2 (en) | 2015-09-30 | 2019-06-04 | Ethicon Llc | Compressible adjunct assemblies with attachment layers |
WO2017062565A1 (en) | 2015-10-07 | 2017-04-13 | Boston Scientific Scimed, Inc. | Mixture of lafesih magnetic nanoparticles with different curie temperatures to improve inductive heating efficiency for hyperthermia therapy |
US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
US9955986B2 (en) | 2015-10-30 | 2018-05-01 | Auris Surgical Robotics, Inc. | Basket apparatus |
US10639108B2 (en) | 2015-10-30 | 2020-05-05 | Auris Health, Inc. | Process for percutaneous operations |
US20170119047A1 (en) | 2015-10-30 | 2017-05-04 | British American Tobacco (Investments) Limited | Article for Use with Apparatus for Heating Smokable Material |
US9949749B2 (en) | 2015-10-30 | 2018-04-24 | Auris Surgical Robotics, Inc. | Object capture with a basket |
US20170119046A1 (en) | 2015-10-30 | 2017-05-04 | British American Tobacco (Investments) Limited | Apparatus for Heating Smokable Material |
US10716612B2 (en) | 2015-12-18 | 2020-07-21 | Medtronic Advanced Energy Llc | Electrosurgical device with multiple monopolar electrode assembly |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US10537351B2 (en) | 2016-01-15 | 2020-01-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with variable motor control limits |
US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
US10433837B2 (en) | 2016-02-09 | 2019-10-08 | Ethicon Llc | Surgical instruments with multiple link articulation arrangements |
CN108882932B (zh) | 2016-02-09 | 2021-07-23 | 伊西康有限责任公司 | 具有非对称关节运动构造的外科器械 |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10258331B2 (en) | 2016-02-12 | 2019-04-16 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
SG11201807618QA (en) | 2016-03-15 | 2018-10-30 | Epix Therapeutics Inc | Improved devices, systems and methods for irrigated ablation |
US10376263B2 (en) | 2016-04-01 | 2019-08-13 | Ethicon Llc | Anvil modification members for surgical staplers |
US10617413B2 (en) | 2016-04-01 | 2020-04-14 | Ethicon Llc | Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts |
US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US10405859B2 (en) | 2016-04-15 | 2019-09-10 | Ethicon Llc | Surgical instrument with adjustable stop/start control during a firing motion |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
US10478181B2 (en) | 2016-04-18 | 2019-11-19 | Ethicon Llc | Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments |
US20170296173A1 (en) | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
US10322230B2 (en) | 2016-06-09 | 2019-06-18 | C. R. Bard, Inc. | Systems and methods for correcting and preventing occlusion in a catheter |
US10245064B2 (en) | 2016-07-12 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
US10893883B2 (en) | 2016-07-13 | 2021-01-19 | Ethicon Llc | Ultrasonic assembly for use with ultrasonic surgical instruments |
CN109803576B (zh) | 2016-07-14 | 2022-07-12 | 德克萨斯大学系统董事会 | 用于感应加热外来金属植入物的方法、设备和系统 |
US10842522B2 (en) | 2016-07-15 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments having offset blades |
US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
US10285723B2 (en) | 2016-08-09 | 2019-05-14 | Ethicon Llc | Ultrasonic surgical blade with improved heel portion |
USD847990S1 (en) | 2016-08-16 | 2019-05-07 | Ethicon Llc | Surgical instrument |
US10952759B2 (en) | 2016-08-25 | 2021-03-23 | Ethicon Llc | Tissue loading of a surgical instrument |
US10828056B2 (en) | 2016-08-25 | 2020-11-10 | Ethicon Llc | Ultrasonic transducer to waveguide acoustic coupling, connections, and configurations |
JP6940266B2 (ja) * | 2016-10-03 | 2021-09-22 | 株式会社モリタ製作所 | フットコントローラおよび医療用診療装置 |
US11000328B2 (en) | 2016-11-09 | 2021-05-11 | Gyrus Acmi, Inc. | Resistively heated electrosurgical device |
US20180140321A1 (en) | 2016-11-23 | 2018-05-24 | C. R. Bard, Inc. | Catheter With Retractable Sheath And Methods Thereof |
US10603064B2 (en) | 2016-11-28 | 2020-03-31 | Ethicon Llc | Ultrasonic transducer |
US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
US11596726B2 (en) | 2016-12-17 | 2023-03-07 | C.R. Bard, Inc. | Ultrasound devices for removing clots from catheters and related methods |
CN110099619B (zh) | 2016-12-21 | 2022-07-15 | 爱惜康有限责任公司 | 用于外科端部执行器和可替换工具组件的闭锁装置 |
US20180168625A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments with smart staple cartridges |
JP7010956B2 (ja) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | 組織をステープル留めする方法 |
US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
US10426471B2 (en) | 2016-12-21 | 2019-10-01 | Ethicon Llc | Surgical instrument with multiple failure response modes |
US11090048B2 (en) | 2016-12-21 | 2021-08-17 | Cilag Gmbh International | Method for resetting a fuse of a surgical instrument shaft |
US20180168608A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical instrument system comprising an end effector lockout and a firing assembly lockout |
US10448950B2 (en) | 2016-12-21 | 2019-10-22 | Ethicon Llc | Surgical staplers with independently actuatable closing and firing systems |
JP7086963B2 (ja) | 2016-12-21 | 2022-06-20 | エシコン エルエルシー | エンドエフェクタロックアウト及び発射アセンブリロックアウトを備える外科用器具システム |
US10918385B2 (en) | 2016-12-21 | 2021-02-16 | Ethicon Llc | Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system |
US20180168598A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Staple forming pocket arrangements comprising zoned forming surface grooves |
BR112019011947A2 (pt) | 2016-12-21 | 2019-10-29 | Ethicon Llc | sistemas de grampeamento cirúrgico |
US20180168633A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments and staple-forming anvils |
US10639034B2 (en) | 2016-12-21 | 2020-05-05 | Ethicon Llc | Surgical instruments with lockout arrangements for preventing firing system actuation unless an unspent staple cartridge is present |
US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
US10758229B2 (en) | 2016-12-21 | 2020-09-01 | Ethicon Llc | Surgical instrument comprising improved jaw control |
US10603036B2 (en) | 2016-12-21 | 2020-03-31 | Ethicon Llc | Articulatable surgical instrument with independent pivotable linkage distal of an articulation lock |
US10835247B2 (en) | 2016-12-21 | 2020-11-17 | Ethicon Llc | Lockout arrangements for surgical end effectors |
US10856868B2 (en) | 2016-12-21 | 2020-12-08 | Ethicon Llc | Firing member pin configurations |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
US10786277B2 (en) | 2017-01-09 | 2020-09-29 | United State Endoscopy Group, Inc. | Retrieval device |
US10582983B2 (en) | 2017-02-06 | 2020-03-10 | C. R. Bard, Inc. | Ultrasonic endovascular catheter with a controllable sheath |
CN106859763A (zh) * | 2017-03-17 | 2017-06-20 | 广州宸玥祺生物科技有限公司 | 一种医用电凝止血器 |
AU2018244318B2 (en) | 2017-03-28 | 2023-11-16 | Auris Health, Inc. | Shaft actuating handle |
CN110602976B (zh) | 2017-04-07 | 2022-11-15 | 奥瑞斯健康公司 | 患者导引器对准 |
WO2018200865A1 (en) | 2017-04-27 | 2018-11-01 | Epix Therapeutics, Inc. | Determining nature of contact between catheter tip and tissue |
US11259856B2 (en) * | 2017-05-22 | 2022-03-01 | Cilag Gmbh International | Combination ultrasonic and electrosurgical instrument and method for sealing tissue in successive phases |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
US10646220B2 (en) | 2017-06-20 | 2020-05-12 | Ethicon Llc | Systems and methods for controlling displacement member velocity for a surgical instrument |
US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
US10881396B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Surgical instrument with variable duration trigger arrangement |
AU2018288848B2 (en) | 2017-06-20 | 2021-02-04 | Coopersurgical, Inc. | Induction coil assembly for uterine ablation and method |
US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
USD890784S1 (en) | 2017-06-20 | 2020-07-21 | Ethicon Llc | Display panel with changeable graphical user interface |
US10327767B2 (en) | 2017-06-20 | 2019-06-25 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US10390841B2 (en) | 2017-06-20 | 2019-08-27 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
USD879809S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with changeable graphical user interface |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US10368864B2 (en) | 2017-06-20 | 2019-08-06 | Ethicon Llc | Systems and methods for controlling displaying motor velocity for a surgical instrument |
USD879808S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with graphical user interface |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
US10813639B2 (en) | 2017-06-20 | 2020-10-27 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions |
US10624633B2 (en) | 2017-06-20 | 2020-04-21 | Ethicon Llc | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument |
US20180368844A1 (en) | 2017-06-27 | 2018-12-27 | Ethicon Llc | Staple forming pocket arrangements |
US10856869B2 (en) | 2017-06-27 | 2020-12-08 | Ethicon Llc | Surgical anvil arrangements |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US10772629B2 (en) | 2017-06-27 | 2020-09-15 | Ethicon Llc | Surgical anvil arrangements |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
USD854151S1 (en) | 2017-06-28 | 2019-07-16 | Ethicon Llc | Surgical instrument shaft |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
US10716614B2 (en) | 2017-06-28 | 2020-07-21 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies with increased contact pressure |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
US10211586B2 (en) * | 2017-06-28 | 2019-02-19 | Ethicon Llc | Surgical shaft assemblies with watertight housings |
US10903685B2 (en) | 2017-06-28 | 2021-01-26 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
US11083455B2 (en) | 2017-06-28 | 2021-08-10 | Cilag Gmbh International | Surgical instrument comprising an articulation system ratio |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
USD851762S1 (en) | 2017-06-28 | 2019-06-18 | Ethicon Llc | Anvil |
EP4070740A1 (en) | 2017-06-28 | 2022-10-12 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
USD869655S1 (en) | 2017-06-28 | 2019-12-10 | Ethicon Llc | Surgical fastener cartridge |
US20190000461A1 (en) | 2017-06-28 | 2019-01-03 | Ethicon Llc | Surgical cutting and fastening devices with pivotable anvil with a tissue locating arrangement in close proximity to an anvil pivot axis |
US10398434B2 (en) | 2017-06-29 | 2019-09-03 | Ethicon Llc | Closed loop velocity control of closure member for robotic surgical instrument |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US10898183B2 (en) | 2017-06-29 | 2021-01-26 | Ethicon Llc | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
US10258418B2 (en) | 2017-06-29 | 2019-04-16 | Ethicon Llc | System for controlling articulation forces |
US11007022B2 (en) | 2017-06-29 | 2021-05-18 | Ethicon Llc | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
US10820920B2 (en) | 2017-07-05 | 2020-11-03 | Ethicon Llc | Reusable ultrasonic medical devices and methods of their use |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
RU178475U1 (ru) * | 2017-08-10 | 2018-04-04 | Федеральное государственное автономное образовательное учреждение высшего образования "Крымский федеральный университет имени В.И. Вернадского" | Устройство для внутрикостной электрокоагуляции |
US10729501B2 (en) | 2017-09-29 | 2020-08-04 | Ethicon Llc | Systems and methods for language selection of a surgical instrument |
US10765429B2 (en) | 2017-09-29 | 2020-09-08 | Ethicon Llc | Systems and methods for providing alerts according to the operational state of a surgical instrument |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
US10796471B2 (en) | 2017-09-29 | 2020-10-06 | Ethicon Llc | Systems and methods of displaying a knife position for a surgical instrument |
USD907647S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
USD917500S1 (en) | 2017-09-29 | 2021-04-27 | Ethicon Llc | Display screen or portion thereof with graphical user interface |
USD907648S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
US12023082B2 (en) | 2017-10-06 | 2024-07-02 | Medtronic Advanced Energy Llc | Hemostatic thermal sealer |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
US10779903B2 (en) | 2017-10-31 | 2020-09-22 | Ethicon Llc | Positive shaft rotation lock activated by jaw closure |
US10687813B2 (en) | 2017-12-15 | 2020-06-23 | Ethicon Llc | Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments |
US11033267B2 (en) | 2017-12-15 | 2021-06-15 | Ethicon Llc | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
US11006955B2 (en) | 2017-12-15 | 2021-05-18 | Ethicon Llc | End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments |
US10743874B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Sealed adapters for use with electromechanical surgical instruments |
US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
US10966718B2 (en) | 2017-12-15 | 2021-04-06 | Ethicon Llc | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US10828033B2 (en) | 2017-12-15 | 2020-11-10 | Ethicon Llc | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
US10743875B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US10869666B2 (en) | 2017-12-15 | 2020-12-22 | Ethicon Llc | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
US10729509B2 (en) | 2017-12-19 | 2020-08-04 | Ethicon Llc | Surgical instrument comprising closure and firing locking mechanism |
US11045270B2 (en) | 2017-12-19 | 2021-06-29 | Cilag Gmbh International | Robotic attachment comprising exterior drive actuator |
US10716565B2 (en) | 2017-12-19 | 2020-07-21 | Ethicon Llc | Surgical instruments with dual articulation drivers |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
USD910847S1 (en) | 2017-12-19 | 2021-02-16 | Ethicon Llc | Surgical instrument assembly |
US11020112B2 (en) | 2017-12-19 | 2021-06-01 | Ethicon Llc | Surgical tools configured for interchangeable use with different controller interfaces |
US11129680B2 (en) | 2017-12-21 | 2021-09-28 | Cilag Gmbh International | Surgical instrument comprising a projector |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
US11751867B2 (en) | 2017-12-21 | 2023-09-12 | Cilag Gmbh International | Surgical instrument comprising sequenced systems |
MX2020013241A (es) | 2018-06-07 | 2021-02-22 | Auris Health Inc | Sistemas medicos roboticos con instrumentos de gran fuerza. |
EP3813682A4 (en) | 2018-06-28 | 2022-03-30 | Auris Health, Inc. | MEDICAL SYSTEMS INCORPORATING PULLEY SHARING |
US10828118B2 (en) | 2018-08-15 | 2020-11-10 | Auris Health, Inc. | Medical instruments for tissue cauterization |
EP3806758A4 (en) | 2018-08-17 | 2022-04-06 | Auris Health, Inc. | BIPOLAR MEDICAL DEVICE |
US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
US10779821B2 (en) | 2018-08-20 | 2020-09-22 | Ethicon Llc | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
US10842492B2 (en) | 2018-08-20 | 2020-11-24 | Ethicon Llc | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
CN109171890A (zh) * | 2018-09-19 | 2019-01-11 | 天津万和医疗器械有限公司 | 一种带多功能一体化的手术平台 |
US11864849B2 (en) | 2018-09-26 | 2024-01-09 | Auris Health, Inc. | Systems and instruments for suction and irrigation |
US11576738B2 (en) | 2018-10-08 | 2023-02-14 | Auris Health, Inc. | Systems and instruments for tissue sealing |
US11065147B2 (en) * | 2018-10-18 | 2021-07-20 | Covidien Lp | Devices, systems, and methods for pre-heating fluid to be introduced into a patient during a surgical procedure |
CN109431597B (zh) * | 2018-10-24 | 2020-09-22 | 上海圣哲医疗科技有限公司 | 一种多脉冲双极高频血管闭合发生器及其能量输出控制方法 |
WO2020092080A1 (en) | 2018-10-29 | 2020-05-07 | Stryker Corporation | Systems and methods of performing spine surgery and maintaining a volume of fluid at a surgical site |
US11950863B2 (en) | 2018-12-20 | 2024-04-09 | Auris Health, Inc | Shielding for wristed instruments |
WO2020154100A1 (en) | 2019-01-25 | 2020-07-30 | Auris Health, Inc. | Vessel sealer with heating and cooling capabilities |
DE102019102841A1 (de) | 2019-02-05 | 2020-08-06 | Olympus Winter & Ibe Gmbh | Lösbarer Isoliereinsatz zur Verwendung in einem Resektoskop |
DE102019102839A1 (de) | 2019-02-05 | 2020-08-06 | Olympus Winter & Ibe Gmbh | Spülflüssigkeit für die Resektion |
KR102127629B1 (ko) | 2019-02-21 | 2020-06-29 | 신성대학교 산학협력단 | 포매용 포셉 가열 거치대 |
WO2020174666A1 (ja) | 2019-02-28 | 2020-09-03 | オリンパス株式会社 | 医療用システム |
US11534248B2 (en) | 2019-03-25 | 2022-12-27 | Auris Health, Inc. | Systems and methods for medical stapling |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11547471B2 (en) | 2019-03-27 | 2023-01-10 | Gyrus Acmi, Inc. | Device with loop electrodes for treatment of menorrhagia |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
DE102019112238A1 (de) * | 2019-05-10 | 2020-11-12 | HELLA GmbH & Co. KGaA | Verfahren zur Kontrolle der Beschichtung eines elektronischen Bauteils |
US11369386B2 (en) | 2019-06-27 | 2022-06-28 | Auris Health, Inc. | Systems and methods for a medical clip applier |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11350938B2 (en) | 2019-06-28 | 2022-06-07 | Cilag Gmbh International | Surgical instrument comprising an aligned rfid sensor |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US11219455B2 (en) | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US11109928B2 (en) | 2019-06-28 | 2021-09-07 | Auris Health, Inc. | Medical instruments including wrists with hybrid redirect surfaces |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11529186B2 (en) | 2019-07-22 | 2022-12-20 | Covidien Lp | Electrosurgical forceps including thermal cutting element |
