[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN105229827B - 一种对锂-硫电池单元循环充/放电的方法 - Google Patents

一种对锂-硫电池单元循环充/放电的方法 Download PDF

Info

Publication number
CN105229827B
CN105229827B CN201480018575.4A CN201480018575A CN105229827B CN 105229827 B CN105229827 B CN 105229827B CN 201480018575 A CN201480018575 A CN 201480018575A CN 105229827 B CN105229827 B CN 105229827B
Authority
CN
China
Prior art keywords
voltage
charging
lithium
discharge
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480018575.4A
Other languages
English (en)
Other versions
CN105229827A (zh
Inventor
卢卡斯·卡巴西克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Matthey PLC
Original Assignee
Oxis Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oxis Energy Ltd filed Critical Oxis Energy Ltd
Publication of CN105229827A publication Critical patent/CN105229827A/zh
Application granted granted Critical
Publication of CN105229827B publication Critical patent/CN105229827B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/448End of discharge regulating measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • H02J7/007184Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage in response to battery voltage gradient
    • H02J7/0086
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种用于使锂‑硫电池单元循环充/放电的方法,所述方法包括:使锂‑硫电池单元进行放电,当所述电池单元的电压达到阈值放电电压时停止放电,该阈值放电电压在1.5V‑2.1V的范围内,给锂‑硫电池单元进行充电,以及当所述电池单元的电压达到阈值充电电压时停止充电,该阈值充电电压在2.3V‑2.4V的范围内,其中,在阈值充电电压处锂‑硫电池单元没有被完全充电,以及其中,在阈值放电电压处锂‑硫电池单元没有被完全放电。

