CN101903404A - 二价双特异性抗体 - Google Patents
二价双特异性抗体 Download PDFInfo
- Publication number
- CN101903404A CN101903404A CN2008801219004A CN200880121900A CN101903404A CN 101903404 A CN101903404 A CN 101903404A CN 2008801219004 A CN2008801219004 A CN 2008801219004A CN 200880121900 A CN200880121900 A CN 200880121900A CN 101903404 A CN101903404 A CN 101903404A
- Authority
- CN
- China
- Prior art keywords
- ser
- antibody
- leu
- val
- gly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/22—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2863—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/46—Hybrid immunoglobulins
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/46—Hybrid immunoglobulins
- C07K16/468—Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/21—Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/31—Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Veterinary Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明涉及新型的结构域交换的、二价的、双特异性抗体,及其制备和应用。
Description
本发明涉及新型的二价双特异性抗体,其制备和应用。
发明背景
改造的蛋白,诸如能够结合两种以上抗原的双特异性或多特异性抗体是本领域中已知的。这样的多特异性结合蛋白可以利用细胞融合、化学缀合、或重组DNA技术产生。
最近已经开发了广泛多样的重组双特异性抗体形式,例如通过融合例如IgG抗体形式和单链结构域的四价双特异性抗体(参见例如Morrison,S.L.等,Nature Biotech.(自然生物技术)15(1997)159-163;WO 2001077342;和Coloma,M.J.,Nature Biotech.(自然生物技术)25(2007)1233-1234)。
此外,开发了能够结合两种以上抗原的若干其他新型形式,其中抗体核心结构(IgA,IgD,IgE,IgG或IgM)不再保持诸如双抗体、三链抗体或四链抗体,微型抗体(minibodies),若干单链形式(scFv,双-scFv)(Holliger P,等,Nature Biotech(自然生物技术)23(2005)1126-1136 2005;Fischer N.,和Léger,O.,Pathobiology(病理学)74(2007)3-14;Shen J,等,Journal ofImmunological Methods(免疫学方法杂志)318(2007)65-74;Wu,C.等,Nature Biotech(自然生物技术)25(2007)1290-1297)。
所有这样的形式使用连接体将抗体核心(IgA,IgD,IgE,IgG或IgM)与其他结合蛋白(例如scFv)融合或融合例如两个Fab片段或scFv(Fischer N.,Léger O.,Pathobiology(病理学)74(2007)3-14)。虽然连接体具有改造双特异性抗体的优势是明显的,但是它们也可能引起治疗设置中的问题。实际上,这些外源肽可能引起针对连接体本身或蛋白质和连接体之间连接的免疫应答。此外,这些肽的灵活的性质使得它们更加倾向于蛋白水解分裂,这潜在地导致抗体稳定性差、聚集和增高的免疫原性。另外,人们可能希望保持效应子功能,诸如例如补体依赖性细胞毒性(CDC)或抗体依赖性细胞毒性(ADCC),它们通过保持与天然存在的抗体的高度相似性而通过Fc部分来介导。
因此,理想地,人们的目标应该是开发通用结构与天然存在的抗体(如IgA,IgD,IgE,IgG或IgM)非常类似的双特异性抗体,其与人序列具有最小的偏差。
在一种方法中,利用细胞杂交瘤(quadroma)技术(见Milstein,C.和A.C.Cuello,Nature(自然),305(1983)537-40)生成了与天然抗体非常类似的双特异性抗体,所述细胞杂交瘤技术基于表达具有所需的双特异性抗体特异性的鼠单克隆抗体的两种不同杂交瘤细胞系的体细胞融合。因为在产生的杂交-杂交瘤(或细胞杂交瘤)细胞系中的两个不同抗体重链和轻链的随机配对,因而生成至多10种不同的抗体种类,其中只有一种是所需的功能性双特异性抗体。由于存在错配副产物和显著降低的产率,其意味着需要技术先进的纯化程序(参见例如Morrison,S.L.,Nature Biotech(自然生物技术)25(2007)1233-1234)。一般地,如果使用重组表达技术,则相同的错配副产物问题仍存在。
用于避开错配副产物问题的方法,称为“杵-进入-臼(knobs-into-holes)”的目的在于通过将突变引入CH3结构域来改变接触界面,从而迫使两个不同抗体重链配对。在一条链上,大体积氨基酸被具有短侧链的氨基酸替换,以形成“臼(hole)”。相反地,将具有大侧链的氨基酸引入到另一个CH3结构域中,以形成“杵(knob)”。通过共表达这两条重链(和两条相同的轻链,其必须适合于这两条重链),观察到与同型二聚体形式(‘臼-臼’或‘杵-杵’)相比,异型二聚体形式(‘杵-臼’)的高产率(Ridgway,JB,Presta,LG,Carter,P和WO 1996027011)。异型二聚体的百分比可以通过利用噬菌体展示法重建两个CH3结构域的相互作用表面和引入二硫键来稳定该异型二聚体而得到进一步增加(Merchant A.M.,等,Nature Biotech(自然生物技术)16(1998)677-681;Atwell S,Ridgway JB,Wells JA,Carter P.,J Mol.Biol.(分子生物学杂志)270(1997)26-35)。关于杵-进入-臼技术的新方法记述在例如EP 1870459A1中。尽管这种形式似乎非常吸引人,但是目前不存在记载针对临床的进展的数据。这种策略的一个重要制约是两个母体抗体的轻链必须相同,以防止错配和形成无活性的分子。因此,该技术不适合于容易地从针对第一和第二抗原的两种抗体开始开发针对两种抗原的重组、二价双特异性抗体,因为这些抗体的重链和/或相同的轻链必须被优化。
Xie,Z.等,J Immunol Methods(免疫学方法杂志)286(2005)95-101提到一种新型的双特异性抗体,其使用scFv并结合以针对FC部分的杵-进入-臼技术。
发明概述
本发明涉及二价双特异性抗体,其包括:
a)特异性结合第一抗原的抗体的轻链和重链;和
b)特异性结合第二抗原的抗体的轻链和重链,其中可变结构域VL和VH相互替换。
本发明的进一步的实施方案是用于一种制备根据本发明所述的二价双特异性抗体的方法,其包括下列步骤:
a)用以下各项转化宿主细胞,
-载体,其包括编码特异性结合第一抗原的抗体的轻链和重链的核酸分子
-载体,其包括编码特异性结合第二抗原的抗体的轻链和重链的核酸分子,其中可变结构域VL和VH相互替换;
b)在容许合成所述抗体分子的条件下培养所述宿主细胞;和
c)从所述培养物中回收所述抗体分子。
本发明的进一步的实施方案是一种宿主细胞,其包括
-载体,其包括编码特异性结合第一抗原的抗体的轻链和重链的核酸分子,
-载体,其包括编码特异性结合第二抗原的抗体的轻链和重链的核酸分子,其中可变结构域VL和VH相互替换。
本发明的进一步的实施方案是一种根据本发明所述的抗体的组合物,优选药物或诊断组合物。
本发明的进一步的实施方案是一种药物组合物,其包括根据本发明所述的抗体和至少一种药用赋形剂。
本发明的进一步的实施方案是一种用于治疗需要治疗的患者的方法,其特征在于向所述患者施用治疗有效量的根据本发明所述的抗体。
发明详述
本发明涉及二价双特异性抗体,其包括:
a)特异性结合第一抗原的抗体的轻链和重链;和
b)特异性结合第二抗原的抗体的轻链和重链,其中可变结构域VL和VH相互替换。
因此,所述二价双特异性抗体包括:
a)特异性结合第一抗原的抗体的第一轻链和第一重链;和
b)特异性结合第二抗原的抗体的第二轻链和第二重链,其中第二轻链和第二重链的可变结构域VL和VH相互替换。
因此,对于所述特异性结合第二抗原的抗体,以下各项适用:
在轻链中
可变轻链结构域VL被所述抗体的可变重链结构域VH替换;
且在重链中
可变重链结构域VH被所述抗体的可变轻链结构域VL替换。
术语“抗体”用于本文中时,指完整的单克隆抗体。所述完整抗体由两对“轻链”(LC)和“重链”(HC)(所述轻链(LC)/重链对在本文中缩写为LC/HC)组成。所述抗体的轻链和重链是由若干结构域组成的多肽。在完整抗体中,每条重链包括重链可变区(本文中缩写为HCVR或VH)和重链恒定区。重链恒定区包括重链恒定结构域CH1、CH2和CH3(抗体类型IgA,IgD,和IgG)和任选地,重链恒定结构域CH4(抗体类型IgE和IgM)。每条轻链包括轻链可变结构域VL和轻链恒定结构域CL。一种天然存在的完整抗体,即IgG抗体的结构显示在例如图1中。可变结构域VH和VL可以进一步再细分为高变区,称为互补性决定区(CDR),它们之间分布有更加保守的区域,称为构架区(FR)。每个VH和VL由三个CDR和四个FR组成,以下列顺序从氨基端向羧基端排列:FR1,CDR1,FR2,CDR2,FR3,CDR3,FR4((Janeway CA,Jr等,(2001)Immunobiology(免疫生物学),第5版,加兰出版社(Garland Publishing);和WoofJ,Burton DNat Rev Immunol(自然免疫学综述)4(2004)89-99)。两对重链和轻链(HC/LC)能够特异性结合相同抗原。因此所述完整抗体是二价、单特异性抗体。所述“抗体”包括例如小鼠抗体、人抗体、嵌合抗体、人源化抗体和遗传改造的抗体(变异或突变抗体),条件是保留它们的特有特性。特别优选人或人源化抗体,尤其作为重组的人抗体或人源化抗体。
存在5种由希腊字母表示的哺乳动物抗体重链类型:α,δ,ε,γ,和μ(Janeway CA,Jr等,(2001)Immunobiology(免疫生物学),第5版,加兰出版社(Garland Publishing))。存在的重链的类型定义抗体的类型;这些链分别存在于IgA,IgD,IgE,IgG,和IgM抗体中(Rhoades RA,Pflanzer RG(2002).Human Physiology(人体生理学),第4版,汤姆森知识(ThomsonLearning))。不同的重链在尺寸和组成上不同;α和γ含有约450个氨基酸,而μ和ε具有约550个氨基酸。
每条重链具有两种区域,即恒定区和可变区。恒定区在相同同种型的所有抗体中相同,但在不同同种型的抗体中不同。重链γ,α和δ具有由3个恒定结构域CH1、CH2和CH3(处于一排中)组成的恒定区和用于增加柔性的铰链区(Woof J,Burton D Nat Rev Immunol(自然免疫学综述)4(2004)89-99);重链μ和ε具有由4个恒定结构域CH1、CH2、CH3和CH4组成的恒定区(Janeway CA,Jr等,(2001)Immunobiology(免疫生物学),第5版,加兰出版社(Garland Publishing))。在由不同的B细胞产生的抗体中重链的可变区不同,但对由单个B细胞或B细胞克隆产生的所有抗体都是相同的。每条重链的可变区长约110个氨基酸且由单一的抗体结构域组成。
在哺乳动物中,仅存在两类轻链,其称为λ和κ。轻链具有两种连续的结构域:1个恒定结构域CL和1个可变结构域VL。轻链的近似长度是211-217个氨基酸。优选地,轻链是κ轻链,且恒定结构域CL优选来源于kappa(κ)轻链(恒定结构域Cκ)。
术语“单克隆抗体”或“单克隆抗体组合物”用于本文中时,指单一的氨基酸组合物组成的抗体分子的制剂。
根据本发明的“抗体”可以是任意类型(例如IgA,IgD,IgE,IgG,和IgM,优选IgG或IgE),或亚型(例如IgG1,IgG2,IgG3,IgG4,IgA1和IgA2,优选IgG1),其中根据本发明的二价双特异性抗体所源自的两种抗体具有相同亚型(例如IgG1,IgG4等,优选IgG1)的Fc部分,优选相同同种异型(例如高加索人)的Fc部分。
“抗体的Fc部分”是熟练的技术人员公知的术语并基于抗体的木瓜蛋白酶裂解而定义。根据本发明所述的抗体包含Fc部分,优选源自人来源的Fc部分和优选人恒定区的全部其他部分。抗体的Fc部分直接参与补体活化,C1q结合,C3活化和Fc受体结合。虽然抗体对补体系统的影响取决于某些条件,但是与C1q的结合由Fc部分中确定的结合位点引起。所述结合位点是现有技术中已知的且记载在例如Lukas,T.J.,等,J.Immunol.(免疫学杂志)127(1981)2555-2560;Brunhouse,R.,和Cebra,J.J.,Mol.Immunol.(分子免疫学)16(1979)907-917;Burton,D.R.,等,Nature(自然)288(1980)338-344;Thommesen,J.E.,等,Mol.Immunol.(分子免疫学)37(2000)995-1004;Idusogie,E.E.,等,J.Immunol.(免疫学杂志)164(2000)4178-4184;Hezareh,M.,等,J.Virol.(病毒学杂志)75(2001)12161-12168;Morgan,A.,等.,Immunology(免疫学)86(1995)319-324;和EP 0 307 434中。所述结合位点是例如L234,L235,D270,N297,E318,K320,K322,P331和P329(按照Kabat的EU目录编号,见下)。亚型IgG1,IgG2和IgG3的抗体通常显示补体活化,C1q结合和C3活化,而IgG4不活化补体系统,不结合C1q且不活化C3。优选地,Fc部分是人Fc部分。
术语“嵌合抗体”指一种抗体,其包括来自一种来源或物种的可变区,即结合区,以及源自不同来源或物种的恒定区的至少一部分,其通常通过重组DNA技术进行制备。优选包括鼠可变区和人恒定区的嵌合抗体。本发明涵盖的“嵌合抗体”的其它优选形式是这样的那些,其中恒定区已经被从原始抗体的恒定区修饰或改变以产生根据本发明所述的特性,特别是关于C1q结合和/或Fc受体(FcR)结合。也将这种“嵌合”抗体称作“类别转换抗体”。嵌合抗体是包括编码免疫球蛋白可变区的DNA区段和编码免疫球蛋白恒定区的DNA区段的被表达的免疫球蛋白基因的产物。制备嵌合抗体的方法包括目前在本领域众所周知的常规重组DNA和基因转染技术。见,例如,Morrison,S.L.,等,Proc.Natl.Acad Sci.USA(美国国家科学院学报)81(1984)6851-6855;美国专利号5,202,238和5,204,244。
术语“人源化抗体”指这样的抗体,其中的构架或“互补性决定区”(CDR)已经被修饰为包括与亲本免疫球蛋白相比特异性不同的免疫球蛋白的CDR。在一个优选实施方案中,将鼠CDR移植到人抗体的构架区以制备“人源化抗体”。见,例如,Riechmann,L.,等,Nature(自然)332(1988)323-327;和Neuberger,M.S.,等,Nature(自然)314(1985)268-270。特别优选的CDRs对应于识别以上指出的关于嵌合抗体的抗原的那些代表性序列。本发明涵盖的“人源化抗体”的其它形式是这样的那些,其中恒定区已经另外地从原始抗体的恒定区被修饰或改变以产生根据本发明所述的特性,特别是关于C1q结合和/或Fc受体(FcR)结合。
用于本文时,术语“人抗体”意欲包括具有源自人种系免疫球蛋白序列的可变区和恒定区的抗体。人抗体是现有技术中公知的(van Dijk,M.A.,和van de Winkel,J.G.,Curr.Opin.in Chemical Biology(当前化学生物学观点)5(2001)368-374)。人抗体还可以在转基因动物(例如小鼠)中产生,所述转基因动物在免疫时能够在缺乏内源免疫球蛋白生成的条件下产生全部的或选择的人抗体成员。在所述种系突变小鼠中人种系免疫球蛋白基因阵列的转移将导致在抗原攻击时产生人抗体(见,例如Jakobovits,A.,等,Proc.Natl.Acad.Sci.USA(美国国家科学院学报)90(1993)2551-2555;Jakobovits,A.,等,Nature(自然)362(1993)255-258;Bruggemann,M.,等,Year Immunol.(免疫学年报)7(1993)33-40)。人抗体还可以在噬菌体展示文库中产生(Hoogenboom,H.R.,和Winter,G.,J.Mol.Biol.(分子生物学杂志)227(1992)381-388;Marks,J.D.,等,J.Mol.Biol.(分子生物学杂志)222(1991)581-597)。Cole等和Boerner等的技术也可以用于制备人单克隆抗体(Cole等,Monoclonal antibodies and Cancer Therapy(单克隆抗体和癌症治疗),Alan R.Liss,第77页(1985);和Boerner,P.,等,J.Immunol.(免疫学杂志)147(1991)86-95)。如已经对根据本发明所述的嵌合和人源化抗体所提及地,术语“人抗体”用于本文中时还包括这样的抗体,其在恒定区内进行修饰以产生根据本发明所述的特性,特别是关于C1q结合和/或FcR结合,例如通过“类别转换”即Fc部分的改变或突变(例如由IgG1到IgG4和/或IgG1/IgG4突变。)
用于本文时,术语“重组人抗体”意欲包括通过重组方法制备、表达、产生或分离的所有人抗体,诸如分离自宿主细胞,诸如NS0或CHO细胞的抗体或分离自人免疫球蛋白基因的转基因动物(例如小鼠)的抗体,或利用转染到宿主细胞中的重组表达载体表达的抗体。这种重组人抗体具有处于重排形式的可变区和恒定区。根据本发明所述的重组人抗体已经经历了体内体细胞高变。因此,重组抗体的VH和VL区域的氨基酸序列是这样的序列,其尽管源自并涉及人种系VH和VL序列,但在体内可能天然不存在于所有人抗体种系组成成员中。
“可变结构域”(轻链的可变结构域(VL),重链的可变区(VH))用于本文中时,表示直接参与抗体与抗原结合的每对轻链和重链中的任一个。可变人轻链和重链的结构域具有相同的通用结构且每个结构域包括4个构架(FR)区,所述构架区的序列普遍保守,其通过3个“高变区”(或互补性决定区,CDRs)相连接。构架区采用β-折叠构象且CDR可以形成连接β-折叠结构的环。每条链中的CDR通过构架区保持其三维结构并与来自另一条链的CDR一起形成抗原结合位点。抗体重链和轻链CDR3区在根据本发明所述的抗体的结合特异性/亲和性方面具有特别重要的作用,并因此提供本发明的另一个目的。
用于本文时,术语“高变区”或“抗体的抗原结合部分”指负责抗原结合的抗体的氨基酸残基。高变区包括来自“互补性决定区”或“CDRs”的氨基酸残基。“构架”或“FR”区是除本文中定义的高变区残基之外的那些可变结构域区域。因此,抗体的轻链和重链从N端到C端包括结构域FR1,CDR1、FR2、CDR2、FR3、CDR3和FR4。各条链上的CDR通过所述构架氨基酸分隔。特别地,重链的CDR3是最有助于抗原结合的区域。按照Kabat E.A.等,Sequences of Proteins of Immunological Interest(免疫目的的蛋白质序列),第5版,Public Health Service(公众健康服务),National Institutes of Health(全国卫生研究所),Bethesda,MD.(1991))的标准定义来确定CDR和FR区域。
重链和轻链的“恒定结构域”不直接参与抗体与抗原的结合,但是表现出多种效应子功能。根据其重链恒定区的氨基酸序列,抗体或免疫球蛋白被分为以下类型:
术语“二价双特异性抗体”用于本文中时,指如上所述的抗体,其中两对重链和轻链(HC/LC)中的每对特异性结合不同的抗原,即第一重链和第一轻链(源自针对第一抗原的抗体)特异性共同结合第一抗原,且第二重链和第二轻链(源自针对第二抗原的抗体)特异性共同结合第二抗原(如图2中所示);所述二价双特异性抗体能够同时特异性结合两种不同的抗原,且不超过两种抗原,与其相反的是,一方面仅能够结合一种抗原的单特异性抗体,和另一方面例如能够同时结合四种抗原分子的四价、四特异性抗体。
根据本发明,所需二价双特异性抗体与不需要的副产物的比值可以通过替换仅一对重链和轻链(HC/LC)中的某些结构域来提高。尽管两对HC/LC对的第一对源自特异性结合第一抗原的抗体且保持基本不变,而两对HC/LC对的第二对源自特异性结合第二抗原的抗体并通过以下替换来改变:
-轻链:将可变轻链结构域VL替换为所述特异性结合第二抗原的抗体的可变重链结构域VH,和
-重链:将可变重链结构域VH替换为所述特异性结合第二抗原的抗体的可变轻链结构域VL。
因此由此生成的二价双特异性抗体是人造抗体,其包括
a)特异性结合第一抗原的抗体的轻链和重链;和
b)特异性结合第二抗原的抗体的轻链和重链;
其中所述(特异性结合第二抗原的抗体的)轻链包括可变结构域VH而非VL,且
其中所述(特异性结合第二抗原的抗体的)重链包括可变结构域VL而非VH。
在本发明的另一方面,这样提高的所需二价双特异性抗体与不需要的副产物的比值可以通过以下两种备选方案之一而进一步提高:
A)第一备选方案(见图3):
所述根据本发明的二价双特异性抗体的CH3结构域可以通过“杵-进入-臼”技术改变,该技术详细地记载在例如WO 96/027011,Ridgway JB,等,Protein Eng(蛋白质工程)9(1996)617-621;和Merchant A.M.,等,NatBiotechnol(自然生物技术)16(1998)677-681中的若干实施例中。在该方法中,改变两个CH3结构域的相互作用表面,以增加包含这两个CH3结构域的两条重链的异型二聚化。(两条重链的)两个CH3结构域之一可以是“杵”,而另一个是“臼”。二硫键的引入稳定该异型二聚体(Merchant A.M,等,Nature Biotech(自然生物技术)16(1998)677-681;Atwell S,RidgwayJB,Wells JA,Carter,P.,J.Mol.Biol.(分子生物学杂志)270(1997)26-35),并增加产率。
因此在优选的实施方案中,二价双特异性抗体的CH3结构域通过“杵-进入-臼”技术改变,在所述二价双特异性抗体中第一CH3结构域和第二CH3结构域各自在包括抗体CH3结构域之间的初始界面的界面处相接触,所述“杵-进入-臼”技术包括通过将二硫键引入CH3结构域而进一步稳定化(记载在WO 96/027011,Ridgway JB,等,Protein Eng(蛋白质工程)9(1996)617-621;Merchant A.M.,等,Nature Biotech(自然生物技术)16(1998)677-681;和Atwell S,Ridgway JB,Wells JA,Carter,P.,J.Mol.Biol.(分子生物学杂志)270(1997)26-35中)以促进二价双特异性抗体的形成。
因此,在本发明的一个方面,所述二价双特异性抗体的特征在于
一条重链的CH3结构域和另一条重链的CH3结构域各自在包括抗体CH3结构域之间的初始界面的界面处相接触;
其中改变所述界面以促进二价双特异性抗体的形成,其中所述改变的特征在于:
a)改变一条重链的CH3结构域,
由此,在与二价双特异性抗体内的另一条重链的CH3结构域的初始界面相接触的一条重链的CH3结构域的初始界面内,
氨基酸残基被替换为具有较大侧链体积的氨基酸残基,由此在一条重链的CH3结构域的界面内生成凸起,该凸起可以定位在另一条重链的CH3结构域的界面内的凹洞中
且
b)改变另一条重链的CH3结构域,
由此,在与二价双特异性抗体内的第一CH3结构域的初始界面相接触的第二CH3结构域的初始界面内,
氨基酸残基被替换为具有较小侧链体积的氨基酸残基,由此在第二CH3结构域的界面内生成凹洞,在该凹洞中可以定位第一CH3结构域的界面内的凸起。
优选地,所述具有较大侧链体积的氨基酸残基选自由精氨酸(R),苯丙氨酸(F),酪氨酸(Y),色氨酸(W)组成的组。
优选地,所述具有较小侧链体积的氨基酸残基选自由丙氨酸(A),丝氨酸(S),苏氨酸(T),缬氨酸(V)组成的组。
在本发明的一个方面中,进一步改变这两个CH3结构域,引入半胱氨酸(C)作为每个CH3结构域相应位置处的氨基酸,从而使得两个CH3结构域之间可以形成二硫键。
在本发明的另一个优选实施方案中,通过使用用于杵残基的残基R409D;K370E(K409D)和用于臼残基的D399K;E357K来改变两个CH3结构域,其记载在例如EP 1870459A1中。
或
B)第二备选方案(见图4):
通过将一个恒定重链结构域CH3替换为恒定重链结构域CH1;并且将另一个恒定重链结构域CH3替换为恒定轻链结构域CL。
替换重链结构域CH3的恒定重链结构域CH1可以是任何Ig类型(例如IgA,IgD,IgE,IgG,和IgM),或亚型(例如,IgG1,IgG2,IgG3,IgG4,IgA1和IgA2)。
替换重链结构域CH3的恒定轻链结构域CL可以是lambda(λ)或kappa(κ)型,优选κ型。
因此,本发明的一个优选实施方案是二价双特异性抗体,其包括:
a)特异性结合第一抗原的抗体的轻链和重链;和
b)特异性结合第二抗原的抗体的轻链和重链,其中可变结构域VL和VH相互替换,
且其中任选地,
c)一条重链的CH3结构域和另一条重链的CH3结构域各自在包括抗体CH3结构域之间的初始界面的界面处相接触;
其中改变所述界面以促进二价双特异性抗体的形成,其中所述改变的特征在于:
ca)改变一条重链的CH3结构域,
由此,在与二价双特异性抗体内的另一条重链的CH3结构域的初始界面相接触的一条重链的CH3结构域的初始界面内,
氨基酸残基被替换为具有较大侧链体积的氨基酸残基,由此在一条重链的CH3结构域的界面内生成凸起,该凸起可以定位在另一条重链的CH3结构域的界面内的凹洞中
且
cb)改变另一条重链的CH3结构域,
由此,在与二价双特异性抗体内的第一CH3结构域的初始界面相接触的第二CH3结构域的初始界面内,
氨基酸残基被替换为具有较小侧链体积的氨基酸残基,由此在第二CH3结构域的界面内生成凹洞,在该凹洞中可以定位第一CH3结构域的界面内的凸起;
或d)
一个恒定重链结构域CH3被恒定重链结构域CH1替换;且另一个恒定重链结构域CH3被恒定轻链结构域CL替换。
术语“抗原”或“抗原分子”用于本文中时,可交替使用并指能够被抗体特异性结合的所有分子。二价双特异性抗体特异性结合第一抗原和第二不同抗原。术语“抗原”用于本文中时,包括例如蛋白、蛋白上的不同表位(在本发明含义内作为不同抗原)和多糖。这主要包括细菌、病毒和其他微生物的部分(外壳、被膜、细胞壁、鞭毛、菌毛(fimbrae)和毒素)。脂质和核酸仅在与蛋白和多糖组合时具有抗原性。非微生物外源(非自身)抗原可以包括花粉、蛋清和来自被移植组织和器官的蛋白或在被输注的血细胞表面上的蛋白。优选地,抗原选自由细胞因子、细胞表面蛋白、酶和受体细胞因子、细胞表面蛋白、酶和受体组成的组。
肿瘤抗原是由肿瘤细胞表面上的MHC I或MHC II分子呈递的那些抗原。这些抗原有时可以由肿瘤细胞来呈递,且从来不由正常细胞来呈递。在此情况下,它们称为肿瘤特异性抗原(TSAs)且典型地由肿瘤特异性突变产生。更常见的是由肿瘤细胞和正常细胞呈递的抗原,且它们称为肿瘤相关抗原(TAAs)。识别这些抗原的细胞毒性T淋巴细胞可能能够在肿瘤细胞增殖或转移前破坏它们。肿瘤抗原还可以采用例如突变受体的形式存在于肿瘤表面上,在这种情形中它们应该被B细胞识别。
在一个优选的实施方案中,二价双特异性抗体特异性结合的两种不同抗原(第一和第二抗原)中的至少一种是肿瘤抗原。
在另一个优选的实施方案中,二价双特异性抗体特异性结合的两种不同抗原(第一和第二抗原)均是肿瘤抗原;在该情形中,所述第一和第二抗原还可以是相同肿瘤特异性蛋白上的两种不同表位。
在另一个优选的实施方案中,二价双特异性抗体特异性结合的两种不同抗原(第一和第二抗原)之一是肿瘤抗原且另一种是效应细胞抗原,如,例如,T细胞受体,CD3,CD16等。
在另一个优选的实施方案中,二价双特异性抗体特异性结合的两种不同抗原(第一和第二抗原)之一是肿瘤抗原且另一种是抗癌物质诸如毒素或激酶抑制剂。
用于本文中时,“特异性结合”或“与……特异性结合”指特异性结合抗原的抗体。优选地,特异性结合该抗原的抗体的亲和力为10-9mol/l以下(例如10-10mol/l)的KD-值,优选10-10mol/l以下(例如10-12mol/l)的KD-值。结合亲和力使用标准结合测定法,诸如表面等离振子共振技术来确定。
术语“表位”包括能够特异性结合抗体的任何多肽决定子。在某些实施方案中,表位决定子包括分子的化学活性表面分组,诸如氨基酸、糖侧链、磷酰基或磺酰基,并且在某些实施方案中,可以具有特定的三维结构特征,且或特定的带电特性。表位是抗原的被抗体结合的区域。在某些实施方案中,当抗体在蛋白和/或大分子的复杂混合物中优选识别其靶抗原时,将该抗体称为与抗原特异性结合。
本发明的另一个实施方案是用于制备根据本发明的二价双特异性抗体的方法,其包括
a)用以下各项转化宿主细胞,
-载体,其包括编码特异性结合第一抗原的抗体的轻链和重链的核酸分子
-载体,其包括编码特异性结合第二抗原的抗体的轻链和重链的核酸分子,其中可变结构域VL和VH相互替换;
b)在容许合成所述抗体分子的条件下培养所述宿主细胞;和
c)从所述培养物中回收所述抗体分子。
一般地,存在两种编码所述特异性结合第一抗原的抗体的轻链和重链的载体,和另外两种编码所述特异性结合第二抗原的抗体的轻链和重链的载体。两种载体之一编码各种轻链且两种载体中的另一种编码各种重链。然而,在用于制备根据本发明的二价双特异性抗体的备选方法中,可使用仅一种编码特异性结合第一抗原的抗体的轻链和重链的第一载体和仅一种编码特异性结合第二抗原的抗体的轻链和重链的第二载体来转化宿主细胞。
本发明包括用于制备所述抗体的方法,其包括在容许合成所述抗体分子的条件下培养相应的宿主细胞和从所述培养物中回收所述抗体,其例如通过表达以下各项来实现
-第一核酸序列,其编码特异性结合第一抗原的抗体的轻链,
-第二核酸序列,其编码所述特异性结合第一抗原的抗体的重链,
-第三核酸序列,其编码特异性结合第二抗原的抗体的轻链,其中可变轻链结构域VL被替换为可变重链结构域VH,和
-第四核酸序列,其编码所述特异性结合第二抗原的抗体的重链,其中可变重链结构域VH被替换为可变轻链结构域VL。
本发明的另一个实施方案是一种宿主细胞,其包括
-载体,其包括编码特异性结合第一抗原的抗体的轻链和重链的核酸分子,
-载体,其包括编码特异性结合第二抗原的抗体的轻链和重链的核酸分子,其中可变结构域VL和VH相互替换。
本发明的另一个实施方案是一种宿主细胞,其包括
a)包括编码特异性结合第一抗原的抗体的轻链的核酸分子的载体和包括编码特异性结合第一抗原的抗体的重链的核酸分子的载体,
b)包括编码特异性结合第二抗原的抗体的轻链的核酸分子的载体和包括编码特异性结合第二抗原的抗体的重链的核酸分子的载体,其中可变结构域VL和VH相互替换。
本发明的另一个实施方案是一种根据本发明所述的二价双特异性抗体的组合物,优选药物或诊断组合物。
本发明的另一个实施方案是一种药物组合物,其包括根据本发明所述的二价双特异性抗体和至少一种药用赋形剂。
本发明的另一个实施方案是一种用于治疗需要治疗的患者的方法,其特征在于向所述患者施用治疗有效量的根据本发明所述的二价双特异性抗体。
术语“核酸或核酸分子”,用于本文中时,意欲包括DNA分子和RNA分子。核酸分子可以是单链或双链的,但优选是双链DNA。
用于本文中时,表述“细胞”、“细胞系”和“细胞培养物”可交替使用,且全部这些名称都包括子代。因此,词语“转化体”和“转化的细胞”包括原代受试细胞和由其来源的培养物,而不考虑转移的次数。还理解所有的子代的DNA含量可能不精确一致,这归因于有意或无意的突变。包括在最初转化的细胞中筛选的具有相同功能或生物学活性的变异子代。在意指不同名称时,通过上下文其将是清楚的。
术语“转化”用于本文中时,指将载体/核酸转移到宿主细胞中的过程。如果将无难以克服的细胞壁屏障的细胞用作宿主细胞,则转染例如通过如Graham和van der Eh,Virology(病毒学)52(1978)546ff所述的磷酸钙沉淀法来进行。然而,还可以使用其他将DNA引入细胞的方法,诸如通过核注射或通过原生质体融合。如果使用原核细胞或包含实质细胞壁结构的细胞,例如一种转染方法是利用氯化钙的钙处理,如Cohen,F.N,等,PNAS(美国科学院院报).69(1972)7110ff所述。
利用转化重组生成抗体在现有技术中是公知的且记载在,例如,综述文章Makrides,S.C.,Protein Expr.Purif.(蛋白表达和纯化)17(1999)183-202;Geisse,S.,等,Protein Expr.Purif.(蛋白表达和纯化)8(1996)271-282;Kaufman,R.J.,Mol.Biotechnol.(分子生物技术)16(2000)151-161;Werner,R.G,等,Arzneimittelforschung 48(1998)870-880中以及US 6,331,415和US 4,816,567中。
用于本文中时,“表达”指将核酸转录为mRNA的过程和/或将转录的mRNA(也称为转录物)随后翻译为肽、多肽或蛋白质的过程。转录物和被编码的多肽共同称为基因产物。如果多核苷酸源自基因组DNA,则在真核细胞中的表达可以包括mRNA的剪接。
“载体”是核酸分子,特别是自体复制的,其将插入的核酸分子转移到宿主细胞之中和/或之间。该术语包括主要功能为将DNA或RNA插入细胞(例如,染色体整合)的载体,主要功能是复制DNA或RNA的复制载体,和功能是转录和/或翻译DNA或RNA的表达载体。还包括提供多于一种上述功能的载体。
“表达载体”是多核苷酸,其在引入到合适的宿主细胞中时能够被转录和翻译为多肽。“表达系统”通常指包括表达载体的适当宿主细胞,所述表达载体可以起作用产生所需的表达产物。
根据本发明所述的二价双特异性抗体优选通过重组手段生成。所述方法是本领域中普遍已知的,且包括在原核和真核细胞中的蛋白质表达及随后分离抗体多肽和通常纯化到药用纯度。为了蛋白质表达,通过标准方法将编码轻链和重链或其片段的核酸插入表达载体中。表达在合适的原核或真核宿主细胞如CHO细胞、NS0细胞、SP2/0细胞、HEK293细胞、COS细胞、酵母或大肠杆菌(E.coli)细胞中进行,且从所述细胞(溶胞后的上清或细胞)中回收抗体。二价双特异性抗体可以存在于完整细胞中、存在于细胞溶解产物中或以部分纯化或基本纯形式存在。通过标准技术,包括碱/SDS处理,柱层析法和本领域中的其他公知技术进行纯化,从而消除其他细胞成分或其他污染物,例如其他细胞核酸或蛋白。参见Ausubel,F.,等编辑,Current Protocols in Molecular Biology(当前分子生物学方案),Greene Publishing and Wiley Interscience,纽约(1987)。
在NS0细胞中的表达记载在,例如,Barnes,L.M.,等,Cytotechnology(细胞技术学)32(2000)109-123;和Barnes,L.M.,等,Biotech.Bioeng.(生物技术和生物工程)73(2001)261-270中。瞬时表达记载在,例如,Durocher,Y.,等,Nucl.Acids.Res.(核酸研究)30(2002)E9中。可变结构域的克隆记载在Orlandi,R,等.,Proc.Natl.Acad.Sci.USA(美国国家科学院学报)86(1989)3833-3837;Carter,P.,等,Proc.Natl.Acad.Sci.USA(美国国家科学院学报)89(1992)4285-4289;和Norderhaug,L.,等,J.Immunol.Methods(免疫学方法杂志)204(1997)77-87中。优选的瞬时表达系统(HEK 293)记载在Schlaeger,E.-J.,和Christensen,K.,在Cytotechnology(细胞技术学)30(1999)71-83中和Schlaeger,E.-J.,在J.Immunol.Methods(免疫学方法杂志)194(1996)191-199中。
适合于原核生物的控制序列,例如,包括启动子,任选操纵子序列,和核糖体结合位点。已知真核细胞利用启动子、增强子和加A信号。
当核酸被置于与另一个核酸序列的功能关系中时,其是“可操作地连接的”。例如,前序列或分泌前导序列的DNA与多肽的DNA可操作地连接,条件是其表达为参与多肽分泌的前蛋白;启动子或增强子与编码序列可操作地连接,条件是其影响所述序列的转录;或核糖体结合位点与编码序列可操作地连接,条件是其被定位为促进翻译。一般地,“可操作地连接的”意指被连接的DNA序列是连续的,且在分泌前导序列的情形中,是连续的且在阅读框中。然而,增强子不必须是连续的。连接通过在方便的限制性位点处的连接来实现。如果不存在所述位点,则根据常规实践使用合成的寡核苷酸接合体或连接体。
通过常规免疫球蛋白纯化程序,诸如例如,蛋白A-琼脂糖,羟磷灰石层析法,凝胶电泳,透析,或亲合层析法,从培养基中适当地分离二价双特异性抗体。编码单克隆抗体的DNA和RNA容易利用常规程序分离和测序。杂交瘤细胞可以起所述DNA或RNA来源的作用。一旦分离后,可以将DNA插入到表达载体中,所述表达载体随后转染到不另外产生免疫球蛋白的宿主细胞诸如HEK 293细胞、CHO细胞、或骨髓瘤细胞中,以在宿主细胞中获得重组单克隆抗体的合成。
二价双特异性抗体的氨基酸序列变体(或突变体)通过将适当的核苷酸改变引入到抗体DNA中,或通过核苷酸合成来制备。然而,这样的修饰仅能在非常有限的范围内,例如如上所述的范围内进行。例如,所述修饰不改变上述抗体特征诸如IgG同种型和抗原结合,但可以提高重组生产的产率、蛋白稳定性或促进纯化。
提供以下实施例、序列表和附图来帮助理解本发明,本发明的真正范围在所附权利要求中给出。要理解在不偏离本发明精神的条件下可以对所述步骤作出改动。
序列表
SEQ ID NO:1野生型<IGF-1R>抗体重链的氨基酸序列
SEQ ID NO:2野生型<IGF-1R>抗体轻链的氨基酸序列
SEQ ID NO:3<IGF-1R>VL-VH交换抗体的重链***(HC***)的氨基酸序列,其中重链结构域VH被替换为轻链结构域VL-变体A。
SEQ ID NO:4<IGF-1R>VL-VH交换抗体的轻链***(LC***)的氨基酸序列,其中轻链结构域VL被替换为重链结构域VH-变体A。
SEQ ID NO:5IGF-1R胞外域His-链霉亲和素结合肽-标签(IGF-1R-His-SBP ECD)的氨基酸序列
SEQ ID NO:6野生型血管生成素-2<ANGPT2>抗体重链的氨基酸序列
SEQ ID NO:7野生型血管生成素-2<ANGPT2>抗体轻链的氨基酸序列
SEQ ID NO:8用于杵-进入-臼技术中的具有T366W交换的CH3结构域(杵)的氨基酸序列
SEQ ID NO:9用于杵-进入-臼技术中的具有T366S,L368A,Y407V交换的CH3结构域(臼)的氨基酸序列
SEQ ID NO:10<IGF-1R>VL-VH交换抗体的重链***(HC***)的氨基酸序列,其中重链结构域VH被替换为轻链结构域VL-变体B。
SEQ ID NO:11<IGF-1R>VL-VH交换抗体的轻链***(LC***)的氨基酸序列,其中轻链结构域VL被替换为重链结构域VH-变体B。
SEQ ID NO:12IGF-1R胞外域His-链霉亲和素结合肽-标签(IGF-1R-His-SBP ECD)的氨基酸序列。
附图说明
图1IgG的示意图,IgG即为天然存在的特异于一种抗原的完整抗体,其具有两对重链和轻链,所述重链和轻链具有处于典型顺序的可变结构域和恒定结构域。
图2二价双特异性抗体的示意图,所述二价双特异性抗体包括:a)特异性结合第一抗原的抗体的轻链和重链;和b)特异性结合第二抗原的抗体的轻链和重链,其中可变结构域VL和VH相互替换。
图3二价双特异性抗体的示意图,所述二价双特异性抗体包括:a)特异性结合第一抗原的抗体的轻链和重链;和b)特异性结合第二抗原的抗体的轻链和重链,其中可变结构域VL和VH相互替换,且其中通过杵-进入-臼技术改变两条重链的CH3结构域。
图4二价双特异性抗体的示意图,所述二价双特异性抗体包括:a)特异性结合第一抗原的抗体的轻链和重链;和b)特异性结合第二抗原的抗体的轻链和重链,其中可变结构域VL和VH相互替换,且其中两条重链的恒定重链结构域CH3之一被替换为恒定重链结构域CH1,且另一个获恒定重链结构域CH3被替换为恒定轻链结构域CL。