US11896330B2 (en) | 2019-08-15 | 2024-02-13 | Auris Health, Inc. | Robotic medical system having multiple medical instruments |
CN114502094A (zh) | 2019-09-26 | 2022-05-13 | 奥瑞斯健康公司 | 用于碰撞检测和避免的系统和方法 |
US11737845B2 (en) | 2019-09-30 | 2023-08-29 | Auris Inc. | Medical instrument with a capstan |
KR102307762B1 (ko) * | 2019-11-26 | 2021-09-30 | (주)나노맥 | 강자성 특성 구조의 수술 기기 |
KR102295827B1 (ko) * | 2019-10-02 | 2021-08-30 | (주)나노맥 | 자기 유도 방식의 수술 기기 |
WO2021066479A2 (ko) * | 2019-10-02 | 2021-04-08 | (주)나노맥 | 자기 유도 방식의 수술 기기 |
US11737835B2 (en) | 2019-10-29 | 2023-08-29 | Auris Health, Inc. | Braid-reinforced insulation sheath |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US12049706B2 (en) | 2019-12-21 | 2024-07-30 | Covidien Lp | Thermal cutting elements, electrosurgical instruments including thermal cutting elements, and methods of manufacturing |
US20210196357A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Electrosurgical instrument with asynchronous energizing electrodes |
US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
US11759251B2 (en) | 2019-12-30 | 2023-09-19 | Cilag Gmbh International | Control program adaptation based on device status and user input |
US11684412B2 (en) | 2019-12-30 | 2023-06-27 | Cilag Gmbh International | Surgical instrument with rotatable and articulatable surgical end effector |
US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
US11589916B2 (en) | 2019-12-30 | 2023-02-28 | Cilag Gmbh International | Electrosurgical instruments with electrodes having variable energy densities |
US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
US20210196363A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Electrosurgical instrument with electrodes operable in bipolar and monopolar modes |
US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
US11439419B2 (en) | 2019-12-31 | 2022-09-13 | Auris Health, Inc. | Advanced basket drive mode |
US11950872B2 (en) | 2019-12-31 | 2024-04-09 | Auris Health, Inc. | Dynamic pulley system |
US20210244464A1 (en) * | 2020-02-07 | 2021-08-12 | Covidien Lp | Electrosurgical instruments and systems including thermal cutting elements |
CN113967064A (zh) * | 2020-03-27 | 2022-01-25 | 广州派若弥医疗器械有限公司 | 一种增强血管封闭功能热熔焊刀 |
CN111459367B (zh) | 2020-04-03 | 2022-04-22 | 维沃移动通信有限公司 | 一种显示方法及电子设备 |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
EP4171427A4 (en) | 2020-06-29 | 2024-08-07 | Auris Health Inc | SYSTEMS AND METHODS FOR DETECTING CONTACT BETWEEN A LINK AND AN EXTERNAL OBJECT |
CN115734765A (zh) | 2020-06-30 | 2023-03-03 | 奥瑞斯健康公司 | 具有碰撞接近度指示器的机器人医疗系统 |
US11357586B2 (en) | 2020-06-30 | 2022-06-14 | Auris Health, Inc. | Systems and methods for saturated robotic movement |
US11871925B2 (en) | 2020-07-28 | 2024-01-16 | Cilag Gmbh International | Surgical instruments with dual spherical articulation joint arrangements |
KR102450610B1 (ko) | 2020-09-14 | 2022-10-04 | 사회복지법인 삼성생명공익재단 | 강자성 전극 구조의 수술 기기 |
US20230329768A1 (en) * | 2020-09-22 | 2023-10-19 | Covidien Lp | Electrosurgical instruments including thermal cutting elements |
CN112075986A (zh) * | 2020-09-29 | 2020-12-15 | 南京森盛医疗设备有限公司 | 手持式热熔刀 |
CN112274240B (zh) * | 2020-10-28 | 2021-08-27 | 青岛钰仁医疗科技有限公司 | 一种角度可变的等离子电极刀头 |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
USD928102S1 (en) * | 2020-12-30 | 2021-08-17 | Shenzhen Xpadsp Technology Co., Ltd | Foot switch |
US12048472B2 (en) | 2021-02-01 | 2024-07-30 | Covidien Lp | Electrosurgical instruments, jaw members thereof, and methods of manufacturing |
KR102595999B1 (ko) | 2021-02-18 | 2023-10-31 | (주)나노맥 | 마이크로웨이브 방식의 수술 도구 |
US20220265347A1 (en) * | 2021-02-19 | 2022-08-25 | Medtronic Advanced Energy Llc | Microwave sealer device and generator |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US20220378426A1 (en) | 2021-05-28 | 2022-12-01 | Cilag Gmbh International | Stapling instrument comprising a mounted shaft orientation sensor |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
KR102660870B1 (ko) | 2021-10-27 | 2024-04-25 | (주)나노맥 | 전기 절개 및 초음파 절삭 방식의 수술 도구 |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
US20230329743A1 (en) * | 2022-04-18 | 2023-10-19 | Verb Surgical Inc. | Method and system for model-based temperature estimation of an ultrasonic instrument |
CN115813527B (zh) * | 2023-01-17 | 2023-05-12 | 湖南轶疆医疗科技有限公司 | 一种用于假肢手术的外科止血装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4185632A (en) * | 1970-08-13 | 1980-01-29 | Shaw Robert F | Surgical instrument having self-regulated electrical skin-depth heating of its cutting edge and method of using the same |
US5611798A (en) * | 1995-03-02 | 1997-03-18 | Eggers; Philip E. | Resistively heated cutting and coagulating surgical instrument |
Family Cites Families (356)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US173811A (en) * | 1876-02-22 | Improvement in pneumatic railway-signaling apparatus | ||
US300155A (en) | 1884-06-10 | stabr | ||
US2735797A (en) | 1956-02-21 | Method of heat sealing and severing | ||
US770368A (en) | 1904-09-20 | Surgical instrument | ||
US187875A (en) * | 1877-02-27 | Improvement in tools for inserting rings in hose | ||
US31723A (en) * | 1861-03-19 | Improvement in medicinal compounds to cure hog-cholera | ||
US1104053A (en) | 1912-09-28 | 1914-07-21 | Donald Henry Lea | Tool for uncapping honey and like purposes. |
US1280052A (en) | 1916-12-18 | 1918-09-24 | Tiodolf Lidberg | Therapeutic instrument. |
US1366231A (en) | 1917-09-08 | 1921-01-18 | Kny Scheerer Corp | Sterilizable cautery |
US1335987A (en) * | 1919-05-27 | 1920-04-06 | Kienle | Dental instrument |
US1401104A (en) | 1920-03-15 | 1921-12-20 | Kruesheld Henry | Surgical instrument |
US1794296A (en) | 1927-08-24 | 1931-02-24 | Mortimer N Hyams | Surgical instrument |
US2027854A (en) * | 1934-11-14 | 1936-01-14 | Gen Tire & Rubber Co | Tube splicer |
US2050904A (en) | 1934-11-26 | 1936-08-11 | Trice Spencer Talley | Electric hemostat or cautery |
US2120598A (en) | 1937-03-06 | 1938-06-14 | George H Beuoy | Electrical cutting instrument |
US2250602A (en) | 1939-08-21 | 1941-07-29 | Paul W Pierce | Honey uncapping knife |
US2278633A (en) * | 1940-08-15 | 1942-04-07 | American Telephone & Telegraph | Temperature control apparatus |
US2375154A (en) | 1943-10-07 | 1945-05-01 | Metals & Controls Corp | Electric furnace |
US2412977A (en) | 1943-11-19 | 1946-12-24 | Robertshaw Thermostat Co | Flame sensitive device |
US2501499A (en) * | 1947-12-20 | 1950-03-21 | Gen Electric | Electric heating device and control therefor |
US2670425A (en) | 1952-05-01 | 1954-02-23 | Norton Co | Gas heater |
US2831242A (en) * | 1953-03-25 | 1958-04-22 | Schwarzkopf Dev Co | Sintered electric resistance heating element |
US2782290A (en) * | 1954-09-28 | 1957-02-19 | Westinghouse Electric Corp | Temperature responsive control device |
CA581780A (en) | 1957-05-31 | 1959-08-18 | General Electric Company | Heater wire |
US2863036A (en) | 1957-06-19 | 1958-12-02 | Donald O Mitchell | Electrically heated butchering knives |
US2947345A (en) | 1958-10-08 | 1960-08-02 | Schjeldahl Co G T | Machine for making articles from multiple thermoplastic webs |
US2960592A (en) | 1959-10-12 | 1960-11-15 | Paul W Pierce | Knife for decapping honeycomb |
US3213259A (en) | 1961-05-23 | 1965-10-19 | Gen Electric | Electrode for electrical resistance heating tool |
US3084242A (en) * | 1961-11-14 | 1963-04-02 | Essex Wire Corp | Electric heater wire |
US3350544A (en) | 1964-05-01 | 1967-10-31 | Arc O Vec Inc | Thermo-electrically controlled electrical heater |
US3556953A (en) | 1964-10-19 | 1971-01-19 | Werner P Schulz | Microsurgery suture-needle and of its method of manufacture |
US3404202A (en) | 1964-11-06 | 1968-10-01 | Basic Inc | Electric resistance heater and method of making |
US3414705A (en) | 1965-10-24 | 1968-12-03 | Texas Instruments Inc | Component oven |
US3501619A (en) | 1965-07-15 | 1970-03-17 | Texas Instruments Inc | Self-regulating thermal apparatus |
US3413442A (en) | 1965-07-15 | 1968-11-26 | Texas Instruments Inc | Self-regulating thermal apparatus |
US3400252A (en) | 1965-10-20 | 1968-09-03 | Matsushita Electric Ind Co Ltd | Electrical heating device |
DE1615192B1 (de) | 1966-04-01 | 1970-08-20 | Chisso Corp | Induktiv beheiztes Heizrohr |
US3434476A (en) * | 1966-04-07 | 1969-03-25 | Robert F Shaw | Plasma arc scalpel |