Description

一种对锂-硫电池单元循环充/放电的方法
技术领域
本发明涉及一种对锂-硫电池循环充/放电的方法。本发明还涉及一种用于对锂-硫电池循环充/放电的电池管理系统。
背景技术
锂-硫电池单元通常包括由锂金属或者锂金属合金形成的阳极(负电极)以及由元素硫或者其它电活性硫材料形成的阴极(正电极)。硫或者其它电活性含硫材料可以与诸如碳之类的导电材料混合以提高硫或者其它电活性含硫材料的导电性。通常,将碳和硫研磨并且然后与溶剂和粘合剂混合以形成浆液。将该浆液涂抹到集电器(current collector)并使其干燥以除去溶剂。将得到的结构进行压延以形成复合结构,该复合结构被切割成期望的形状以形成阴极。在阴极上放置隔膜,并且在该隔膜上放置锂阳极。然后将电解质导入到组装的电池单元中以浸湿阴极和隔膜。
锂-硫电池单元是二次电池单元。当锂-硫电池单元放电时,阴极中的硫会在两个阶段中被还原。在第一阶段中,硫(例如元素硫)被还原成多硫化物物质Sn 2-(n≥2)。这些物质通常在电解质中是可溶的。在放电的第二阶段中,多硫化物物质被还原成硫化锂Li2S,该Li2S通常沉积在阳极的表面上。
当给电池单元充电时,该二阶段机制反向发生:硫化锂被氧化成多硫化锂,其后多硫化锂被氧化成锂和硫。在锂-硫电池单元的放电和充电曲线图中都能看到该二阶段机制。因此,当给锂-硫电池单元充电时,随着电池单元在充电的第一阶段与第二阶段之间转变,锂-硫电池单元的电压通常经过一拐点
可以通过将外部电流施加到电池单元来给锂-硫电池单元充电(再次充电)。通常,电池单元被充电至固定的截止电压,例如2.45-2.8。然而,随着长时间的重复循环,电池单元的容量会衰减。实际上,在一定数量的周期之后,由于电池单元的内阻增加,可能无法再将电池单元充电至固定的截止电压。通过反复地将电池单元充电至选定的截止电压,最终电池单元会被反复地过充电。因为不期望的化学反应可能导致对例如电池单元的电极和/或电解质的损害,因此反复地过充电会对电池单元的寿命具有不利的影响。
鉴于以上原因,期望避免给锂-硫电池单元过充电。WO 2007/111988描述了用于确定锂硫电池单元何时充满电的过程。具体地,该参考文献描述了将诸如硝酸锂之类的N-O添加剂添加到电池单元的电解质中。根据该参考文献第16页第29到31行处的段落,添加剂在完全充电时有效地提供了电压的急剧上升的充电曲线。因此,如果在充电期间对电池单元电压进行监测,则一旦观察到电压的这种快速上升就可以停止充电。
WO 2007/111988的方法依赖于当电池单元达到满容量时电池单元的电压非常急剧地上升。然而,不是所有的锂-硫电池单元都呈现出这样的充电曲线分布。
发明内容
根据本发明,提供一种用于使锂-硫电池单元循环充放电的方法,所述方法包括:
i)使锂-硫电池单元进行放电,
ii)当电池单元的电压达到阈值放电电压时停止放电,该阈值放电电压在1.5V-2.1V的范围内,
iii)给锂-硫电池单元进行充电,以及
iv)当电池单元的电压达到阈值充电电压时停止充电,该阈值充电电压在2.3V-2.4V的范围内,
其中,在阈值充电电压处锂-硫电池单元没有被完全充电,以及
其中,在阈值放电电压处锂-硫电池单元没有被完全放电。
在不希望受限于任何理论的前提下,已经发现可以通过使锂-硫电池单元非完全充电(under-charging)以及可选地非完全放电(under discharging)来有利地降低容量衰减率。当锂-硫电池单元被完全充电时,诸如元素硫之类的电活性硫材料通常是以其完全被氧化的形态(例如S8)存在的。在这种形态下,电活性硫材料通常是不导电的。因此,当这样的材料(例如,元素硫)沉积在阴极上时,阴极的电阻会增加。这会导致温度增加,随着长时间的循环,温度增加会造成电池单元的组件的更快劣化。这进而会降低电池单元的容量,并增加容量衰减率。类似地,当电池单元处于完全放电状态时,硫化锂沉积在负电极上。这也会产生增加电池单元的电阻的影响。通过使电池单元非完全充电以及可选地非完全放电,产生的不导电物质的量会减少,从而降低电池单元的电阻和容量衰减的趋势。
在一个实施例中,电池单元被充电至相当大比例的阴极硫材料(例如,元素硫)还溶解在电解质中(例如,作为多硫化物)的点。电池单元还可以被放电至相当大比例的阴极硫材料(例如,元素硫)还溶解在电解质中(例如,作为多硫化物)的点。优选地,当至少80%的阴极硫材料溶解在电解质中(例如,作为多硫化物)时,出现停止充电以及可选地停止放电的点。可以通过已知的方法来确定溶液中溶解的阴极硫材料的百分比,例如,根据电池单元中剩余的固体硫的量占引入为阴极材料的硫材料的初始量的百分比。
阈值放电电压为1.5V到2.1V,例如1.5V到1.8V或者从1.8V到2.1V。适合的阈值放电电压的范围从1.6V到2.0V,例如,1.7V到1.9V。优选地,阈值放电电压为1.7V到1.8V,优选大约1.75V。
优选地,阈值充电电压大约为2.30V到2.36V,更优选2.30V到2.35V,还更优选2.31V到2.34V,例如2.33V。
在一个实施例中,针对至少两个放电-充电周期,优选针对至少20个放电-充电周期,更优选针对至少100个周期重复步骤i)到iv),例如,在电池单元的整个使用寿命期间都重复步骤i)到iv)。
在一个实施例中,所述方法还包括下述步骤:在充电和/或放电期间对电池单元的电压进行监测。
本发明还提供一种用于实现上述方法的电池管理系统。
根据本发明的又一方面,提供一种用于控制锂-硫电池单元的放电和充电的电池管理系统,所述系统包括
用于在阈值放电电压处使锂-硫电池单元的放电停止的装置,其中,该阈值放电电压大于电池单元在完全放电状态下的电压,
用于给锂-硫电池单元充电的装置,以及
用于在阈值充电电压处停止充电的装置,其中,该阈值充电电压小于电池单元在完全充电状态下的电压。
优选地,所述系统包括用于在放电和充电期间对电池单元的电压进行监测的装置。
在一个实施例中,当电池单元的电压处于1.5V到1.8V,优选处于1.7V-1.8V,例如大约1.75V时,用于使电池单元的放电停止的装置使放电停止。
替代地或另外地,当电池单元的电压为2.3V到2.4V时,用于使电池单元的充电停止的装置使充电停止。优选地,在大约2.30V-2.36V,更优选2.30V-2.35V,还更优选2.31V-2.34V,例如在2.33V处停止所述充电。
所述系统可以包括用于将所述系统耦接到锂-硫电池单元或锂-硫电池的装置。优选地,所述系统包括锂-硫电池单元或锂-硫电池。
在一优选实施例中,通过以恒定电流进行供电来给锂-硫电池单元充电。可以提供该电流,以便在从30分钟到12小时,优选地8到10小时的时间范围内给电池单元充电。可以在从0.1到3mA/cm2,优选地0.1到0.3mA/cm2的电流密度范围下提供该电流。作为以恒定电流进行充电的替代方案,还可以将锂-硫电池单元充电至恒定电压直到达到相关容量。
电化电池单元可以是任何适合的锂-硫电池单元。电池单元通常包括阳极、阴极、电解质、以及优选地多孔隔膜,有利地该多孔隔膜可以被放置在阳极与阴极之间。阳极可以由锂金属或者锂金属合金构成。优选地,阳极是金属箔电极,例如锂箔电极。锂箔可以由锂金属或者锂金属合金构成。
电化电池单元的阴极包括电活性硫材料与导电材料的混合物。该混合物形成电活性层,该电活性层可以被放置成与集电器接触。
可以将电活性硫材料与导电材料的混合物以溶剂(例如,水或者有机溶剂)中浆液的形式涂抹到集电器。然后可以除去该溶剂,并且得到的结构经压延形成复合结构,该复合结构被切割成期望的形状以形成阴极。可以在阴极上放置隔膜并且在隔膜上放置锂阳极。然后可以将电解质导入到组装的电池单元中以浸湿阴极和隔膜。
电活性硫材料可以包括元素硫、基于硫的有机化合物、基于硫的无机化合物和含硫聚合物。优选地,使用元素硫。
固体导电材料可以是任何适合的传导材料。优选地,该固体导电材料可以由碳制成。示例包括碳黑、碳纤维和碳纳米管。其他适合的材料包括金属(例如,薄片、锉屑和粉末)和导电聚合物。优选地,采用碳黑。
电活性硫材料(例如,元素硫)与导电材料(例如,碳)的重量比可以是1:1到30:1;优选2:1到8:1,更优选5:1到7:1。
电活性硫材料与导电材料的混合物可以是颗粒混合物。该混合物可以具有50nm到20μm,优选地100nm到5μm的平均粒度。
电活性硫材料与导电材料的混合物(即,电活性层)可以可选地包括粘合剂。适合的粘合剂可以由以下各项中的至少一种制成:例如,聚氧化乙烯、聚四氟乙烯、聚偏二氟乙烯、三元乙丙橡胶、甲基丙烯酸酯(例如,UV固化甲基丙烯酸酯)以及二乙烯基酯(例如,热固化二乙烯基酯)。
如上所述,电化电池单元的阴极还可以包括与电活性硫材料和固体导电材料的混合物接触的集电器。例如,电活性硫材料和固体导电材料的混合物沉积在集电器上。隔膜也设置在电化电池单元的阳极与阴极之间。例如,隔膜可以与电活性硫材料和固体导电材料的混合物接触,该电活性硫材料和固体导电材料的混合物又与集电器接触。
适合的集电器包括金属衬底,例如箔、由金属或者金属合金制成的片状物或者网状物。在一优选实施例中,集电器是铝箔。
隔膜可以是允许离子在电池单元的电极之间移动的任何适合的多孔衬底。衬底的孔隙率应该至少是30%,优选地至少50%,例如,60%以上。适合的隔膜包括由聚合材料制成的网状物。适合的聚合物包括聚丙烯、尼龙和聚乙烯。特别优选非织造聚丙烯。可以采用多层式隔膜。
优选地,电解质包括至少一种锂盐和至少一种有机溶剂。适合的锂盐包括下述各项中的至少一种:六氟磷酸锂(LiPF6)、六氟砷酸锂(LiAsF6)、高氯酸锂(LiClO4)、三氟甲基磺酰亚胺锂(LiN(CF3SO2)2)、四氟硼酸锂以及三氟甲烷磺酸锂(CF3SO3Li)。优选地,锂盐是三氟甲烷磺酸锂。
适合的有机溶剂有:四氢呋喃、2-甲基四氢呋喃、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸甲丙酯、甲基丙基丙酸酯、乙基丙基丙酸酯、乙酸甲酯、二甲氧基乙烷、1,3-二氧戊环(2-甲氧基乙醚)、四乙二醇二甲醚、碳酸亚乙酯、碳酸丙烯酯、γ-丁内酯、二氧戊环、六甲基磷酰胺、吡啶、二甲基亚砜、磷酸三丁酯、磷酸三甲酯、N,N,N,N-四乙基磺酰胺以及砜及其混合物。优选地,有机溶剂为砜或者砜类的混合物。砜的示例有二甲基砜和环丁砜。环丁砜可以用作单一溶剂或者可以例如与其他砜类结合。
用在电解质中的有机溶剂应该能够使诸如分子式Sn 2-之类的多硫化物物质溶解,其中n=2到12,该多硫化物物质形成于在电池单元放电期间电活性硫材料减少时。
电解质中锂盐的浓度优选为0.1到5M,更优选为0.5到3M,例如,1M。锂盐优选地以至少70%、优选至少80%、更优选至少90%、例如95%-99%的饱和度的浓度存在。
在一个实施例中,电解质包括三氟甲烷磺酸锂和环丁砜。
电解质与电活性硫材料和导电材料的总量的重量比是1-15:1;优选是2-9:1;更优选是6-8:1。
示例
图1描绘了通过充电至2.45V的固定电压并且放电至1.5V的固定电压来进行循环的锂-硫电池单元的充-放电曲线。
图2描绘了根据本发明的实施例,通过(非完全)充电至2.33V并且(非完全)放电至1.75V来进行循环的锂-硫电池单元的充-放电曲线。以相同的方式将两个电池单元制造成相同的规格。如可以从图中看出的那样,通过根据本发明使电池单元循环充放电,降低了容量衰减率。
在以下示例中,使用具有近似2.45V的OCV(开路电压)的基本上相同的锂-硫软包(pouch)电池单元。
每个电池单元都经受了预循环机制,其中包括基于使用电压范围1.5-2.45V的理论容量的70%,以C/5使电池单元放电,然后在3个充电/放电周期分别以C/5进行放电以及以C/10进行充电。
所有的充电/放电半周期分别经受C/10速率和C/5速率。
测试了以下放电-充电电压:
1.75V–2.45V(图3)
1.95V–2.45V(图4)
1.5V–2.4V(图5)
1.95V–2.4V(图6)
1.5V–2.33V(图7)
1.75V–2.33V(图8)
1.75V–2.25V(图9)
从图5、6、7、8与图3、4、9的比较可看出,通过根据本发明使电池单元进行循环充放电,降低了容量衰减率。具体地,通过将电池单元充电至2.33V,观察到显著改善了周期寿命。当电池单元被完全充电至2.45V(参见图3和图4)或者非完全充电至2.25V(参见图9)时都不能实现这种改善。