图5<IGF-1R>VL-VH交换抗体的重链***<IGF-1R>HC***的蛋白序列图。
图6<IGF-1R>VL-VH交换抗体(具有κ恒定轻链结构域CL)的轻链***<IGF-1R>LC***的蛋白序列图。
图7重链***<IGF-1R>HC***表达载体pUC-HC***-IGF-1R的质粒图谱。
图8轻链***<IGF-1R>LC***表达载体pUC-LC***-IGF-1R的质粒图谱。
图94700-Hyg-OriP表达载体的质粒图谱。
图10对于I24IGF-1R表达细胞进行的用于检测功能性双特异性<ANGPT2-IGF-1R>VL-VH交换抗体的存在的细胞FACSIGF-1R-ANGPT2桥连测定的测定原理。
图11示范IGF-1R ECD Biacore。
图12具有HC*和LC*的单特异性二价<IGF-1R>VL-VH交换抗体(IgG1*)的SDS-PAGE和大小排阻层析,所述具有HC*和LC*的单特异性二价<IGF-1R>VL-VH交换抗体(IgG1*)是从瞬时转染HEK293E细胞后的细胞培养物上清中分离的。
图13在基于ELISA的结合测定中,单特异性<IGF-1R>VL-VH交换抗体和野生型<IGF-1R>抗体与IGF-1R ECD的结合。
图14从来自瞬时转染的HEK293E细胞的细胞培养物上清中纯化的<ANGPT2-IGF-1R>VL-VH交换抗体混合物的SDS-PAGE。
图15对于I24IGF-1R表达细胞进行的用于检测纯化的抗体混合物中存在功能性双特异性<ANGPT2-IGF-1R>VL-VH交换抗体的细胞FACSIGF-1R-ANGPT2桥连测定的样品A-F的结果。纯化的蛋白样品A-F:
A=未处理的I24
B=I24+2μg/mL hANGPT2+hIgG同种型
D=I24+2μg/mL hANGPT2+来自<IGF-1R>CL-CH1交换
抗体和<ANGPT2>野生型抗体的共表达的、包括双特异性
<ANGPT2-IGF-1R>VL-VH交换抗体的混合物
E=I24+2μg/mL hANGPT2+<ANGPT2>野生型抗体
F=I24+2μg/mL hANGPT2+<IGF-1R>野生型抗体
实施例
材料和一般方法
关于人免疫球蛋白轻链和重链的核苷酸序列的一般信息在Kabat,E.A.,等,Sequences of Proteins of Immunological Interest(免疫目的的蛋白质序列),第5版,Public Health Service(公众健康服务),National Institutes ofHealth(全国卫生研究所),Bethesda,MD.(1991))中提供。按照EU编号对抗体链的氨基酸进行编号和提及(Edelman,GM.,等,Proc.Natl.Acad.Sci.USA(美国科学院院报)63(1969)78-85;Kabat,E.A.,等,Sequences ofProteins of Immunological Interest(免疫目的的蛋白质序列),第5版,PublicHealth Service(公众健康服务),National Institutes ofHealth(全国卫生研究所),Bethesda,MD.(1991))。
重组DNA技术
使用标准方法操作DNA,如Sambrook,J.等.,Molecular cloning:Alaboratory manual(分子克隆:实验室手册);Cold Spring Harbor LaboratoryPress(冷泉港实验室出版社),Cold Spring Harbor(冷泉港),纽约,1989中所述。分子生物学试剂按照供应商说明使用。
基因合成
所需基因区段由通过化学合成制备的寡核苷酸制备。侧连单限制性内切核酸酶裂解位点的600-1800bp长的基因区段通过寡核苷酸的退火和连接包括PCR扩增来装配,并随后通过所指出的限制位点例如KpnI/SacI或AscI/PacI克隆到基于pPCRScript(Stratagene)的pGA4克隆载体中。亚克隆基因片段的DNA序列通过DNA测序验证。基因合成片段按照Geneart的给定说明书(Regensburg,德国)来订购。
DNA序列确定
DNA序列通过在MediGenomix GmbH(Martinsried,德国)或Sequiserve GmbH(Vaterstetten,德国)进行的双链测序来确定。
DNA和代表序列合成和序列数据管理
GCG(Genetics Computer Group(遗传学计算小组),Madison,威斯康星)的软件包10.2版和Infomax载体NT1Advance suite 8.0版用于序列构建、作图、分析、注解和说明。
表达载体
为了表达所述抗体,应用用于基于具有CMV-内含子A启动子的cDNA构造或基于具有CMV启动子的基因组构造的细胞中(例如在HEK293EBNA或HEK293-F)瞬时表达的表达质粒的变体。
除抗体表达盒以外,所述载体包括:
-复制起点,其容许该质粒在大肠杆菌中复制,和
-β-内酰胺酶基因,其在大肠杆菌中赋予氨苄青霉素抗性。
抗体基因的转录单元由以下元件组成:
-5’末端处的特有限制性位点
-来自人巨细胞病毒的即时早期增强子和启动子,
-在cDNA构造的情形中,随后是内含子A序列,
-人抗体基因的5’-非翻译区,
-免疫球蛋白重链信号序列,
-人抗体链(野生型或具有结构域交换),其作为cDNA或作为具有免疫球蛋白外显子-内含子构造的基因组构造
-具有加A信号序列的3’非翻译区,和
-3’末端处的特有的限制性位点。
如下所述的包括所述抗体链的融合基因通过PCR和/或基因合成产生并使用已知的重组方法和技术来装配,所述重组方法和技术通过在各种载体中例如利用特有的限制性位点来连接相应的核酸区段来实现。亚克隆的核酸序列通过DNA测序来验证。为了瞬时转染,通过来自转化的大肠杆菌培养物的质粒制备物来制备更大量的质粒(Nucleobond AX,Macherey-Nagel)。
细胞培养技术
标准细胞培养技术如Current Protocols in Cell Biology(当前细胞生物学方案)(2000),Bonifacino,J.S.,Dasso,M.,Harford,J.B.,Lippincott-Schwartz,J.和Yamada,K.M.(编辑),John Wiley & Sons,Inc中所述来使用。
双特异性抗体通过在贴壁生长的HEK293-EBNA中或在悬浮生长的HEK29-F细胞中瞬时共转染各种表达质粒来表达,如下所述。
HEK293-EBNA系统中的瞬时转染
双特异性抗体通过在贴壁生长的HEK293-EBNA细胞(表达EB病毒核抗原的人胚肾细胞系293;美国典型培养物中心,保藏号ATCC#CRL-10852,Lot.959 218)中瞬时共转染各种表达质粒(例如编码重链和修饰的重链,以及相应的轻链和修饰的轻链)来表达,所述细胞是在添加了10%超低IgG FCS(胎牛血清,Gibco),2mM L-谷氨酰胺(Gibco),和250μg/ml遗传霉素(geneticin)(Gibco)的DMEM(Dulbecco’s modified Eagle’smedium,Gibco(Dulbecco改良的Eagle培养基))中培养的。为了转染,FuGENETM 6转染试剂(Roche Molecular Biochemicals(罗氏分子生物化学))按照FuGENETM试剂(μl)与DNA(μg)的比例为4∶1(在3∶1~6∶1的范围内)来使用。利用摩尔比为1∶1(等摩尔)的编码(修饰的和野生型)轻链和重链的质粒,所述摩尔比范围是1∶2~2∶1,由各种质粒来分别表达蛋白。在第3天,用L-谷氨酰胺加至4mM,葡萄糖[西格玛(Sigma)]和NAA[Gibco]饲养细胞。在转染后第5-11天通过离心法收获包含双特异性抗体的细胞培养物上清并保存在-20℃。关于在例如HEK293细胞中进行人免疫球蛋白的重组表达的一般信息提供在Meissner,P.等,Biotechnol.Bioeng.(生物技术和生物工程)75(2001)197-203中。
HEK293-F系统中的瞬时转染
双特异性抗体通过利用HEK293-F系统(Invitrogen)按照供应商的说明瞬时转染各种质粒(例如编码重链和修饰的重链,以及相应的轻链和修饰的轻链)来生成。简言之,用四种表达质粒和293fectin或fectin(Invitrogen)的混合物来转染在摇瓶中或在搅拌发酵器中在无血清FreeStyle 293表达培养基(Invitrogen)中悬浮生长的HEK293-F(Invitrogen)。对于2L摇瓶(Corning),HEK293-F细胞以1.0E*6细胞/mL的密度接种在600mL中并以120rpm,8%CO2温育。第二天,用ca.42mL的A)具有600μg等摩尔比的分别编码重链或修饰的重链,和相应轻链的总质粒DNA(1μg/mL)的20mL Opti-MEM(Invitrogen)和B)20ml Opti-MEM+1.2mL 293fectin或fectin(2μl/mL)的混合物,转染细胞密度为ca.1.5E*6细胞/mL的细胞。在发酵过程中根据葡萄糖的消耗,添加葡萄糖溶液。在5-10天后收获包含分泌的抗体的上清,并且直接由上清纯化抗体或冷冻并保存上清。
蛋白确定
纯化的抗体和衍生物的蛋白浓度通过利用基于氨基酸序列计算的摩尔消光系数确定280nm处的光密度(OD)来确定,其依照Pace等,ProteinScience(蛋白质科学),1995,4,2411-1423。
上清中抗体浓度的确定
抗体和衍生物在细胞培养物上清中的浓度通过使用蛋白质A琼脂糖-珠(Roche(罗氏))的免疫沉淀法来评估。60μL蛋白质A琼脂糖珠在TBS-NP40(50mM Tris,pH 7.5,150mM NaCl,1%Nonidet-P40)洗涤三次。随后,将1-15mL细胞培养物上清应用于在TBS-NP40中预平衡的蛋白质A琼脂糖珠。室温下温育1小时后,将该珠在Ultrafree-MC-过滤柱(Amicon)上用0.5mL TBS-NP40洗涤1次,用0.5mL 2x磷酸盐缓冲液(2xPBS,Roche(罗氏))洗涤2次并用0.5mL 100mM柠檬酸钠pH 5,0简单洗涤4次。通过添加35μlLDS样品缓冲液(Invitrogen)洗脱结合的抗体。样品的一半分别与样品还原剂混合或保持未还原,并在70℃加热10分钟。因此,将5-30μl应用于4-12%Bis-Tris SDS-PAGE(Invitrogen)(具有MOPS缓冲液,以用于非还原的SDS-PAGE且具有抗氧化运行缓冲液添加剂(Invitrogen)的MES缓冲液,以用于还原的SDS-PAGE)并用考马斯蓝染色。
抗体和衍生物在细胞培养物上清中的浓度通过亲合HPLC层析法来定量测量。简言之,将包含结合蛋白质A的抗体和衍生物的细胞培养物上清应用于在200mM KH2PO4,100mM柠檬酸钠,pH 7.4中的应用生物系统(Applied Biosystems)Poros A/20柱,并在安捷伦(Agilent)HPLC 1100系统上用200mM NaCl,100mM柠檬酸,pH 2.5洗脱。洗脱的蛋白通过UV吸光度和峰面积整合来量化。纯化的标准IgG1抗体作为标准物。
备选地,抗体和衍生物在细胞培养物上清中的浓度通过夹心-IgG-ELISA来测量。简言之,将StreptaWell高结合链霉亲和素A-96孔微量滴定板(Roche(罗氏))用100μL/孔0.1μg/mL的生物素化的抗人IgG捕获分子F(ab’)2<h-Fcγ>BI(Dianova),在室温下包被1小时或备选地在4℃包被过夜并随后用200μL/孔PBS,0.05%吐温(PBST,Sigma(西格玛))洗涤3次。将100μL/孔包含各种抗体的细胞培养物上清在PBS(Sigma(西格玛))中的稀释物系列加入到孔中并在微量滴定板摇动器上,以室温温育1-2小时。孔用200μL/孔PBST洗涤三次并且用100μl浓度为0.1μg/mL的F(ab‘)2<hFcγ>POD(Dianova)作为检测抗体,在微量滴定板摇动器上,在室温下检测结合的抗体1-2小时。未结合的检测抗体用200μL/孔PBST洗涤三次洗掉,并且结合的检测抗体通过添加100μL ABTS/孔来检测。在Tecan Fluor分光计上,以405nm的测量波长(参照波长492nm)来进行吸光度的确定。
蛋白质纯化
参考标准流程,从过滤的细胞培养物上清中纯化蛋白。简言之,将抗体应用于蛋白质A琼脂糖柱(GE healthcare(GE健康护理))并用PBS洗涤。在pH 2.8实现抗体洗脱,并随后立即中和样品。在PBS中或在20mM组氨酸,150mM NaCl pH 6.0中,通过大小排阻层析(Superdex 200,GEhealthcare(GE健康护理))将聚集的蛋白质与单体抗体分开。汇集单体抗体级分,如果需要,利用MILLIPORE Amicon Ultra(30MWCO)离心浓缩器浓缩,冷冻和在-20℃或-80℃保存。提供部分样品进行随后的例如通过SDS-PAGE,大小排阻层析法或质谱法进行的蛋白质分析和分析表征。
SDS-PA GE
预制凝胶系统(Invitrogen)按照供应商的说明来使用。具体地,使用10%或4-12%Bis-TRIS预制凝胶(pH 6.4)和MES(还原的凝胶,具有抗氧化运行缓冲液添加剂)或MOPS(未还原的凝胶)运行缓冲液。
分析性大小排阻层析法
用于确定抗体聚集和低聚状态的大小排阻层析法通过HPLC层析法来进行。简言之,将蛋白质A纯化抗体应用于安捷伦(Agilent)HPLC 1100系统上处于300mM NaCl,50mM KH2PO4/K2HPO4,pH 7.5中的TosohTSKgel G3000SW柱或Dionex HPLC-系统上处于2x PBS中的Superdex200柱(GE healthcare(GE健康护理))。洗脱的蛋白通过UV吸光度和峰面积的整合来量化。BioRad凝胶过滤标准物151-1901作为标准物。
质谱法
交换(crossover)抗体的总去糖基化质量通过电喷射离子化质谱法(ESI-MS)来确定和验证。简言之,用在100mM KH2PO4/K2HPO4,pH 7中的50mU N-糖苷酶F(PNGaseF,ProZyme)在37℃,以至多2mg/ml的蛋白质浓度,将100μg纯化的抗体去糖基化12-24小时,并随后在SephadexG25柱(GE healthcare(GE健康护理))上通过HPLC来脱盐。各种重链和轻链的质量在去糖基化和还原后通过ESI-MS来确定。简言之,在115μl中的50μg抗体用60μl 1M TCEP和50μl 8M盐酸胍来温育,并随后脱盐。总质量和还原的重链和轻链的质量通过在装配有NanoMate源的Q-StarElite MS系统上进行ESI-MS来确定。
IGF-1R ECD结合ELISA
产生的抗体的结合特性在使用IGF-1R胞外结构域(ECD)的ELISA测定中评估。为了该目的,将IGF-1R的胞外结构域(残基1-462),其包括与N-端His-链霉亲和素结合肽-标签(His-SBP)融合的α链(根据McKern等,1997;Ward等,2001)的人IGF-IR胞外域的天然前导序列和LI-富含半胱氨酸-12结构域(LI-cysteine rich-12domain),克隆到pcDNA3载体衍生物中并在HEK293F细胞中瞬时表达。IGF-1R-His-SBP ECD的蛋白质序列在SEQ ID NO:12中给出。StreptaWell高结合链霉亲和素A-96孔微量滴定板(Roche(罗氏))用100μL/孔含有可溶性IGF-1R-ECD-SBP融合蛋白的细胞培养物上清在4℃包被过夜并用200μL/孔PBS,0.05%吐温(PBST,Sigma(西格玛))洗涤三次。随后,将100μL/孔在包含1%BSA(级分V,Roche(罗氏))的PBS(Sigma(西格玛))中的各种抗体的稀释物系列和作为参照的野生型<IGF-1R>抗体加入到孔中并在微量滴定板摇动器上在室温下温育1-2小时。对于稀释物系列,将等量的纯化的抗体应用于所述孔。该孔用200μL/孔PBST洗涤三次并且结合的抗体用浓度为0.1μg/mL(1∶8000)的100μL/孔F(ab‘)2<hFcγ>POD(Dianova)作为检测抗体在微量滴定板摇动器上,以室温检测1-2小时。未结合的检测抗体使用200μL/孔PBST洗涤三次洗掉,并且结合的检测抗体通过添加100μL ABTS/孔来检测。在TecanFluor分光计上,以405nm的测量波长(参照波长492nm)来进行吸光度的确定。
IGF-1R ECD Biacore
产生的抗体与人IGF-1R ECD的结合也通过利用BIACORE T100仪器(GE healthcare Biosciences AB(GE健康护理生物科学AB),Uppsala,瑞典)的表面等离振子共振来研究。简言之,对于亲合性测量,通过用于呈递正对Fc标记的人IGF-1R ECD(human IGF-1R ECD-Fc tagged)的抗体的胺偶联在CM5芯片上固定山羊-抗-人IgG,JIR 109-005-098抗体。结合在HBS缓冲液(HBS-P(10mM HEPES,150mM NaCl,0.005%吐温20,ph 7.4)中,25℃测量。将IGF-1R ECD(R&D系统或内部纯化的)以不同浓度加入到溶液中。缔合通过注射IGF-1R ECD 80秒-3分钟来测量;解离通过用HBS缓冲液洗涤芯片表面3-10分钟来测量且KD值利用1∶1朗缪尔结合模型(Langmuir binding model)来评估。由于<IGF-1R>抗体的低负载密度和捕获水平,获得单价IGF-1R ECD结合。从样品曲线中减去阴性对照数据(例如缓冲液曲线),以用于校正系统固有的基线漂移和用于噪音信号的降低。使用Biacore T100评估软件1.1.1版用于S曲线(sensorgrams)的分析和用于亲合性数据的计算。图11显示Biacore测定的示意图。
实施例1
制备、表达、纯化和表征单特异性二价<IGF-1R>抗体,其中可变结构域
VL和VH相互替换(本文中缩写为<IGF-1R>VL-VH交换抗体)。
实施例1A
制备关于单特异性二价<IGF-1R>VL-VH交换抗体的表达质粒
包括本实施例中所述的各种前导序列的单特异性二价<IGF-1R>VL-VH交换抗体的重链和轻链可变结构域的序列源自WO 2005/005635中所述的人<IGF-1R>抗体重链(SEQ ID NO:1,质粒4843-pUC-HC-IGF-1R)和轻链(SEQ ID NO:2,质粒4842-pUC-LC-IGF-1R),且重链和轻链恒定结构域源自人抗体(C-κ和IgG1)。
编码<IGF-1R>抗体前导序列、轻链可变结构域(VL)和人重链恒定结构域1(CH1)的基因区段连接并与人γ1-重链恒定结构域(铰链-CH2-CH3)的Fc结构域的5’末端融合。编码通过用VL结构域交换VH结构域(VL-VH交换)获得的各种融合蛋白的DNA通过基因合成产生,并在以下表示为<IGF-1R>HC***(SEQ ID NO:10)。初步地,VL-CH1结构域与稍微不同的序列(SEQ ID NO:3)融合;由于此连接的表达产量较小,因此选择显示与野生型抗体相当的表达产量的SEQ10。
<IGF-1R>抗体前导序列,重链可变结构域(VH)和人轻链恒定结构域(CL)的基因区段作为独立的链连接。编码通过用VH结构域交换VL结构域(VL-VH交换)获得的各种融合蛋白的DNA通过基因合成产生,并在以下表示为<IGF-1R>LC***(重链***)(SEQ ID NO:11)。初步地,VH-CL结构域与稍微不同的序列(SEQ ID NO:4)融合;由于此连接的表达产量较小,因此选择显示与野生型抗体相当的表达产量的SEQ ID NO:11。
图5和图6显示修饰的<IGF-1R>HC***重链和修饰的<IGF-1R>LC***轻链的蛋白质序列的示意图。
以下,简要描述各种表达载体:
载体pUC-HC***-IGF-1R
载体pUC-HC***-IGF-1R是例如用于在HEK293(EBNA)细胞中瞬时表达VL-VH交换<IGF-1R>重链HC***(cDNA构造的表达盒;具有CMV-内含子A)或用于在CHO细胞中稳定表达的表达质粒。
除<IGF-1R>HC***表达盒以外,该载体包含:
-来自载体pUC18的复制起点,其容许该质粒在大肠杆菌中的复制,和
-β-内酰胺酶基因,其在大肠杆菌中赋予氨苄青霉素抗性。
<IGF-1R>HC***基因的转录单元由以下元件组成:
-5’末端处的AscI限制性位点,
-来自人巨细胞病毒的即时早期增强子和启动子,
-随后的内含子A序列,
-人抗体基因的5’-非翻译区,
-免疫球蛋白轻链信号序列,
-人<IGF-1R>成熟HC***链,其编码与人γ1-重链恒定结构域(铰链
-CH2-CH3)的Fc结构域的5’末端融合的人重链可变结构域(VH)和人κ-轻链恒定结构域(CL)的融合体
-具有加A信号序列的3’非翻译区,和
-3’末端处的限制性位点SgrAI。
重链***VL-VH交换<IGF-1R>HC***表达载体pUC-HC***-IGF-1R的质粒图谱显示在图7中。<IGF-1R>HC***(包括信号序列)的氨基酸序列在SEQ ID NO:10中提供。
载体pUC-LC***-IGF-1R
载体pUC-LC***-IGF-1R是例如用于在HEK293(EBNA)细胞中瞬时表达VL-VH交换<IGF-1R>轻链LC***(cDNA构造的表达盒;具有CMV-内含子A)或用于在CHO细胞中稳定表达的表达质粒。
除<IGF-1R>LC***表达盒以外,该载体包含:
-来自载体pUC18的复制起点,其容许该质粒在大肠杆菌中的复制,和
-β-内酰胺酶基因,其在大肠杆菌中赋予氨苄青霉素抗性。
<IGF-1R>LC***基因的转录单元由以下元件组成:
-5’末端处的限制性位点Sse8387I
-来自人巨细胞病毒的即时早期增强子和启动子,
-随后的内含子A序列,
-人抗体基因的5’-非翻译区,
-免疫球蛋白重链信号序列,
-人<IGF-1R>成熟LC***链,其编码人轻链可变结构域(VL)和人
γ1-重链恒定结构域(CH1)的融合体
-具有加A信号序列的3’非翻译区,和
-3’末端处的限制性位点SalI和FseI。
轻链**VL-VH交换<IGF-1R>LC***表达载体pUC-LC***-IGF-1R的质粒图谱显示在图8中。<IGF-1R>LC***(包括信号序列)的氨基酸序列在SEQ ID NO:11中提供。
质粒pUC-HC***-IGF-1R和pUC-LC***-IGF-1R可以用于瞬时或稳定共转染到例如HEK293,HEK293EBNA或CHO细胞(2-载体系统)中。为了比较的原因,野生型<IGF-1R>抗体由与该实施例中所述的那些类似的质粒4842-pUC-LC-IGF-1R(SEQ ID NO:2)和4843-pUC-HC-IGF-1R(SEQ IDNO:1)瞬时表达。
为了在HEK293EBNA细胞中获得瞬时表达的较高表达水平,可以将<IGF-1R>HC***表达盒经由AscI、SgrAI位点和将<IGF-1R>LC***表达盒经由Sse8387I和FseI位点亚克隆到包含以下各项的4700pUC-Hyg_OriP表达载体中:
-OriP元件,和
-潮霉素抗性基因,其作为选择性标记物。
可以将重链和轻链转录单元亚克隆到2个独立的4700-pUC-Hyg-OriP载体中,从而进行共转染(2-载体系统)或可以将它们克隆到一个共同的4700-pUC-Hyg-OriP载体(1-载体系统)中,从而随后用由此产生的载体进行瞬时或稳定转染。图9显示基础载体4700-pUC-OriP的质粒图谱。
实施例1B
制备单特异性二价<IGF-1R>VL-VH交换抗体表达质粒
包括野生型<IGF-1R>抗体的交换的Fab序列的<IGF-1R>融合基因(HC***和LC***融合基因)使用已知的重组方法和技术,通过连接相应的核酸区段来装配。
编码IGF-1R HC***和LC***的核酸序列分别通过化学合成来合成并随后在Geneart(Regensburg,德国)处,克隆到基于pPCRScript(Stratagene)的pGA4克隆载体中。将编码IGF-1R HC***的表达盒经由PvuII和BmgBI限制位点连接到各种大肠杆菌质粒中,以生成最终载体pUC-HC***-IGF-1R;将编码各种IGF-1R LC***的表达盒经由PvuII和SalI限制位点连接到各种大肠杆菌质粒中,以生成最终载体pUC-LC***-IGF-1R。亚克隆的核酸序列通过DNA测序来验证。为了瞬时和稳定转染,通过来自转化的大肠杆菌培养物的质粒制备物来制备更大量的质粒(Nucleobond AX,Macherey-Nagel)。
实施例1C
瞬时表达单特异性二价<IGF-1R>VL-VH交换抗体,通过质谱法纯化和证
实特征
重组<IGF-1R>VL-VH交换抗体通过在HEK293-F悬浮细胞中瞬时共转染质粒pUC-HC***-IGF-1R和pUC-LC***-IGF-1R进行表达,如上所述。
根据以上所述,通过蛋白质A亲合层析法,由过滤的细胞培养物上清中纯化表达和分泌的单特异性二价<IGF-1R>VL-VH交换抗体。简言之,来自瞬时转染的包含<IGF-1R>VL-VH交换抗体的细胞培养物上清通过离心和过滤来净化并应用于用PBS缓冲液(10mM Na2HPO4,1mM KH2PO4,137mM NaCl和2.7mM KCl,pH 7.4)平衡的蛋白质A HiTrap MabSelectXtra柱(GE healthcare(GE健康护理))。用PBS平衡缓冲液及随后的0.1M柠檬酸钠缓冲液,pH 5.5洗出未结合的蛋白,并用PBS洗涤。用100mM柠檬酸钠,pH 2.8实现抗体的洗脱,随后立即用300μl 2M Tris pH 9.0/2ml级分来中和样品。在20mM组氨酸,150mM NaCl pH 6.0中,通过在HiLoad26/60Superdex 200制备级柱(GE healthcare(GE健康护理))上进行的大小排阻层析法将聚集的蛋白质与单体抗体分开,且随后利用MILLIPOREAmicon Ultra-15离心浓缩器浓缩单体抗体级分。在-20℃或-80℃下冷冻和保存<IGF-1R>VL-VH交换抗体。<IGF-1R>VL-VH交换的完整性通过存在和缺乏还原剂的SDS-PAGE和随后用考马斯亮蓝染色来分析,如上所述。<IGF-1R>VL-VH交换抗体的单体状态通过分析性大小排阻层析法证实。(图12)提供表征的样品,以进行随后的蛋白质分析和功能表征。ESI质谱法验证完全去糖基化的<IGF-1R>VL-VH交换抗体的理论分子量。
实施例1D
在IGF-1R ECD结合ELISA中和通过Biacore分析单特异性二价<IGF-1R>
VL-VH交换抗体的IGF-1R结合特性
单特异性二价<IGF-1R>VL-VH交换抗体的结合特性如上所述在使用IGF-1R胞外结构域(ECD)的ELISA测定中评估。为了该目的,将IGF-1R的胞外结构域(残基1-462)克隆到pcDNA3载体衍生物中并在HEK293F细胞中瞬时表达,所述IGF-1R的胞外结构域包括与N-端His-链霉亲和素结合肽-标签(His-SBP)融合的α链(根据McKern等,1997;Ward等,2001)的人IGF-IR胞外域的天然前导序列和LI-富含半胱氨酸-12结构域。IGF-1R-His-SBP ECD的蛋白质序列在上文中给出。获得的滴定曲线显示<IGF-1R>VL-VH交换抗体是功能性的并表现出在该方法的误差范围内的与野生型<IGF-1R>抗体相当的结合特性和动力学,并因此似乎是完全功能性的(图13)。
这些发现通过Biacore采用各自的纯化抗体来确证。
实施例1G
使用过表达GF-1R的I24细胞通过FACS分析单特异性二价<IGF-1R>
VL-VH交换抗体的IGF-1R结合特性
为了验证,通过FACS研究<IGF-1R>VL-VH交换抗体与在I24细胞(表达重组人IGF-1R的NIH3T3细胞,Roche(罗氏))表面上过表达的IGF-1R的结合活性。简言之,5x10E5 I24细胞/FACS管用纯化的<IGF-1R>VL-VH交换抗体和作为参照的野生型<IGF-1R>抗体的稀释物来温育,并在冰上温育1小时。未结合的抗体用4ml冰冷PBS(Gibco)+2%FCS(Gibco)洗去。随后,离心细胞(5分钟,400g)并且在避光条件下,用F(ab‘)2<hFcγ>PE缀合物(Dianova)在冰上检测结合的抗体1小时。未结合的检测抗体用4ml冰冷PBS(Gibco)+2%FCS(Gibco)洗去。随后,对细胞进行离心(5分钟,400g),重新悬浮在300-500μL PBS中,并且在FACSCalibur或FACS Canto(BD(FL2通道,10.000细胞/获得物)上量化结合的检测抗体。在实验过程中,包括各自的同种型对照,以排除任何非特异性结合事件。<IGF-1R>VL-VH交换抗体和野生型<IGF-1R>参照抗体与I24细胞上的IGF-1R的结合导致相当的平均荧光强度的浓度依赖性偏移。
实施例2
单特异性二价<ANGPT2>野生型抗体的描述
实施例2A
制备单特异性二价<ANGPT2>野生型抗体的表达质粒
包括本实施例中所述的各种前导序列的单特异性二价ANGPT2<ANGPT2>野生型抗体的重链和轻链可变结构域的序列源自WO2006/045049中所述的人<ANGPT2>抗体重链(SEQ ID NO:6)和轻链(SEQID NO:7),且重链和轻链恒定结构域源自人抗体(C-κ和IgG1)。
将野生型<ANGPT2>抗体克隆到与前述实施例1A中所述的载体类似的质粒SB04-pUC-HC-ANGPT2(SEQ ID NO:6)和SB06-pUC-LC-ANGPT2(SEQ ID NO:7)中。
为了比较的原因和为了共表达实验(见实施例3),由质粒SB04-pUC-HC-ANGPT2和SB06-pUC-LC-ANGPT2瞬时(共-)表达野生型<ANGPT2>抗体。
实施例2B
制备单特异性二价<ANGPT2>野生型抗体的表达质粒
编码ANGPT2>HC和LC的核酸序列分别通过化学合成来合成并随后在Geneart(Regensburg,德国)处,克隆到基于pPCRScript(Stratagene)的pGA4克隆载体中。将编码<ANGPT2>HC的表达盒克隆到各种大肠杆菌质粒中,以生成最终载体SB04-pUC-HC-ANGPT2;将编码各种<ANGPT2>LC的表达盒克隆到各种大肠杆菌质粒中,以生成最终载体SB06-pUC-LC-ANGPT2。亚克隆的核酸序列通过DNA测序来验证。为了瞬时和稳定转染,通过来自转化的大肠杆菌培养物的质粒制备物来制备更大量的质粒(Nucleobond AX,Macherey-Nagel)。
实施例3
表达双特异性二价<ANGPT2-IGF-1R>抗体,其中在特异性结合IGF-1R的
重链和轻链中,恒定结构域VL和VH相互替换(本文中缩写为
<ANGPT2-IGF-1R>VL-VH交换抗体)。
实施例3A
在HEK293EBNA细胞中瞬时共表达和纯化<IGF-1R>VL-VH交换抗体和
<ANGPT2>野生型抗体以生成双特异性<ANGPT2-IGF-1R>VL-VH交换
抗体
为了生成通过位于一侧的<IGF-1R>VL-VH交换抗体Fab识别IGF-1R并通过位于另一侧的<ANGPT2>野生型Fab区识别<ANGPT2>的功能性双特异性抗体,2个编码<IGF-1R>VL-VH交换抗体(实施例1A)的表达质粒与2个编码<ANGPT2>野生型抗体的表达质粒(实施例2A)共表达。假设野生型重链HC和VL-VH交换重链HC***统计学关联,这导致双特异性二价<ANGPT2-IGF-1R>VL-VH交换抗体的生成。在两种抗体同等充分表达并不考虑副产物的假设下,这应该导致比例为1∶2∶1的三种主要产物:A)<IGF-1R>VL-VH交换抗体,B)双特异性<ANGPT2-IGF-1R>VL-VH交换抗体和C)<ANGPT2>野生型抗体的。可以预期有几种副产物。然而,由于仅交换VL-VH结构域,副产物的频率与完整Fab交换相比应该降低。请注意,由于<ANGPT2>野生型抗体表现出比<IGF-1R>野生型和<IGF-1R>VL-VH交换抗体更高的表达瞬时表达产量,<ANGPT2>野生型抗体质粒和<IGF-1R>VL-VH交换抗体质粒的比例向着有利于<ANGPT2>野生型抗体表达的方向偏移。
为了生成主要产物A)<IGF-1R>VL-VH交换抗体,B)双特异性<ANGPT2-IGF-1R>VL-VH交换抗体和C)<ANGPT2>野生型抗体的混合物,在如上所述悬浮的HEK293-F细胞中共转染四种质粒pUC-HC***-IGF-1R和pUC-LC***-IGF-1R和质粒SB04-pUC-HC-ANGPT2和SB06-pUC-LC-ANGPT2。收获的上清包含主要产物A)<IGF-1R>VL-VH交换抗体,B)双特异性<ANGPT2-IGF-1R>VL-VH交换抗体和C)<ANGPT2>野生型抗体的混合物,并表示为“双特异性VL-VH交换混合物”。包含双特异性VL-VH交换混合物的细胞培养物上清通过离心收获并随后如上所述进行纯化。
该抗体混合物的完整性通过所述的在存在和缺乏还原剂的SDS-PAGE并随后用考马斯亮蓝染色以及通过大小排阻层析来分析。如预期地那样,SDS-PAGE显示制备物中存在2条不同的重链和轻链(还原的凝胶)(图14)。提供表征的样品,以进行随后的蛋白分析和功能表征。
实施例3B
在I24IGF-1R表达细胞上在细胞FACS桥连测定中检测功能性双特异性
<ANGPT2-IGF-1R>VL-VH交换抗体
为了证实来自实施例3A中所述的瞬时共表达的主要产物A)<IGF-1R>VL-VH交换抗体,B)双特异性<ANGPT2-IGF-1R>VL-VH交换抗体和C)<ANGPT2>野生型抗体的纯化双特异性VL-VH交换混合物中存在功能性双特异性<ANGPT2-IGF-1R>VL-VH交换抗体,对I24细胞(表达重组人IGF-1R的NIH3T3细胞,Roche(罗氏))进行细胞FACSIGF-1R-ANGPT2桥连测定。该测定的原理在图10中描述。纯化的抗体混合物中存在的的双特异性<ANGPT2-IGF-1R>VL-VH交换抗体能够同时结合I24细胞中的IGF-1R和结合ANGPT2;且因此应该用两个相对的Fab区桥连它的两个靶抗原。
简言之,5x10E5I24细胞/FACS管与总纯化抗体混合物温育,并在冰上温育1小时(滴定160μg/ml混合物)。将各种纯化抗体野生型<IGF-1R>和<ANGPT2>应用于I24细胞作为对照。未结合的抗体用4ml冰冷PBS(Gibco)+2%FCS(Gibco)洗去,离心细胞(5分钟,400g)并且用50μl 2μg/mL人ANGPT2(R&D Systems(R&D系统))在冰上检测结合的双特异性抗体1小时。随后,用4ml冰冷PBS(Gibco)+2%FCS(Gibco)洗涤一次或两次,洗去未结合的ANGPT2,离心细胞(5分钟,400g)并且用50μl 5μg/mL<ANGPT2>mIgG1-生物素抗体(BAM0981,R&D Systems(R&D系统))在冰上检测结合的ANGPT245分钟;备选地,用50μl 5μg/mL mIgG1-生物素-同种型对照(R&D Systems(R&D系统))温育细胞。未结合的检测抗体用4ml冰冷PBS(Gibco)+2%FCS(Gibco)洗去,离心细胞(5分钟,400g)并且在避光条件下,用50μl 1∶400链霉亲和素-PE缀合物(Invitrogen/Zymed)在冰上检测结合的检测抗体45分钟。未结合的链霉亲和素-PE缀合物用4ml冰冷PBS(Gibco)+2%FCS(Gibco)洗去。随后,对细胞进行离心(5分钟,400g),重新悬浮在300-500μL PBS中,并且在FACSCalibur(BD(FL2通道,10.000细胞/获得物)上量化结合的链霉亲和素-PE缀合物。在实验过程中,包括各自的同种型对照,以排除任何非特异性结合事件。另外,包括纯化的单特异性二价IgG1抗体<IGF-1R>和<ANGPT2>,作为对照。
图15中的结果显示使用来自交叉抗体(<IGF-1R>VL-VH交换抗体)与野生型抗体(<ANGPT2>野生型抗体)的共表达的纯化抗体交叉混合物(<ANGPT2-IGF-1R>VL-VH交换抗体)温育导致荧光的显著偏移,这说明存在能够同时结合I24细胞中的IGF-1R和结合ANGPT2的功能性双特异性<ANGPT2-IGF-1R>VL-VH交换抗体;并由此使用两个相对的Fab区桥连它的两个靶抗原。与此相反,各自<IGF-1R>和<Ang-2>对照抗体在FACS桥连测定中不引起荧光的偏移。
总之,这些数据显示通过共表达可以生成各自的野生型和交换质粒功能性双特异性抗体。正确的双特异性抗体的产率可以通过例如使用杵-进入臼技术以及二硫键稳定作用来促进野生型和修饰的交换重链的异型二聚化来提高(见实施例4)。
实施例4
表达具有修饰的CH3结构域(杵-进入-臼)的二价双特异性
ANGPT2-IGF-1R>VL-VH交换抗体
为了进一步提高双特异性<ANGPT2-IGF-1R>VL-VH交换抗体的产率,将杵-进入-臼技术应用于<IGF-1R>VL-VH交换和野生型<ANGPT2>抗体的共表达,以获得同质和功能性的双特异性抗体制剂。为了该目的,<IGF-1R>VL-VH交换抗体的重链*HC*中的CH3结构域被替换为具有T366W交换的SEQ ID NO:8的CH3结构域(杵),且野生型<ANGPT2>抗体的重链中的CH3结构域被替换为具有T366S,L368A,Y407V交换的SEQ ID NO:9的CH3结构域(臼),或反之亦然。另外,可以包括二硫键以增加稳定性和产率以及另外的残基形成离子键并增加异型二聚化产率(EP 1870459A1)。
由此生成的具有修饰的CH3结构域(杵-进入-臼)的二价双特异性<ANGPT2-IGF-1R>VL-VH交换抗体的瞬时共表达和纯化如实施例3中所述进行。
应该注意到异型二聚化的优化可以例如通过使用不同的杵-进入-臼技术诸如将额外的二硫键引入CH3结构域中,例如,将Y349C引入“杵链”中并将D356C引入“臼链”中和/或与由EP 1870459A1所述的用于杵残基的R409D;残基K370E(K409D)和用于臼残基的D399K;E357K相结合来实现。
与实施例4类似地,可以制备具有修饰的CH3结构域(杵-进入-臼)的其他二价双特异性VL-VH交换抗体,它们针对ANGPT2和另一靶抗原(使用上述ANGPT2重链和轻链和针对所述其他靶标的抗体的VL-VH交换重链和轻链***HC***和LC***,由此两条重链均通过“杵-进入-臼”而被修饰),或针对IGF-1R和另一靶标(使用针对所述其他靶标的抗体的重链和轻链和上述IGF-1R VL-VH交换重链和轻链***HC***和LC***,由此两条重链均通过“杵-进入-臼”而被修饰)。
序列表
<110>霍夫曼-拉罗奇有限公司
<120>二价双特异性抗体
<130>24678EP
<150>EP 07024864
<151>2007-12-21
<160>12
<170>PatentIn version 3.2
<210>1
<211>467
<212>PRT
<213>人工的
<220>
<223>野生型<IGF-1R>抗体重链的氨基酸序列
<400>1
Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg Gly
1 5 10 15
Val Gln Cys Gln Val Glu Leu Val Glu Ser Gly Gly Gly Val Val Gln
20 25 30
Pro Gly Arg Ser Gln Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
35 40 45
Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
50 55 60
Glu Trp Val Ala Ile Ile Trp Phe Asp Gly Ser Ser Thr Tyr Tyr Ala
65 70 75 80
Asp Ser Val Arg Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn
85 90 95
Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
100 105 110
Tyr Phe Cys Ala Arg Glu Leu Gly Arg Arg Tyr Phe Asp Leu Trp Gly
115 120 125
Arg Gly Thr Leu Val Ser Val Ser Ser Ala Ser Thr Lys Gly Pro Ser
130 135 140
Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala
145 150 155 160
Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val
165 170 175
Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala
180 185 190
Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val
195 200 205
Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His
210 215 220
Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys
225 230 235 240
Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly
245 250 255
Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met
260 265 270
Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His
275 280 285
Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val
290 295 300
His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr
305 310 315 320
Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly
325 330 335
Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile
340 345 350
Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val
355 360 365
Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser
370 375 380
Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu
385 390 395 400
Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro
405 410 415
Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val
420 425 430
Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met
435 440 445
His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser
450 455 460
Pro Gly Lys
465
<210>2
<211>235
<212>PRT
<213>人工的
<220>
<223>野生型<IGF-1R>抗体轻链的氨基酸序列
<400>2
Met Glu Ala Pro Ala Gln Leu Leu Phe Leu Leu Leu Leu Trp Leu Pro
1 5 10 15
Asp Thr Thr Gly Glu Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser
20 25 30
Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser
35 40 45
Val Ser Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro
50 55 60
Arg Leu Leu Ile Tyr Asp Ala Ser Lys Arg Ala Thr Gly Ile Pro Ala
65 70 75 80
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser
85 90 95
Ser Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Arg Ser
100 105 110
Lys Trp Pro Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ser Lys
115 120 125
Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu
130 135 140
Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe
145 150 155 160
Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln
165 170 175
Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser
180 185 190
Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu
195 200 205
Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser
210 215 220
Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
225 230 235
<210>3
<211>459
<212>PRT
<213>人工的
<220>
<223><IGF-1R>VL-VH交换抗体的重链***(HC***)的氨基酸序列,
其中重链结构域VH被替换为轻链结构域VL-变体A
<400>3
Met Glu Ala Pro Ala Gln Leu Leu Phe Leu Leu Leu Leu Trp Leu Pro
1 5 10 15
Asp Thr Thr Gly Glu Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser
20 25 30
Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser
35 40 45
Val Ser Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro
50 55 60
Arg Leu Leu Ile Tyr Asp Ala Ser Lys Arg Ala Thr Gly Ile Pro Ala
65 70 75 80
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser
85 90 95
Ser Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Arg Ser
100 105 110
Lys Trp Pro Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Ser Val Ser
115 120 125
Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser
130 135 140
Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp
145 150 155 160
Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr
165 170 175
Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr
180 185 190
Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln
195 200 205
Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp
210 215 220
Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro
225 230 235 240
Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro
245 250 255
Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr
260 265 270
Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn
275 280 285
Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg
290 295 300
Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val
305 310 315 320
Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser
325 330 335
Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys
340 345 350
Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp
355 360 365
Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe
370 375 380
Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu
385 390 395 400
Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe
405 410 415
Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly
420 425 430
Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr
435 440 445
Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
450 455
<210>4
<211>243
<212>PRT
<213>人工的
<220>
<223><IGF-1R>VL-VH交换抗体的轻链***(LC***)的氨基酸序列,
其中轻链结构域VL被替换为重链结构域VH-变体A
<400>4
Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg Gly
1 5 10 15
Val Gln Cys Gln Val Glu Leu Val Glu Ser Gly Gly Gly Val Val Gln
20 25 30
Pro Gly Arg Ser Gln Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
35 40 45
Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
50 55 60
Glu Trp Val Ala Ile Ile Trp Phe Asp Gly Ser Ser Thr Tyr Tyr Ala
65 70 75 80
Asp Ser Val Arg Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn
85 90 95
Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
100 105 110
Tyr Phe Cys Ala Arg Glu Leu Gly Arg Arg Tyr Phe Asp Leu Trp Gly
115 120 125
Arg Gly Thr Leu Val Glu Ser Lys Arg Thr Val Ala Ala Pro Ser Val
130 135 140
Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser
145 150 155 160
Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln
165 170 175
Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val
180 185 190
Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu
195 200 205
Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu
210 215 220
Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg
225 230 235 240
Gly Glu Cys
<210>5
<211>557
<212>PRT
<213>人工的
<220>
<223>IGF-1R胞外域His-链霉亲和素结合肽-标签(IGF-1R-His-SBP ECD)的氨基酸序列
<400>5
Met Lys Ser Gly Ser Gly Gly Gly Ser Pro Thr Ser Leu Trp Gly Leu
1 5 10 15
Leu Phe Leu Ser Ala Ala Leu Ser Leu Trp Pro Thr Ser Gly Glu Ile
20 25 30
Cys Gly Pro Gly Ile Asp Ile Arg Asn Asp Tyr Gln Gln Leu Lys Arg
35 40 45
Leu Glu Asn Cys Thr Val Ile Glu Gly Tyr Leu His Ile Leu Leu Ile
50 55 60
Ser Lys Ala Glu Asp Tyr Arg Ser Tyr Arg Phe Pro Lys Leu Thr Val
65 70 75 80
Ile Thr Glu Tyr Leu Leu Leu Phe Arg Val Ala Gly Leu Glu Ser Leu
85 90 95
Gly Asp Leu Phe Pro Asn Leu Thr Val Ile Arg Gly Trp Lys Leu Phe
100 105 110
Tyr Asn Tyr Ala Leu Val Ile Phe Glu Met Thr Asn Leu Lys Asp Ile
115 120 125
Gly Leu Tyr Asn Leu Arg Asn Ile Thr Arg Gly Ala Ile Arg Ile Glu
130 135 140
Lys Asn Ala Asp Leu Cys Tyr Leu Ser Thr Val Asp Trp Ser Leu Ile
145 150 155 160
Leu Asp Ala Val Ser Asn Asn Tyr Ile Val Gly Asn Lys Pro Pro Lys
165 170 175
Glu Cys Gly Asp Leu Cys Pro Gly Thr Met Glu Glu Lys Pro Met Cys
180 185 190
Glu Lys Thr Thr Ile Asn Asn Glu Tyr Asn Tyr Arg Cys Trp Thr Thr
195 200 205
Asn Arg Cys Gln Lys Met Cys Pro Ser Thr Cys Gly Lys Arg Ala Cys
210 215 220
Thr Glu Asn Asn Glu Cys Cys His Pro Glu Cys Leu Gly Ser Cys Ser
225 230 235 240
Ala Pro Asp Asn Asp Thr Ala Cys Val Ala Cys Arg His Tyr Tyr Tyr
245 250 255
Ala Gly Val Cys Val Pro Ala Cys Pro Pro Asn Thr Tyr Arg Phe Glu
260 265 270
Gly Trp Arg Cys Val Asp Arg Asp Phe Cys Ala Asn Ile Leu Ser Ala
275 280 285
Glu Ser Ser Asp Ser Glu Gly Phe Val Ile His Asp Gly Glu Cys Met
290 295 300
Gln Glu Cys Pro Ser Gly Phe Ile Arg Asn Gly Ser Gln Ser Met Tyr
305 310 315 320
Cys Ile Pro Cys Glu Gly Pro Cys Pro Lys Val Cys Glu Glu Glu Lys
325 330 335
Lys Thr Lys Thr Ile Asp Ser Val Thr Ser Ala Gln Met Leu Gln Gly
340 345 350
Cys Thr Ile Phe Lys Gly Asn Leu Leu Ile Asn Ile Arg Arg Gly Asn
355 360 365
Asn Ile Ala Ser Glu Leu Glu Asn Phe Met Gly Leu Ile Glu Val Val
370 375 380
Thr Gly Tyr Val Lys Ile Arg His Ser His Ala Leu Val Ser Leu Ser
385 390 395 400
Phe Leu Lys Asn Leu Arg Leu Ile Leu Gly Glu Glu Gln Leu Glu Gly
405 410 415
Asn Tyr Ser Phe Tyr Val Leu Asp Asn Gln Asn Leu Gln Gln Leu Trp
420 425 430
Asp Trp Asp His Arg Asn Leu Thr Ile Lys Ala Gly Lys Met Tyr Phe
435 440 445
Ala Phe Asn Pro Lys Leu Cys Val Ser Glu Ile Tyr Arg Met Glu Glu
450 455 460
Val Thr Gly Thr Lys Gly Arg Gln Ser Lys Gly Asp Ile Asn Thr Arg
465 470 475 480
Asn Asn Gly Glu Arg Ala Ser Cys Glu Ser Asp Val Ala Ala Ala Leu
485 490 495
Glu Val Leu Phe Gln Gly Pro Gly Thr His His His His His His Ser
500 505 510
Gly Asp Glu Lys Thr Thr Gly Trp Arg Gly Gly His Val Val Glu Gly
515 520 525
Leu Ala Gly Glu Leu Glu Gln Leu Arg Ala Arg Leu Glu His His Pro
530 535 540
Gln Gly Gln Arg Glu Pro Ser Gly Gly Cys Lys Leu Gly
545 550 555
<210>6
<211>471
<212>PRT
<213>人工的
<220>
<223>野生型血管生成素-2<ANGPT2>抗体重链的氨基酸序列
<400>6
Met Glu Leu Gly Leu Ser Trp Val Phe Leu Val Ala Ile Leu Glu Gly
1 5 10 15
Val Gln Cys Glu Val Gln Leu Val Gln Ser Gly Gly Gly Val Val Gln
20 25 30
Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
35 40 45
Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
50 55 60
Glu Trp Val Ser Tyr Ile Ser Ser Ser Gly Ser Thr Ile Tyr Tyr Ala
65 70 75 80
Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn
85 90 95
Ser Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
100 105 110
Tyr Tyr Cys Ala Arg Asp Leu Leu Asp Tyr Asp Ile Leu Thr Gly Tyr
115 120 125
Gly Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr
130 135 140
Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser
145 150 155 160
Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu
165 170 175
Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His
180 185 190
Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser
195 200 205
Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys
210 215 220
Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu
225 230 235 240
Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro
245 250 255
Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys
260 265 270
Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val
275 280 285
Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp
290 295 300
Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr
305 310 315 320
Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp
325 330 335
Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu
340 345 350
Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg
355 360 365
Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys
370 375 380
Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp
385 390 395 400
Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys
405 410 415
Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser
420 425 430
Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser
435 440 445
Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser
450 455 460
Leu Ser Leu Ser Pro Gly Lys
465 470
<210>7
<211>219
<212>PRT
<213>人工的
<220>
<223>野生型血管生成素-2<ANGPT2>抗体轻链的氨基酸序列
<400>7
Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly
1 5 10 15
Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu His Ser
20 25 30
Asn Gly Tyr Asn Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln Ser
35 40 45
Pro Gln Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala Ser Gly Val Pro
50 55 60
Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
65 70 75 80
Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln Gly
85 90 95
Thr His Trp Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys
100 105 110
Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu
115 120 125
Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe
130 135 140
Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln
145 150 155 160
Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser
165 170 175
Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu
180 185 190
Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser
195 200 205
Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
210 215
<210>8
<211>107
<212>PRT
<213>人工的
<220>
<223>用于杵-进入-臼技术中的具有T366W交换的CH3结构域(杵)的氨基酸序列
<400>8
Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu
1 5 10 15
Glu Met Thr Lys Asn Gln Val Ser Leu Trp Cys Leu Val Lys Gly Phe
20 25 30
Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu
35 40 45
Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe
50 55 60
Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly
65 70 75 80
Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr
85 90 95
Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
100 105
<210>9
<211>107
<212>PRT
<213>人工的
<220>
<223>用于杵-进入-臼技术中的具有T366S,L368A,Y407V交换的CH3结构域(臼)的氨基酸序列
<400>9
Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp
1 5 10 15
Glu Leu Thr Lys Asn Gln Val Ser Leu Ser Cys Ala Val Lys Gly Phe
20 25 30
Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu
35 40 45
Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe
50 55 60
Phe Leu Val Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly
65 70 75 80
Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr
85 90 95
Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
100 105
<210>10
<211>440
<212>PRT
<213>人工的
<220>
<223><IGF-1R>VL-VH交换抗体的重链***(HC***)的氨基酸序列,
其中重链结构域VH被替换为轻链结构域VL-变体B
<400>10
Glu Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly
1 5 10 15
Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Tyr
20 25 30
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile
35 40 45
Tyr Asp Ala Ser Lys Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu Pro
65 70 75 80
Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Arg Ser Lys Trp Pro Pro
85 90 95
Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ser Lys Ser Ser Ala Ser
100 105 110
Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr
115 120 125
Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro
130 135 140
Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val
145 150 155 160
His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser
165 170 175
Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile
180 185 190
Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val
195 200 205
Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala
210 215 220
Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro
225 230 235 240
Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val
245 250 255
Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val
260 265 270
Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln
275 280 285
Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln
290 295 300
Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala
305 310 315 320
Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
325 330 335
Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr
340 345 350
Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser
355 360 365
Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr
370 375 380
Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr
385 390 395 400
Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe
405 410 415
Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys
420 425 430
Ser Leu Ser Leu Ser Pro Gly Lys
435 440
<210>11
<211>225
<212>PRT
<213>人工的
<220>
<223><IGG-1R>VL-VH交换抗体的轻链***(LC***)的氨基酸序列,
其中轻链结构域VL被替换为重链结构域VH-变体B
<400>11
Gln Val Glu Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15
Ser Gln Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45
Ala Ile Ile Trp Phe Asp Gly Ser Ser Thr Tyr Tyr Ala Asp Ser Val
50 55 60
Arg Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Phe Cys
85 90 95
Ala Arg Glu Leu Gly Arg Arg Tyr Phe Asp Leu Trp Gly Arg Gly Thr
100 105 110
Leu Val Ser Val Ser Ser Ala Ser Val Ala Ala Pro Ser Val Phe Ile
115 120 125
Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val
130 135 140
Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys
145 150 155 160
Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu
165 170 175
Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu
180 185 190
Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr
195 200 205
His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu
210 215 220
Cys
225
<210>12
<211>557
<212>PRT
<213>人工的
<220>
<223>IGF-1R胞外域His-链霉亲和素结合肽-标签(IGF-1R-His-SBP ECD)的氨基酸序列
<400>12
Met Lys Ser Gly Ser Gly Gly Gly Ser Pro Thr Ser Leu Trp Gly Leu
1 5 10 15
Leu Phe Leu Ser Ala Ala Leu Ser Leu Trp Pro Thr Ser Gly Glu Ile
20 25 30
Cys Gly Pro Gly Ile Asp Ile Arg Asn Asp Tyr Gln Gln Leu Lys Arg
35 40 45
Leu Glu Asn Cys Thr Val Ile Glu Gly Tyr Leu His Ile Leu Leu Ile
50 55 60
Ser Lys Ala Glu Asp Tyr Arg Ser Tyr Arg Phe Pro Lys Leu Thr Val
65 70 75 80
Ile Thr Glu Tyr Leu Leu Leu Phe Arg Val Ala Gly Leu Glu Ser Leu
85 90 95
Gly Asp Leu Phe Pro Asn Leu Thr Val Ile Arg Gly Trp Lys Leu Phe
100 105 110
Tyr Asn Tyr Ala Leu Val Ile Phe Glu Met Thr Asn Leu Lys Asp Ile
115 120 125
Gly Leu Tyr Asn Leu Arg Asn Ile Thr Arg Gly Ala Ile Arg Ile Glu
130 135 140
Lys Asn Ala Asp Leu Cys Tyr Leu Ser Thr Val Asp Trp Ser Leu Ile
145 150 155 160
Leu Asp Ala Val Ser Asn Asn Tyr Ile Val Gly Asn Lys Pro Pro Lys
165 170 175
Glu Cys Gly Asp Leu Cys Pro Gly Thr Met Glu Glu Lys Pro Met Cys
180 185 190
Glu Lys Thr Thr Ile Asn Asn Glu Tyr Asn Tyr Arg Cys Trp Thr Thr
195 200 205
Asn Arg Cys Gln Lys Met Cys Pro Ser Thr Cys Gly Lys Arg Ala Cys
210 215 220
Thr Glu Asn Asn Glu Cys Cys His Pro Glu Cys Leu Gly Ser Cys Ser
225 230 235 240
Ala Pro Asp Asn Asp Thr Ala Cys Val Ala Cys Arg His Tyr Tyr Tyr
245 250 255
Ala Gly Val Cys Val Pro Ala Cys Pro Pro Asn Thr Tyr Arg Phe Glu
260 265 270
Gly Trp Arg Cys Val Asp Arg Asp Phe Cys Ala Asn Ile Leu Ser Ala
275 280 285
Glu Ser Ser Asp Ser Glu Gly Phe Val Ile His Asp Gly Glu Cys Met
290 295 300
Gln Glu Cys Pro Ser Gly Phe Ile Arg Asn Gly Ser Gln Ser Met Tyr
305 310 315 320
Cys Ile Pro Cys Glu Gly Pro Cys Pro Lys Val Cys Glu Glu Glu Lys
325 330 335
Lys Thr Lys Thr Ile Asp Ser Val Thr Ser Ala Gln Met Leu Gln Gly
340 345 350
Cys Thr Ile Phe Lys Gly Asn Leu Leu Ile Asn Ile Arg Arg Gly Asn
355 360 365
Asn Ile Ala Ser Glu Leu Glu Asn Phe Met Gly Leu Ile Glu Val Val
370 375 380
Thr Gly Tyr Val Lys Ile Arg His Ser His Ala Leu Val Ser Leu Ser
385 390 395 400
Phe Leu Lys Asn Leu Arg Leu Ile Leu Gly Glu Glu Gln Leu Glu Gly
405 410 415
Asn Tyr Ser Phe Tyr Val Leu Asp Asn Gln Asn Leu Gln Gln Leu Trp
420 425 430