US3352011A (en) | 1966-04-22 | 1967-11-14 | Wells Mfg Corp | Electrically heated flexible knife |
GB1184656A (en) | 1966-06-17 | 1970-03-18 | Johnson Matthey Co Ltd | Improvements in and relating to Self Regulating Heating Elements. |
USRE31723E (en) | 1967-11-09 | 1984-11-06 | Surgical cutting instrument having electrically heated cutting edge | |
US4089336A (en) * | 1970-08-13 | 1978-05-16 | Robert F. Shaw | Electrically heated surgical cutting instrument and method of using the same |
US6726683B1 (en) | 1967-11-09 | 2004-04-27 | Robert F. Shaw | Electrically heated surgical cutting instrument |
DE2423537C3 (de) | 1967-11-09 | 1978-03-23 | Shaw, Robert F., Dr.Med., Portola Valley, Calif. (V.St.A.) | Chirurgisches Schneidinstrument |
US4198957A (en) * | 1967-11-09 | 1980-04-22 | Robert F. Shaw | Method of using an electrically heated surgical cutting instrument |
US4206759A (en) | 1970-08-13 | 1980-06-10 | Shaw Robert F | Surgical instrument having self-regulated vapor condensation heating of its cutting edge and method of using the same |
US4207896A (en) | 1970-08-13 | 1980-06-17 | Shaw Robert F | Surgical instrument having self-regulating dielectric heating of its cutting edge |
US4209017A (en) | 1970-08-13 | 1980-06-24 | Shaw Robert F | Surgical instrument having self-regulating radiant heating of its cutting edge and method of using the same |
US3826263A (en) | 1970-08-13 | 1974-07-30 | R Shaw | Electrically heated surgical cutting instrument |
US3825004A (en) | 1972-09-13 | 1974-07-23 | Durden Enterprises Ltd | Disposable electrosurgical cautery |
US3768482A (en) | 1972-10-10 | 1973-10-30 | R Shaw | Surgical cutting instrument having electrically heated cutting edge |
USRE29088E (en) | 1972-10-10 | 1976-12-28 | Surgical cutting instrument having electrically heated cutting edge | |
US3834392A (en) | 1973-02-01 | 1974-09-10 | Kli Inc | Laparoscopy system |
US3978312A (en) | 1974-10-17 | 1976-08-31 | Concept, Inc. | Variable temperature electric cautery assembly |
US4091813A (en) * | 1975-03-14 | 1978-05-30 | Robert F. Shaw | Surgical instrument having self-regulated electrical proximity heating of its cutting edge and method of using the same |
BR7601564A (pt) * | 1975-03-14 | 1976-09-14 | R Shaw | Instrumento e processo para a realizacao de cortes cirurgicos |
US4364390A (en) | 1975-03-14 | 1982-12-21 | Shaw Robert F | Surgical instrument having self-regulating dielectric heating of its cutting edge and method of using the same |
CA1083457A (en) | 1975-03-14 | 1980-08-12 | Robert F. Shaw | Surgical instrument having self-regulated electrical induction heating of its cutting edge and method of using the same |
SE412842B (sv) * | 1975-03-14 | 1980-03-24 | Shaw Robert F | Sett att reglera ett vermt skerblads vermning for hallande av bladets skeregg inom ett valt temperaturomrade samt skerinstrument med ett i nerheten av skereggen anordnat vermningsorgan |
US4359052A (en) | 1976-01-26 | 1982-11-16 | Concept Inc. | Removable tip cautery |
US4196734A (en) * | 1978-02-16 | 1980-04-08 | Valleylab, Inc. | Combined electrosurgery/cautery system and method |
GB2022974A (en) * | 1978-04-20 | 1979-12-19 | Shaw R F | Improved electrically heated apparatus and method and material |
US4334142A (en) | 1979-01-04 | 1982-06-08 | Douglas Blackmore | Skin effect pipe heating system utilizing convective and conductive heat transfer |
US4256945A (en) * | 1979-08-31 | 1981-03-17 | Iris Associates | Alternating current electrically resistive heating element having intrinsic temperature control |
US4701587A (en) * | 1979-08-31 | 1987-10-20 | Metcal, Inc. | Shielded heating element having intrinsic temperature control |
US4848337A (en) | 1979-09-10 | 1989-07-18 | Shaw Robert F | Abherent surgical instrument and method |
JPS56112237A (en) | 1980-02-08 | 1981-09-04 | Sumitomo Electric Industries | Laser knife |
JPS6031689Y2 (ja) * | 1980-06-10 | 1985-09-21 | オリンパス光学工業株式会社 | 内視鏡用高周波処置装置 |
US4481057A (en) | 1980-10-28 | 1984-11-06 | Oximetrix, Inc. | Cutting device and method of manufacture |
US4485810A (en) | 1980-10-28 | 1984-12-04 | Oximetrix, Inc. | Surgical cutting blade |
US4371861A (en) * | 1980-12-11 | 1983-02-01 | Honeywell Inc. | Ni-fe thin-film temperature sensor |
US4622966A (en) | 1981-06-30 | 1986-11-18 | Abbott Laboratories | Surgical cutting device |
US4523084A (en) | 1981-09-02 | 1985-06-11 | Oximetrix, Inc. | Controller for resistive heating element |
US4549073A (en) | 1981-11-06 | 1985-10-22 | Oximetrix, Inc. | Current controller for resistive heating element |
US4493320A (en) | 1982-04-02 | 1985-01-15 | Treat Michael R | Bipolar electrocautery surgical snare |
US4600018A (en) | 1982-06-02 | 1986-07-15 | National Research Development Corporation | Electromagnetic medical applicators |
US5370675A (en) | 1992-08-12 | 1994-12-06 | Vidamed, Inc. | Medical probe device and method |
US4492231A (en) | 1982-09-17 | 1985-01-08 | Auth David C | Non-sticking electrocautery system and forceps |
US4752673A (en) | 1982-12-01 | 1988-06-21 | Metcal, Inc. | Autoregulating heater |
US5189271A (en) | 1982-12-01 | 1993-02-23 | Metcal, Inc. | Temperature self-regulating induction apparatus |
US5107095A (en) * | 1982-12-01 | 1992-04-21 | Metcal, Inc. | Clam shell heater employing high permeability material |
US5053595A (en) | 1982-12-01 | 1991-10-01 | Metcal, Inc. | Heat shrink sleeve with high mu material |
US4914267A (en) * | 1982-12-01 | 1990-04-03 | Metcal, Inc. | Connector containing fusible material and having intrinsic temperature control |
EP0130671A3 (en) | 1983-05-26 | 1986-12-17 | Metcal Inc. | Multiple temperature autoregulating heater |
US4658819A (en) | 1983-09-13 | 1987-04-21 | Valleylab, Inc. | Electrosurgical generator |
JPS60125182U (ja) | 1984-02-01 | 1985-08-23 | 株式会社 寿 | ノツク式筆記具 |
US4562706A (en) * | 1984-02-06 | 1986-01-07 | The United States Of America As Represented By The Secretary Of The Navy | Mechanical relocker for locking bolts |
IE56731B1 (en) * | 1984-04-04 | 1991-11-20 | Deks John Australia | Improved sealing device |
US4839501A (en) | 1984-12-21 | 1989-06-13 | Metcal, Inc. | Cartridge soldering iron |
US4658820A (en) | 1985-02-22 | 1987-04-21 | Valleylab, Inc. | Electrosurgical generator with improved circuitry for generating RF drive pulse trains |
JPS6251179A (ja) | 1985-08-29 | 1987-03-05 | 富士電気化学株式会社 | 赤外線集中加熱炉用ランプ |
DE3689889D1 (de) | 1986-07-17 | 1994-07-07 | Erbe Elektromedizin | Hochfrequenz-Chirurgiegerät für die thermische Koagulation biologischer Gewebe. |
US5003991A (en) | 1987-03-31 | 1991-04-02 | Olympus Optical Co., Ltd. | Hyperthermia apparatus |
US4807620A (en) | 1987-05-22 | 1989-02-28 | Advanced Interventional Systems, Inc. | Apparatus for thermal angioplasty |
US4877944A (en) | 1987-06-08 | 1989-10-31 | Metcal, Inc. | Self regulating heater |
US4927413A (en) | 1987-08-24 | 1990-05-22 | Progressive Angioplasty Systems, Inc. | Catheter for balloon angioplasty |
US5300750A (en) | 1988-03-16 | 1994-04-05 | Metcal, Inc. | Thermal induction heater |
WO1989011311A1 (en) | 1988-05-18 | 1989-11-30 | Kasevich Associates, Inc. | Microwave balloon angioplasty |
US4915100A (en) | 1988-12-19 | 1990-04-10 | United States Surgical Corporation | Surgical stapler apparatus with tissue shield |
US4938761A (en) | 1989-03-06 | 1990-07-03 | Mdt Corporation | Bipolar electrosurgical forceps |
JP2764616B2 (ja) | 1989-07-19 | 1998-06-11 | 旭電化工業株式会社 | 感熱記録材料 |
US5047025A (en) * | 1990-01-12 | 1991-09-10 | Metcal, Inc. | Thermal atherectomy device |
US5211646A (en) | 1990-03-09 | 1993-05-18 | Alperovich Boris I | Cryogenic scalpel |
US5203782A (en) * | 1990-04-02 | 1993-04-20 | Gudov Vasily F | Method and apparatus for treating malignant tumors by local hyperpyrexia |
US5098429A (en) * | 1990-04-17 | 1992-03-24 | Mmtc, Inc. | Angioplastic technique employing an inductively-heated ferrite material |
US5071419A (en) | 1990-04-30 | 1991-12-10 | Everest Medical Corporation | Percutaneous laparoscopic cholecystectomy instrument |
US5182427A (en) * | 1990-09-20 | 1993-01-26 | Metcal, Inc. | Self-regulating heater utilizing ferrite-type body |
JP2558584Y2 (ja) | 1990-11-09 | 1997-12-24 | 株式会社テック | 電気掃除機のキャスター体 |
US5087804A (en) * | 1990-12-28 | 1992-02-11 | Metcal, Inc. | Self-regulating heater with integral induction coil and method of manufacture thereof |
JP3029680B2 (ja) * | 1991-01-29 | 2000-04-04 | 東レ・ダウコーニング・シリコーン株式会社 | オルガノペンタシロキサンおよびその製造方法 |
US5217460A (en) | 1991-03-22 | 1993-06-08 | Knoepfler Dennis J | Multiple purpose forceps |
DE69230494T2 (de) | 1991-04-05 | 2000-06-08 | Metcal Inc., Menlo Park | Instrument zum schneiden, koagulieren und abtragen von gewebe |