Claims (15)

1.一种用于使锂-硫电池单元循环充/放电的方法,所述方法包括:
i)使锂-硫电池单元进行放电,
ii)当所述电池单元的电压达到阈值放电电压时停止放电,给所述锂-硫电池单元进行充电,其中,所述阈值放电电压在1.5V-2.1V的范围内,以及
iii)当所述电池单元的电压达到阈值充电电压时停止充电,所述阈值充电电压在2.3V-2.4V的范围内,
其中,在所述阈值充电电压处所述锂-硫电池单元没有被完全充电,
其中,在所述阈值放电电压处所述锂-硫电池单元没有被完全放电,以及
其中,当至少80%的阴极硫材料溶解在电解质中时,出现停止充电的点。
2.根据权利要求1所述的方法,其中,所述阈值放电电压为1.75V。
3.根据权利要求1或2所述的方法,其中,所述阈值充电电压为2.33V。
4.根据权利要求1或2所述的方法,其中,针对至少2个放电-充电周期来重复步骤i)到iii)。
5.根据权利要求4所述的方法,其中,针对至少20个放电-充电周期来重复步骤i)到iii)。
6.根据权利要求1或2所述的方法,其中,当至少80%的阴极硫材料溶解在电解质中时,出现停止充电和停止放电的点。
7.一种用于对锂-硫电池单元的放电和充电进行控制的电池管理系统,所述系统包括:
用于在阈值放电电压处使锂-硫电池单元停止放电的装置,所述阈值放电电压大于所述电池单元在完全放电状态下的电压,
用于给所述锂-硫电池单元充电的装置,以及
用于在阈值充电电压处停止充电的装置,所述阈值充电电压小于所述电池单元在完全充电状态下的电压,
其中,当至少80%的阴极硫材料溶解在电解质中时,用于停止充电的装置被配置为停止充电。
8.根据权利要求7所述的系统,所述系统包括用于在放电和充电期间对所述电池单元的电压进行监测的装置。
9.根据权利要求7或8所述的系统,其中,当所述电池单元的电压处于1.7V-1.8V时,用于使电池单元停止放电的装置使所述放电停止。
10.根据权利要求9所述的系统,其中,当所述电池单元的电压为1.75V时,用于使电池单元停止放电的装置使所述放电停止。
11.根据权利要求7或8所述的系统,其中,当所述电池单元的电压处于2.3V-2.4V时,用于使电池单元停止充电的装置使所述充电停止。
12.根据权利要求11所述的系统,其中,当所述电池单元的电压为2.33V时,用于使所述电池单元停止充电的所述装置使所述充电停止。
13.根据权利要求7或8所述的系统,所述系统还包括用于将所述系统耦接到锂-硫电池的装置。
14.根据权利要求13所述的系统,所述系统包括锂-硫电池。
15.根据权利要求7或8所述的系统,其中,当至少80%的阴极硫材料溶解在电解质中时,所述系统停止充电和停止放电。
CN201480018575.4A 2013-03-25 2014-03-21 一种对锂-硫电池单元循环充/放电的方法 Active CN105229827B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP13160756.6A EP2784850A1 (en) 2013-03-25 2013-03-25 A method of cycling a lithium-sulphur cell
EP13160756.6 2013-03-25
GB1321703.9A GB2512424B (en) 2013-03-25 2013-12-09 A method of cycling a lithium-sulphur cell
GB1321703.9 2013-12-09
PCT/GB2014/050890 WO2014155069A1 (en) 2013-03-25 2014-03-21 A method of cycling a lithium-sulphur cell