Asp Trp Asp His Arg Asn Leu Thr Ile Lys Ala Gly Lys Met Tyr Phe
435 440 445
Ala Phe Asn Pro Lys Leu Cys Val Ser Glu Ile Tyr Arg Met Glu Glu
450 455 460
Val Thr Gly Thr Lys Gly Arg Gln Ser Lys Gly Asp Ile Asn Thr Arg
465 470 475 480
Asn Asn Gly Glu Arg Ala Ser Cys Glu Ser Asp Val Ala Ala Ala Leu
485 490 495
Glu Val Leu Phe Gln Gly Pro Gly Thr His His His His His His Ser
500 505 510
Gly Asp Glu Lys Thr Thr Gly Trp Arg Gly Gly His Val Val Glu Gly
515 520 525
Leu Ala Gly Glu Leu Glu Gln Leu Arg Ala Arg Leu Glu His His Pro
530 535 540
Gln Gly Gln Arg Glu Pro Ser Gly Gly Cys Lys Leu Gly
545 550 555
Claims (10)
1.二价双特异性抗体,其包括:
a)特异性结合第一抗原的抗体的轻链和重链;和
b)特异性结合第二抗原的抗体的轻链和重链,其中可变结构域VL和VH相互替换。
2.根据权利要求1所述的抗体,其特征在于
一条重链的CH3结构域和另一条重链的CH3结构域各自在包括抗体CH3结构域之间的初始界面的界面处相接触;
其中所述界面被改变以促进形成所述二价双特异性抗体,其中所述改变的特征在于:
a)改变一条重链的CH3结构域,
由此,在与所述二价双特异性抗体内的另一条重链的CH3结构域的初始界面相接触的一条重链的CH3结构域的初始界面内,
氨基酸残基被替换为具有较大侧链体积的氨基酸残基,由此在一条重链的CH3结构域的界面内生成凸起,所述凸起可以定位在另一条重链的CH3结构域的界面内的凹洞中
且
b)改变另一条重链的CH3结构域,
由此,在与所述二价双特异性抗体内的第一CH3结构域的初始界面相接触的第二CH3结构域的初始界面内,
氨基酸残基被替换为具有较小侧链体积的氨基酸残基,由此在所述第二CH3结构域的界面内生成凹洞,在所述凹洞中可以定位所述第一CH3结构域的界面内的凸起。
3.根据权利要求2所述的抗体,其特征在于
所述具有较大侧链体积的氨基酸残基选自由精氨酸(R),苯丙氨酸(F),酪氨酸(Y),色氨酸(W)组成的组。
4.根据权利要求2或3中任一项所述的抗体,其特征在于
所述具有较小侧链体积的氨基酸残基选自由丙氨酸(A),丝氨酸(S),苏氨酸(T),缬氨酸(V)组成的组。
5.根据权利要求2-4中任一项所述的抗体,其特征在于
通过引入半胱氨酸(C)作为每个CH3结构域的相应位置处的氨基酸来进一步改变两个CH3结构域。
6.根据权利要求1所述的抗体,其特征在于
两条重链的恒定重链结构域CH3之一被替换为恒定重链结构域CH1;且另一个恒定重链结构域CH3被替换为恒定轻链结构域CL。
7.一种用于制备根据权利要求1所述的二价双特异性抗体的方法,其包括下列步骤:
a)用以下各项转化宿主细胞,
-载体,其包括编码特异性结合第一抗原的抗体的轻链和重链的核酸分子,
-载体,其包括编码特异性结合第二抗原的抗体的轻链和重链的核酸分子,其中可变结构域VL和VH相互替换;
b)在容许合成所述抗体分子的条件下培养所述宿主细胞;和
c)从所述培养物中回收所述抗体分子。
8.一种宿主细胞,其包括
-载体,其包括编码特异性结合第一抗原的抗体的轻链和重链的核酸分子;
-载体,其包括编码特异性结合第二抗原的抗体的轻链和重链的核酸分子,其中可变结构域VL和VH相互替换。
9.一种根据权利要求1-6所述的二价双特异性抗体的组合物,优选药物或诊断组合物。
10.一种药物组合物,其包括根据权利要求1-6所述的二价双特异性抗体和至少一种药用赋形剂。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07024864 | 2007-12-21 | ||
EP07024864.6 | 2007-12-21 | ||
PCT/EP2008/010703 WO2009080252A1 (en) | 2007-12-21 | 2008-12-16 | Bivalent, bispecific antibodies |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101903404A true CN101903404A (zh) | 2010-12-01 |
CN101903404B CN101903404B (zh) | 2013-07-17 |
Family
ID=39093026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008801219004A Active CN101903404B (zh) | 2007-12-21 | 2008-12-16 | 二价双特异性抗体 |
Country Status (22)
Country | Link |
---|---|
US (5) | US20090162359A1 (zh) |
EP (1) | EP2225279B1 (zh) |
JP (1) | JP5281097B2 (zh) |
KR (1) | KR101249607B1 (zh) |
CN (1) | CN101903404B (zh) |
AR (1) | AR071547A1 (zh) |
AU (1) | AU2008340693A1 (zh) |
BR (1) | BRPI0821791B1 (zh) |
CA (1) | CA2709023C (zh) |
CL (1) | CL2008003781A1 (zh) |
CO (1) | CO6280542A2 (zh) |
CR (1) | CR11460A (zh) |
EC (1) | ECSP10010270A (zh) |
ES (1) | ES2469791T3 (zh) |
IL (1) | IL206161A0 (zh) |
MA (1) | MA31904B1 (zh) |
MX (1) | MX2010006396A (zh) |
NZ (1) | NZ585627A (zh) |
PE (1) | PE20091172A1 (zh) |
RU (1) | RU2587616C2 (zh) |
TW (1) | TWI359027B (zh) |
WO (1) | WO2009080252A1 (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103502271A (zh) * | 2011-02-28 | 2014-01-08 | 霍夫曼-拉罗奇有限公司 | 抗原结合蛋白 |
CN104379604A (zh) * | 2012-05-24 | 2015-02-25 | 弗·哈夫曼-拉罗切有限公司 | 多特异性抗体 |
CN104936986A (zh) * | 2013-02-26 | 2015-09-23 | 罗切格利卡特公司 | 双特异性t细胞活化性抗原结合分子 |
CN107325184A (zh) * | 2017-08-08 | 2017-11-07 | 安徽大学 | 一种靶向egfr和her2的双特异性抗体及其应用 |
CN107949574A (zh) * | 2015-10-02 | 2018-04-20 | 豪夫迈·罗氏有限公司 | 双特异性t细胞活化性抗原结合分子 |
CN108601830A (zh) * | 2015-12-18 | 2018-09-28 | 比奥根Ma公司 | 双特异性抗体平台 |
CN111378045A (zh) * | 2018-12-28 | 2020-07-07 | 长春金赛药业有限责任公司 | 二价双特异性抗体及其制备方法、编码基因、宿主细胞、组合物 |
CN112062853A (zh) * | 2013-12-20 | 2020-12-11 | 豪夫迈·罗氏有限公司 | 双特异性her2抗体及使用方法 |
Families Citing this family (437)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE47770E1 (en) | 2002-07-18 | 2019-12-17 | Merus N.V. | Recombinant production of mixtures of antibodies |
CN101537180B (zh) | 2002-07-18 | 2016-02-10 | 莫鲁斯有限公司 | 抗体混合物的重组生产 |
EP3345616A1 (en) | 2006-03-31 | 2018-07-11 | Chugai Seiyaku Kabushiki Kaisha | Antibody modification method for purifying bispecific antibody |
US20090162359A1 (en) | 2007-12-21 | 2009-06-25 | Christian Klein | Bivalent, bispecific antibodies |
US9266967B2 (en) | 2007-12-21 | 2016-02-23 | Hoffmann-La Roche, Inc. | Bivalent, bispecific antibodies |
US8242247B2 (en) * | 2007-12-21 | 2012-08-14 | Hoffmann-La Roche Inc. | Bivalent, bispecific antibodies |
US8268314B2 (en) | 2008-10-08 | 2012-09-18 | Hoffmann-La Roche Inc. | Bispecific anti-VEGF/anti-ANG-2 antibodies |
CA2756244A1 (en) * | 2009-04-02 | 2010-10-07 | Roche Glycart Ag | Multispecific antibodies comprising full length antibodies and single chain fab fragments |
SG175078A1 (en) | 2009-04-07 | 2011-11-28 | Roche Glycart Ag | Bispecific anti-erbb-1/anti-c-met antibodies |
MX2011010166A (es) | 2009-04-07 | 2011-10-11 | Roche Glycart Ag | Anticuerpos biespecificos anti-erbb-3/anti-c-met. |
MX2011010168A (es) | 2009-04-07 | 2011-10-11 | Roche Glycart Ag | Anticuerpos biespecificos, trivalentes. |
TW201100543A (en) * | 2009-05-27 | 2011-01-01 | Hoffmann La Roche | Tri-or tetraspecific antibodies |
US9676845B2 (en) | 2009-06-16 | 2017-06-13 | Hoffmann-La Roche, Inc. | Bispecific antigen binding proteins |
US8703132B2 (en) | 2009-06-18 | 2014-04-22 | Hoffmann-La Roche, Inc. | Bispecific, tetravalent antigen binding proteins |
RU2015153109A (ru) | 2009-09-16 | 2019-01-15 | Дженентек, Инк. | Содержащие суперспираль и/или привязку белковые комплексы и их применения |
KR101762467B1 (ko) | 2010-01-29 | 2017-07-27 | 도레이 카부시키가이샤 | 폴리락트산계 수지 시트 |
TW201138821A (en) | 2010-03-26 | 2011-11-16 | Roche Glycart Ag | Bispecific antibodies |
TWI426920B (zh) | 2010-03-26 | 2014-02-21 | Hoffmann La Roche | 雙專一性、雙價抗-vegf/抗-ang-2抗體 |
WO2011147834A1 (en) | 2010-05-26 | 2011-12-01 | Roche Glycart Ag | Antibodies against cd19 and uses thereof |
BR112012033162A2 (pt) | 2010-07-19 | 2016-10-25 | Hoffmann La Roche | método de identificação de pacientes, método de previsão da capacidade de reação de pacientes, método de determinação da probabilidade de um paciente com câncer exibir benefícios de terapia anticâncer, método de otimização da eficácia terapêutica, método de tratamento de câncer, kit e conjunto de compostos |
EP2596359A1 (en) | 2010-07-19 | 2013-05-29 | F.Hoffmann-La Roche Ag | Method to identify a patient with an increased likelihood of responding to an anti-cancer therapy |
WO2012010582A1 (en) | 2010-07-21 | 2012-01-26 | Roche Glycart Ag | Anti-cxcr5 antibodies and methods of use |
BR112013002532A2 (pt) | 2010-08-05 | 2016-05-31 | Hoffmann La Roche | proteína de fusão de citocina anti-viral do anticorpo anti-mhc |
JP5758004B2 (ja) | 2010-08-24 | 2015-08-05 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | ジスルフィドによって安定化されたFv断片を含む二重特異性抗体 |
AR084053A1 (es) | 2010-11-30 | 2013-04-17 | Chugai Pharmaceutical Co Ltd | Agente terapeutico que induce citotoxicidad |
SG191153A1 (en) | 2010-12-23 | 2013-07-31 | Hoffmann La Roche | Polypeptide-polynucleotide-complex and its use in targeted effector moiety delivery |
KR101572338B1 (ko) | 2011-02-28 | 2015-11-26 | 에프. 호프만-라 로슈 아게 | 1가 항원 결합 단백질 |
TWI671315B (zh) * | 2011-03-28 | 2019-09-11 | 法商賽諾菲公司 | 具有交叉結合區定向之雙重可變區類抗體結合蛋白 |
EP2699600A1 (en) | 2011-04-20 | 2014-02-26 | Roche Glycart AG | Method and constructs for the ph dependent passage of the blood-brain-barrier |
EP2714738B1 (en) * | 2011-05-24 | 2018-10-10 | Zyngenia, Inc. | Multivalent and monovalent multispecific complexes and their uses |
CA2837914A1 (en) | 2011-06-15 | 2012-12-20 | F. Hoffmann-La Roche Ag | Anti-human epo receptor antibodies and methods of use |
WO2012177775A1 (en) * | 2011-06-20 | 2012-12-27 | Akrivis Technologies, Llc | Reagents and methods for bispecific antibody-based binding of target molecules |
CN103649125A (zh) | 2011-06-22 | 2014-03-19 | 霍夫曼-拉罗奇有限公司 | 利用包含mhc i类的复合物通过循环中的病毒特异性细胞毒性t细胞清除靶细胞 |
US20130058937A1 (en) * | 2011-08-23 | 2013-03-07 | Johannes Auer | Bispecific antigen binding molecules |
KR101681818B1 (ko) | 2011-08-23 | 2016-12-01 | 로슈 글리카트 아게 | T 세포 활성화 항원 및 종양 항원에 대해 특이적인 이중특이적 항체 및 이의 사용 방법 |
EP2758435A1 (en) | 2011-09-23 | 2014-07-30 | Roche Glycart AG | Bispecific anti-egfr/anti igf-1r antibodies |
CN109111524B (zh) | 2011-10-31 | 2022-10-28 | 中外制药株式会社 | 控制了重链与轻链的缔合的抗原结合分子 |
CA2853917A1 (en) | 2011-12-19 | 2013-06-27 | F. Hoffmann-La Roche Ag | Method for the detection of free binding partner of a multispecific binder |
CA3125875A1 (en) | 2011-12-22 | 2013-06-27 | F.Hoffmann-La Roche Ag | Expression vector organization, novel production cell generation methods and their use for the recombinant production of polypeptides |
CA2854249C (en) | 2011-12-22 | 2022-05-03 | F. Hoffmann-La Roche Ag | Expression vector element combinations, novel production cell generation methods and their use for the recombinant production of polypeptides |
EP2794662A1 (en) | 2011-12-22 | 2014-10-29 | F.Hoffmann-La Roche Ag | Full length antibody display system for eukaryotic cells and its use |
CN104105966B (zh) | 2012-02-01 | 2016-10-26 | 弗·哈夫曼-拉罗切有限公司 | 用于检测多特异性结合物的结合搭档的方法 |
EP2809682B1 (en) | 2012-02-03 | 2020-04-08 | F.Hoffmann-La Roche Ag | Bispecific antibody molecules with antigen-transfected t-cells and their use in medicine |
MX2014009565A (es) | 2012-02-10 | 2014-11-10 | Genentech Inc | Anticuerpos monocatenarios y otros heteromultimeros. |
US20150018241A1 (en) | 2012-02-15 | 2015-01-15 | Hoffmann-La Roche Inc. | Fc-receptor based affinity chromatography |
BR112014024903A2 (pt) | 2012-04-05 | 2017-07-11 | Hoffmann La Roche | anticorpos biespecíficos contra tweak humanao e il17 humana e seus usos |
SG10201913376XA (en) | 2012-04-20 | 2020-02-27 | Merus Nv | Methods and means for the production of ig-like molecules |
US9062120B2 (en) | 2012-05-02 | 2015-06-23 | Janssen Biotech, Inc. | Binding proteins having tethered light chains |
MX2014014804A (es) | 2012-06-27 | 2015-02-12 | Hoffmann La Roche | Metodo para la elaboracion de conjugados de la region fc de anticuerpos que comprenden por lo menos una entidad de union que se une especificamente a un objetivo y usos del mismo. |
JP6203838B2 (ja) | 2012-06-27 | 2017-09-27 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | 少なくとも2つの異なる結合実体を含む、テーラーメイドの高度に選択的かつ多重特異的なターゲティング実体を選択および作製するための方法、ならびにその使用 |
SI2869848T1 (sl) | 2012-07-04 | 2017-01-31 | F. Hoffmann-La Roche Ag | Kovalentno vezani konjugati antigen-protitelo |
RU2630296C2 (ru) | 2012-07-04 | 2017-09-06 | Ф. Хоффманн-Ля Рош Аг | Антитела к биотину и способы их применения |
WO2014006118A1 (en) | 2012-07-04 | 2014-01-09 | F. Hoffmann-La Roche Ag | Anti-theophylline antibodies and methods of use |
MA37794B1 (fr) | 2012-07-13 | 2017-07-31 | Roche Glycart Ag | Anticorps bispécifiques anti-vegf/anti-ang-2 et leur utilisation dans le cadre du traitement de pathologies vasculaires oculaires |
EP2872893B1 (en) | 2012-07-13 | 2017-03-29 | F. Hoffmann-La Roche AG | Method for the detection of a multispecific antibody |
EP2895496B1 (en) | 2012-09-14 | 2017-06-07 | F. Hoffmann-La Roche AG | Method for the production and selection of molecules comprising at least two different entities and uses thereof |
ES2692951T3 (es) | 2012-09-27 | 2018-12-05 | Merus N.V. | Anticuerpos IgG biespecíficos como acopladores de células T |
BR112015007120A2 (pt) | 2012-10-08 | 2017-12-12 | Roche Glycart Ag | anticorpo biespecífico, composição farmacêutica, uso, célula hospedeira e método de produção de um anticorpo |
EP2917243B1 (en) | 2012-11-08 | 2018-03-14 | F.Hoffmann-La Roche Ag | Her3 antigen binding proteins binding to the beta-hairpin of her3 |
TW202423993A (zh) * | 2012-11-14 | 2024-06-16 | 美商再生元醫藥公司 | 重組細胞表面捕捉蛋白質 |
WO2014122143A1 (en) | 2013-02-05 | 2014-08-14 | Engmab Ag | Method for the selection of antibodies against bcma |
EP2762497A1 (en) | 2013-02-05 | 2014-08-06 | EngMab AG | Bispecific antibodies against CD3epsilon and BCMA |
EP2762496A1 (en) | 2013-02-05 | 2014-08-06 | EngMab AG | Method for the selection of antibodies against BCMA |
JP6499087B2 (ja) | 2013-02-26 | 2019-04-10 | ロシュ グリクアート アーゲー | 二重特異性t細胞活性化抗原結合分子 |
JP2016512421A (ja) * | 2013-02-26 | 2016-04-28 | ロシュ グリクアート アーゲー | 二重特異性t細胞活性化抗原結合分子 |
US10150800B2 (en) | 2013-03-15 | 2018-12-11 | Zyngenia, Inc. | EGFR-binding modular recognition domains |
UA118028C2 (uk) | 2013-04-03 | 2018-11-12 | Рош Глікарт Аг | Біспецифічне антитіло, специфічне щодо fap і dr5, антитіло, специфічне щодо dr5, і спосіб їх застосування |
EP2789630A1 (en) | 2013-04-09 | 2014-10-15 | EngMab AG | Bispecific antibodies against CD3e and ROR1 |
EP3878866A1 (en) | 2013-04-29 | 2021-09-15 | F. Hoffmann-La Roche AG | Fc-receptor binding modified asymmetric antibodies and methods of use |
EP3327034A1 (en) | 2013-04-29 | 2018-05-30 | F. Hoffmann-La Roche AG | Fcrn-binding abolished anti-igf-1r antibodies and their use in the treatment of vascular eye diseases |
SG11201508911PA (en) | 2013-04-29 | 2015-11-27 | Hoffmann La Roche | Human fcrn-binding modified antibodies and methods of use |
WO2015025054A1 (en) | 2013-08-22 | 2015-02-26 | Medizinische Universität Wien | Dye-specific antibodies for prestained molecular weight markers and methods producing the same |
AU2014325063B2 (en) | 2013-09-27 | 2019-10-31 | Chugai Seiyaku Kabushiki Kaisha | Method for producing polypeptide heteromultimer |
CN105612182B (zh) | 2013-10-11 | 2019-12-10 | 豪夫迈·罗氏有限公司 | 多特异性结构域交换共有可变轻链抗体 |
CN105722857B (zh) | 2013-11-21 | 2023-03-24 | 豪夫迈·罗氏有限公司 | 抗-α-突触核蛋白抗体及使用方法 |
CA2932958A1 (en) | 2013-12-20 | 2015-06-25 | F. Hoffmann-La Roche Ag | Humanized anti-tau(ps422) antibodies and methods of use |
EP3089759B1 (en) | 2014-01-03 | 2018-12-05 | F. Hoffmann-La Roche AG | Covalently linked polypeptide toxin-antibody conjugates |
KR102278979B1 (ko) | 2014-01-03 | 2021-07-19 | 에프. 호프만-라 로슈 아게 | 공유적으로 연결된 헬리카-항-헬리카 항체 접합체 및 그의 용도 |
PL3089996T3 (pl) | 2014-01-03 | 2021-12-13 | F. Hoffmann-La Roche Ag | Dwuswoiste przeciwciała przeciw haptenowi/przeciw receptorowi występującemu w barierze krew-mózg, ich kompleksy i ich zastosowanie jako przenośniki wahadłowe występujące w barierze krew-mózg |
WO2015101588A1 (en) | 2014-01-06 | 2015-07-09 | F. Hoffmann-La Roche Ag | Monovalent blood brain barrier shuttle modules |
JP6786392B2 (ja) | 2014-01-15 | 2020-11-18 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | FcRn結合特性が改変され、プロテインA結合特性が保持されているFc領域変異体 |
JOP20200094A1 (ar) | 2014-01-24 | 2017-06-16 | Dana Farber Cancer Inst Inc | جزيئات جسم مضاد لـ pd-1 واستخداماتها |
JOP20200096A1 (ar) | 2014-01-31 | 2017-06-16 | Children’S Medical Center Corp | جزيئات جسم مضاد لـ tim-3 واستخداماتها |
CA2941077A1 (en) | 2014-02-28 | 2015-09-03 | Merus N.V. | Antibody that binds erbb-2 and erbb-3 |
US10844127B2 (en) | 2014-02-28 | 2020-11-24 | Merus N.V. | Antibodies that bind EGFR and ErbB3 |
WO2015138920A1 (en) | 2014-03-14 | 2015-09-17 | Novartis Ag | Antibody molecules to lag-3 and uses thereof |
US20170335281A1 (en) | 2014-03-15 | 2017-11-23 | Novartis Ag | Treatment of cancer using chimeric antigen receptor |
UA117289C2 (uk) * | 2014-04-02 | 2018-07-10 | Ф. Хоффманн-Ля Рош Аг | Мультиспецифічне антитіло |
KR102376287B1 (ko) | 2014-04-02 | 2022-03-17 | 에프. 호프만-라 로슈 아게 | 다중특이적 항체 경쇄 잘못짝짓기의 검출 방법 |
ES2900898T3 (es) | 2014-04-07 | 2022-03-18 | Chugai Pharmaceutical Co Ltd | Anticuerpos biespecíficos inmunoactivadores |
KR102603417B1 (ko) | 2014-05-06 | 2023-11-20 | 제넨테크, 인크. | 포유동물 세포를 사용한 이종다량체 단백질의 생산 |
AU2015260230A1 (en) | 2014-05-13 | 2016-11-17 | Chugai Seiyaku Kabushiki Kaisha | T cell-redirected antigen-binding molecule for cells having immunosuppression function |
AR100978A1 (es) | 2014-06-26 | 2016-11-16 | Hoffmann La Roche | LANZADERAS CEREBRALES DE ANTICUERPO HUMANIZADO ANTI-Tau(pS422) Y USOS DE LAS MISMAS |
CA2947504A1 (en) | 2014-06-26 | 2015-12-30 | F. Hoffmann-La Roche Ag | Anti-brdu antibodies and methods of use |
TW201623329A (zh) | 2014-06-30 | 2016-07-01 | 亞佛瑞司股份有限公司 | 針對骨調素截斷變異體的疫苗及單株抗體暨其用途 |
MX2016017393A (es) | 2014-07-01 | 2017-09-05 | Pfizer | Diacuerpos heterodimericos biespecificos y sus usos. |
EP3166966A1 (en) | 2014-07-10 | 2017-05-17 | Affiris AG | Substances and methods for the use in prevention and/or treatment in huntington's disease |
WO2016014553A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Sortase synthesized chimeric antigen receptors |
WO2016014530A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Combinations of low, immune enhancing. doses of mtor inhibitors and cars |
AU2015292744C1 (en) | 2014-07-21 | 2021-01-21 | Novartis Ag | Treatment of cancer using humanized anti-BCMA chimeric antigen receptor |
AU2015292755B2 (en) | 2014-07-21 | 2020-11-12 | Novartis Ag | Treatment of cancer using a CD33 chimeric antigen receptor |
ES2781175T3 (es) | 2014-07-31 | 2020-08-31 | Novartis Ag | Subconjunto optimizado de células T que contienen un receptor de antígeno quimérico |
EP2982692A1 (en) * | 2014-08-04 | 2016-02-10 | EngMab AG | Bispecific antibodies against CD3epsilon and BCMA |
ES2979976T3 (es) | 2014-08-04 | 2024-09-27 | Hoffmann La Roche | Moléculas de unión a antígeno activadoras de linfocitos T biespecíficas |
WO2016025880A1 (en) | 2014-08-14 | 2016-02-18 | Novartis Ag | Treatment of cancer using gfr alpha-4 chimeric antigen receptor |
TWI719946B (zh) | 2014-08-19 | 2021-03-01 | 瑞士商諾華公司 | 使用cd123嵌合抗原受體治療癌症 |
KR102590396B1 (ko) | 2014-09-17 | 2023-10-19 | 노파르티스 아게 | 입양 면역요법을 위한 키메라 수용체에 의한 세포독성 세포의 표적화 |
MA40764A (fr) | 2014-09-26 | 2017-08-01 | Chugai Pharmaceutical Co Ltd | Agent thérapeutique induisant une cytotoxicité |
US11952421B2 (en) | 2014-10-09 | 2024-04-09 | Bristol-Myers Squibb Company | Bispecific antibodies against CD3EPSILON and ROR1 |
TWI716362B (zh) | 2014-10-14 | 2021-01-21 | 瑞士商諾華公司 | 針對pd-l1之抗體分子及其用途 |
AR102521A1 (es) | 2014-11-06 | 2017-03-08 | Hoffmann La Roche | Variantes de región fc con unión de fcrn modificada y métodos de utilización |