US5209725A (en) | 1991-04-11 | 1993-05-11 | Roth Robert A | Prostatic urethra dilatation catheter system and method |
US5472443A (en) | 1991-06-07 | 1995-12-05 | Hemostatic Surgery Corporation | Electrosurgical apparatus employing constant voltage and methods of use |
US5391166A (en) | 1991-06-07 | 1995-02-21 | Hemostatic Surgery Corporation | Bi-polar electrosurgical endoscopic instruments having a detachable working end |
US5571153A (en) | 1991-09-20 | 1996-11-05 | Wallst+E,Acu E+Ee N; Hans I. | Device for hyperthermia treatment |
US5197649A (en) * | 1991-10-29 | 1993-03-30 | The Trustees Of Columbia University In The City Of New York | Gastrointestinal endoscoptic stapler |
AU3128593A (en) * | 1991-11-08 | 1993-06-07 | Ep Technologies Inc | Radiofrequency ablation with phase sensitive power detection |
US5843019A (en) | 1992-01-07 | 1998-12-01 | Arthrocare Corporation | Shaped electrodes and methods for electrosurgical cutting and ablation |
US5573533A (en) | 1992-04-10 | 1996-11-12 | Medtronic Cardiorhythm | Method and system for radiofrequency ablation of cardiac tissue |
US5540681A (en) | 1992-04-10 | 1996-07-30 | Medtronic Cardiorhythm | Method and system for radiofrequency ablation of tissue |
US5300068A (en) * | 1992-04-21 | 1994-04-05 | St. Jude Medical, Inc. | Electrosurgical apparatus |
US5593406A (en) * | 1992-05-01 | 1997-01-14 | Hemostatic Surgery Corporation | Endoscopic instrument with auto-regulating heater and method of using same |
US5496314A (en) | 1992-05-01 | 1996-03-05 | Hemostatic Surgery Corporation | Irrigation and shroud arrangement for electrically powered endoscopic probes |
US5318564A (en) | 1992-05-01 | 1994-06-07 | Hemostatic Surgery Corporation | Bipolar surgical snare and methods of use |
US5308311A (en) | 1992-05-01 | 1994-05-03 | Robert F. Shaw | Electrically heated surgical blade and methods of making |
US5445635A (en) | 1992-05-01 | 1995-08-29 | Hemostatic Surgery Corporation | Regulated-current power supply and methods for resistively-heated surgical instruments |
CA2134894A1 (en) * | 1992-05-01 | 1993-11-11 | Philip E. Eggers | Surgical instruments having auto-regulating heater |
US5480398A (en) | 1992-05-01 | 1996-01-02 | Hemostatic Surgery Corporation | Endoscopic instrument with disposable auto-regulating heater |
US5542916A (en) | 1992-08-12 | 1996-08-06 | Vidamed, Inc. | Dual-channel RF power delivery system |
WO1994007446A1 (en) | 1992-10-05 | 1994-04-14 | Boston Scientific Corporation | Device and method for heating tissue |
US5964759A (en) | 1992-10-27 | 1999-10-12 | Ortho Development Corporation | Electroconvergent cautery system |
US5400267A (en) * | 1992-12-08 | 1995-03-21 | Hemostatix Corporation | Local in-device memory feature for electrically powered medical equipment |
US5807393A (en) | 1992-12-22 | 1998-09-15 | Ethicon Endo-Surgery, Inc. | Surgical tissue treating device with locking mechanism |
US5370645A (en) | 1993-04-19 | 1994-12-06 | Valleylab Inc. | Electrosurgical processor and method of use |
US5628771A (en) | 1993-05-12 | 1997-05-13 | Olympus Optical Co., Ltd. | Electromagnetic-wave thermatological device |
US5364392A (en) | 1993-05-14 | 1994-11-15 | Fidus Medical Technology Corporation | Microwave ablation catheter system with impedance matching tuner and method |
US5376094A (en) | 1993-08-19 | 1994-12-27 | Boston Scientific Corporation | Improved actuating handle with pulley system for providing mechanical advantage to a surgical working element |
US5496312A (en) * | 1993-10-07 | 1996-03-05 | Valleylab Inc. | Impedance and temperature generator control |
US6210403B1 (en) | 1993-10-07 | 2001-04-03 | Sherwood Services Ag | Automatic control for energy from an electrosurgical generator |
US5507743A (en) * | 1993-11-08 | 1996-04-16 | Zomed International | Coiled RF electrode treatment apparatus |
US5382247A (en) | 1994-01-21 | 1995-01-17 | Valleylab Inc. | Technique for electrosurgical tips and method of manufacture and use |
US5475203A (en) | 1994-05-18 | 1995-12-12 | Gas Research Institute | Method and woven mesh heater comprising insulated and noninsulated wire for fusion welding of plastic pieces |
US6006755A (en) | 1994-06-24 | 1999-12-28 | Edwards; Stuart D. | Method to detect and treat aberrant myoelectric activity |
US5595565A (en) | 1994-06-30 | 1997-01-21 | The Trustees Of Columbia University In The City Of New York | Self-propelled endoscope using pressure driven linear actuators |
US5674219A (en) | 1994-10-06 | 1997-10-07 | Donaldson Company, Inc. | Electrosurgical smoke evacuator |
EP0797408A2 (en) | 1994-12-13 | 1997-10-01 | Torben Lorentzen | An electrosurgical instrument for tissue ablation, an apparatus, and a method for providing a lesion in damaged and diseased tissue from a mammal |
US6409722B1 (en) | 1998-07-07 | 2002-06-25 | Medtronic, Inc. | Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue |
US5707369A (en) | 1995-04-24 | 1998-01-13 | Ethicon Endo-Surgery, Inc. | Temperature feedback monitor for hemostatic surgical instrument |
US5554172A (en) * | 1995-05-09 | 1996-09-10 | The Larren Corporation | Directed energy surgical method and assembly |
RU2072118C1 (ru) | 1995-05-23 | 1997-01-20 | Александр Модестович Шамашкин | Индуктор для нагрева ферромагнитного материала |
GB2303998B (en) * | 1995-08-03 | 2000-03-01 | Nokia Mobile Phones Ltd | Radio telephones and methods of operation |
US5776130A (en) | 1995-09-19 | 1998-07-07 | Valleylab, Inc. | Vascular tissue sealing pressure control |
US5836874A (en) | 1996-04-08 | 1998-11-17 | Ep Technologies, Inc. | Multi-function electrode structures for electrically analyzing and heating body tissue |
US5936716A (en) | 1996-05-31 | 1999-08-10 | Pinsukanjana; Paul Ruengrit | Method of controlling multi-species epitaxial deposition |
US5733283A (en) | 1996-06-05 | 1998-03-31 | Malis; Jerry L. | Flat loop bipolar electrode tips for electrosurgical instrument |
US5836943A (en) | 1996-08-23 | 1998-11-17 | Team Medical, L.L.C. | Electrosurgical generator |
US5827268A (en) | 1996-10-30 | 1998-10-27 | Hearten Medical, Inc. | Device for the treatment of patent ductus arteriosus and method of using the device |
US6035238A (en) | 1997-08-13 | 2000-03-07 | Surx, Inc. | Noninvasive devices, methods, and systems for shrinking of tissues |
US5827269A (en) | 1996-12-31 | 1998-10-27 | Gynecare, Inc. | Heated balloon having a reciprocating fluid agitator |
CA2277122A1 (en) * | 1997-01-13 | 1998-07-16 | Medicor Corporation | Electrosurgical instrument |
US7083613B2 (en) | 1997-03-05 | 2006-08-01 | The Trustees Of Columbia University In The City Of New York | Ringed forceps |
US6626901B1 (en) | 1997-03-05 | 2003-09-30 | The Trustees Of Columbia University In The City Of New York | Electrothermal instrument for sealing and joining or cutting tissue |
JPH10277050A (ja) | 1997-04-04 | 1998-10-20 | Olympus Optical Co Ltd | 内視鏡用高周波処置具 |
US6033399A (en) | 1997-04-09 | 2000-03-07 | Valleylab, Inc. | Electrosurgical generator with adaptive power control |
US5911719A (en) | 1997-06-05 | 1999-06-15 | Eggers; Philip E. | Resistively heating cutting and coagulating surgical instrument |
US6161048A (en) * | 1997-06-26 | 2000-12-12 | Radionics, Inc. | Method and system for neural tissue modification |
US6869431B2 (en) | 1997-07-08 | 2005-03-22 | Atrionix, Inc. | Medical device with sensor cooperating with expandable member |
US6238389B1 (en) * | 1997-09-30 | 2001-05-29 | Boston Scientific Corporation | Deflectable interstitial ablation device |
US6241723B1 (en) | 1997-10-15 | 2001-06-05 | Team Medical Llc | Electrosurgical system |
US6287305B1 (en) | 1997-12-23 | 2001-09-11 | Team Medical, L.L.C. | Electrosurgical instrument |
US6176857B1 (en) | 1997-10-22 | 2001-01-23 | Oratec Interventions, Inc. | Method and apparatus for applying thermal energy to tissue asymmetrically |
US7435249B2 (en) | 1997-11-12 | 2008-10-14 | Covidien Ag | Electrosurgical instruments which reduces collateral damage to adjacent tissue |
US6726686B2 (en) | 1997-11-12 | 2004-04-27 | Sherwood Services Ag | Bipolar electrosurgical instrument for sealing vessels |
US6228083B1 (en) | 1997-11-14 | 2001-05-08 | Sherwood Services Ag | Laparoscopic bipolar electrosurgical instrument |
US20080053547A1 (en) * | 1997-11-24 | 2008-03-06 | Yungrwei Chen | Energy attenuation apparatus for a conduit conveying liquid under pressure, system incorporating same, and method of attenuating energy in a conduit |
US6068627A (en) | 1997-12-10 | 2000-05-30 | Valleylab, Inc. | Smart recognition apparatus and method |
US6533781B2 (en) * | 1997-12-23 | 2003-03-18 | Team Medical Llc | Electrosurgical instrument |