Publications (2)

Publication Number Publication Date
CN105229827A CN105229827A (zh) 2016-01-06
CN105229827B true CN105229827B (zh) 2018-10-09

Family

ID=47913253

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480018575.4A Active CN105229827B (zh) 2013-03-25 2014-03-21 一种对锂-硫电池单元循环充/放电的方法

Country Status (11)

Country Link
US (1) US9935343B2 (zh)
EP (3) EP2784850A1 (zh)
JP (1) JP6450997B2 (zh)
KR (1) KR102164616B1 (zh)
CN (1) CN105229827B (zh)
CA (1) CA2903944C (zh)
GB (1) GB2512424B (zh)
HK (1) HK1197705A1 (zh)
RU (1) RU2641667C2 (zh)
TW (1) TWI635643B (zh)
WO (1) WO2014155069A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10033213B2 (en) * 2014-09-30 2018-07-24 Johnson Controls Technology Company Short circuit wake-up system and method for automotive battery while in key-off position
US11784303B2 (en) 2015-09-22 2023-10-10 Ii-Vi Delaware, Inc. Immobilized chalcogen and use thereof in a rechargeable battery
US10734638B2 (en) * 2015-09-22 2020-08-04 Ii-Vi Delaware, Inc. Immobilized selenium, a method of making, and uses of immobilized selenium in a rechargeable battery
US11588149B2 (en) 2015-09-22 2023-02-21 Ii-Vi Delaware, Inc. Immobilized selenium in a porous carbon with the presence of oxygen, a method of making, and uses of immobilized selenium in a rechargeable battery
CN106159361B (zh) * 2016-09-30 2018-12-04 上海空间电源研究所 一种锂硫电池充电方法
US11870059B2 (en) 2017-02-16 2024-01-09 Consejo Superior De Investigaciones Cientificas (Csic) Immobilized selenium in a porous carbon with the presence of oxygen, a method of making, and uses of immobilized selenium in a rechargeable battery
KR102229455B1 (ko) 2017-07-26 2021-03-18 주식회사 엘지화학 리튬-황 전지의 수명 개선 방법
WO2019022399A2 (ko) * 2017-07-26 2019-01-31 주식회사 엘지화학 리튬-황 전지의 수명 개선 방법
CN109616705A (zh) * 2018-11-26 2019-04-12 上海大学 提高锂离子电池容量的方法
JP7202977B2 (ja) * 2019-06-11 2023-01-12 日産自動車株式会社 リチウム二次電池の制御方法および制御装置、並びにリチウム二次電池システム
US12136711B2 (en) 2022-03-10 2024-11-05 Lyten, Inc. Battery safety system for detecting analytes
US11688895B1 (en) 2022-03-10 2023-06-27 Lyten, Inc. Battery safety system for detecting analytes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1930711A (zh) * 2004-01-06 2007-03-14 赛昂能源有限公司 锂硫电池的充电方法