KR20170076697A (ko) | 2014-11-06 | 2017-07-04 | 에프. 호프만-라 로슈 아게 | 개질된 FCRN-결합 특성 및 단백질 A-결합 특성을 가진 Fc-영역 변이체 |
KR20170082594A (ko) | 2014-11-10 | 2017-07-14 | 에프. 호프만-라 로슈 아게 | 항-ang2 항체 및 사용 방법 |
CA2963175A1 (en) | 2014-11-10 | 2016-05-19 | F. Hoffmann-La Roche Ag | Bispecific antibodies and methods of use in ophthalmology |
KR20170087486A (ko) | 2014-11-20 | 2017-07-28 | 에프. 호프만-라 로슈 아게 | 일반 경쇄 및 이의 사용 방법 |
EP3023437A1 (en) | 2014-11-20 | 2016-05-25 | EngMab AG | Bispecific antibodies against CD3epsilon and BCMA |
MX2017006610A (es) | 2014-11-20 | 2017-09-29 | Hoffmann La Roche | Terapia combinada de moleculas de union a antigeno biespecificas activadoras de celulas t y antagonistas de union de eje de pd-1. |
WO2016087514A1 (en) | 2014-12-02 | 2016-06-09 | Cemm - Forschungszentrum Für Molekulare Medizin Gmbh | Anti-mutant calreticulin antibodies and their use in the diagnosis and therapy of myeloid malignancies |
PL3227332T3 (pl) | 2014-12-03 | 2020-06-15 | F. Hoffmann-La Roche Ag | Wielospecyficzne przeciwciała |
WO2016090034A2 (en) | 2014-12-03 | 2016-06-09 | Novartis Ag | Methods for b cell preconditioning in car therapy |
EP3234598B1 (en) | 2014-12-18 | 2019-11-06 | F.Hoffmann-La Roche Ag | Assay and method for determining cdc eliciting antibodies |
DK3280729T3 (da) | 2015-04-08 | 2022-07-25 | Novartis Ag | Cd20-behandlinger, cd22-behandlinger og kombinationsbehandlinger med en cd19-kimær antigenreceptor (car)-udtrykkende celle |
WO2016172583A1 (en) | 2015-04-23 | 2016-10-27 | Novartis Ag | Treatment of cancer using chimeric antigen receptor and protein kinase a blocker |
MX2017013482A (es) | 2015-04-24 | 2018-03-01 | Genentech Inc | Proteinas multiespecificas de union al antigeno. |
MY180297A (en) * | 2015-06-24 | 2020-11-27 | Hoffmann La Roche | Anti-transferrin receptor antibodies with tailored affinity |
CN113929779A (zh) | 2015-06-24 | 2022-01-14 | 豪夫迈·罗氏有限公司 | 人源化的抗-Tau(pS422)抗体和使用方法 |
KR20180033523A (ko) | 2015-07-10 | 2018-04-03 | 젠맵 에이/에스 | 암 치료를 위한 axl-특이적 항체-약물 접합체 |
HUE042039T2 (hu) | 2015-07-10 | 2019-06-28 | Merus Nv | Humán CD3 kötõ antitest |
EP3316902A1 (en) | 2015-07-29 | 2018-05-09 | Novartis AG | Combination therapies comprising antibody molecules to tim-3 |
PT3317301T (pt) | 2015-07-29 | 2021-07-09 | Novartis Ag | Terapias de associação compreendendo moléculas de anticorpo contra lag-3 |
CN114272371A (zh) | 2015-07-29 | 2022-04-05 | 诺华股份有限公司 | 包含抗pd-1抗体分子的联合疗法 |
AU2016302881B2 (en) | 2015-08-03 | 2022-09-15 | Bristol-Myers Squibb Company | Monoclonal antibodies against BCMA |
BR112018006251A2 (pt) | 2015-09-30 | 2018-10-16 | Janssen Biotech Inc | anticorpos antagonistas que se ligam especificamente a cd40 humano e métodos de uso |
AR106188A1 (es) | 2015-10-01 | 2017-12-20 | Hoffmann La Roche | Anticuerpos anti-cd19 humano humanizados y métodos de utilización |
KR20180053674A (ko) | 2015-10-02 | 2018-05-23 | 에프. 호프만-라 로슈 아게 | 공자극 tnf 수용체에 특이적인 이중특이성 항체 |
EP3356821B1 (en) | 2015-10-02 | 2019-10-23 | H. Hoffnabb-La Roche Ag | Cellular based fret assay for the determination of simultaneous binding |
RU2746409C1 (ru) | 2015-10-02 | 2021-04-13 | Ф. Хоффманн-Ля Рош Аг | Антитела к pd1 и способы их применения |
EP3150636A1 (en) | 2015-10-02 | 2017-04-05 | F. Hoffmann-La Roche AG | Tetravalent multispecific antibodies |
EP3150637A1 (en) | 2015-10-02 | 2017-04-05 | F. Hoffmann-La Roche AG | Multispecific antibodies |
WO2017055392A1 (en) | 2015-10-02 | 2017-04-06 | F. Hoffmann-La Roche Ag | Anti-cd3xcd44v6 bispecific t cell activating antigen binding molecules |
AR106201A1 (es) | 2015-10-02 | 2017-12-20 | Hoffmann La Roche | Moléculas biespecíficas de unión a antígeno activadoras de células t |
WO2017055385A1 (en) | 2015-10-02 | 2017-04-06 | F. Hoffmann-La Roche Ag | Anti-cd3xgd2 bispecific t cell activating antigen binding molecules |
RU2753390C1 (ru) | 2015-10-02 | 2021-08-13 | Ф. Хоффманн-Ля Рош Аг | Биспецифические антитела к человеческому cd20/человеческому рецептору трансферрина и способы их применения |
US20180282410A1 (en) | 2015-10-02 | 2018-10-04 | Hoffmann-La Roche Inc. | Anti-cd3xrob04 bispecific t cell activating antigen binding molecules |
WO2017055393A1 (en) | 2015-10-02 | 2017-04-06 | F. Hoffmann-La Roche Ag | Anti-cd3xtim-3 bispecific t cell activating antigen binding molecules |
AR106189A1 (es) | 2015-10-02 | 2017-12-20 | Hoffmann La Roche | ANTICUERPOS BIESPECÍFICOS CONTRA EL A-b HUMANO Y EL RECEPTOR DE TRANSFERRINA HUMANO Y MÉTODOS DE USO |
CR20180161A (es) | 2015-10-02 | 2018-05-25 | Hoffmann La Roche | Anticuerpos biespecíficos para pd1 y tim3 |
CN108026177B (zh) | 2015-10-02 | 2021-11-26 | 豪夫迈·罗氏有限公司 | 双特异性抗cd19xcd3 t细胞活化性抗原结合分子 |
US20170096485A1 (en) | 2015-10-02 | 2017-04-06 | Hoffmann-La Roche Inc. | Bispecific t cell activating antigen binding molecules |
MX2018004157A (es) | 2015-10-07 | 2019-04-01 | F Hoffmann La Roche Ag | Anticuerpos biespecificos con tetravalencia para un receptor de fnt coestimulador. |
ES2865482T3 (es) | 2015-10-23 | 2021-10-15 | Merus Nv | Moléculas de unión que inhiben el crecimiento del cáncer |
EP3184547A1 (en) | 2015-10-29 | 2017-06-28 | F. Hoffmann-La Roche AG | Anti-tpbg antibodies and methods of use |
CN114891102A (zh) | 2015-10-29 | 2022-08-12 | 豪夫迈·罗氏有限公司 | 抗变体Fc区抗体及使用方法 |
CN116333125A (zh) | 2015-10-30 | 2023-06-27 | 银河生物技术有限责任公司 | 结合死亡受体4和死亡受体5的抗体 |
CR20180234A (es) | 2015-11-03 | 2018-09-11 | Janssen Biotech Inc | Anticuerpos que se unen especificamente a pd-1 y sus usos |
JP6931329B2 (ja) | 2015-11-18 | 2021-09-01 | 中外製薬株式会社 | 免疫抑制機能を有する細胞に対するt細胞リダイレクト抗原結合分子を用いた併用療法 |
WO2017086419A1 (ja) | 2015-11-18 | 2017-05-26 | 中外製薬株式会社 | 液性免疫応答の増強方法 |
EP3178848A1 (en) | 2015-12-09 | 2017-06-14 | F. Hoffmann-La Roche AG | Type ii anti-cd20 antibody for reducing formation of anti-drug antibodies |
JP7325186B2 (ja) | 2015-12-09 | 2023-08-14 | エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト | 抗薬物抗体の形成を減少させるためのii型抗cd20抗体 |
AU2016369537B2 (en) | 2015-12-17 | 2024-03-14 | Novartis Ag | Antibody molecules to PD-1 and uses thereof |
AU2016369623A1 (en) | 2015-12-17 | 2018-06-28 | Novartis Ag | Combination of c-Met inhibitor with antibody molecule to PD-1 and uses thereof |
US11649262B2 (en) | 2015-12-28 | 2023-05-16 | Chugai Seiyaku Kabushiki Kaisha | Method for promoting efficiency of purification of Fc region-containing polypeptide |
AR107303A1 (es) | 2016-01-08 | 2018-04-18 | Hoffmann La Roche | Métodos de tratamiento de cánceres positivos para ace utilizando antagonistas de unión a eje pd-1 y anticuerpos biespecíficos anti-ace / anti-cd3, uso, composición, kit |
ES2847155T3 (es) | 2016-01-21 | 2021-08-02 | Novartis Ag | Moléculas multiespecíficas que fijan como objetivo CLL-1 |
CA3016287A1 (en) | 2016-03-04 | 2017-09-08 | Novartis Ag | Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore |
TW201735947A (zh) | 2016-03-14 | 2017-10-16 | Chugai Pharmaceutical Co Ltd | 用於癌之治療的細胞傷害誘導治療劑 |
PL3433280T3 (pl) | 2016-03-22 | 2023-07-31 | F. Hoffmann-La Roche Ag | Dwuswoiste cząsteczki limfocytów T aktywowane przez proteazy |
WO2017165683A1 (en) | 2016-03-23 | 2017-09-28 | Novartis Ag | Cell secreted minibodies and uses thereof |
CA3021027A1 (en) | 2016-04-15 | 2017-10-19 | Novartis Ag | Compositions and methods for selective expression of chimeric antigen receptors |
EP3452502B1 (en) | 2016-05-02 | 2021-03-03 | H. Hoffnabb-La Roche Ag | The contorsbody - a single chain target binder |
CN109312408B (zh) | 2016-05-17 | 2022-12-23 | 豪夫迈·罗氏有限公司 | 用于诊断和供免疫疗法中使用的基质基因签名 |
EP3464375A2 (en) | 2016-06-02 | 2019-04-10 | Novartis AG | Therapeutic regimens for chimeric antigen receptor (car)- expressing cells |
AU2018276419A1 (en) | 2016-06-02 | 2019-10-17 | F. Hoffmann-La Roche Ag | Type II anti-CD20 antibody and anti-CD20/CD3 bispecific antibody for treatment of cancer |
EP3252078A1 (en) | 2016-06-02 | 2017-12-06 | F. Hoffmann-La Roche AG | Type ii anti-cd20 antibody and anti-cd20/cd3 bispecific antibody for treatment of cancer |
WO2017218977A2 (en) | 2016-06-17 | 2017-12-21 | Genentech, Inc. | Purification of multispecific antibodies |
US20190233534A1 (en) | 2016-07-14 | 2019-08-01 | Fred Hutchinson Cancer Research Center | Multiple bi-specific binding domain constructs with different epitope binding to treat cancer |
AU2017295886C1 (en) | 2016-07-15 | 2024-05-16 | Novartis Ag | Treatment and prevention of cytokine release syndrome using a chimeric antigen receptor in combination with a kinase inhibitor |
CN110214150A (zh) | 2016-07-28 | 2019-09-06 | 诺华股份有限公司 | 嵌合抗原受体和pd-1抑制剂的组合疗法 |
KR20190036551A (ko) | 2016-08-01 | 2019-04-04 | 노파르티스 아게 | Pro-m2 대식세포 분자의 억제제를 병용하는, 키메라 항원 수용체를 이용한 암의 치료 |
EP3497126A4 (en) | 2016-08-12 | 2020-04-08 | Janssen Biotech, Inc. | ANTIBODIES OF FC MODIFIED ANTI-TNFR SUPERFAMILY HAVING IMPROVED AGONIST ACTIVITY AND METHODS OF USE THEREOF |
JP7178342B2 (ja) | 2016-08-12 | 2022-11-25 | ヤンセン バイオテツク,インコーポレーテツド | アゴニズム及びエフェクター機能が増強した改変抗体、及び他のFcドメイン含有分子 |
EP3515932B1 (en) | 2016-09-19 | 2023-11-22 | F. Hoffmann-La Roche AG | Complement factor based affinity chromatography |
EP3519820B1 (en) | 2016-09-30 | 2020-12-09 | H. Hoffnabb-La Roche Ag | Spr-based dual-binding assay for the functional analysis of multispecific molecules |
JP7022123B2 (ja) | 2016-09-30 | 2022-02-17 | エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト | Cd3に対する二重特異性抗体 |
BR112019006781A2 (pt) | 2016-10-07 | 2019-07-30 | Novartis Ag | receptores de antígeno quiméricos para o tratamento de câncer |
AU2017353427A1 (en) | 2016-11-02 | 2019-05-16 | Bristol-Myers Squibb Company | Bispecific antibody against BCMA and CD3 and an immunological drug for combined use in treating multiple myeloma |
TW201829463A (zh) | 2016-11-18 | 2018-08-16 | 瑞士商赫孚孟拉羅股份公司 | 抗hla-g抗體及其用途 |
TN2019000164A1 (en) | 2016-11-23 | 2020-10-05 | Bioverativ Therapeutics Inc | Mono- and bispecific antibodies binding to coagulation factor ix and coagulation factor x |
KR102669762B1 (ko) | 2016-12-19 | 2024-05-30 | 에프. 호프만-라 로슈 아게 | 표적화된 4-1bb(cd137) 작용물질과의 병용 요법 |
CA3039446A1 (en) | 2016-12-20 | 2018-06-28 | F. Hoffmann-La Roche Ag | Combination therapy of anti-cd20/anti-cd3 bispecific antibodies and 4-1bb (cd137) agonists |
MX2019006123A (es) | 2016-12-21 | 2019-08-12 | Hoffmann La Roche | Metodo para glicomanipulacion in vitro de anticuerpos. |
CN110088291A (zh) | 2016-12-21 | 2019-08-02 | 豪夫迈·罗氏有限公司 | 用于体外糖工程化抗体的方法 |
WO2018114878A1 (en) | 2016-12-21 | 2018-06-28 | F. Hoffmann-La Roche Ag | Re-use of enzymes in in vitro glycoengineering of antibodies |
JP7122311B2 (ja) | 2017-01-03 | 2022-08-19 | エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト | 抗4-1bbクローン20h4.9を含む二重特異性抗原結合分子 |
ES2912408T3 (es) | 2017-01-26 | 2022-05-25 | Novartis Ag | Composiciones de CD28 y métodos para terapia con receptores quiméricos para antígenos |
WO2018160731A1 (en) | 2017-02-28 | 2018-09-07 | Novartis Ag | Shp inhibitor compositions and uses for chimeric antigen receptor therapy |
CA3052357A1 (en) | 2017-03-10 | 2018-09-13 | F. Hoffmann-La Roche Ag | Method for producing multispecific antibodies |
WO2018178055A1 (en) | 2017-03-29 | 2018-10-04 | F. Hoffmann-La Roche Ag | Bispecific antigen binding molecule for a costimulatory tnf receptor |
EP3601346A1 (en) | 2017-03-29 | 2020-02-05 | H. Hoffnabb-La Roche Ag | Bispecific antigen binding molecule for a costimulatory tnf receptor |
AU2018246873B2 (en) | 2017-03-31 | 2021-05-06 | Merus N.V. | ErbB-2 and ErbB3 binding bispecific antibodies for use in the treatment f cells that have an NRG1 fusion gene |
MX2019011520A (es) | 2017-03-31 | 2020-08-03 | Genmab Holding B V | Anticuerpos anti antigeno leucocito 37 (cd37) biespecificos, anticuerpos anti antigeno leucocito 37 (cd37) monoclonales y metodos de uso de los mismos. |
SG11201909218RA (en) | 2017-04-03 | 2019-11-28 | Hoffmann La Roche | Antibodies binding to steap-1 |
WO2018184965A1 (en) | 2017-04-03 | 2018-10-11 | F. Hoffmann-La Roche Ag | Immunoconjugates of il-2 with an anti-pd-1 and tim-3 bispecific antibody |
MX2019011907A (es) | 2017-04-04 | 2020-01-09 | Hoffmann La Roche | Nuevas moleculas de union a antigeno biespecificas capaces de unirse especificamente a cd40 y a fap. |
UA128451C2 (uk) | 2017-04-05 | 2024-07-17 | Ф. Хоффманн-Ля Рош Аг | Біспецифічне антитіло, яке специфічно зв'язується з pd1 і lag3 |
PL3606954T3 (pl) | 2017-04-05 | 2022-10-17 | F. Hoffmann-La Roche Ag | Przeciwciała anty-LAG3 |
WO2018201051A1 (en) | 2017-04-28 | 2018-11-01 | Novartis Ag | Bcma-targeting agent, and combination therapy with a gamma secretase inhibitor |
EP3615055A1 (en) | 2017-04-28 | 2020-03-04 | Novartis AG | Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor |
WO2018210898A1 (en) | 2017-05-18 | 2018-11-22 | F. Hoffmann-La Roche Ag | Reduction of application-related side reaction of a therapeutic antibody |
MX2019014577A (es) | 2017-06-05 | 2020-07-29 | Janssen Biotech Inc | Anticuerpos que se unen especificamente a pd-1 y metodos de uso. |
WO2018224609A1 (en) | 2017-06-07 | 2018-12-13 | Genmab B.V. | Therapeutic antibodies based on mutated igg hexamers |
UY37758A (es) | 2017-06-12 | 2019-01-31 | Novartis Ag | Método de fabricación de anticuerpos biespecíficos, anticuerpos biespecíficos y uso terapéutico de dichos anticuerpos |
MA49457A (fr) | 2017-06-22 | 2020-04-29 | Novartis Ag | Molécules d'anticorps se liant à cd73 et leurs utilisations |
CN111050791A (zh) | 2017-06-27 | 2020-04-21 | 诺华股份有限公司 | 用于抗tim-3抗体的给药方案及其用途 |
KR102714165B1 (ko) | 2017-07-11 | 2024-10-10 | 콤파스 테라퓨틱스 엘엘씨 | 인간 cd137에 결합하는 작동자 항체 및 이의 용도 |
US20200172617A1 (en) | 2017-07-20 | 2020-06-04 | Novartis Ag | Dosage regimens of anti-lag-3 antibodies and uses thereof |
CN118562014A (zh) | 2017-08-09 | 2024-08-30 | 美勒斯公司 | 结合EGFR和cMET的抗体 |
TW201932142A (zh) | 2017-10-20 | 2019-08-16 | 瑞士商赫孚孟拉羅股份公司 | 自單特異性抗體產生多特異性抗體之方法 |
US11161911B2 (en) | 2017-10-23 | 2021-11-02 | Go Therapeutics, Inc. | Anti-glyco-MUC1 antibodies and their uses |
KR20200074195A (ko) | 2017-10-30 | 2020-06-24 | 에프. 호프만-라 로슈 아게 | 단일특이적 항체로부터 다중특이적 항체의 생체내 생성 방법 |
US11718679B2 (en) | 2017-10-31 | 2023-08-08 | Compass Therapeutics Llc | CD137 antibodies and PD-1 antagonists and uses thereof |
US20210179709A1 (en) | 2017-10-31 | 2021-06-17 | Novartis Ag | Anti-car compositions and methods |
MX2020004573A (es) | 2017-11-01 | 2020-09-25 | Hoffmann La Roche | Terapia de combinacion con agonistas de ox40 dirigidos. |
CN111182944B (zh) | 2017-11-01 | 2022-11-22 | 豪夫迈·罗氏有限公司 | 双特异性2+1 Contorsbody |
MX2020004756A (es) | 2017-11-16 | 2020-08-20 | Novartis Ag | Terapias de combinacion. |
US11851497B2 (en) | 2017-11-20 | 2023-12-26 | Compass Therapeutics Llc | CD137 antibodies and tumor antigen-targeting antibodies and uses thereof |
EP3717916A1 (en) | 2017-11-29 | 2020-10-07 | H. Hoffnabb-La Roche Ag | Target interference suppressed anti-drug antibody assay |
MX2020006119A (es) | 2017-12-21 | 2020-08-24 | Hoffmann La Roche | Anticuerpos de union a hla-a2/wt1. |
WO2019122054A1 (en) | 2017-12-22 | 2019-06-27 | F. Hoffmann-La Roche Ag | Depletion of light chain mispaired antibody variants by hydrophobic interaction chromatography |
CN111511400A (zh) | 2017-12-29 | 2020-08-07 | 豪夫迈·罗氏有限公司 | 抗vegf抗体及其使用方法 |
SG11202006410WA (en) | 2018-01-12 | 2020-08-28 | Genzyme Corp | Methods for the quantitation of polypeptides |
WO2019152660A1 (en) | 2018-01-31 | 2019-08-08 | Novartis Ag | Combination therapy using a chimeric antigen receptor |
JP2021511782A (ja) | 2018-01-31 | 2021-05-13 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | 安定化された免疫グロブリンドメイン |
US20200354457A1 (en) | 2018-01-31 | 2020-11-12 | Hoffmann-La Roche Inc. | Bispecific antibodies comprising an antigen-binding site binding to lag3 |
JP7475275B2 (ja) | 2018-02-08 | 2024-04-26 | ジェネンテック, インコーポレイテッド | 二重特異性抗原結合分子及びその使用方法 |
TWI829667B (zh) | 2018-02-09 | 2024-01-21 | 瑞士商赫孚孟拉羅股份公司 | 結合gprc5d之抗體 |
KR20200132913A (ko) | 2018-03-13 | 2020-11-25 | 에프. 호프만-라 로슈 아게 | 4-1bb 작용제와 항-cd20 항체의 치료 조합 |
TWI841551B (zh) | 2018-03-13 | 2024-05-11 | 瑞士商赫孚孟拉羅股份公司 | 使用靶向4-1bb (cd137)之促效劑的組合療法 |
JP2021519073A (ja) | 2018-03-29 | 2021-08-10 | ジェネンテック, インコーポレイテッド | 哺乳動物細胞におけるラクトジェニック活性の制御 |
US20210147547A1 (en) | 2018-04-13 | 2021-05-20 | Novartis Ag | Dosage Regimens For Anti-Pd-L1 Antibodies And Uses Thereof |
AR114789A1 (es) | 2018-04-18 | 2020-10-14 | Hoffmann La Roche | Anticuerpos anti-hla-g y uso de los mismos |
AR115052A1 (es) | 2018-04-18 | 2020-11-25 | Hoffmann La Roche | Anticuerpos multiespecíficos y utilización de los mismos |
WO2019210153A1 (en) | 2018-04-27 | 2019-10-31 | Novartis Ag | Car t cell therapies with enhanced efficacy |
CN112166196A (zh) | 2018-05-18 | 2021-01-01 | 豪夫迈·罗氏有限公司 | 大核酸的靶向细胞内递送 |
WO2019226658A1 (en) | 2018-05-21 | 2019-11-28 | Compass Therapeutics Llc | Multispecific antigen-binding compositions and methods of use |
US20200109195A1 (en) | 2018-05-21 | 2020-04-09 | Compass Therapeutics Llc | Compositions and methods for enhancing the killing of target cells by nk cells |
ES2945214T3 (es) | 2018-05-23 | 2023-06-29 | Celgene Corp | Compuestos antiproliferativos y anticuerpo biespecífico contra BCMA y CD3 para uso combinado |
KR20210012007A (ko) | 2018-05-24 | 2021-02-02 | 얀센 바이오테크 인코포레이티드 | 항-cd3 항체 및 이의 용도 |
AU2019274657A1 (en) | 2018-05-24 | 2020-12-10 | Janssen Biotech, Inc. | PSMA binding agents and uses thereof |
PE20210634A1 (es) | 2018-05-24 | 2021-03-23 | Janssen Biotech Inc | Anticuerpos anti-tmeff2 monoespecificos y multiespecificos y sus usos |
EP3801769A1 (en) | 2018-05-25 | 2021-04-14 | Novartis AG | Combination therapy with chimeric antigen receptor (car) therapies |
WO2019232244A2 (en) | 2018-05-31 | 2019-12-05 | Novartis Ag | Antibody molecules to cd73 and uses thereof |
CN112243444A (zh) | 2018-06-08 | 2021-01-19 | 豪夫迈·罗氏有限公司 | 具有减少的翻译后修饰的肽接头 |
BR112020025048A2 (pt) | 2018-06-13 | 2021-04-06 | Novartis Ag | Receptores de antígeno quimérico de bcma e usos dos mesmos |