WO1999037227A1 (en) | 1998-01-26 | 1999-07-29 | Boston Scientific Limited | Tissue resection using resistance heating |
US6066138A (en) * | 1998-05-27 | 2000-05-23 | Sheffer; Yehiel | Medical instrument and method of utilizing same for eye capsulotomy |
US6632182B1 (en) | 1998-10-23 | 2003-10-14 | The Trustees Of Columbia University In The City Of New York | Multiple bit, multiple specimen endoscopic biopsy forceps |
US7364577B2 (en) | 2002-02-11 | 2008-04-29 | Sherwood Services Ag | Vessel sealing system |
US7137980B2 (en) | 1998-10-23 | 2006-11-21 | Sherwood Services Ag | Method and system for controlling output of RF medical generator |
US6221039B1 (en) | 1998-10-26 | 2001-04-24 | Scimed Life Systems, Inc. | Multi-function surgical instrument |
US6701176B1 (en) | 1998-11-04 | 2004-03-02 | Johns Hopkins University School Of Medicine | Magnetic-resonance-guided imaging, electrophysiology, and ablation |
US6290697B1 (en) | 1998-12-01 | 2001-09-18 | Irvine Biomedical, Inc. | Self-guiding catheter system for tissue ablation |
US6190382B1 (en) * | 1998-12-14 | 2001-02-20 | Medwaves, Inc. | Radio-frequency based catheter system for ablation of body tissues |
US7594913B2 (en) * | 1998-12-14 | 2009-09-29 | Medwaves, Inc. | Radio-frequency based catheter system and method for ablating biological tissues |
ES2243090T3 (es) | 1998-12-18 | 2005-11-16 | Celon Ag Medical Instruments | Agrupacion de electrodos para un instrumento quirurgico para la coagulacion electrotermica en el tejido. |
US20030171747A1 (en) | 1999-01-25 | 2003-09-11 | Olympus Optical Co., Ltd. | Medical treatment instrument |
US6015415A (en) | 1999-03-09 | 2000-01-18 | General Science And Technology | Polypectomy snare instrument |
US6911026B1 (en) * | 1999-07-12 | 2005-06-28 | Stereotaxis, Inc. | Magnetically guided atherectomy |
US6228084B1 (en) * | 1999-04-06 | 2001-05-08 | Kirwan Surgical Products, Inc. | Electro-surgical forceps having recessed irrigation channel |
US6358273B1 (en) * | 1999-04-09 | 2002-03-19 | Oratec Inventions, Inc. | Soft tissue heating apparatus with independent, cooperative heating sources |
US6939346B2 (en) * | 1999-04-21 | 2005-09-06 | Oratec Interventions, Inc. | Method and apparatus for controlling a temperature-controlled probe |
US6454781B1 (en) | 1999-05-26 | 2002-09-24 | Ethicon Endo-Surgery, Inc. | Feedback control in an ultrasonic surgical instrument for improved tissue effects |
US6696844B2 (en) | 1999-06-04 | 2004-02-24 | Engineering & Research Associates, Inc. | Apparatus and method for real time determination of materials' electrical properties |
US6692489B1 (en) | 1999-07-21 | 2004-02-17 | Team Medical, Llc | Electrosurgical mode conversion system |
AU6496200A (en) | 1999-07-27 | 2001-02-13 | Neotonus, Inc. | Electromagnetic scalpel for the heating of biological tissue |
US6607520B2 (en) * | 1999-09-15 | 2003-08-19 | The General Hospital Corporation | Coiled ablation catheter system |
US20050273111A1 (en) | 1999-10-08 | 2005-12-08 | Ferree Bret A | Methods and apparatus for intervertebral disc removal and endplate preparation |
US7887535B2 (en) | 1999-10-18 | 2011-02-15 | Covidien Ag | Vessel sealing wave jaw |
US6758846B2 (en) | 2000-02-08 | 2004-07-06 | Gyrus Medical Limited | Electrosurgical instrument and an electrosurgery system including such an instrument |
US6869430B2 (en) * | 2000-03-31 | 2005-03-22 | Rita Medical Systems, Inc. | Tissue biopsy and treatment apparatus and method |
AU2001266824B2 (en) | 2000-06-13 | 2005-05-12 | Atrionix, Inc. | Surgical ablation probe for forming a circumferential lesion |
US7235073B2 (en) | 2000-07-06 | 2007-06-26 | Ethicon Endo-Surgery, Inc. | Cooled electrosurgical forceps |
AU2001279026B2 (en) | 2000-07-25 | 2005-12-22 | Angiodynamics, Inc. | Apparatus for detecting and treating tumors using localized impedance measurement |
US20020029037A1 (en) | 2000-09-06 | 2002-03-07 | Kim Young D. | Method and apparatus for percutaneous trans-endocardial reperfusion |
JP2002078809A (ja) | 2000-09-07 | 2002-03-19 | Shutaro Satake | 肺静脈電気的隔離用バルーンカテーテル |
WO2002019933A1 (en) * | 2000-09-07 | 2002-03-14 | Sherwood Services Ag | Apparatus for and treatment of the intervertebral disc |
US20030139741A1 (en) | 2000-10-31 | 2003-07-24 | Gyrus Medical Limited | Surgical instrument |
US7549987B2 (en) | 2000-12-09 | 2009-06-23 | Tsunami Medtech, Llc | Thermotherapy device |
CA2434151C (en) | 2001-01-11 | 2009-12-22 | Rita Medical Systems, Inc. | Bone-treatment instrument and method |
US7115125B2 (en) * | 2001-01-12 | 2006-10-03 | Granit Medical Innovations, Llc | Medical cauterization snare assembly and associated methodology |
US6775575B2 (en) * | 2001-02-26 | 2004-08-10 | D. Bommi Bommannan | System and method for reducing post-surgical complications |
US7422586B2 (en) | 2001-02-28 | 2008-09-09 | Angiodynamics, Inc. | Tissue surface treatment apparatus and method |
US20020165529A1 (en) | 2001-04-05 | 2002-11-07 | Danek Christopher James | Method and apparatus for non-invasive energy delivery |
EP1527747B1 (en) | 2001-04-06 | 2015-09-30 | Covidien AG | Electrosurgical instrument which reduces collateral damage to adjacent tissue |
EP1685806B1 (en) | 2001-04-06 | 2011-06-08 | Covidien AG | Vessel sealer and divider with non-conductive stop members |
US6648883B2 (en) * | 2001-04-26 | 2003-11-18 | Medtronic, Inc. | Ablation system and method of use |
EP1383439A1 (en) | 2001-05-01 | 2004-01-28 | C.R. Bard, Inc. | Method and apparatus for altering conduction properties in the heart and in adjacent vessels |
US6541723B1 (en) * | 2001-08-27 | 2003-04-01 | Tower Manufacturing Corporation | Cover for a rotary switch |
US6773434B2 (en) | 2001-09-18 | 2004-08-10 | Ethicon, Inc. | Combination bipolar forceps and scissors instrument |
US6773409B2 (en) * | 2001-09-19 | 2004-08-10 | Surgrx Llc | Surgical system for applying ultrasonic energy to tissue |
US20030073987A1 (en) | 2001-10-16 | 2003-04-17 | Olympus Optical Co., Ltd. | Treating apparatus and treating device for treating living-body tissue |
US7189233B2 (en) | 2001-10-22 | 2007-03-13 | Surgrx, Inc. | Electrosurgical instrument |
US6602252B2 (en) | 2002-01-03 | 2003-08-05 | Starion Instruments Corporation | Combined dissecting, cauterizing, and stapling device |
US6980865B1 (en) | 2002-01-22 | 2005-12-27 | Nanoset, Llc | Implantable shielded medical device |
ATE540606T1 (de) | 2002-01-22 | 2012-01-15 | Surgrx Inc | Elektrochirurgisches instrument und anwendungsverfahren |
US7087061B2 (en) | 2002-03-12 | 2006-08-08 | Lithotech Medical Ltd | Method for intracorporeal lithotripsy fragmentation and apparatus for its implementation |
US6695837B2 (en) | 2002-03-13 | 2004-02-24 | Starion Instruments Corporation | Power supply for identification and control of electrical surgical tools |
WO2003086714A2 (en) | 2002-04-05 | 2003-10-23 | The Trustees Of Columbia University In The City Of New York | Robotic scrub nurse |
US7197363B2 (en) | 2002-04-16 | 2007-03-27 | Vivant Medical, Inc. | Microwave antenna having a curved configuration |
US20040030330A1 (en) * | 2002-04-18 | 2004-02-12 | Brassell James L. | Electrosurgery systems |
US6912911B2 (en) | 2002-04-30 | 2005-07-05 | Sung J. Oh | Inductively coupled stress/strain sensor |
AU2003237884A1 (en) | 2002-05-15 | 2003-12-02 | Stephen T. Flock | Method and device for anastomoses |
US7033356B2 (en) * | 2002-07-02 | 2006-04-25 | Gyrus Medical, Inc. | Bipolar electrosurgical instrument for cutting desiccating and sealing tissue |
US20040006335A1 (en) * | 2002-07-08 | 2004-01-08 | Garrison Lawrence L. | Cauterizing surgical saw |
US20040073256A1 (en) * | 2002-08-09 | 2004-04-15 | Kevin Marchitto | Activated surgical fasteners, devices therefor and uses thereof |
US6749610B2 (en) * | 2002-08-15 | 2004-06-15 | Kirwan Surgical Products, Inc. | Electro-surgical forceps having fully plated tines and process for manufacturing same |
DE10238853A1 (de) | 2002-08-24 | 2004-03-04 | Philips Intellectual Property & Standards Gmbh | Verfahren zur lokalen Erwärmung mit magnetischen Partikeln |
US7931649B2 (en) * | 2002-10-04 | 2011-04-26 | Tyco Healthcare Group Lp | Vessel sealing instrument with electrical cutting mechanism |
US7914529B2 (en) | 2002-11-26 | 2011-03-29 | Thermal Corp. | Cooling element for electrosurgery |
US20040115477A1 (en) * | 2002-12-12 | 2004-06-17 | Bruce Nesbitt | Coating reinforcing underlayment and method of manufacturing same |
US20040167506A1 (en) | 2003-02-25 | 2004-08-26 | Scimed Life Systems, Inc. | Medical devices employing ferromagnetic heating |