Family Cites Families (169)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3030720A (en) 1960-06-08 1962-04-24 Highland Supply Corp Portable collapsible artificial christmas trees
US3185590A (en) 1961-01-06 1965-05-25 North American Aviation Inc Lightweight secondary battery
US3578500A (en) 1968-07-08 1971-05-11 American Cyanamid Co Nonaqueous electro-chemical current producing cell having soluble cathode depolarizer
US3639174A (en) 1970-04-22 1972-02-01 Du Pont Voltaic cells with lithium-aluminum alloy anode and nonaqueous solvent electrolyte system
US3721113A (en) 1971-08-23 1973-03-20 Du Pont Rolling of lithium
US3907591A (en) 1971-12-30 1975-09-23 Varta Ag Positive sulphur electrode for galvanic cells and method of producing the same
US3951688A (en) 1972-04-17 1976-04-20 The Gates Rubber Company Method and apparatus for pasting battery plates
US3778310A (en) 1972-05-01 1973-12-11 Du Pont High energy density battery having unsaturated heterocyclic solvent containing electrolyte
US3877983A (en) 1973-05-14 1975-04-15 Du Pont Thin film polymer-bonded cathode
US3907597A (en) 1974-09-27 1975-09-23 Union Carbide Corp Nonaqueous cell having an electrolyte containing sulfolane or an alkyl-substituted derivative thereof
US4048389A (en) 1976-02-18 1977-09-13 Union Carbide Corporation Cathode or cathode collector arcuate bodies for use in various cell systems
US4060674A (en) 1976-12-14 1977-11-29 Exxon Research And Engineering Company Alkali metal anode-containing cells having electrolytes of organometallic-alkali metal salts and organic solvents
US4104451A (en) 1977-09-26 1978-08-01 Exxon Research & Engineering Co. Alkali metal anode/chalcogenide cathode reversible batteries having alkali metal polyaryl metallic compound electrolytes
US4118550A (en) 1977-09-26 1978-10-03 Eic Corporation Aprotic solvent electrolytes and batteries using same
US4163829A (en) 1977-11-14 1979-08-07 Union Carbide Corporation Metallic reducing additives for solid cathodes for use in nonaqueous cells
FR2442512A1 (fr) 1978-11-22 1980-06-20 Anvar Nouveaux materiaux elastomeres a conduction ionique
US4218523A (en) 1979-02-28 1980-08-19 Union Carbide Corporation Nonaqueous electrochemical cell
US4252876A (en) 1979-07-02 1981-02-24 Eic Corporation Lithium battery
US4318430A (en) 1979-11-07 1982-03-09 General Electric Company Apparatus for making rechargeable electrodes for electrochemical cells
IL63207A (en) 1980-07-24 1985-09-29 Lonza Ag Process for the preparation of 2-(2-aminothiazole-4-yl)-2-(syn)-methoxyiminoacetic acid esters
IL61085A (en) 1980-09-19 1983-07-31 Univ Ramot Nonaqueous sulfur cell
JPS59194361A (ja) 1983-03-18 1984-11-05 Toshiba Battery Co Ltd 空気電池
US4499161A (en) 1983-04-25 1985-02-12 Eic Laboratories, Inc. Electrochemical cell using dimethoxymethane and/or trimethoxymethane as solvent for electrolyte
US4550064A (en) 1983-12-08 1985-10-29 California Institute Of Technology High cycle life secondary lithium battery
FR2576712B1 (fr) 1985-01-30 1988-07-08 Accumulateurs Fixes Generateur electrochimique a electrolyte non aqueux
DE3687804T2 (de) 1985-07-05 1993-09-23 Hitachi Ltd Sekundaerbatterie.
US4725927A (en) 1986-04-08 1988-02-16 Asahi Glass Company Ltd. Electric double layer capacitor
JPH0752647B2 (ja) 1986-09-26 1995-06-05 松下電器産業株式会社 電池用電極とその製造方法
GB8630857D0 (en) 1986-12-24 1987-02-04 Sylva Ind Ltd Electrical contact tab
JPH01124969A (ja) 1987-11-10 1989-05-17 Hitachi Maxell Ltd リチウム二次電池
US5079109A (en) 1989-05-16 1992-01-07 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
US5219684A (en) 1990-05-16 1993-06-15 Her Majesty The Queen In Right Of Canada, As Represented By The Province Of British Columbia Electrochemical cells containing a safety electrolyte solvent
US5368958A (en) 1992-08-20 1994-11-29 Advanced Energy Technologies Incorporated Lithium anode with conductive for and anode tab for rechargeable lithium battery
US5587253A (en) 1993-03-05 1996-12-24 Bell Communications Research, Inc. Low resistance rechargeable lithium-ion battery
US5460905A (en) 1993-06-16 1995-10-24 Moltech Corporation High capacity cathodes for secondary cells
US5961672A (en) 1994-02-16 1999-10-05 Moltech Corporation Stabilized anode for lithium-polymer batteries
US5648187A (en) 1994-02-16 1997-07-15 Moltech Corporation Stabilized anode for lithium-polymer batteries
JPH0869812A (ja) 1994-08-30 1996-03-12 Shin Kobe Electric Mach Co Ltd 密閉形鉛蓄電池およびその製造法
JPH08138650A (ja) 1994-11-01 1996-05-31 Dainippon Ink & Chem Inc 非水電解液二次電池用炭素質電極板および二次電池
JP3385115B2 (ja) 1994-11-02 2003-03-10 松下電器産業株式会社 ゲル電解質およびリチウム二次電池
US6020089A (en) 1994-11-07 2000-02-01 Sumitomo Electric Industries, Ltd. Electrode plate for battery
US6030720A (en) 1994-11-23 2000-02-29 Polyplus Battery Co., Inc. Liquid electrolyte lithium-sulfur batteries
US5523179A (en) 1994-11-23 1996-06-04 Polyplus Battery Company Rechargeable positive electrode
US5814420A (en) 1994-11-23 1998-09-29 Polyplus Battery Company, Inc. Rechargeable positive electrodes
US5582623A (en) 1994-11-23 1996-12-10 Polyplus Battery Company, Inc. Methods of fabricating rechargeable positive electrodes
US5686201A (en) 1994-11-23 1997-11-11 Polyplus Battery Company, Inc. Rechargeable positive electrodes
US6376123B1 (en) 1994-11-23 2002-04-23 Polyplus Battery Company Rechargeable positive electrodes
US6358643B1 (en) 1994-11-23 2002-03-19 Polyplus Battery Company Liquid electrolyte lithium-sulfur batteries
EP0764489B1 (en) 1995-04-03 2002-02-13 Mitsubishi Materials Corporation Porous metallic body with large specific surface area, process for producing the same, porous metallic platy material, and electrode of alkaline secondary battery
JPH08298230A (ja) 1995-04-26 1996-11-12 Mitsubishi Chem Corp 電気二重層コンデンサ用電解液
JPH08298229A (ja) 1995-04-26 1996-11-12 Mitsubishi Chem Corp 電気二重層コンデンサ用電解液