BR112020026033A2 (pt) | 2018-06-19 | 2021-03-23 | Atarga, Llc | moléculas de anticorpo para complementar o componente 5 e usos das mesmas |
MX2020013804A (es) * | 2018-06-21 | 2021-03-31 | Regeneron Pharma | Anticuerpos anti-psma x anti-cd28 biespecíficos y usos de estos. |
JP2021528988A (ja) | 2018-07-04 | 2021-10-28 | エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト | 新規の二重特異性アゴニスト4−1bb抗原結合分子 |
AR116109A1 (es) | 2018-07-10 | 2021-03-31 | Novartis Ag | Derivados de 3-(5-amino-1-oxoisoindolin-2-il)piperidina-2,6-diona y usos de los mismos |
TWI754157B (zh) | 2018-07-25 | 2022-02-01 | 大陸商信達生物製藥(蘇州)有限公司 | 抗tigit抗體及其用途 |
WO2020021465A1 (en) | 2018-07-25 | 2020-01-30 | Advanced Accelerator Applications (Italy) S.R.L. | Method of treatment of neuroendocrine tumors |
MA50586A (fr) | 2018-08-09 | 2020-09-16 | Regeneron Pharma | Procédés d'évaluation de l'affinité de liaison d'une variante d'anticorps au récepteur fc néonatal |
JP7221379B2 (ja) | 2018-10-01 | 2023-02-13 | エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト | 抗fapクローン212を含む二重特異性抗原結合分子 |
CN112654641A (zh) | 2018-10-01 | 2021-04-13 | 豪夫迈·罗氏有限公司 | 具有与cd40的三价结合的双特异性抗原结合分子 |
JP7522106B2 (ja) | 2018-10-04 | 2024-07-24 | ジェンマブ ホールディング ビー.ブイ. | 二重特異性抗cd37抗体を含む医薬組成物 |
CN112912392B (zh) | 2018-10-26 | 2024-08-02 | 豪夫迈·罗氏有限公司 | 利用重组酶介导的盒式交换的多特异性抗体筛选方法 |
WO2020089437A1 (en) | 2018-10-31 | 2020-05-07 | Engmab Sàrl | Combination therapy |
US20210369842A1 (en) | 2018-11-06 | 2021-12-02 | Genmab A/S | Antibody formulation |
SG11202104864QA (en) | 2018-11-13 | 2021-06-29 | Compass Therapeutics Llc | Multispecific binding constructs against checkpoint molecules and uses thereof |
WO2020128892A1 (en) | 2018-12-20 | 2020-06-25 | Novartis Ag | Extended low dose regimens for mdm2 inhibitors |
MX2021007392A (es) | 2018-12-20 | 2021-08-24 | Novartis Ag | Regimen de dosificacion y combinacion farmaceutica que comprende derivados de 3-(1-oxoisoindolin-2-il)piperidina-2,6-diona. |
SG11202106198YA (en) | 2018-12-21 | 2021-07-29 | Hoffmann La Roche | Antibody that binds to vegf and il-1beta and methods of use |
US20200223925A1 (en) | 2018-12-21 | 2020-07-16 | Hoffmann-La Roche Inc. | Tumor-targeted superagonistic cd28 antigen binding molecules |
MY194642A (en) | 2018-12-21 | 2022-12-09 | Hoffmann La Roche | Antibodies binding to cd3 |
CR20210326A (es) | 2018-12-21 | 2021-09-10 | Hoffmann La Roche | Moléculas agonistas de unión al antígeno cd28 que actúan sobre el tumor |
WO2020136060A1 (en) | 2018-12-28 | 2020-07-02 | F. Hoffmann-La Roche Ag | A peptide-mhc-i-antibody fusion protein for therapeutic use in a patient with amplified immune response |
EP3903102B1 (en) | 2018-12-30 | 2023-04-12 | F. Hoffmann-La Roche AG | Ph-gradient spr-based binding assay |
US10871640B2 (en) | 2019-02-15 | 2020-12-22 | Perkinelmer Cellular Technologies Germany Gmbh | Methods and systems for automated imaging of three-dimensional objects |
CA3123519A1 (en) | 2019-02-15 | 2020-08-20 | Novartis Ag | Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
EA202192019A1 (ru) | 2019-02-15 | 2021-11-02 | Новартис Аг | Производные 3-(1-оксо-5-(пиперидин-4-ил)изоиндолин-2-ил)пиперидин-2,6-диона и пути их применения |
WO2020172553A1 (en) | 2019-02-22 | 2020-08-27 | Novartis Ag | Combination therapies of egfrviii chimeric antigen receptors and pd-1 inhibitors |
BR112021016149A2 (pt) | 2019-02-26 | 2021-10-13 | Janssen Biotech, Inc. | Terapias de combinação e estratificação de pacientes com anticorpos biespecíficos anti-egfr/c-met |
MA55519A (fr) | 2019-03-29 | 2022-02-09 | Atarga Llc | Anticorps anti-fgf23 |
JP7249432B2 (ja) | 2019-03-29 | 2023-03-30 | エフ. ホフマン-ラ ロシュ アーゲー | 多価分子の機能分析のための、sprをベースとする結合アッセイ |
CN113677701A (zh) | 2019-03-29 | 2021-11-19 | 豪夫迈·罗氏有限公司 | 产生亲合结合多特异性抗体的方法 |
KR20220002899A (ko) | 2019-04-19 | 2022-01-07 | 얀센 바이오테크 인코포레이티드 | 항-psma/cd3 항체로 전립선암을 치료하는 방법 |
SG11202112021QA (en) | 2019-05-08 | 2021-11-29 | Janssen Biotech Inc | Materials and methods for modulating t cell mediated immunity |
BR112021022405A2 (pt) | 2019-05-09 | 2022-04-19 | Merus Nv | Domínios variantes para multimerização de proteínas e separação das mesmas |
BR112021021673A2 (pt) | 2019-05-09 | 2021-12-21 | Genentech Inc | Método para melhorar o emparelhamento preferencial de uma cadeia pesada e uma cadeia leve de um anticorpo e anticorpo |
EP3969907A1 (en) | 2019-05-13 | 2022-03-23 | F. Hoffmann-La Roche AG | Interference-suppressed pharmacokinetic immunoassay |
WO2020230091A1 (en) | 2019-05-14 | 2020-11-19 | Janssen Biotech, Inc. | Combination therapies with bispecific anti-egfr/c-met antibodies and third generation egfr tyrosine kinase inhibitors |
BR112021025500A2 (pt) | 2019-06-19 | 2022-02-01 | Hoffmann La Roche | Métodos para produzir um anticorpo multivalente biespecífico e para produzir uma célula de mamífero recombinante, ácido desoxirribonucleico, uso de um ácido desoxirribonucleico, célula de mamífero recombinante e composição |
JP7572977B2 (ja) | 2019-06-19 | 2024-10-24 | エフ. ホフマン-ラ ロシュ アーゲー | 所定の構成の複数の発現カセットの標的化組込みによって多価の多重特異性抗体発現細胞を作製するための方法 |
MX2021015536A (es) | 2019-06-19 | 2022-02-10 | Hoffmann La Roche | Metodo para la generacion de una celula que expresa proteina mediante integracion dirigida usando acido ribonucleico mensajero (arnm) de cre. |
MX2021015540A (es) | 2019-06-19 | 2022-02-10 | Hoffmann La Roche | Metodo para la generacion de una celula que expresa un anticuerpo trivalente mediante la integracion dirigida de multiples casetes de expresion en una organizacion definida. |
MX2021015538A (es) | 2019-06-19 | 2022-02-10 | Hoffmann La Roche | Metodo para la generacion de una celula que expresa un anticuerpo biespecifico bivalente mediante la integracion dirigida de multiples casetes de expresion en una organizacion definida. |
AU2020306672B2 (en) | 2019-06-26 | 2023-08-24 | F. Hoffmann-La Roche Ag | Mammalian cell lines with SIRT-1 gene knockout |
AR119393A1 (es) | 2019-07-15 | 2021-12-15 | Hoffmann La Roche | Anticuerpos que se unen a nkg2d |
EP4004045A1 (en) | 2019-07-31 | 2022-06-01 | F. Hoffmann-La Roche AG | Antibodies binding to gprc5d |
PE20220394A1 (es) | 2019-07-31 | 2022-03-18 | Hoffmann La Roche | Anticuerpos que se fijan a gprc5d |
WO2021048034A1 (en) | 2019-09-09 | 2021-03-18 | F. Hoffmann-La Roche Ag | Glucocerebrosidase mutants |
PE20221906A1 (es) | 2019-09-18 | 2022-12-23 | Genentech Inc | Anticuerpos anti-klk7, anticuerpos anti-klk5, anticuerpos multiespecificos anti-klk5/klk7 y metodos de uso |
CN112574308A (zh) | 2019-09-30 | 2021-03-30 | 和铂医药(苏州)有限公司 | 靶向bcma的抗体、双特异性抗体及其用途 |
CN114786680A (zh) | 2019-10-21 | 2022-07-22 | 诺华股份有限公司 | Tim-3抑制剂及其用途 |
US20240301053A1 (en) | 2019-10-21 | 2024-09-12 | Novartis Ag | Combination therapies with venetoclax and tim-3 inhibitors |
AU2020384917A1 (en) | 2019-11-15 | 2022-03-31 | F. Hoffmann-La Roche Ag | Prevention of visible particle formation in aqueous protein solutions |
BR112022010206A2 (pt) | 2019-11-26 | 2022-11-29 | Novartis Ag | Receptores de antígeno quiméricos e usos dos mesmos |
KR20220113791A (ko) | 2019-12-18 | 2022-08-16 | 에프. 호프만-라 로슈 아게 | 이중특이적 항-ccl2 항체 |
WO2021122875A1 (en) | 2019-12-18 | 2021-06-24 | F. Hoffmann-La Roche Ag | Antibodies binding to hla-a2/mage-a4 |
EP4077389A1 (en) | 2019-12-20 | 2022-10-26 | Novartis AG | Combination of anti tim-3 antibody mbg453 and anti tgf-beta antibody nis793, with or without decitabine or the anti pd-1 antibody spartalizumab, for treating myelofibrosis and myelodysplastic syndrome |
CN115515678A (zh) | 2019-12-23 | 2022-12-23 | 基因泰克公司 | 载脂蛋白l1特异性抗体及其使用方法 |
US11913945B2 (en) | 2020-01-02 | 2024-02-27 | Hoffmann-La Roche Inc. | Method for determining the amount of a therapeutic antibody in the brain |
KR20220129003A (ko) | 2020-01-15 | 2022-09-22 | 에프. 호프만-라 로슈 아게 | 재조합 단백질 제조 공정으로부터 불순물을 감소시키기 위한 방법 |
TW202140037A (zh) | 2020-01-17 | 2021-11-01 | 瑞士商諾華公司 | 組合療法 |
EP4090762A1 (en) | 2020-01-17 | 2022-11-23 | Becton, Dickinson and Company | Methods and compositions for single cell secretomics |
JP2023515211A (ja) | 2020-02-27 | 2023-04-12 | ノバルティス アーゲー | キメラ抗原受容体発現細胞を作製する方法 |
CN115315446A (zh) | 2020-03-06 | 2022-11-08 | Go医疗股份有限公司 | 抗糖-cd44抗体及其用途 |
KR20220159426A (ko) | 2020-03-26 | 2022-12-02 | 제넨테크, 인크. | 감소된 숙주 세포 단백질을 보유하는 변형된 포유동물 세포 |
WO2021198034A1 (en) | 2020-03-30 | 2021-10-07 | F. Hoffmann-La Roche Ag | Antibody that binds to vegf and pdgf-b and methods of use |
AR121706A1 (es) | 2020-04-01 | 2022-06-29 | Hoffmann La Roche | Moléculas de unión a antígeno biespecíficas dirigidas a ox40 y fap |
CA3180173A1 (en) | 2020-04-30 | 2021-11-04 | Bristol-Myers Squibb Company | Methods of treating cytokine-related adverse events |
CN115605184A (zh) | 2020-05-15 | 2023-01-13 | 豪夫迈·罗氏有限公司(Ch) | 防止胃肠外蛋白质溶液中的可见颗粒形成 |
EP4153130A1 (en) | 2020-05-19 | 2023-03-29 | F. Hoffmann-La Roche AG | The use of chelators for the prevention of visible particle formation in parenteral protein solutions |
CN115666723A (zh) | 2020-05-21 | 2023-01-31 | 美勒斯公司 | 用于生产ig样分子的方法和手段 |
WO2021249990A2 (en) | 2020-06-08 | 2021-12-16 | Hoffmann-La Roche Inc. | Anti-hbv antibodies and methods of use |
MX2022015899A (es) | 2020-06-16 | 2023-01-24 | Hoffmann La Roche | Metodo para determinar antigeno libre de un anticuerpo en una muestra. |
CR20220637A (es) | 2020-06-19 | 2023-01-31 | Hoffmann La Roche | Anticuerpos que se unen a cd3 y cd19 |
WO2021255146A1 (en) | 2020-06-19 | 2021-12-23 | F. Hoffmann-La Roche Ag | Antibodies binding to cd3 and cea |
CN115916826A (zh) | 2020-06-19 | 2023-04-04 | 豪夫迈·罗氏有限公司 | 与CD3和FolR1结合的抗体 |
WO2021255142A1 (en) | 2020-06-19 | 2021-12-23 | F. Hoffmann-La Roche Ag | Antibodies binding to cd3 |
US12049515B2 (en) | 2020-06-23 | 2024-07-30 | Hoffmann-La Roche Inc. | Agonistic CD28 antigen binding molecules targeting Her2 |
MX2022015852A (es) | 2020-06-23 | 2023-01-24 | Novartis Ag | Regimen de dosificacion que comprende derivados de 3-(1-oxoisoindolin-2-il)piperidina-2,6-diona. |
CN115943158A (zh) | 2020-06-24 | 2023-04-07 | 基因泰克公司 | 抗细胞凋亡的细胞系 |
JP2023531067A (ja) | 2020-06-25 | 2023-07-20 | エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト | 抗cd3/抗cd28二重特異性抗原結合分子 |
JP2023531670A (ja) | 2020-06-30 | 2023-07-25 | 諾納生物(蘇州)有限公司 | 抗b7h4抗体及びその二重特異性抗体および用途 |
EP4155318A4 (en) | 2020-06-30 | 2024-06-05 | Harbour Biomed US, Inc. | BISPECIFIC ANTIBODY AND USE THEREOF |
CN116133689A (zh) | 2020-07-07 | 2023-05-16 | 豪夫迈·罗氏有限公司 | 作为治疗性蛋白质制剂的稳定剂的替代表面活性剂 |
AU2021308712A1 (en) | 2020-07-16 | 2023-02-02 | Novartis Ag | Anti-betacellulin antibodies, fragments thereof, and multi-specific binding molecules |
CR20230087A (es) | 2020-07-17 | 2023-03-20 | Genentech Inc | Anticuerpos anti-notch2 y métodos de uso |
AU2021311034A1 (en) | 2020-07-24 | 2023-02-23 | F. Hoffmann-La Roche Ag | Method for the expression of an antibody-multimer-fusion |
WO2022026592A2 (en) | 2020-07-28 | 2022-02-03 | Celltas Bio, Inc. | Antibody molecules to coronavirus and uses thereof |
JP2023536164A (ja) | 2020-08-03 | 2023-08-23 | ノバルティス アーゲー | ヘテロアリール置換3-(1-オキソイソインドリン-2-イル)ピペリジン-2,6-ジオン誘導体及びその使用 |
CN116648507A (zh) | 2020-08-28 | 2023-08-25 | 基因泰克公司 | 宿主细胞蛋白的CRISPR/Cas9多重敲除 |
WO2022043558A1 (en) | 2020-08-31 | 2022-03-03 | Advanced Accelerator Applications International Sa | Method of treating psma-expressing cancers |
WO2022043557A1 (en) | 2020-08-31 | 2022-03-03 | Advanced Accelerator Applications International Sa | Method of treating psma-expressing cancers |
EP4208201A1 (en) | 2020-09-04 | 2023-07-12 | F. Hoffmann-La Roche AG | Antibody that binds to vegf-a and ang2 and methods of use |
MX2023003127A (es) | 2020-09-21 | 2023-03-23 | Genentech Inc | Purificacion de anticuerpos multiespecificos. |
KR20230068415A (ko) | 2020-09-24 | 2023-05-17 | 에프. 호프만-라 로슈 아게 | 유전자 녹아웃을 갖는 포유류 세포주 |
WO2022086957A1 (en) | 2020-10-20 | 2022-04-28 | Genentech, Inc. | Peg-conjugated anti-mertk antibodies and methods of use |
TW202233674A (zh) | 2020-10-28 | 2022-09-01 | 美商健生生物科技公司 | 用於調節δγ鏈介導之免疫的組成物及方法 |
US20240002509A1 (en) | 2020-11-06 | 2024-01-04 | Novartis Ag | ANTIBODY Fc VARIANTS |
EP4243857A1 (en) | 2020-11-13 | 2023-09-20 | Novartis AG | Combination therapies with chimeric antigen receptor (car)-expressing cells |
WO2022101458A1 (en) | 2020-11-16 | 2022-05-19 | F. Hoffmann-La Roche Ag | Combination therapy with fap-targeted cd40 agonists |
EP4261225A4 (en) | 2020-12-10 | 2024-11-13 | Eutilex Co Ltd | ANTI-PD-1 ANTIBODIES AND USES THEREOF |
KR20230120665A (ko) | 2020-12-17 | 2023-08-17 | 에프. 호프만-라 로슈 아게 | 항-hla-g 항체 및 이의 용도 |
CN116670282A (zh) | 2020-12-22 | 2023-08-29 | 豪夫迈·罗氏有限公司 | 靶向xbp1的寡核苷酸 |
WO2022135467A1 (zh) | 2020-12-23 | 2022-06-30 | 信达生物制药(苏州)有限公司 | 抗b7-h3抗体及其用途 |
CN114716548B (zh) | 2021-01-05 | 2024-11-05 | (株)爱恩德生物 | 抗-fgfr3抗体及其用途 |
KR20230117406A (ko) | 2021-01-06 | 2023-08-08 | 에프. 호프만-라 로슈 아게 | Pd1-lag3 이중특이성 항체와 cd20 t 세포 이중특이성항체를 이용한 조합 요법 |
EP4284838A2 (en) | 2021-01-28 | 2023-12-06 | Janssen Biotech, Inc. | Psma binding proteins and uses thereof |
US20240141060A1 (en) | 2021-01-29 | 2024-05-02 | Novartis Ag | Dosage regimes for anti-cd73 and anti-entpd2 antibodies and uses thereof |
CA3209479A1 (en) | 2021-02-03 | 2022-08-11 | Mozart Therapeutics, Inc. | Binding agents and methods of using the same |
EP4288458A1 (en) | 2021-02-03 | 2023-12-13 | Genentech, Inc. | Multispecific binding protein degrader platform and methods of use |
AU2022217845A1 (en) | 2021-02-04 | 2023-08-24 | Innovent Biologics (Suzhou) Co., Ltd. | Anti-tnfr2 antibody and use thereof |
CN116888473A (zh) | 2021-02-18 | 2023-10-13 | 豪夫迈·罗氏有限公司 | 用于解析复杂、多步骤抗体相互作用的方法 |
WO2022187591A1 (en) | 2021-03-05 | 2022-09-09 | Go Therapeutics, Inc. | Anti-glyco-cd44 antibodies and their uses |
US20220298248A1 (en) | 2021-03-09 | 2022-09-22 | Janssen Biotech, Inc. | Treatment of Cancers Lacking EGFR- Activating Mutations |
EP4304732A1 (en) | 2021-03-12 | 2024-01-17 | Genentech, Inc. | Anti-klk7 antibodies, anti-klk5 antibodies, multispecific anti-klk5/klk7 antibodies, and methods of use |
TW202304979A (zh) | 2021-04-07 | 2023-02-01 | 瑞士商諾華公司 | 抗TGFβ抗體及其他治療劑用於治療增殖性疾病之用途 |
EP4320444A1 (en) | 2021-04-09 | 2024-02-14 | F. Hoffmann-La Roche AG | Process for selecting cell clones expressing a heterologous polypeptide |
US20240209080A1 (en) | 2021-04-10 | 2024-06-27 | Profoundbio Us Co. | Folr1 binding agents, conjugates thereof and methods of using the same |
JP2024514222A (ja) | 2021-04-19 | 2024-03-28 | ジェネンテック, インコーポレイテッド | 改変された哺乳動物細胞 |
WO2022226317A1 (en) | 2021-04-23 | 2022-10-27 | Profoundbio Us Co. | Anti-cd70 antibodies, conjugates thereof and methods of using the same |
IL307821A (en) | 2021-04-30 | 2023-12-01 | Hoffmann La Roche | Dosage for treatment with BISPIFIC ANTI-CD20/ANTI-CD3 antibody |
WO2022228705A1 (en) | 2021-04-30 | 2022-11-03 | F. Hoffmann-La Roche Ag | Dosing for combination treatment with anti-cd20/anti-cd3 bispecific antibody and anti-cd79b antibody drug conjugate |
AR125874A1 (es) | 2021-05-18 | 2023-08-23 | Novartis Ag | Terapias de combinación |
TW202309094A (zh) | 2021-05-18 | 2023-03-01 | 美商健生生物科技公司 | 用於識別癌症患者以進行組合治療之方法 |
WO2022243261A1 (en) | 2021-05-19 | 2022-11-24 | F. Hoffmann-La Roche Ag | Agonistic cd40 antigen binding molecules targeting cea |
EP4341385A1 (en) | 2021-05-21 | 2024-03-27 | Genentech, Inc. | Modified cells for the production of a recombinant product of interest |
CN113278071B (zh) | 2021-05-27 | 2021-12-21 | 江苏荃信生物医药股份有限公司 | 抗人干扰素α受体1单克隆抗体及其应用 |
AR126009A1 (es) | 2021-06-02 | 2023-08-30 | Hoffmann La Roche | Moléculas agonistas de unión al antígeno cd28 que se dirigen a epcam |
TWI833244B (zh) | 2021-06-18 | 2024-02-21 | 大陸商和鉑醫藥(上海)有限責任公司 | 一種雙抗組合及其應用 |
CA3221735A1 (en) | 2021-06-18 | 2022-12-22 | F. Hoffmann-La Roche Ag | Bispecific anti-ccl2 antibodies |
AU2022302170A1 (en) | 2021-07-02 | 2023-12-21 | F. Hoffmann-La Roche Ag | Methods and compositions for treating cancer |
KR20240032930A (ko) | 2021-07-13 | 2024-03-12 | 제넨테크, 인크. | 사이토카인 방출 증후군을 예측하기 위한 다변량 모델 |
JP2024528631A (ja) | 2021-07-22 | 2024-07-30 | エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト | ヘテロ二量体Fcドメイン抗体 |
WO2023010095A1 (en) | 2021-07-28 | 2023-02-02 | F. Hoffmann-La Roche Ag | Methods and compositions for treating cancer |
CN117794953A (zh) | 2021-08-03 | 2024-03-29 | 豪夫迈·罗氏有限公司 | 双特异性抗体及使用方法 |
EP4380604A1 (en) | 2021-08-05 | 2024-06-12 | Go Therapeutics, Inc. | Anti-glyco-muc4 antibodies and their uses |
KR20240044467A (ko) | 2021-08-09 | 2024-04-04 | 하버 바이오메드 (상하이) 컴퍼니 리미티드 | Cldn18.2-표적화 항체, 이중특이적 항체, 및 이들의 용도 |
CN113603775B (zh) | 2021-09-03 | 2022-05-20 | 江苏荃信生物医药股份有限公司 | 抗人白介素-33单克隆抗体及其应用 |
CN118355031A (zh) | 2021-09-03 | 2024-07-16 | Go医疗股份有限公司 | 抗糖-lamp1抗体及其用途 |
CN113683694B (zh) | 2021-09-03 | 2022-05-13 | 江苏荃信生物医药股份有限公司 | 一种抗人tslp单克隆抗体及其应用 |
JP2024536722A (ja) | 2021-09-03 | 2024-10-08 | ジーオー セラピューティクス,インコーポレイテッド | 抗グリコcmet抗体およびその使用 |
EP4148067A1 (en) | 2021-09-08 | 2023-03-15 | F. Hoffmann-La Roche AG | Method for the expression of an antibody-multimer-fusion |
EP4405396A2 (en) | 2021-09-20 | 2024-07-31 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of her2 positive cancer |
WO2023076876A1 (en) | 2021-10-26 | 2023-05-04 | Mozart Therapeutics, Inc. | Modulation of immune responses to viral vectors |
WO2023092004A1 (en) | 2021-11-17 | 2023-05-25 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of tau-related disorders |
WO2023094282A1 (en) | 2021-11-25 | 2023-06-01 | F. Hoffmann-La Roche Ag | Quantification of low amounts of antibody sideproducts |
US20230183360A1 (en) | 2021-12-09 | 2023-06-15 | Janssen Biotech, Inc. | Use of Amivantamab to Treat Colorectal Cancer |
AR127887A1 (es) | 2021-12-10 | 2024-03-06 | Hoffmann La Roche | Anticuerpos que se unen a cd3 y plap |
CR20240246A (es) | 2021-12-20 | 2024-07-19 | Hoffmann La Roche | Anticuerpos agonistas anti-ltbr y anticuerpos biespecificos que los comprenden |
WO2023117325A1 (en) | 2021-12-21 | 2023-06-29 | F. Hoffmann-La Roche Ag | Method for the determination of hydrolytic activity |