US7326202B2 (en) | 2003-03-07 | 2008-02-05 | Starion Instruments Corporation | Tubular resistance heater with electrically insulating high thermal conductivity core for use in a tissue welding device |
US7293562B2 (en) * | 2003-03-27 | 2007-11-13 | Cierra, Inc. | Energy based devices and methods for treatment of anatomic tissue defects |
US20060142853A1 (en) * | 2003-04-08 | 2006-06-29 | Xingwu Wang | Coated substrate assembly |
US20050033338A1 (en) * | 2003-06-19 | 2005-02-10 | Ferree Bret A. | Surgical instruments particularly suited to severing ligaments and fibrous tissues |
WO2005101647A2 (en) * | 2003-09-30 | 2005-10-27 | The Trustees Of Columbia University In The City Of New York | Harmonic propulsion and harmonic controller |
US20050090817A1 (en) | 2003-10-22 | 2005-04-28 | Scimed Life Systems, Inc. | Bendable endoscopic bipolar device |
CA2542798C (en) | 2003-10-23 | 2015-06-23 | Sherwood Services Ag | Thermocouple measurement circuit |
US7270656B2 (en) | 2003-11-07 | 2007-09-18 | Visualase, Inc. | Cooled laser fiber for improved thermal therapy |
BRPI0416323A (pt) * | 2003-11-10 | 2007-01-09 | Team Medical Llc | instrumento eletrocirúrgico |
US7011656B2 (en) | 2003-11-14 | 2006-03-14 | Starion Instruments Corporation | Thermal cautery devices with improved heating profiles |
US7025065B2 (en) | 2003-11-14 | 2006-04-11 | Starion Instruments Corporation | Method of testing thermal cautery devices |
US7156842B2 (en) * | 2003-11-20 | 2007-01-02 | Sherwood Services Ag | Electrosurgical pencil with improved controls |
US7879033B2 (en) | 2003-11-20 | 2011-02-01 | Covidien Ag | Electrosurgical pencil with advanced ES controls |
US7613523B2 (en) | 2003-12-11 | 2009-11-03 | Apsara Medical Corporation | Aesthetic thermal sculpting of skin |
US7329255B2 (en) | 2003-12-23 | 2008-02-12 | Starion Instruments Corporation | System for regulating heating in a tissue sealing and cutting device |
US7137434B1 (en) * | 2004-01-14 | 2006-11-21 | Savariego Samuel F | Continuous roll casting of ferrous and non-ferrous metals |
US20050197661A1 (en) | 2004-03-03 | 2005-09-08 | Scimed Life Systems, Inc. | Tissue removal probe with sliding burr in cutting window |
US7101369B2 (en) | 2004-04-29 | 2006-09-05 | Wisconsin Alumni Research Foundation | Triaxial antenna for microwave tissue ablation |
US7473250B2 (en) | 2004-05-21 | 2009-01-06 | Ethicon Endo-Surgery, Inc. | Ultrasound medical system and method |
US20050283149A1 (en) | 2004-06-08 | 2005-12-22 | Thorne Jonathan O | Electrosurgical cutting instrument |
US7197354B2 (en) | 2004-06-21 | 2007-03-27 | Mediguide Ltd. | System for determining the position and orientation of a catheter |
JP2006006410A (ja) * | 2004-06-22 | 2006-01-12 | Olympus Corp | 超音波手術装置 |
US7122030B2 (en) | 2004-07-13 | 2006-10-17 | University Of Florida Research Foundation, Inc. | Ferroelectric hyperthermia system and method for cancer therapy |
US8357154B2 (en) | 2004-07-20 | 2013-01-22 | Microline Surgical, Inc. | Multielectrode electrosurgical instrument |
JP2008508218A (ja) * | 2004-07-27 | 2008-03-21 | ノバルティス アクチエンゲゼルシャフト | Hsp90阻害剤 |
US7527625B2 (en) | 2004-08-04 | 2009-05-05 | Olympus Corporation | Transparent electrode for the radiofrequency ablation of tissue |
WO2006029649A1 (en) | 2004-09-15 | 2006-03-23 | Commissariat A L'energie Atomique | Microwave oscillator tuned with a ferromagnetic thin film |
US20060064145A1 (en) | 2004-09-21 | 2006-03-23 | Podhajsky Ronald J | Method for treatment of an intervertebral disc |
US20070016272A1 (en) | 2004-09-27 | 2007-01-18 | Thompson Russell B | Systems and methods for treating a hollow anatomical structure |
US7776035B2 (en) | 2004-10-08 | 2010-08-17 | Covidien Ag | Cool-tip combined electrode introducer |
US7553309B2 (en) | 2004-10-08 | 2009-06-30 | Covidien Ag | Electrosurgical system employing multiple electrodes and method thereof |
US7291414B2 (en) | 2004-12-10 | 2007-11-06 | General Motors Corporation | Reactant feed for nested stamped plates for a compact fuel cell |
US7494492B2 (en) * | 2004-12-10 | 2009-02-24 | Therative, Inc. | Skin treatment device |
US7842076B2 (en) | 2004-12-20 | 2010-11-30 | Tyco Healthcare Group, Lp | Systems and methods for treating a hollow anatomical structure |
US7686804B2 (en) | 2005-01-14 | 2010-03-30 | Covidien Ag | Vessel sealer and divider with rotating sealer and cutter |
US20060161149A1 (en) | 2005-01-18 | 2006-07-20 | Salvatore Privitera | Surgical ablation device |
US8008053B2 (en) | 2005-01-20 | 2011-08-30 | The Regents Of The University Of California | Allosteric control of proteins by manipulating mechanical tension |
US7011030B1 (en) * | 2005-03-04 | 2006-03-14 | Earl Jans | Attachment method and arrangement for softgood logo patch |
US7771424B2 (en) | 2005-03-16 | 2010-08-10 | Starion Instruments | Integrated metalized ceramic heating element for use in a tissue cutting and sealing device |
US8197472B2 (en) | 2005-03-25 | 2012-06-12 | Maquet Cardiovascular, Llc | Tissue welding and cutting apparatus and method |
US7674261B2 (en) | 2005-03-28 | 2010-03-09 | Elliquence, Llc | Electrosurgical instrument with enhanced capability |
US20060271037A1 (en) | 2005-05-25 | 2006-11-30 | Forcept, Inc. | Assisted systems and methods for performing transvaginal hysterectomies |
WO2006138382A2 (en) | 2005-06-14 | 2006-12-28 | Micrablate, Llc | Microwave tissue resection tool |
US20070005056A1 (en) | 2005-06-30 | 2007-01-04 | Surginetics, Llc | Electrosurgical Instrument With Blade Profile For Reduced Tissue Damage |
US7867226B2 (en) * | 2005-06-30 | 2011-01-11 | Microline Surgical, Inc. | Electrosurgical needle electrode |
US8562603B2 (en) * | 2005-06-30 | 2013-10-22 | Microline Surgical, Inc. | Method for conducting electrosurgery with increased crest factor |
US20070005057A1 (en) | 2005-06-30 | 2007-01-04 | Surginetics, Llc | Electrosurgical Blade With Profile For Minimizing Tissue Damage |
US7935113B2 (en) * | 2005-06-30 | 2011-05-03 | Microline Surgical, Inc. | Electrosurgical blade |
US7867225B2 (en) | 2005-06-30 | 2011-01-11 | Microline Surgical, Inc | Electrosurgical instrument with needle electrode |
DE202006021215U1 (de) | 2005-07-21 | 2013-11-08 | Covidien Lp | Vorrichtung zum Behandeln einer hohlen anatomischen Struktur |
US7789881B2 (en) | 2005-08-25 | 2010-09-07 | Boston Scientific Scimed, Inc. | Endoscopic resection method |
US7678105B2 (en) | 2005-09-16 | 2010-03-16 | Conmed Corporation | Method and apparatus for precursively controlling energy during coaptive tissue fusion |
US20070073282A1 (en) * | 2005-09-26 | 2007-03-29 | Starion Instruments Corporation | Resistive heating device and method for turbinate ablation |
US7722607B2 (en) * | 2005-09-30 | 2010-05-25 | Covidien Ag | In-line vessel sealer and divider |
JP5441412B2 (ja) | 2005-10-24 | 2014-03-12 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | 実質的に層から電気的に分離された導管を有する温度制限ヒーター |
US8016846B2 (en) * | 2005-10-27 | 2011-09-13 | Medtronic Xomed, Inc. | Micro-resecting and evoked potential monitoring system and method |
US8382748B2 (en) | 2006-01-03 | 2013-02-26 | Donald J. Geisel | High efficiency, precision electrosurgical apparatus and method |
US7922713B2 (en) | 2006-01-03 | 2011-04-12 | Geisel Donald J | High efficiency, precision electrosurgical apparatus and method |
CN101578073A (zh) | 2006-01-09 | 2009-11-11 | 拜奥斯皮罗有限公司 | 用于热处理组织的系统和方法 |
US8882766B2 (en) | 2006-01-24 | 2014-11-11 | Covidien Ag | Method and system for controlling delivery of energy to divide tissue |
US7815641B2 (en) * | 2006-01-25 | 2010-10-19 | The Regents Of The University Of Michigan | Surgical instrument and method for use thereof |
US7651493B2 (en) | 2006-03-03 | 2010-01-26 | Covidien Ag | System and method for controlling electrosurgical snares |
US8073551B2 (en) | 2006-04-04 | 2011-12-06 | University Health Network | Coil electrode apparatus for thermal therapy |
WO2007118153A2 (en) | 2006-04-06 | 2007-10-18 | Baylor College Of Medicine | Method and apparatus for the detachment of catheters or puncturing of membranes and intraluminal devices within the body |
KR102651433B1 (ko) * | 2006-04-14 | 2024-03-25 | 아스텔라스 인스티튜트 포 리제너러티브 메디슨 | 혈관 콜로니 형성 세포 |
EP2010755A4 (en) | 2006-04-21 | 2016-02-24 | Shell Int Research | HEATING SEQUENCE OF MULTIPLE LAYERS IN A FORMATION CONTAINING HYDROCARBONS |
JP5140584B2 (ja) * | 2006-06-27 | 2013-02-06 | ヤマサ醤油株式会社 | 抗心理社会的ストレス剤 |
EP2842604A1 (en) | 2006-06-28 | 2015-03-04 | Medtronic Ardian Luxembourg S.à.r.l. | Systems for thermally-induced renal neuromodulation |
US7871406B2 (en) * | 2006-08-04 | 2011-01-18 | INTIO, Inc. | Methods for planning and performing thermal ablation |
US20080033419A1 (en) | 2006-08-04 | 2008-02-07 | Nields Morgan W | Method for planning, performing and monitoring thermal ablation |
US8177784B2 (en) | 2006-09-27 | 2012-05-15 | Electromedical Associates, Llc | Electrosurgical device having floating potential electrode and adapted for use with a resectoscope |
GB0620058D0 (en) | 2006-10-10 | 2006-11-22 | Medical Device Innovations Ltd | Tissue measurement and ablation antenna |
US7951149B2 (en) | 2006-10-17 | 2011-05-31 | Tyco Healthcare Group Lp | Ablative material for use with tissue treatment device |
CA2665864C (en) | 2006-10-20 | 2014-07-22 | Shell Internationale Research Maatschappij B.V. | Heating hydrocarbon containing formations in a checkerboard pattern staged process |
US7914528B2 (en) | 2006-12-29 | 2011-03-29 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ablation catheter tip for generating an angled flow |
US8211099B2 (en) | 2007-01-31 | 2012-07-03 | Tyco Healthcare Group Lp | Thermal feedback systems and methods of using the same |
US9492220B2 (en) | 2007-02-01 | 2016-11-15 | Conmed Corporation | Apparatus and method for rapid reliable electrothermal tissue fusion |
US20080228135A1 (en) | 2007-03-05 | 2008-09-18 | Elizabeth Ann Snoderly | Apparatus for treating a damaged spinal disc |
US20080281386A1 (en) | 2007-05-09 | 2008-11-13 | Tessaron Medical, Inc. | Systems and methods for treating body tissue |
US8231614B2 (en) | 2007-05-11 | 2012-07-31 | Tyco Healthcare Group Lp | Temperature monitoring return electrode |
US9486269B2 (en) | 2007-06-22 | 2016-11-08 | Covidien Lp | Electrosurgical systems and cartridges for use therewith |
US8747398B2 (en) | 2007-09-13 | 2014-06-10 | Covidien Lp | Frequency tuning in a microwave electrosurgical system |
US9023030B2 (en) * | 2007-10-09 | 2015-05-05 | Boston Scientific Scimed, Inc. | Cooled ablation catheter devices and methods of use |
US7972335B2 (en) | 2007-10-16 | 2011-07-05 | Conmed Corporation | Coaptive tissue fusion method and apparatus with current derivative precursive energy termination control |
US7972334B2 (en) | 2007-10-16 | 2011-07-05 | Conmed Corporation | Coaptive tissue fusion method and apparatus with energy derivative precursive energy termination control |
US8142425B2 (en) * | 2007-10-30 | 2012-03-27 | Hemostatix Medical Techs, LLC | Hemostatic surgical blade, system and method of blade manufacture |
US8187270B2 (en) | 2007-11-07 | 2012-05-29 | Mirabilis Medica Inc. | Hemostatic spark erosion tissue tunnel generator with integral treatment providing variable volumetric necrotization of tissue |
US9642669B2 (en) | 2008-04-01 | 2017-05-09 | Olympus Corporation | Treatment system, and treatment method for living tissue using energy |
AU2009244058B2 (en) | 2008-05-09 | 2015-07-02 | Nuvaira, Inc | Systems, assemblies, and methods for treating a bronchial tree |
US8042251B2 (en) | 2008-05-21 | 2011-10-25 | Boston Scientific Scimed, Inc. | Systems and methods for heating and cooling during stent crimping |
US8192427B2 (en) | 2008-06-09 | 2012-06-05 | Tyco Healthcare Group Lp | Surface ablation process with electrode cooling methods |
US8679106B2 (en) | 2008-07-01 | 2014-03-25 | Medwaves, Inc. | Angioplasty and tissue ablation apparatus and method |
US8346370B2 (en) | 2008-09-30 | 2013-01-01 | Vivant Medical, Inc. | Delivered energy generator for microwave ablation |
US20100152725A1 (en) | 2008-12-12 | 2010-06-17 | Angiodynamics, Inc. | Method and system for tissue treatment utilizing irreversible electroporation and thermal track coagulation |
US9254168B2 (en) | 2009-02-02 | 2016-02-09 | Medtronic Advanced Energy Llc | Electro-thermotherapy of tissue using penetrating microelectrode array |
US9326819B2 (en) | 2009-04-15 | 2016-05-03 | Medwaves, Inc. | Electrically tunable tissue ablation system and method |
US9107666B2 (en) | 2009-04-17 | 2015-08-18 | Domain Surgical, Inc. | Thermal resecting loop |
US9131977B2 (en) | 2009-04-17 | 2015-09-15 | Domain Surgical, Inc. | Layered ferromagnetic coated conductor thermal surgical tool |
US8523852B2 (en) | 2009-04-17 | 2013-09-03 | Domain Surgical, Inc. | Thermally adjustable surgical tool system |
US9078655B2 (en) | 2009-04-17 | 2015-07-14 | Domain Surgical, Inc. | Heated balloon catheter |
US9265556B2 (en) | 2009-04-17 | 2016-02-23 | Domain Surgical, Inc. | Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials |
US8672938B2 (en) | 2009-07-23 | 2014-03-18 | Covidien Lp | Active cooling system and apparatus for controlling temperature of a fluid used during treatment of biological tissue |
US20110152857A1 (en) | 2009-12-19 | 2011-06-23 | Frank Ingle | Apparatus and Methods For Electrophysiology Procedures |
WO2011143468A2 (en) | 2010-05-12 | 2011-11-17 | Shifamed, Llc | Low profile electrode assembly |
CA2868742A1 (en) | 2011-04-08 | 2013-07-18 | Domain Surgical, Inc. | Impedance matching circuit |
US8932279B2 (en) | 2011-04-08 | 2015-01-13 | Domain Surgical, Inc. | System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue |
WO2012158722A2 (en) | 2011-05-16 | 2012-11-22 | Mcnally, David, J. | Surgical instrument guide |
WO2013040255A2 (en) | 2011-09-13 | 2013-03-21 | Domain Surgical, Inc. | Sealing and/or cutting instrument |
JP2015506729A (ja) | 2011-12-06 | 2015-03-05 | ドメイン・サージカル,インコーポレーテッド | 外科手術器具への電力供給を制御するシステム及び方法 |
US20140052120A1 (en) | 2012-08-17 | 2014-02-20 | Medtronic Ablation Frontiers Llc | Electrophysiology catheter design |
US10357306B2 (en) | 2014-05-14 | 2019-07-23 | Domain Surgical, Inc. | Planar ferromagnetic coated surgical tip and method for making |
-
2009
- 2009-12-24 US US12/647,371 patent/US8523852B2/en active Active
- 2009-12-24 US US12/647,344 patent/US8377052B2/en active Active
- 2009-12-24 US US12/647,363 patent/US8292879B2/en active Active
- 2009-12-24 US US12/647,380 patent/US8414569B2/en active Active
- 2009-12-24 US US12/647,374 patent/US8491578B2/en active Active
- 2009-12-24 US US12/647,340 patent/US8419724B2/en active Active
- 2009-12-24 US US12/647,350 patent/US9730749B2/en active Active
- 2009-12-24 US US12/647,329 patent/US8372066B2/en active Active
- 2009-12-24 US US12/647,376 patent/US8523851B2/en active Active
- 2009-12-24 US US12/647,358 patent/US8506561B2/en active Active
- 2009-12-24 US US12/647,355 patent/US8430870B2/en active Active
- 2009-12-24 US US12/647,302 patent/US8523850B2/en active Active
-
2010
- 2010-04-14 JP JP2012506188A patent/JP2012523923A/ja active Pending
- 2010-04-14 ES ES12002501T patent/ES2923668T3/es active Active
- 2010-04-14 EP EP10765134.1A patent/EP2419037B1/en active Active
- 2010-04-14 CN CN201080022651.0A patent/CN102448395B/zh not_active Expired - Fee Related
- 2010-04-14 ES ES10765134T patent/ES2906421T3/es active Active
- 2010-04-14 AU AU2010236417A patent/AU2010236417B2/en not_active Ceased
- 2010-04-14 KR KR1020117027373A patent/KR20120039522A/ko active Application Filing
- 2010-04-14 KR KR1020177006347A patent/KR101929693B1/ko active IP Right Grant
- 2010-04-14 EP EP12002501.0A patent/EP2474279B1/en active Active
- 2010-04-14 CA CA2758947A patent/CA2758947A1/en not_active Abandoned
- 2010-04-14 WO PCT/US2010/031114 patent/WO2010120944A2/en active Application Filing
-
2012
- 2012-07-26 US US13/559,386 patent/US8425503B2/en active Active
-
2013
- 2013-02-11 US US13/764,636 patent/US9265553B2/en active Active
- 2013-02-15 US US13/769,069 patent/US9320560B2/en active Active
- 2013-03-14 US US13/830,037 patent/US9265554B2/en active Active
- 2013-03-15 US US13/840,917 patent/US9265555B2/en active Active
- 2013-03-15 US US13/841,895 patent/US9220557B2/en active Active
-
2015
- 2015-01-13 JP JP2015004215A patent/JP2015091384A/ja active Pending
- 2015-12-28 US US14/980,731 patent/US10639089B2/en active Active
-
2016
- 2016-02-04 AU AU2016200723A patent/AU2016200723B2/en not_active Ceased
- 2016-02-22 US US15/050,437 patent/US10405914B2/en active Active
- 2016-02-22 US US15/050,453 patent/US10441342B2/en active Active
-
2017
- 2017-11-30 JP JP2017230176A patent/JP6527213B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4185632A (en) * | 1970-08-13 | 1980-01-29 | Shaw Robert F | Surgical instrument having self-regulated electrical skin-depth heating of its cutting edge and method of using the same |
US5611798A (en) * | 1995-03-02 | 1997-03-18 | Eggers; Philip E. | Resistively heated cutting and coagulating surgical instrument |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102448395B (zh) | 感应加热的手术工具 | |
US10149712B2 (en) | Layered ferromagnetic coated conductor thermal surgical tool | |
WO2012139084A2 (en) | Layered ferromagnetic coated conductor thermal surgical tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20151125 |
|
CF01 | Termination of patent right due to non-payment of annual fee |