EP0834201A4 (en) 1995-06-07 1999-11-10 Moltech Corp ELECTROACTIVE UPLOAD CAPACITIVE POLYACETYLENE-CO-POLYSULPHUR MATERIALS AND ELECTROLYTIC CELLS CONTAINING THEM
US5744262A (en) 1995-06-07 1998-04-28 Industrial Technology Research Institute Stable high-voltage electrolyte for lithium secondary battery
US5529860A (en) 1995-06-07 1996-06-25 Moltech Corporation Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
JPH0927328A (ja) 1995-07-10 1997-01-28 Asahi Denka Kogyo Kk 非水電池
JPH09147913A (ja) 1995-11-22 1997-06-06 Sanyo Electric Co Ltd 非水電解質電池
US5797428A (en) 1996-01-11 1998-08-25 Vemco Corporation Pop-alert device
WO1997044840A1 (en) 1996-05-22 1997-11-27 Moltech Corporation Composite cathodes, electrochemical cells comprising novel composite cathodes, and processes for fabricating same
DE69709740T2 (de) 1996-06-14 2002-08-22 Moltech Corp., Tucson Zusammensetzung verwendbar in elektrolyten für sekundär batteriezellen
JPH10284076A (ja) 1997-04-01 1998-10-23 Matsushita Electric Ind Co Ltd アルカリ蓄電池及びその電極の製造方法
US20020168574A1 (en) 1997-06-27 2002-11-14 Soon-Ho Ahn Lithium ion secondary battery and manufacturing method of the same
KR100368753B1 (ko) 1997-06-27 2003-04-08 주식회사 엘지화학 리튬전지용음극및그의제조방법
US6090504A (en) 1997-09-24 2000-07-18 Korea Kumho Petrochemical Co., Ltd. High capacity composite electrode and secondary cell therefrom
AU1084599A (en) 1997-10-15 1999-05-03 Arizona Board Of Regents, The Non-aqueous electrolyte solvents for secondary cells
US6162562A (en) 1997-10-28 2000-12-19 Pioneer Electronic Corporation Secondary cell comprising a positive electrode containing polyaniline and 4 diazo compound
US6210831B1 (en) 1997-12-19 2001-04-03 Moltech Corporation Cathodes comprising electroactive sulfur materials and secondary batteries using same
US6201100B1 (en) 1997-12-19 2001-03-13 Moltech Corporation Electroactive, energy-storing, highly crosslinked, polysulfide-containing organic polymers and methods for making same
DE69813164T2 (de) 1997-12-22 2003-10-23 Gs-Melcotec Co., Ltd. Verfahren zur Herstellung einer porösen, mit aktiver Masse gefüllten Elektrode
JPH11273729A (ja) 1998-03-19 1999-10-08 Yazaki Corp リチウム塩及びスルフィド系二次電池
US6350545B2 (en) 1998-08-25 2002-02-26 3M Innovative Properties Company Sulfonylimide compounds
JP4016506B2 (ja) 1998-10-16 2007-12-05 ソニー株式会社 固体電解質電池
US6302928B1 (en) 1998-12-17 2001-10-16 Moltech Corporation Electrochemical cells with high volumetric density of electroactive sulfur-containing materials in cathode active layers
JP3573992B2 (ja) 1999-02-15 2004-10-06 三洋電機株式会社 リチウム二次電池
KR100322449B1 (ko) 1999-06-07 2002-02-07 김순택 리튬 이차 전지용 전해액 및 이를 사용한 리튬 이차 전지
JP3754239B2 (ja) * 1999-07-27 2006-03-08 三洋電機株式会社 電池の充放電制御方法
US6413284B1 (en) 1999-11-01 2002-07-02 Polyplus Battery Company Encapsulated lithium alloy electrodes having barrier layers
WO2001036206A1 (en) 1999-11-12 2001-05-25 Fargo Electronics, Inc. Thermal printhead compensation
US6797428B1 (en) 1999-11-23 2004-09-28 Moltech Corporation Lithium anodes for electrochemical cells
US6733924B1 (en) 1999-11-23 2004-05-11 Moltech Corporation Lithium anodes for electrochemical cells
US7247408B2 (en) 1999-11-23 2007-07-24 Sion Power Corporation Lithium anodes for electrochemical cells
JP4797219B2 (ja) 1999-12-09 2011-10-19 パナソニック株式会社 電池のリード線接続装置
US6329789B1 (en) * 1999-12-21 2001-12-11 Moltech Corporation Methods of charging lithium-sulfur batteries
US20030190530A1 (en) 2000-03-28 2003-10-09 Li Yang Lithium Secondary Battery
US6344293B1 (en) 2000-04-18 2002-02-05 Moltech Corporation Lithium electrochemical cells with enhanced cycle life
CN1182617C (zh) 2000-05-08 2004-12-29 森陶硝子株式会社 电解质、包含电解质的离子导体和包括这种离子导体的电化学装置
WO2001097304A1 (en) 2000-06-12 2001-12-20 Korea Institute Of Science And Technology Multi-layered lithium electrode, its preparation and lithium batteries comprising it
US6958198B2 (en) 2000-07-17 2005-10-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrochemical apparatus
KR100326468B1 (ko) 2000-07-25 2002-02-28 김순택 리튬 설퍼 전지용 전해액
KR100326466B1 (ko) 2000-07-25 2002-02-28 김순택 리튬 설퍼 전지용 전해액
JP2002075446A (ja) 2000-08-02 2002-03-15 Samsung Sdi Co Ltd リチウム−硫黄電池
US6544691B1 (en) 2000-10-11 2003-04-08 Sandia Corporation Batteries using molten salt electrolyte
US6706449B2 (en) 2000-12-21 2004-03-16 Moltech Corporation Lithium anodes for electrochemical cells
US6632573B1 (en) 2001-02-20 2003-10-14 Polyplus Battery Company Electrolytes with strong oxidizing additives for lithium/sulfur batteries
WO2002095861A1 (en) 2001-05-22 2002-11-28 Lg Chem, Ltd. Non-aqueous electrolyte additive for improving safety and lithium ion secondary battery comprising the same
KR100417088B1 (ko) 2001-05-22 2004-02-05 주식회사 엘지화학 안전성을 향상시키는 비수전해액 첨가제 및 이를 포함하는비수전해액 리튬이온 2차 전지
KR100385357B1 (ko) 2001-06-01 2003-05-27 삼성에스디아이 주식회사 리튬-황 전지
US6862168B2 (en) 2001-06-29 2005-03-01 Kanebo, Limited Organic electrolyte capacitor
EP1433217A2 (en) 2001-07-27 2004-06-30 Massachusetts Institute Of Technology Battery structures, self-organizing structures and related methods
US7241535B2 (en) 2001-10-15 2007-07-10 Samsung Sdi Co., Ltd. Electrolyte for lithium-sulfur batteries and lithium-sulfur batteries comprising the same
KR100466924B1 (ko) 2001-12-28 2005-01-24 한국과학기술원 액적화학증착법을 이용한 초박막형 리튬이온 2차전지의제조방법
US6893762B2 (en) 2002-01-16 2005-05-17 Alberta Research Council, Inc. Metal-supported tubular micro-fuel cell
US7713658B2 (en) 2002-04-02 2010-05-11 Nippon Shokubai Co., Ltd. Material for electrolytic solutions and use thereof
CA2384215A1 (en) 2002-04-30 2003-10-30 Richard Laliberte Electrochemical bundle and method for making same
KR100463181B1 (ko) * 2002-07-12 2004-12-23 삼성에스디아이 주식회사 리튬-설퍼 전지용 전해액 및 이를 포함하는 리튬-설퍼 전지
DE10238943B4 (de) 2002-08-24 2013-01-03 Evonik Degussa Gmbh Separator-Elektroden-Einheit für Lithium-Ionen-Batterien, Verfahren zu deren Herstellung und Verwendung in Lithium-Batterien sowie eine Batterie, aufweisend die Separator-Elektroden-Einheit