EP4457342A1 (en) | 2021-12-29 | 2024-11-06 | Bristol-Myers Squibb Company | Generation of landing pad cell lines |
TW202340251A (zh) | 2022-01-19 | 2023-10-16 | 美商建南德克公司 | 抗notch2抗體及結合物及其使用方法 |
US20230383010A1 (en) | 2022-02-07 | 2023-11-30 | Visterra, Inc. | Anti-idiotype antibody molecules and uses thereof |
TW202342057A (zh) | 2022-02-07 | 2023-11-01 | 美商健生生物科技公司 | 用於減少用egfr/met雙特異性抗體治療之患者的輸注相關反應之方法 |
IL314211A (en) | 2022-03-23 | 2024-09-01 | Genentech Inc | Combined treatment of bispecific antibody and chemotherapy against CD20/ANTI-CD3 |
IL315526A (en) | 2022-03-29 | 2024-11-01 | Ngm Biopharmaceuticals Inc | ILT3 and CD3 binding agents and methods of using them |
WO2023198661A1 (en) | 2022-04-12 | 2023-10-19 | F. Hoffmann-La Roche Ag | Fusion proteins targeted to the central nervous system |
WO2023198727A1 (en) | 2022-04-13 | 2023-10-19 | F. Hoffmann-La Roche Ag | Pharmaceutical compositions of anti-cd20/anti-cd3 bispecific antibodies and methods of use |
WO2023202967A1 (en) | 2022-04-19 | 2023-10-26 | F. Hoffmann-La Roche Ag | Improved production cells |
AR129268A1 (es) | 2022-05-11 | 2024-08-07 | Hoffmann La Roche | Anticuerpo que se une a vegf-a e il6 y métodos de uso |
WO2023220695A2 (en) | 2022-05-13 | 2023-11-16 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of her2 positive cancer |
WO2023232961A1 (en) | 2022-06-03 | 2023-12-07 | F. Hoffmann-La Roche Ag | Improved production cells |
WO2024003837A1 (en) | 2022-06-30 | 2024-01-04 | Janssen Biotech, Inc. | Use of anti-egfr/anti-met antibody to treat gastric or esophageal cancer |
WO2024020564A1 (en) | 2022-07-22 | 2024-01-25 | Genentech, Inc. | Anti-steap1 antigen-binding molecules and uses thereof |
WO2024028386A1 (en) | 2022-08-02 | 2024-02-08 | Ose Immunotherapeutics | Multifunctional molecule directed against cd28 |
WO2024030956A2 (en) | 2022-08-03 | 2024-02-08 | Mozart Therapeutics, Inc. | Cd39-specific binding agents and methods of using the same |
WO2024030976A2 (en) | 2022-08-03 | 2024-02-08 | Voyager Therapeutics, Inc. | Compositions and methods for crossing the blood brain barrier |
TW202423970A (zh) | 2022-10-10 | 2024-06-16 | 瑞士商赫孚孟拉羅股份公司 | Gprc5d tcb及cd38抗體之組合療法 |
WO2024079074A1 (en) | 2022-10-10 | 2024-04-18 | Universite D'aix Marseille | ANTI-sCD146 ANTIBODIES AND USES THEREOF |
TW202423969A (zh) | 2022-10-10 | 2024-06-16 | 瑞士商赫孚孟拉羅股份公司 | Gprc5d tcb及蛋白酶體抑制劑之組合療法 |
TW202430211A (zh) | 2022-10-10 | 2024-08-01 | 瑞士商赫孚孟拉羅股份公司 | Gprc5d tcb及imid之組合療法 |
WO2024079069A1 (en) | 2022-10-12 | 2024-04-18 | F. Hoffmann-La Roche Ag | Method for classifying cells |
WO2024089551A1 (en) | 2022-10-25 | 2024-05-02 | Janssen Biotech, Inc. | Msln and cd3 binding agents and methods of use thereof |
WO2024094741A1 (en) | 2022-11-03 | 2024-05-10 | F. Hoffmann-La Roche Ag | Combination therapy with anti-cd19/anti-cd28 bispecific antibody |
WO2024110426A1 (en) | 2022-11-23 | 2024-05-30 | F. Hoffmann-La Roche Ag | Method for increasing recombinant protein expression |
WO2024129594A1 (en) | 2022-12-12 | 2024-06-20 | Genentech, Inc. | Optimizing polypeptide sialic acid content |
WO2024156672A1 (en) | 2023-01-25 | 2024-08-02 | F. Hoffmann-La Roche Ag | Antibodies binding to csf1r and cd3 |
WO2024163009A1 (en) | 2023-01-31 | 2024-08-08 | Genentech, Inc. | Methods and compositions for treating urothelial bladder cancer |
WO2024163494A1 (en) | 2023-01-31 | 2024-08-08 | F. Hoffmann-La Roche Ag | Methods and compositions for treating non-small cell lung cancer and triple-negative breast cancer |
WO2024168061A2 (en) | 2023-02-07 | 2024-08-15 | Ayan Therapeutics Inc. | Antibody molecules binding to sars-cov-2 |
WO2024184287A1 (en) | 2023-03-06 | 2024-09-12 | F. Hoffmann-La Roche Ag | Combination therapy of an anti-egfrviii/anti-cd3 antibody and an tumor-targeted 4-1bb agonist |
WO2024191785A1 (en) | 2023-03-10 | 2024-09-19 | Genentech, Inc. | Fusions with proteases and uses thereof |
WO2024188965A1 (en) | 2023-03-13 | 2024-09-19 | F. Hoffmann-La Roche Ag | Combination therapy employing a pd1-lag3 bispecific antibody and an hla-g t cell bispecific antibody |
WO2024189544A1 (en) | 2023-03-13 | 2024-09-19 | Janssen Biotech, Inc. | Combination therapies with bi-specific anti-egfr/c-met antibodies and anti-pd-1 antibodies |
US20240327522A1 (en) | 2023-03-31 | 2024-10-03 | Genentech, Inc. | Anti-alpha v beta 8 integrin antibodies and methods of use |
Family Cites Families (222)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6548640B1 (en) | 1986-03-27 | 2003-04-15 | Btg International Limited | Altered antibodies |
AU600575B2 (en) | 1987-03-18 | 1990-08-16 | Sb2, Inc. | Altered antibodies |
US5677425A (en) | 1987-09-04 | 1997-10-14 | Celltech Therapeutics Limited | Recombinant antibody |
US5204244A (en) | 1987-10-27 | 1993-04-20 | Oncogen | Production of chimeric antibodies by homologous recombination |
US5202238A (en) | 1987-10-27 | 1993-04-13 | Oncogen | Production of chimeric antibodies by homologous recombination |
DE4118120A1 (de) | 1991-06-03 | 1992-12-10 | Behringwerke Ag | Tetravalente bispezifische rezeptoren, ihre herstellung und verwendung |
US6511663B1 (en) | 1991-06-11 | 2003-01-28 | Celltech R&D Limited | Tri- and tetra-valent monospecific antigen-binding proteins |
JP3951062B2 (ja) * | 1991-09-19 | 2007-08-01 | ジェネンテック・インコーポレーテッド | 少なくとも遊離のチオールとして存在するシステインを有する抗体フラグメントの大腸菌での発現、2官能性F(ab’)2抗体の産生のための使用 |
EP0614375A1 (en) | 1991-11-26 | 1994-09-14 | Alkermes, Inc. | Process for the preparation of transferrin receptor specific antibody-neuropharmaceutical or diagnostic agent conjugates |
GB9221657D0 (en) | 1992-10-15 | 1992-11-25 | Scotgen Ltd | Recombinant bispecific antibodies |
ES2278663T3 (es) | 1992-10-28 | 2007-08-16 | Genentech, Inc. | Antagonistas del factor de crecimiento de celulas endoteliales vasculares vegf. |
US5747654A (en) | 1993-06-14 | 1998-05-05 | The United States Of America As Represented By The Department Of Health And Human Services | Recombinant disulfide-stabilized polypeptide fragments having binding specificity |
US6476198B1 (en) | 1993-07-13 | 2002-11-05 | The Scripps Research Institute | Multispecific and multivalent antigen-binding polypeptide molecules |
UA40577C2 (uk) | 1993-08-02 | 2001-08-15 | Мерк Патент Гмбх | Біспецифічна молекула, що використовується для лізису пухлинних клітин, спосіб її одержання, моноклональне антитіло (варіанти), фармацевтичний препарат, фармацевтичний набір (варіанти), спосіб видалення пухлинних клітин |
WO1995009917A1 (en) | 1993-10-07 | 1995-04-13 | The Regents Of The University Of California | Genetically engineered bispecific tetravalent antibodies |
US5814464A (en) | 1994-10-07 | 1998-09-29 | Regeneron Pharma | Nucleic acids encoding TIE-2 ligand-2 |
US5731168A (en) | 1995-03-01 | 1998-03-24 | Genentech, Inc. | Method for making heteromultimeric polypeptides |
GB9504344D0 (en) | 1995-03-03 | 1995-04-19 | Unilever Plc | Antibody fragment production |
US5989830A (en) | 1995-10-16 | 1999-11-23 | Unilever Patent Holdings Bv | Bifunctional or bivalent antibody fragment analogue |
US6750334B1 (en) | 1996-02-02 | 2004-06-15 | Repligen Corporation | CTLA4-immunoglobulin fusion proteins having modified effector functions and uses therefor |
EP0894135B1 (en) | 1996-04-04 | 2004-08-11 | Unilever Plc | Multivalent and multispecific antigen-binding protein |
DE69829891T2 (de) | 1997-04-07 | 2005-10-06 | Genentech, Inc., South San Francisco | Anti-VEGF Antikörper |
WO1998045332A2 (en) | 1997-04-07 | 1998-10-15 | Genentech, Inc. | Humanized antibodies and methods for forming humanized antibodies |
WO1998050431A2 (en) | 1997-05-02 | 1998-11-12 | Genentech, Inc. | A method for making multispecific antibodies having heteromultimeric and common components |
US7951917B1 (en) | 1997-05-02 | 2011-05-31 | Genentech, Inc. | Method for making multispecific antibodies having heteromultimeric and common components |
US20020062010A1 (en) | 1997-05-02 | 2002-05-23 | Genentech, Inc. | Method for making multispecific antibodies having heteromultimeric and common components |
AU2719099A (en) * | 1998-01-23 | 1999-08-09 | Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw | Multipurpose antibody derivatives |
ES2340112T3 (es) | 1998-04-20 | 2010-05-28 | Glycart Biotechnology Ag | Ingenieria de glicosilacion de anticuerpos para la mejora de la citotoxicidad celular dependiente de anticuerpos. |
DE19819846B4 (de) | 1998-05-05 | 2016-11-24 | Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts | Multivalente Antikörper-Konstrukte |
ATE460946T1 (de) | 1998-06-22 | 2010-04-15 | Immunomedics Inc | Gebrauch von bispezifischen antikörpern in diagnose und therapie |
US7138103B2 (en) | 1998-06-22 | 2006-11-21 | Immunomedics, Inc. | Use of bi-specific antibodies for pre-targeting diagnosis and therapy |
US6312689B1 (en) | 1998-07-23 | 2001-11-06 | Millennium Pharmaceuticals, Inc. | Anti-CCR2 antibodies and methods of use therefor |
US20030035798A1 (en) | 2000-08-16 | 2003-02-20 | Fang Fang | Humanized antibodies |
AU1687500A (en) | 1998-12-16 | 2000-07-03 | Kyowa Hakko Kogyo Co. Ltd. | Antihuman vegf monoclonal antibody |
US6897044B1 (en) | 1999-01-28 | 2005-05-24 | Biogen Idec, Inc. | Production of tetravalent antibodies |
CN1232039A (zh) | 1999-04-02 | 1999-10-20 | 中国人民解放军海军总医院 | 一种基因工程双特异抗体及其应用 |
EP2278003B2 (en) | 1999-04-09 | 2020-08-05 | Kyowa Kirin Co., Ltd. | Method for controlling the activity of immunologically functional molecule |
CN1423700A (zh) | 2000-03-24 | 2003-06-11 | 麦克美特股份公司 | 含有针对nkg2d受体复合物的表位的结合位点的多功能多肽 |
IL151853A0 (en) | 2000-04-11 | 2003-04-10 | Genentech Inc | Multivalent antibodies and uses therefor |
FR2807767B1 (fr) | 2000-04-12 | 2005-01-14 | Lab Francais Du Fractionnement | Anticorps monoclonaux anti-d |
EP1299419A2 (en) | 2000-05-24 | 2003-04-09 | Imclone Systems, Inc. | Bispecific immunoglobulin-like antigen binding proteins and method of production |
WO2002002781A1 (en) | 2000-06-30 | 2002-01-10 | Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw | Heterodimeric fusion proteins |
US6946292B2 (en) | 2000-10-06 | 2005-09-20 | Kyowa Hakko Kogyo Co., Ltd. | Cells producing antibody compositions with increased antibody dependent cytotoxic activity |
RU2295537C2 (ru) * | 2000-10-20 | 2007-03-20 | Тугаи Сейяку Кабусики Кайся | Модифицированное агонистическое антитело |
AU2002210918B2 (en) | 2000-10-20 | 2006-03-16 | Chugai Seiyaku Kabushiki Kaisha | Degraded agonist antibody |
US7319139B2 (en) | 2001-01-29 | 2008-01-15 | Biogen Idec, Inc. | TAG-72 specific CH2 domain deleted antibodies |
US20030099974A1 (en) | 2001-07-18 | 2003-05-29 | Millennium Pharmaceuticals, Inc. | Novel genes, compositions, kits and methods for identification, assessment, prevention, and therapy of breast cancer |
ATE346866T1 (de) | 2001-09-14 | 2006-12-15 | Affimed Therapeutics Ag | Multimerische, einzelkettige, tandem-fv- antikörper |
US7138370B2 (en) | 2001-10-11 | 2006-11-21 | Amgen Inc. | Specific binding agents of human angiopoietin-2 |
US7521053B2 (en) | 2001-10-11 | 2009-04-21 | Amgen Inc. | Angiopoietin-2 specific binding agents |
US7658924B2 (en) | 2001-10-11 | 2010-02-09 | Amgen Inc. | Angiopoietin-2 specific binding agents |
US7053202B2 (en) | 2001-10-19 | 2006-05-30 | Millennium Pharmaceuticals, Inc. | Immunoglobulin DNA cassette molecules, monobody constructs, methods of production, and methods of use therefor |
AU2002337935B2 (en) | 2001-10-25 | 2008-05-01 | Genentech, Inc. | Glycoprotein compositions |
US20040093621A1 (en) | 2001-12-25 | 2004-05-13 | Kyowa Hakko Kogyo Co., Ltd | Antibody composition which specifically binds to CD20 |
US7317091B2 (en) | 2002-03-01 | 2008-01-08 | Xencor, Inc. | Optimized Fc variants |
US8188231B2 (en) | 2002-09-27 | 2012-05-29 | Xencor, Inc. | Optimized FC variants |
JP2006502091A (ja) | 2002-03-01 | 2006-01-19 | イミューノメディクス、インコーポレイテッド | クリアランス速度を高めるための二重特異性抗体点変異 |
US7332585B2 (en) | 2002-04-05 | 2008-02-19 | The Regents Of The California University | Bispecific single chain Fv antibody molecules and methods of use thereof |
EP1497332A1 (en) | 2002-04-29 | 2005-01-19 | GenPat77 Pharmacogenetics AG | Bispecific antibody binding tcr and tirc7 and its use in therapy and diagnosis |
US7081443B2 (en) | 2002-05-21 | 2006-07-25 | Korea Advanced Institutes Of Science And Technology (Kaist) | Chimeric comp-ang1 molecule |
EP2135879A3 (en) | 2002-06-28 | 2010-06-23 | Domantis Limited | Ligand |
HUE025086T2 (en) | 2002-10-10 | 2016-02-29 | Merck Patent Gmbh | Pharmaceutical preparations for ERB-B1 receptor |
US7534427B2 (en) | 2002-12-31 | 2009-05-19 | Immunomedics, Inc. | Immunotherapy of B cell malignancies and autoimmune diseases using unconjugated antibodies and conjugated antibodies and antibody combinations and fusion proteins |
SG179292A1 (en) | 2003-01-22 | 2012-04-27 | Roche Glycart Ag | Fusion constructs and use of same to produce antibodies with increased fc receptor binding affinity and effector function |
BRPI0407446A (pt) | 2003-02-13 | 2006-01-31 | Pharmacia Corp | Anticorpos para c-met para o tratamento de cânceres |
TWI353991B (en) | 2003-05-06 | 2011-12-11 | Syntonix Pharmaceuticals Inc | Immunoglobulin chimeric monomer-dimer hybrids |
AU2004251168A1 (en) | 2003-05-30 | 2005-01-06 | Genentech, Inc. | Treatment with anti-VEGF antibodies |
WO2004106375A1 (en) | 2003-05-30 | 2004-12-09 | Merus Biopharmaceuticals B.V. I.O. | Fab library for the preparation of anti vegf and anti rabies virus fabs |
AU2004252171B2 (en) | 2003-06-27 | 2011-04-21 | Biogen Ma Inc. | Modified binding molecules comprising connecting peptides |
US20050100543A1 (en) | 2003-07-01 | 2005-05-12 | Immunomedics, Inc. | Multivalent carriers of bi-specific antibodies |
AR046071A1 (es) | 2003-07-10 | 2005-11-23 | Hoffmann La Roche | Anticuerpos contra el receptor i del factor de crecimiento de tipo insulinico y los usos de los mismos |
CA2534077A1 (en) | 2003-07-29 | 2005-02-10 | Morphotek Inc. | Antibodies and methods for generating genetically altered antibodies with enhanced effector function |
WO2005044853A2 (en) | 2003-11-01 | 2005-05-19 | Genentech, Inc. | Anti-vegf antibodies |
US20050106667A1 (en) | 2003-08-01 | 2005-05-19 | Genentech, Inc | Binding polypeptides with restricted diversity sequences |
CA2536408A1 (en) | 2003-08-22 | 2005-03-03 | Biogen Idec Ma Inc. | Improved antibodies having altered effector function and methods for making the same |
JP2007504245A (ja) | 2003-09-05 | 2007-03-01 | ジェネンテック・インコーポレーテッド | 変更したエフェクター機能を有する抗体 |
US20050064509A1 (en) | 2003-09-23 | 2005-03-24 | The Regents Of The University Of California | Use of templated self assembly to create novel multifunctional species |
CN1326881C (zh) | 2003-09-29 | 2007-07-18 | 中国人民解放军军事医学科学院基础医学研究所 | 一种三价双特异性抗体,其制备方法及用途 |
NZ588860A (en) | 2003-11-05 | 2012-03-30 | Roche Glycart Ag | CD20 antibodies with increased Fc receptor binding affinity and effector function |
ES2305879T3 (es) | 2003-11-21 | 2008-11-01 | Ucb Pharma, S.A. | Metodo para el tratamiento de la esclerosis multiple mediante inhibicion de la actividad il-17. |
ZA200604864B (en) | 2003-12-19 | 2007-10-31 | Genentech Inc | Monovalent antibody fragments useful as therapeutics |
US20080187954A1 (en) | 2004-03-10 | 2008-08-07 | Lonza Ltd. | Method For Producing Antibodies |
CA2561264A1 (en) | 2004-03-24 | 2005-10-06 | Xencor, Inc. | Immunoglobulin variants outside the fc region |
WO2006020258A2 (en) | 2004-07-17 | 2006-02-23 | Imclone Systems Incorporated | Novel tetravalent bispecific antibody |
RU2367667C2 (ru) | 2004-08-19 | 2009-09-20 | Дженентек, Инк. | Полипептидные варианты с измененной эффекторной функцией |
KR101270829B1 (ko) | 2004-09-23 | 2013-06-07 | 제넨테크, 인크. | 시스테인 유전자조작 항체 및 접합체 |
JO3000B1 (ar) | 2004-10-20 | 2016-09-05 | Genentech Inc | مركبات أجسام مضادة . |
WO2007024249A2 (en) | 2004-11-10 | 2007-03-01 | Macrogenics, Inc. | Engineering fc antibody regions to confer effector function |
US7973140B2 (en) | 2004-12-21 | 2011-07-05 | Medimmune Limited | Antibodies directed to angiopoietin-2 and uses thereof |
TWI387602B (zh) | 2005-02-07 | 2013-03-01 | Roche Glycart Ag | 與上皮生長因子受體(egfr)結合之抗原結合分子,編碼該抗原結合分子之載體及其用途 |
AU2005327973A1 (en) | 2005-02-23 | 2006-08-31 | Merrimack Pharmaceuticals, Inc. | Bispecific binding agents for modulating biological activity |
CN101218251A (zh) | 2005-02-28 | 2008-07-09 | 森托科尔公司 | 异二聚体蛋白结合组合物 |
EP3623473A1 (en) | 2005-03-31 | 2020-03-18 | Chugai Seiyaku Kabushiki Kaisha | Process for production of polypeptide by regulation of assembly |
EP1870458B1 (en) | 2005-03-31 | 2018-05-09 | Chugai Seiyaku Kabushiki Kaisha | sc(Fv)2 STRUCTURAL ISOMERS |
TW200720289A (en) | 2005-04-01 | 2007-06-01 | Hoffmann La Roche | Antibodies against CCR5 and uses thereof |
EP1868650B1 (en) | 2005-04-15 | 2018-10-03 | MacroGenics, Inc. | Covalent diabodies and uses thereof |
CA2606102C (en) | 2005-04-26 | 2014-09-30 | Medimmune, Inc. | Modulation of antibody effector function by hinge domain engineering |
JP5315489B2 (ja) | 2005-04-26 | 2013-10-16 | アール クレア アンド カンパニー | エフェクター機能が増強されたヒトIgG抗体を作製する方法 |
JP5085322B2 (ja) | 2005-06-10 | 2012-11-28 | 中外製薬株式会社 | sc(Fv)2を含有する医薬組成物 |
CA2611726C (en) | 2005-06-10 | 2017-07-11 | Chugai Seiyaku Kabushiki Kaisha | Pharmaceutical compositions containing sc(fv)2 |
US8008453B2 (en) | 2005-08-12 | 2011-08-30 | Amgen Inc. | Modified Fc molecules |
WO2007024715A2 (en) | 2005-08-19 | 2007-03-01 | Abbott Laboratories | Dual variable domain immunoglobin and uses thereof |
US7612181B2 (en) | 2005-08-19 | 2009-11-03 | Abbott Laboratories | Dual variable domain immunoglobulin and uses thereof |
RU2482132C2 (ru) | 2005-08-26 | 2013-05-20 | Роше Гликарт Аг | Модифицированные антигенсвязывающие молекулы с измененной клеточной сигнальной активностью |
WO2007044887A2 (en) | 2005-10-11 | 2007-04-19 | Transtarget, Inc. | Method for producing a population of homogenous tetravalent bispecific antibodies |