KR100467456B1 (ko) 2002-09-10 2005-01-24 삼성에스디아이 주식회사 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
KR100467453B1 (ko) 2002-09-12 2005-01-24 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR100449765B1 (ko) 2002-10-12 2004-09-22 삼성에스디아이 주식회사 리튬전지용 리튬메탈 애노드
KR100467436B1 (ko) 2002-10-18 2005-01-24 삼성에스디아이 주식회사 리튬-황 전지용 음극, 그의 제조 방법 및 그를 포함하는리튬-황 전지
KR100477969B1 (ko) 2002-10-25 2005-03-23 삼성에스디아이 주식회사 리튬 전지용 음극 및 이를 포함하는 리튬 전지
KR100485093B1 (ko) 2002-10-28 2005-04-22 삼성에스디아이 주식회사 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지
KR100875112B1 (ko) 2002-11-16 2008-12-22 삼성에스디아이 주식회사 비수계 전해액 및 이를 채용한 리튬 전지
KR100477751B1 (ko) 2002-11-16 2005-03-21 삼성에스디아이 주식회사 비수계 전해액 및 이를 채용한 리튬 전지
KR100472513B1 (ko) 2002-11-16 2005-03-11 삼성에스디아이 주식회사 리튬 설퍼 전지용 유기 전해액 및 이를 채용한 리튬 설퍼전지
JP2004179160A (ja) 2002-11-26 2004-06-24 Samsung Sdi Co Ltd リチウム−硫黄電池用正極
US7108942B1 (en) 2003-03-27 2006-09-19 Wilson Greatbatch Technologies, Inc. Efficient electrode assembly design for cells with alkali metal anodes
EP1636864A4 (en) 2003-04-22 2008-11-19 Benedetto Anthony Iacovelli FUEL CELL, COMPONENTS AND SYSTEMS
JP4055642B2 (ja) 2003-05-01 2008-03-05 日産自動車株式会社 高速充放電用電極および電池
US7245107B2 (en) * 2003-05-09 2007-07-17 Enerdel, Inc. System and method for battery charge control based on a cycle life parameter
JP4494731B2 (ja) 2003-06-13 2010-06-30 三菱重工業株式会社 二次電池、二次電池の製造方法
KR100573109B1 (ko) 2003-06-17 2006-04-24 삼성에스디아이 주식회사 유기 전해액 및 이를 채용한 리튬 전지
KR101285032B1 (ko) * 2003-08-11 2013-07-11 우베 고산 가부시키가이샤 리튬 2차 전지 및 그의 비수 전해액
JP2005071641A (ja) 2003-08-27 2005-03-17 Japan Storage Battery Co Ltd 非水電解質二次電池およびその製造方法
US7335440B2 (en) 2003-09-12 2008-02-26 Medtronic, Inc. Lithium-limited anode subassembly with solid anode current collector and spacer
JP2005108724A (ja) 2003-09-30 2005-04-21 Sanyo Electric Co Ltd 非水電解質二次電池
JP2005166536A (ja) 2003-12-04 2005-06-23 Sanyo Electric Co Ltd 非水電解質二次電池
US7646171B2 (en) * 2004-01-06 2010-01-12 Sion Power Corporation Methods of charging lithium sulfur cells
US7354680B2 (en) 2004-01-06 2008-04-08 Sion Power Corporation Electrolytes for lithium sulfur cells
JP4399779B2 (ja) 2004-02-25 2010-01-20 株式会社豊田中央研究所 電解質粒子、正極、負極及びリチウム二次電池
US8334079B2 (en) 2004-04-30 2012-12-18 NanoCell Systems, Inc. Metastable ceramic fuel cell and method of making the same
US20060024579A1 (en) 2004-07-27 2006-02-02 Vladimir Kolosnitsyn Battery electrode structure and method for manufacture thereof
JP5068660B2 (ja) 2004-10-29 2012-11-07 メドトロニック,インコーポレイテッド リチウムイオン電池を充電する方法
JP4594039B2 (ja) 2004-11-09 2010-12-08 本城金属株式会社 積層フィルム被覆リチウム箔
US20060105233A1 (en) 2004-11-18 2006-05-18 Hiroyuki Morita Battery
JP5466364B2 (ja) 2004-12-02 2014-04-09 オクシス・エナジー・リミテッド リチウム・硫黄電池用電解質及びこれを使用するリチウム・硫黄電池
JP5651284B2 (ja) 2005-01-18 2015-01-07 オクシス・エナジー・リミテッド リチウム−硫黄電池
GB2422244B (en) * 2005-01-18 2007-01-10 Intellikraft Ltd Improvements relating to electrolyte compositions for batteries using sulphur or sulphur compounds
KR100813240B1 (ko) 2005-02-18 2008-03-13 삼성에스디아이 주식회사 유기 전해액 및 이를 채용한 리튬 전지
US7183734B2 (en) * 2005-02-18 2007-02-27 Atmel Corporation Sensorless control of two-phase brushless DC motor
WO2006100464A2 (en) 2005-03-22 2006-09-28 Oxis Energy Limited Lithium sulphide battery and method of producing the same
KR101161721B1 (ko) 2005-03-31 2012-07-03 후지 주코교 카부시키카이샤 리튬 이온 커패시터
US7688075B2 (en) * 2005-04-20 2010-03-30 Sion Power Corporation Lithium sulfur rechargeable battery fuel gauge systems and methods
KR100803191B1 (ko) 2005-06-24 2008-02-14 삼성에스디아이 주식회사 유기 전해액 및 이를 채용한 리튬 전지
EP1941568A1 (en) 2005-09-26 2008-07-09 Oxis Energy Limited Lithium-sulphur battery with high specific energy
JP4842633B2 (ja) 2005-12-22 2011-12-21 富士重工業株式会社 電池又はキャパシタ用リチウム金属箔の製造方法
KR100907623B1 (ko) 2006-05-15 2009-07-15 주식회사 엘지화학 신규한 적층 구조의 이차전지용 전극조립체
GB2438890B (en) 2006-06-05 2011-01-12 Oxis Energy Ltd Lithium secondary battery for operation over a wide range of temperatures
JP4898308B2 (ja) 2006-06-07 2012-03-14 パナソニック株式会社 充電回路、充電システム、及び充電方法
KR100888284B1 (ko) 2006-07-24 2009-03-10 주식회사 엘지화학 탭-리드 결합부의 전극간 저항차를 최소화한 전극조립체 및이를 포함하고 있는 전기화학 셀
GB0615870D0 (en) 2006-08-10 2006-09-20 Oxis Energy Ltd An electrolyte for batteries with a metal lithium electrode
JP5114036B2 (ja) 2006-09-08 2013-01-09 Necエナジーデバイス株式会社 積層型電池の製造方法
JP5297383B2 (ja) 2006-10-25 2013-09-25 オクシス・エナジー・リミテッド 高比エネルギーのリチウム−硫黄電池及びその動作法
KR101342509B1 (ko) 2007-02-26 2013-12-17 삼성에스디아이 주식회사 리튬 이차 전지
US8734986B2 (en) 2007-07-11 2014-05-27 Nissan Motor Co., Ltd. Laminate type battery
US20110076560A1 (en) 2009-08-28 2011-03-31 Sion Power Corporation Electrochemical cells comprising porous structures comprising sulfur
JP5111991B2 (ja) 2007-09-28 2013-01-09 株式会社東芝 電池
KR101386165B1 (ko) 2007-10-26 2014-04-17 삼성에스디아이 주식회사 실란계 화합물을 채용한 유기전해액 및 리튬 전지
JP4561859B2 (ja) 2008-04-01 2010-10-13 トヨタ自動車株式会社 二次電池システム
GB0808059D0 (en) 2008-05-02 2008-06-11 Oxis Energy Ltd Rechargeable battery with negative lithium electrode
KR20110024707A (ko) * 2009-09-03 2011-03-09 주식회사 엘지화학 리튬 이차 전지의 충전 방법
JP5487895B2 (ja) 2009-11-17 2014-05-14 トヨタ自動車株式会社 集電体及びその製造方法
US20120315553A1 (en) 2010-02-22 2012-12-13 Toyota Jidosha Kabushiki Kaisha Non-aqueous liquid electrolyte secondary battery and non-aqueous liquid electrolyte for non-aqueous liquid electrolyte secondary battery
JP2011192574A (ja) 2010-03-16 2011-09-29 Panasonic Corp リチウム一次電池
EP2629388A4 (en) * 2010-10-15 2014-08-06 Sanyo Electric Co ENERGY MANAGEMENT SYSTEM
CN102725936A (zh) 2010-11-25 2012-10-10 松下电器产业株式会社 充电控制电路、电池驱动设备、充电装置以及充电方法
JP2013042598A (ja) * 2011-08-16 2013-02-28 Sanyo Electric Co Ltd 充放電制御装置
CN103427125B (zh) * 2012-05-15 2016-04-13 清华大学 硫基聚合物锂离子电池的循环方法
JP6219273B2 (ja) 2012-05-22 2017-10-25 三洋電機株式会社 リチウム二次電池用負極、リチウム二次電池、及びリチウム二次電池用負極の製造方法
FR2991104B1 (fr) * 2012-05-23 2014-11-21 Peugeot Citroen Automobiles Sa Procede et dispositif pour la desulfatation d'une batterie

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1930711A (zh) * 2004-01-06 2007-03-14 赛昂能源有限公司 锂硫电池的充电方法

Also Published As

Publication number Publication date
CA2903944A1 (en) 2014-10-02
CA2903944C (en) 2022-07-12
RU2015145466A (ru) 2017-05-17
US20160006084A1 (en) 2016-01-07
JP6450997B2 (ja) 2019-01-16
GB2512424A (en) 2014-10-01
KR102164616B1 (ko) 2020-10-12
GB201321703D0 (en) 2014-01-22
US9935343B2 (en) 2018-04-03
HK1197705A1 (zh) 2015-02-06
WO2014155069A1 (en) 2014-10-02
EP2979318A1 (en) 2016-02-03
CN105229827A (zh) 2016-01-06
EP3614467A1 (en) 2020-02-26
JP2016514884A (ja) 2016-05-23
GB2512424B (en) 2015-03-04
TW201503461A (zh) 2015-01-16
EP2784850A1 (en) 2014-10-01
RU2641667C2 (ru) 2018-01-19
TWI635643B (zh) 2018-09-11
KR20150133733A (ko) 2015-11-30

Similar Documents

Publication Publication Date Title
CN105229827B (zh) 一种对锂-硫电池单元循环充/放电的方法
CN105190961B (zh) 一种给锂‑硫电池单元充电的方法
US20170104347A1 (en) Secondary battery apparatus
EP3311441B1 (en) Lithium-ion mixed conductor membrane improves the performance of lithium-sulfur battery and other energy storage devices
DE102017127614A1 (de) Beschichtete negative Lithium-Metall-Elektrode
CN105264694B (zh) 一种给锂‑硫电池单元充电的方法
CN104078676B (zh) 一种磷酸氧钒钠/石墨烯复合材料的制备方法
Chen et al. Dimethoxydiphenylsilane (DDS) as overcharge protection additive for lithium-ion batteries
KR102249094B1 (ko) 임피던스가 감소된 전기화학 셀 또는 배터리 및 그들을 제작하는 방법
CN109243831A (zh) 锂离子电容器及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220609

Address after: London

Patentee after: JOHNSON MATTHEY PLC

Address before: Oxfordshire

Patentee before: OXIS ENERGY Ltd.