US7666622B2 (en) | 2005-10-19 | 2010-02-23 | Regeneron Pharmaceuticals, Inc. | Monomeric self-associating fusion polypeptides and therapeutic uses thereof |
TW200732350A (en) | 2005-10-21 | 2007-09-01 | Amgen Inc | Methods for generating monovalent IgG |
NZ569787A (en) | 2005-12-15 | 2011-07-29 | Astrazeneca Ab | Combination of angiopoietin-2 antagonist and of VEGF-A, KDR and/or FLT1 antagonist for treating cancer |
FR2894959B1 (fr) | 2005-12-15 | 2008-02-29 | Galderma Res & Dev | Derives biphenyliques agonistes selectifs du recepteur rar-gamma |
AR059066A1 (es) | 2006-01-27 | 2008-03-12 | Amgen Inc | Combinaciones del inhibidor de la angiopoyetina -2 (ang2) y el inhibidor del factor de crecimiento endotelial vascular (vegf) |
KR20080106245A (ko) | 2006-02-15 | 2008-12-04 | 임클론 시스템즈 인코포레이티드 | 기능성 항체 |
CA2638804C (en) | 2006-03-03 | 2017-02-28 | Tokyo University Of Science | Modified antibodies with enhanced biological activities |
CA2646508A1 (en) | 2006-03-17 | 2007-09-27 | Biogen Idec Ma Inc. | Stabilized polypeptide compositions |
EP1996236A2 (en) | 2006-03-22 | 2008-12-03 | National Institute of Immunology | Novel bioconjugates as therapeutic agent and synthesis thereof |
JP5474531B2 (ja) | 2006-03-24 | 2014-04-16 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | 操作されたヘテロ二量体タンパク質ドメイン |
US20070274985A1 (en) | 2006-05-26 | 2007-11-29 | Stefan Dubel | Antibody |
WO2007146959A2 (en) | 2006-06-12 | 2007-12-21 | Receptor Biologix Inc. | Pan-cell surface receptor- specific therapeutics |
JP2009541275A (ja) | 2006-06-22 | 2009-11-26 | ノボ・ノルデイスク・エー/エス | 二重特異性抗体の生産 |
WO2008005828A2 (en) | 2006-06-30 | 2008-01-10 | Novo Nordisk A/S | PHARMACEUTICALLY ACCEPTABLE COMPOSITIONS COMPRISING ANTIBODY MOLECULES SPECIFIC TO LAMININ-5 α3 CHAIN DOMAINS G1G2 AND USE THEREOF |
AR062223A1 (es) | 2006-08-09 | 2008-10-22 | Glycart Biotechnology Ag | Moleculas de adhesion al antigeno que se adhieren a egfr, vectores que los codifican, y sus usos de estas |
US8497246B2 (en) | 2006-08-18 | 2013-07-30 | Armagen Technologies, Inc. | Methods for diagnosing and treating CNS disorders by trans-blood-brain barrier delivery of protein compositions |
EP2059533B1 (en) | 2006-08-30 | 2012-11-14 | Genentech, Inc. | Multispecific antibodies |
CN101205255A (zh) | 2006-12-14 | 2008-06-25 | 上海中信国健药业有限公司 | 抗cd20四价抗体、其制备方法和应用 |
SG176448A1 (en) | 2006-12-19 | 2011-12-29 | Genentech Inc | Vegf-specific antagonists for adjuvant and neoadjuvant therapy and the treatment of early stage tumors |
US20080226635A1 (en) | 2006-12-22 | 2008-09-18 | Hans Koll | Antibodies against insulin-like growth factor I receptor and uses thereof |
PL2716301T3 (pl) | 2007-02-16 | 2017-10-31 | Merrimack Pharmaceuticals Inc | Przeciwciała przeciw ERBB3 i ich zastosowania |
US10259860B2 (en) | 2007-02-27 | 2019-04-16 | Aprogen Inc. | Fusion proteins binding to VEGF and angiopoietin |
EP2069401A4 (en) | 2007-07-31 | 2011-02-23 | Medimmune Llc | MULTISPECIENT EPITOP BINDING PROTEINS AND THEIR USE |
WO2009023843A1 (en) | 2007-08-15 | 2009-02-19 | Isp Investments Inc. | Polyvinylamide polymers containing polymerizable functionalities |
US9624309B2 (en) | 2007-08-15 | 2017-04-18 | Bayer Intellectual Property Gmbh | Monospecific and multispecific antibodies and method of use |
DE102007038753A1 (de) | 2007-08-16 | 2009-02-19 | Giesecke & Devrient Gmbh | Vorrichtung und Verfahren für die Kalibrierung eines Sensorsystems |
US20090130105A1 (en) | 2007-08-28 | 2009-05-21 | Biogen Idec Ma Inc. | Compositions that bind multiple epitopes of igf-1r |
EP2050764A1 (en) | 2007-10-15 | 2009-04-22 | sanofi-aventis | Novel polyvalent bispecific antibody format and uses thereof |
US8242247B2 (en) | 2007-12-21 | 2012-08-14 | Hoffmann-La Roche Inc. | Bivalent, bispecific antibodies |
US9266967B2 (en) | 2007-12-21 | 2016-02-23 | Hoffmann-La Roche, Inc. | Bivalent, bispecific antibodies |
US8227577B2 (en) | 2007-12-21 | 2012-07-24 | Hoffman-La Roche Inc. | Bivalent, bispecific antibodies |
US20090162359A1 (en) | 2007-12-21 | 2009-06-25 | Christian Klein | Bivalent, bispecific antibodies |
PL2235064T3 (pl) | 2008-01-07 | 2016-06-30 | Amgen Inc | Sposób otrzymywania cząsteczek przeciwciał z heterodimerycznymi fc z zastosowaniem kierujących efektów elektrostatycznych |
JP2009181819A (ja) | 2008-01-31 | 2009-08-13 | Hitachi High-Technologies Corp | 荷電粒子線装置 |
JP4438875B2 (ja) | 2008-02-27 | 2010-03-24 | 三菱自動車工業株式会社 | 車両の貯蔵燃料量推定装置 |
WO2009126944A1 (en) | 2008-04-11 | 2009-10-15 | Trubion Pharmaceuticals, Inc. | Cd37 immunotherapeutic and combination with bifunctional chemotherapeutic thereof |
NZ603698A (en) | 2008-07-08 | 2014-03-28 | Abbvie Inc | Prostaglandin e2 dual variable domain immunoglobulins and uses thereof |
CA2736408A1 (en) | 2008-09-26 | 2010-04-01 | Roche Glycart Ag | Bispecific anti-egfr/anti-igf-1r antibodies |
US8268314B2 (en) | 2008-10-08 | 2012-09-18 | Hoffmann-La Roche Inc. | Bispecific anti-VEGF/anti-ANG-2 antibodies |
KR20110097913A (ko) | 2008-12-04 | 2011-08-31 | 아보트 러보러터리즈 | 이원 가변 도메인 면역글로불린 및 이의 용도 |
MA33198B1 (fr) | 2009-03-20 | 2012-04-02 | Genentech Inc | Anticorps anti-her di-spécifiques |
CA2756244A1 (en) | 2009-04-02 | 2010-10-07 | Roche Glycart Ag | Multispecific antibodies comprising full length antibodies and single chain fab fragments |
WO2010112194A1 (en) | 2009-04-02 | 2010-10-07 | F. Hoffmann-La Roche Ag | Antigen-binding polypeptides and multispecific antibodies comprising them |
SG175078A1 (en) | 2009-04-07 | 2011-11-28 | Roche Glycart Ag | Bispecific anti-erbb-1/anti-c-met antibodies |
MX2011010168A (es) | 2009-04-07 | 2011-10-11 | Roche Glycart Ag | Anticuerpos biespecificos, trivalentes. |
MX2011010166A (es) | 2009-04-07 | 2011-10-11 | Roche Glycart Ag | Anticuerpos biespecificos anti-erbb-3/anti-c-met. |
CN102459346B (zh) | 2009-04-27 | 2016-10-26 | 昂考梅德药品有限公司 | 制造异源多聚体分子的方法 |
TW201100543A (en) | 2009-05-27 | 2011-01-01 | Hoffmann La Roche | Tri-or tetraspecific antibodies |
US9676845B2 (en) | 2009-06-16 | 2017-06-13 | Hoffmann-La Roche, Inc. | Bispecific antigen binding proteins |
US8703132B2 (en) | 2009-06-18 | 2014-04-22 | Hoffmann-La Roche, Inc. | Bispecific, tetravalent antigen binding proteins |
WO2011028952A1 (en) | 2009-09-02 | 2011-03-10 | Xencor, Inc. | Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens |
RU2015153109A (ru) | 2009-09-16 | 2019-01-15 | Дженентек, Инк. | Содержащие суперспираль и/или привязку белковые комплексы и их применения |
MX2012003598A (es) | 2009-09-29 | 2012-04-20 | Roche Glycart Ag | Anticuerpos biespecificos agonistas de receptores de muerte. |
EA201492253A1 (ru) | 2009-12-29 | 2015-06-30 | Эмерджент Продакт Дивелопмент Сиэтл, Ллс | Конструкторы, связывающиеся с ron, и способы их использования |
US8318406B2 (en) | 2010-02-03 | 2012-11-27 | Eastman Kodak Company | Method for fixing a flexographic plate |
TWI426920B (zh) * | 2010-03-26 | 2014-02-21 | Hoffmann La Roche | 雙專一性、雙價抗-vegf/抗-ang-2抗體 |
JP5767207B2 (ja) | 2010-03-26 | 2015-08-19 | 協和発酵キリン株式会社 | 新規修飾部位導入抗体および抗体フラグメント |
JP6022444B2 (ja) | 2010-05-14 | 2016-11-09 | ライナット ニューロサイエンス コーポレイション | ヘテロ二量体タンパク質ならびにそれを生産および精製するための方法 |
EP2606064B1 (en) | 2010-08-16 | 2015-02-25 | NovImmune S.A. | Methods for the generation of multispecific and multivalent antibodies |
JP5758004B2 (ja) | 2010-08-24 | 2015-08-05 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | ジスルフィドによって安定化されたFv断片を含む二重特異性抗体 |
EP2609112B1 (en) | 2010-08-24 | 2017-11-22 | Roche Glycart AG | Activatable bispecific antibodies |
EP2625200A1 (en) | 2010-10-05 | 2013-08-14 | F.Hoffmann-La Roche Ag | Antibodies against human tweak and uses thereof |
WO2012058768A1 (en) | 2010-11-05 | 2012-05-10 | Zymeworks Inc. | Stable heterodimeric antibody design with mutations in the fc domain |
AR084053A1 (es) | 2010-11-30 | 2013-04-17 | Chugai Pharmaceutical Co Ltd | Agente terapeutico que induce citotoxicidad |
KR102099462B1 (ko) | 2010-11-30 | 2020-04-10 | 제넨테크, 인크. | 저친화도 혈액-뇌 장벽 수용체 항체 및 그의 용도 |
KR101572338B1 (ko) | 2011-02-28 | 2015-11-26 | 에프. 호프만-라 로슈 아게 | 1가 항원 결합 단백질 |
KR101638224B1 (ko) | 2011-02-28 | 2016-07-08 | 에프. 호프만-라 로슈 아게 | 항원 결합 단백질 |
WO2012131555A2 (en) | 2011-03-25 | 2012-10-04 | Glenmark Pharmaceuticals S.A. | Hetero-dimeric immunoglobulins |
EP2699600A1 (en) | 2011-04-20 | 2014-02-26 | Roche Glycart AG | Method and constructs for the ph dependent passage of the blood-brain-barrier |
CN102302039B (zh) | 2011-06-16 | 2014-01-29 | 北京泛博化学股份有限公司 | 双阳离子季铵盐络合碘消毒剂及其应用 |
CN109517059B (zh) | 2011-06-30 | 2023-03-28 | 中外制药株式会社 | 异源二聚化多肽 |
US9738707B2 (en) | 2011-07-15 | 2017-08-22 | Biogen Ma Inc. | Heterodimeric Fc regions, binding molecules comprising same, and methods relating thereto |
AU2012298537B2 (en) | 2011-08-23 | 2017-08-10 | Roche Glycart Ag | Bispecific T cell activating antigen binding molecules |
US20130058937A1 (en) | 2011-08-23 | 2013-03-07 | Johannes Auer | Bispecific antigen binding molecules |
CN103781801B (zh) | 2011-08-23 | 2018-02-09 | 罗切格利卡特公司 | 包含两个Fab片段的无Fc的抗体及使用方法 |
KR101681818B1 (ko) | 2011-08-23 | 2016-12-01 | 로슈 글리카트 아게 | T 세포 활성화 항원 및 종양 항원에 대해 특이적인 이중특이적 항체 및 이의 사용 방법 |
CN109111524B (zh) | 2011-10-31 | 2022-10-28 | 中外制药株式会社 | 控制了重链与轻链的缔合的抗原结合分子 |
CA2859767C (en) | 2011-12-19 | 2018-09-11 | Synimmune Gmbh | Bispecific antibody molecule and use thereof for treatment of proliferative disease |
US9527927B2 (en) | 2011-12-20 | 2016-12-27 | Medimmune, Llc | Modified polypeptides for bispecific antibody scaffolds |
BR112014024903A2 (pt) | 2012-04-05 | 2017-07-11 | Hoffmann La Roche | anticorpos biespecíficos contra tweak humanao e il17 humana e seus usos |
SG10201913376XA (en) | 2012-04-20 | 2020-02-27 | Merus Nv | Methods and means for the production of ig-like molecules |
MX2014014162A (es) | 2012-05-24 | 2015-02-04 | Hoffmann La Roche | Anticuerpos multiespecificos. |
EP3401337A1 (en) | 2012-09-25 | 2018-11-14 | Glenmark Pharmaceuticals S.A. | Purification of hetero-dimeric immunoglobulins |
BR112015007120A2 (pt) | 2012-10-08 | 2017-12-12 | Roche Glycart Ag | anticorpo biespecífico, composição farmacêutica, uso, célula hospedeira e método de produção de um anticorpo |
UY35148A (es) | 2012-11-21 | 2014-05-30 | Amgen Inc | Immunoglobulinas heterodiméricas |
BR112015012385A2 (pt) | 2012-11-28 | 2019-08-27 | Zymeworks Inc | constructo de polipeptídeo de ligação de antígeno isolado, polinucleotídeo isolado ou conjunto de polinucleotídeos isolados, vetor ou conjunto de vetores, célula isolada, composição farmacêutica, uso do constructo, método para tratar um sujeito tendo uma doença ou distúrbio ou câncer ou doença vascular, método para inibir, reduzir ou bloquear um sinal dentro de uma célula, método para obter o constructo, método para preparar o constructo, meio de armazenamento legível por computador, método implementado por computador e método para produzir um constructo de polipeptídeo de ligação de antígeno bi-específico |
US10766960B2 (en) | 2012-12-27 | 2020-09-08 | Chugai Seiyaku Kabushiki Kaisha | Heterodimerized polypeptide |
US9605084B2 (en) | 2013-03-15 | 2017-03-28 | Xencor, Inc. | Heterodimeric proteins |
UA118028C2 (uk) | 2013-04-03 | 2018-11-12 | Рош Глікарт Аг | Біспецифічне антитіло, специфічне щодо fap і dr5, антитіло, специфічне щодо dr5, і спосіб їх застосування |
EP3041862B1 (en) | 2013-09-05 | 2020-05-06 | IGM Biosciences, Inc. | Constant chain modified bispecific, penta- and hexavalent ig-m antibodies |
CN105612182B (zh) | 2013-10-11 | 2019-12-10 | 豪夫迈·罗氏有限公司 | 多特异性结构域交换共有可变轻链抗体 |
CN112062853B (zh) | 2013-12-20 | 2024-01-09 | 豪夫迈·罗氏有限公司 | 双特异性her2抗体及使用方法 |
WO2015101588A1 (en) | 2014-01-06 | 2015-07-09 | F. Hoffmann-La Roche Ag | Monovalent blood brain barrier shuttle modules |
MX2016008540A (es) | 2014-01-15 | 2016-09-26 | Hoffmann La Roche | Variantes de region fc con propiedades de union al receptor fc neonatal (fcrn). |
JP6786392B2 (ja) | 2014-01-15 | 2020-11-18 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | FcRn結合特性が改変され、プロテインA結合特性が保持されているFc領域変異体 |
KR20160104636A (ko) | 2014-01-15 | 2016-09-05 | 에프. 호프만-라 로슈 아게 | 단백질 A-결합이 개선된 Fc-영역 변이체 |
UA117289C2 (uk) | 2014-04-02 | 2018-07-10 | Ф. Хоффманн-Ля Рош Аг | Мультиспецифічне антитіло |
JP6744292B2 (ja) | 2014-07-29 | 2020-08-19 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | 多重特異性抗体 |
ES2979976T3 (es) | 2014-08-04 | 2024-09-27 | Hoffmann La Roche | Moléculas de unión a antígeno activadoras de linfocitos T biespecíficas |
EP2982692A1 (en) | 2014-08-04 | 2016-02-10 | EngMab AG | Bispecific antibodies against CD3epsilon and BCMA |
SG11201702805TA (en) | 2014-10-08 | 2017-05-30 | Hoffmann La Roche | Combination therapy of bispecific antibodies specific for fap and dr5 and chemotherapeutic agents |
US11952421B2 (en) | 2014-10-09 | 2024-04-09 | Bristol-Myers Squibb Company | Bispecific antibodies against CD3EPSILON and ROR1 |
EA201791121A1 (ru) | 2014-11-20 | 2018-04-30 | Ф. Хоффманн-Ля Рош Аг | Активирующие т-клетки биспецифические антигенсвязывающие молекулы против folri и cd3 |
KR20170087486A (ko) | 2014-11-20 | 2017-07-28 | 에프. 호프만-라 로슈 아게 | 일반 경쇄 및 이의 사용 방법 |
CN108290958B (zh) | 2015-10-02 | 2021-12-28 | 豪夫迈·罗氏有限公司 | 多特异性抗体 |
CN108026177B (zh) | 2015-10-02 | 2021-11-26 | 豪夫迈·罗氏有限公司 | 双特异性抗cd19xcd3 t细胞活化性抗原结合分子 |
US20170096485A1 (en) | 2015-10-02 | 2017-04-06 | Hoffmann-La Roche Inc. | Bispecific t cell activating antigen binding molecules |
EP3150636A1 (en) | 2015-10-02 | 2017-04-05 | F. Hoffmann-La Roche AG | Tetravalent multispecific antibodies |
CR20180161A (es) | 2015-10-02 | 2018-05-25 | Hoffmann La Roche | Anticuerpos biespecíficos para pd1 y tim3 |
WO2017055393A1 (en) | 2015-10-02 | 2017-04-06 | F. Hoffmann-La Roche Ag | Anti-cd3xtim-3 bispecific t cell activating antigen binding molecules |
WO2017055392A1 (en) | 2015-10-02 | 2017-04-06 | F. Hoffmann-La Roche Ag | Anti-cd3xcd44v6 bispecific t cell activating antigen binding molecules |
AR106201A1 (es) | 2015-10-02 | 2017-12-20 | Hoffmann La Roche | Moléculas biespecíficas de unión a antígeno activadoras de células t |
KR20180053674A (ko) | 2015-10-02 | 2018-05-23 | 에프. 호프만-라 로슈 아게 | 공자극 tnf 수용체에 특이적인 이중특이성 항체 |
WO2017055318A1 (en) | 2015-10-02 | 2017-04-06 | F. Hoffmann-La Roche Ag | Cd33xcd3 bispecific t cell activating antigen binding molecules |
WO2017055385A1 (en) | 2015-10-02 | 2017-04-06 | F. Hoffmann-La Roche Ag | Anti-cd3xgd2 bispecific t cell activating antigen binding molecules |
CN107949574A (zh) | 2015-10-02 | 2018-04-20 | 豪夫迈·罗氏有限公司 | 双特异性t细胞活化性抗原结合分子 |
MX2018004157A (es) | 2015-10-07 | 2019-04-01 | F Hoffmann La Roche Ag | Anticuerpos biespecificos con tetravalencia para un receptor de fnt coestimulador. |
-
2008
- 2008-12-11 US US12/332,486 patent/US20090162359A1/en not_active Abandoned
- 2008-12-16 JP JP2010538441A patent/JP5281097B2/ja active Active
- 2008-12-16 RU RU2010129549/10A patent/RU2587616C2/ru active
- 2008-12-16 WO PCT/EP2008/010703 patent/WO2009080252A1/en active Application Filing
- 2008-12-16 MX MX2010006396A patent/MX2010006396A/es active IP Right Grant
- 2008-12-16 EP EP08864374.7A patent/EP2225279B1/en active Active
- 2008-12-16 KR KR1020107013760A patent/KR101249607B1/ko active IP Right Grant
- 2008-12-16 CA CA2709023A patent/CA2709023C/en active Active
- 2008-12-16 CN CN2008801219004A patent/CN101903404B/zh active Active
- 2008-12-16 AU AU2008340693A patent/AU2008340693A1/en not_active Abandoned
- 2008-12-16 NZ NZ585627A patent/NZ585627A/en not_active IP Right Cessation
- 2008-12-16 BR BRPI0821791-2A patent/BRPI0821791B1/pt active IP Right Grant
- 2008-12-16 ES ES08864374.7T patent/ES2469791T3/es active Active
- 2008-12-17 CL CL2008003781A patent/CL2008003781A1/es unknown
- 2008-12-17 TW TW097149168A patent/TWI359027B/zh not_active IP Right Cessation
- 2008-12-17 AR ARP080105485A patent/AR071547A1/es not_active Application Discontinuation
- 2008-12-17 PE PE2008002108A patent/PE20091172A1/es not_active Application Discontinuation
-
2010
- 2010-05-25 CR CR11460A patent/CR11460A/es not_active Application Discontinuation
- 2010-05-31 CO CO10065316A patent/CO6280542A2/es not_active Application Discontinuation
- 2010-06-03 IL IL206161A patent/IL206161A0/en unknown
- 2010-06-09 MA MA32899A patent/MA31904B1/fr unknown
- 2010-06-18 EC EC2010010270A patent/ECSP10010270A/es unknown
-
2012
- 2012-01-31 US US13/362,010 patent/US20120164726A1/en not_active Abandoned
- 2012-01-31 US US13/362,000 patent/US10138293B2/en active Active
-
2013
- 2013-08-30 US US14/015,952 patent/US20140120613A1/en not_active Abandoned
-
2018
- 2018-11-26 US US16/200,295 patent/US10927163B2/en active Active
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103502271B (zh) * | 2011-02-28 | 2016-10-26 | 霍夫曼-拉罗奇有限公司 | 抗原结合蛋白 |
CN103502271A (zh) * | 2011-02-28 | 2014-01-08 | 霍夫曼-拉罗奇有限公司 | 抗原结合蛋白 |
CN104379604A (zh) * | 2012-05-24 | 2015-02-25 | 弗·哈夫曼-拉罗切有限公司 | 多特异性抗体 |
CN104936986B (zh) * | 2013-02-26 | 2019-08-09 | 罗切格利卡特公司 | 双特异性t细胞活化性抗原结合分子 |
CN104936986A (zh) * | 2013-02-26 | 2015-09-23 | 罗切格利卡特公司 | 双特异性t细胞活化性抗原结合分子 |
CN112062853A (zh) * | 2013-12-20 | 2020-12-11 | 豪夫迈·罗氏有限公司 | 双特异性her2抗体及使用方法 |
CN112062853B (zh) * | 2013-12-20 | 2024-01-09 | 豪夫迈·罗氏有限公司 | 双特异性her2抗体及使用方法 |
CN107949574A (zh) * | 2015-10-02 | 2018-04-20 | 豪夫迈·罗氏有限公司 | 双特异性t细胞活化性抗原结合分子 |
CN108601830A (zh) * | 2015-12-18 | 2018-09-28 | 比奥根Ma公司 | 双特异性抗体平台 |
US11447575B2 (en) | 2015-12-18 | 2022-09-20 | Biogen Ma Inc. | Bispecific antibody platform |
CN108601830B (zh) * | 2015-12-18 | 2023-02-03 | 比奥根Ma公司 | 双特异性抗体平台 |
CN107325184A (zh) * | 2017-08-08 | 2017-11-07 | 安徽大学 | 一种靶向egfr和her2的双特异性抗体及其应用 |
CN111378045A (zh) * | 2018-12-28 | 2020-07-07 | 长春金赛药业有限责任公司 | 二价双特异性抗体及其制备方法、编码基因、宿主细胞、组合物 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101903404B (zh) | 二价双特异性抗体 | |
CN101903406B (zh) | 二价双特异性抗体 | |
CN101896504B (zh) | 二价双特异性抗体 | |
KR101266659B1 (ko) | 2가, 이중특이적 항체 | |
RU2575066C2 (ru) | Двухвалентные биспецифические антитела |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |