CN104220630A - 耐腐蚀且导电的金属表面 - Google Patents
耐腐蚀且导电的金属表面 Download PDFInfo
- Publication number
- CN104220630A CN104220630A CN201380009244.XA CN201380009244A CN104220630A CN 104220630 A CN104220630 A CN 104220630A CN 201380009244 A CN201380009244 A CN 201380009244A CN 104220630 A CN104220630 A CN 104220630A
- Authority
- CN
- China
- Prior art keywords
- titanium alloy
- doping
- devices
- deposited
- oxide material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
- C25B9/23—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/513—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
- C23C28/3455—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/08—Metallic material containing only metal elements
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/18—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/10—Oxidising
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B13/00—Diaphragms; Spacing elements
- C25B13/04—Diaphragms; Spacing elements characterised by the material
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/022—Anodisation on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/26—Anodisation of refractory metals or alloys based thereon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
- H01M8/0208—Alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0228—Composites in the form of layered or coated products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0241—Composites
- H01M8/0245—Composites in the form of layered or coated products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
- H01M8/184—Regeneration by electrochemical means
- H01M8/188—Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/20—Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Ceramic Engineering (AREA)
- Fuel Cell (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Coating By Spraying Or Casting (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Laminated Bodies (AREA)
- Chemically Coating (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
用导电二氧化钛基材料涂覆金属基材或金属合金的方法。该方法生产用于需要高导电性、耐腐蚀性和电极反应活性的以低成本长期运行的电化学装置的金属部件。
Description
相关申请的交叉引用:
本申请要求2012年2月23日提交的第61/602,253号美国临时申请以及2013年2月5日提交的第61/760,767号美国临时申请的优先权,其全部内容通过引用并入本文。
发明领域
本发明的实施方案涉及用于电化学应用的金属表面导电性、耐腐蚀性和电极反应活性的增强。更具体地,本文所公开的实施方案涉及使用钛合金和导电钛氧化物来修饰金属表面以用于通常需要高耐腐蚀性和导电性的金属部件表面的电化学应用。
背景技术
金属材料被广泛用于各种电化学装置,包括氯碱工艺中的电极以及燃料电池中的隔板(separator plate)。金属部件也用于电池、电解槽和电化学气体分离装置。这些应用大多需要金属部件的表面具有高导电性(或低抗电阻性)以降低电化学装置的内部电损耗,或者具有用于电极反应的高活性以降低电极极化,从而高效率运行。本应用的主要挑战是金属部件还必须具有高耐腐蚀性同时保持其高导电性。在使用金属作为电极的应用中,金属表面应具有用于高效电极反应的高催化活性。
第6649031号美国专利披露了涂覆有耐腐蚀且导电的碳层并且在金属基材和涂层之间具有亚层的燃料电池金属双极板。为了进一步提高耐腐蚀性,将涂层通过封闭碳层孔隙的饰面(overcoating)密封来处理。
第6689213号美国专利披露了具有多相表面涂层的燃料电池金属双极板。一个相是金属,而另一个相是由金属氮化物、氧化物、碳化物或硼化物组成的化合物相。
第2006/0134501号美国专利申请公开披露了具有在金属基材上的导电、耐腐蚀的表面层的燃料电池金属隔板。所述表面层包含金属碳化物、金属硼化物和金属氧化物。在表面层与金属基材之间有金属层以提高表面层与金属基材的附着。其具有富铬表面钝化膜。
第2009/0269649号美国专利申请公开披露了具有导电且耐腐蚀的表面层的燃料电池不锈钢隔板,该导电且耐腐蚀的表面层包含金属氮化物、碳化物和金属硼化物。该表面层被沉积在表面改性的不锈钢上。
第2008/0107928号美国专利申请公开披露了具有金(Au)或铂(Pt)表面层以及含氧中间层的燃料电池双极板。
第2009/0015029号美国专利申请公开披露了涂覆有导电层的燃料电池双极板。该导电层可以是碳、钼掺杂的铟氧化物、铬氮化物或MoSi2层。该'029公开没有具体披露导电涂层和基材层之间的衬层(underlayer)。
第2007/0003813号美国专利申请公开披露了使用包括经掺杂的TiO2的导电氧化物作为燃料电池中的表面涂层。沉积方法包括物理气相沉积。
仍亟需生产用于需要高导电性、耐腐蚀性和电极反应活性的以低成本长期运行的电化学装置的金属部件的方法。
附图简述
图1为金属板的示意图,其中导电二氧化钛生长在沉积于金属板表面上的Ti合金连续层上。
图2为金属板的示意图,其中导电二氧化钛生长在沉积于金属板表面上的Ti合金颗粒上。
图3为双极型燃料电池堆(bipolar fuel stack)的示意图。
图4为示例性电解槽型电池(electrolyzer cell),其中可以应用本文公开的实施方案。
图5为示例性电池,其中可以应用本文公开的实施方案。
图6为示例性电池,其中可以应用本文公开的实施方案。
发明详述
以下详细描述中,阐述了多个具体的细节,诸如材料类型和尺寸,以提供对以下讨论的优选实施方案的透彻理解。与优选的实施方案相关的所讨论的细节不应理解为限制本发明。此外,为了便于理解,某些方法步骤被描述为分开的步骤;然而,这些步骤不应该被解释为必须是独立的或在其实施中是顺序依赖的。
本文公开的实施方案的目的为提供具有沉积在其中的钛合金层且可在该合金表面上生长导电的经掺杂的钛氧化物的金属表面。公开的实施方案的可能应用包括在电化学装置(包括燃料电池、电池、电解槽和气体分离装置)中的用途。应认识到,生长经掺杂的钛氧化物是更好的技术,因为其与沉积方法相比提供了更好的品质(例如,更好的附着性)。
所公开的方法的优势为其可以生产用于需要高导电性、耐腐蚀性和电极反应活性的以低成本长期运行的电化学装置的金属部件。如下所释,这些装置包括燃料电池、电池、电解槽和气体分离装置。
常规钛氧化物(二氧化钛)以TiO2的形式为电绝缘体,其中钛处于Ti+4价态。通过某些方法,一些Ti+4可以转化为更低的化合价,例如Ti+3和Ti+2。在氧化物中多价Ti的共存可以使钛氧化物成为良好的电导体(即,导电的二氧化钛)。
将Ti+4转换至更低化合价的一种方法为在高温下还原TiO2,并将其淬火至室温以“冻结”Ti+3和Ti+2。还原的钛氧化物(即,还原的二氧化钛)的最终公式为TiOx,其中x小于2。
更可靠的方法为将高价成分氧化物(例如,M2O5或MO3)掺杂到TiO2中以形成掺杂剂氧化物和TiO2的固溶体(即,掺杂的二氧化钛,M:TiOx)。在钛氧化物晶体结构中,高价掺杂剂会稳定低价(+2和+3)钛,这将使经掺杂的二氧化钛成为导电的。常见的掺杂剂为铌(Nb)和钽(Ta)。
已知在金属表面上直接沉积氧化物存在氧化物与金属表面附着差的风险。在本文所公开的实施方案中,通过在钛合金表上生长用于更好附着的钛氧化物,从而克服了该问题。
本文公开的实施方案使用生长在涂覆于金属基材表面上的钛合金上的导电二氧化钛以改进用于电化学应用的金属的表面抗电阻性、耐腐蚀性和电极反应活性。该实施方案还在钛合金表面上形成经掺杂的二氧化钛。
根据所公开的原理,该钛合金可以通过各种沉积技术(包括例如汽相沉积(物理或化学的)和热喷涂)而沉积。然后,可以在钛合金表面上生长导电二氧化钛。钛合金具有作为合金成分的掺杂剂成分的适当浓度。该浓度为1%-30%,优选为%-10%。该钛合金可以沉积在较低成本的金属基材表面上。其可以覆盖整个基材表面或金属基材的部分表面。
金属基材可以为耐腐蚀的金属,诸如钛、铌、锆、钽、铬、镍及其合金,或者经耐腐蚀表面处理的廉价的碳钢、不锈钢、铜、铝及其合金。
在一个实施方案中,钛合金还包含高价(例如,大于+4)的成分,例如,铌(Nb)、钽(Ta)、钒(V)、砷(As)、硒(Se)、锑(Sb)、钼(Mo)或钨(W)。在其应用过程中,经掺杂的二氧化钛层可以自然地生长在合金表面上。其也可以经过特殊处理步骤(诸如热氧化、阳极氧化和等离子体氧化)而生长。
第一实施方案的示意图示于图1中。钛合金32涂覆在金属基材31的整个表面上。经掺杂的二氧化钛表面层33生长在Ti合金表面上。
在另一个实施方案中,沉积钛合金以部分覆盖金属基材表面。参照图2,钛合金颗粒42沉积在金属基材41的表面上,仅部分覆盖所述表面。经掺杂的二氧化钛表面层43生长在Ti合金颗粒表面上。
应认识到,图1和图2的实施方案不限于上面所讨论的具体特征。例如,尽管未示出,但为了防止加工过程中合金受基材污染并且为了提高合金对基材的附着,可以在基材上提供中间层。此外,本文所列出的生长条件仅仅是实例,并且应认识到,生长可以发生在将基材放置于装置中之前或之后。所用的确切方法(即,热氧化、阳极氧化、等离子体氧化)将取决于应用类型或加工成本。
在一个应用中,通过例如物理气相沉积法,将铌掺杂的二氧化钛(Nb:TiOx)层沉积在不锈钢基材表面上。在经掺杂的二氧化钛中Nb浓度为2%-10%。Nb掺杂的二氧化钛的厚度为0.1μm。该板可以用作质子交换膜(PEM)燃料电池的隔板,其实例示于图3中。
在容器19中设置的示例性燃料电池堆10示于图3中。该燃料电池堆10包括三个MEA(膜电极组件)/GDL(气体分布层),各自均包括:质子交换膜(PEM)11,其具有在PEM 11相对侧面上的阳极12和阴极13以形成MEA;以及与MEA相邻的在相对侧面上的气体扩散层14。隔板15设置在相邻的MEA/GDL之间,并且端板16存在于由三个MEA/GDL形成的燃料电池堆10的相对末端。隔板15被称为双极隔板,因为其在一侧上具有阳极12并且在另一侧上具有阴极13。具有单极隔板的燃料电池堆(其中邻接的MEA的阳极和阴极是交换的)在如上所述的现有技术中也是已知的。这些类型的燃料电池堆的任一种可以与另外的部件(歧管等,未示出)进行组合以形成本领域中公知的燃料电池装置。
在另一个应用中,Ti15Nb合金(例如,85wt%Ti、15wt%Nb的合金)薄层通过例如物理气相沉积法而沉积在钛基材表面上。该Ti15Nb层的厚度是0.5μm。然后,该涂覆的钛基材在600℃下被热氧化以获得稳定的Nb掺杂的二氧化钛表面层。该涂覆的钛基材可以用作在水电解槽型电池(water electrolyzer cell)中的部件。具体而言,该涂覆的钛基材可以用作电解槽型电池的单片双极板和/或氧气扩散层,其实例示于图4中。图4示出质子交换膜(PEM)或碱性交换膜(AEM)电解槽型电池模块的简化示意图,以下简称为电解槽型电池模块600。电解槽型电池堆由多个重复的电池模块600构成,其包括电解质621、用于产生氢气的阴极催化剂622、氢气扩散层623、用于产生氧气的阳极催化剂624、氧气扩散层625、以及双极隔板626,其操作是本领域公知的。
在又一个应用中,Ti20Ta(例如,80wt%Ti、20wt%Ta)合金的颗粒通过热喷涂方法沉积在钛基材上。然后,该涂覆的钛基材在空气中于450℃热氧化以在Ti20Ta合金颗粒上获得Ta掺杂的二氧化钛表面层。该涂覆的Ti板可以用作可溶性铅酸液流电池的电极,诸如图5所示的电池722。电池722包括多个电极724、726和在单独隔室中提供的数个电池元件。电池电极活性材料可以均为固体形式并且结合在电极板724、726表面上。以类似的方式,经掺杂的二氧化钛颗粒可以用于常规的铅酸电池。
在又一个应用中,Ti20Nb合金用作钒氧化还原液流电池的隔板和/或电极。在基材形成为所需形状后,将其在高电压下阳极氧化以生长一层例如Nb掺杂的二氧化钛。然后,将具有经掺杂的二氧化钛的Ti合金基材在高温下热处理以形成更好结晶的结构。导电二氧化钛的高表面积会具有钒氧化还原液流电池中钒离子氧化还原反应所需的高电极反应活性,诸如图6所示的示例性电池800。电池800包括电极801以及用于存储电解液和电解池EC的外部储槽806和807,而泵808和809将含活性材料的电解液从外部储槽806和807运送到电解池EC。在电解池EC中并入的电极801执行电化学转化(即充电-放电)。
典型的液流电池为全液流电池,其中所有电极反应的反应物和产物为液体,可以流入和流出电池EC。另一种类型为半液流电池,其中至少一个电极反应为液体至固体。这种类型的液流电池包括Zr-Br电池(包括锌离子至金属锌的反应),以及所有铁电池(包括铁离子至金属铁的反应)。金属板可以用作电极。
如上所述,应认识到,本文所公开的实施方案不限于以上所述的具体特征。例如,尽管未示出,但在图1和图2的实施方案中,为了防止在加工过程中合金受基材污染并且为了提高合金对基材的附着,可以在基材上提供中间层。此外,本文所列出的生长条件仅仅是实例,并且应认识到,生长可以发生在将基材放置于装置中之前或之后。所用的确切方法(即,热氧化、阳极氧化、等离子体氧化)将取决于应用类型或加工成本。此外,掺杂剂的浓度可以为1%-30%,优选1%-10%。
上述实例仅用于解释的目的,并且不应以任何方式被解释为限制性的。尽管对各种实施方案进行参考,但本文所用的词语是描述性和说明性的词语,而不是限制性的词语。另外,虽然示出了所参考的具体手段、材料和实施方案,但对本文中所公开的细节没有限制。相反,实施方案扩展至所有功能上等同的结构、方法和用途,如同在所附权利要求的范围之内。
此外,摘要的目的是使专利局和公众,尤其是不熟悉专利或法律术语或措辞的本领域的科学家、工程师和从业人员在粗略查看下迅速确定本申请技术公开内容的本质。摘要并非旨在以任何方式限制本发明的范围。
Claims (28)
1.涂覆金属基材的表面的方法,所述方法包括:
提供所述金属基材;
在所述金属基材的表面上沉积钛合金;以及
在所述钛合金的第一表面上生长经掺杂的二氧化钛材料。
2.如权利要求1所述的方法,其中所述钛合金沉积于所述金属基材的整个区域。
3.如权利要求1所述的方法,其中所述钛合金沉积于所述金属基材的一部分上。
4.如权利要求1所述的方法,其中所述钛合金含有高价成分。
5.如权利要求4所述的方法,其中所述高价成分包括铌、钽、钒、砷、硒、锑、钼或钨中的至少一种,并且所述高价成分的浓度为1%-30%。
6.如权利要求1所述的方法,其中所述经掺杂的二氧化钛材料是用热氧化工艺生长的。
7.如权利要求1所述的方法,其中所述经掺杂的二氧化钛材料是用阳极氧化工艺生长的。
8.如权利要求1所述的方法,其中所述经掺杂的二氧化钛材料是用等离子氧化生长的。
9.如权利要求1所述的方法,还包括在所述金属基材上的中间层。
10.电化学装置,其包括:
具有第一表面的金属部件;
在所述金属部件的第一表面上的钛合金;以及
在所述钛合金的第一表面上生长的经掺杂的二氧化钛材料。
11.如权利要求10所述的装置,其中所述钛合金沉积于所述金属部件的第一表面的整个区域。
12.如权利要求10所述的装置,其中所述钛合金沉积于所述金属部件的所述第一表面的一部分上。
13.如权利要求10所述的装置,其中所述钛合金含有高价成分。
14.如权利要求13所述的装置,其中所述高价成分包括铌、钽、钒、砷、硒、锑、钼或钨中的至少一种,并且所述高价成分的浓度为1%-30%。
15.如权利要求10所述的装置,其中在所述部件安装于所述装置之前,使所述经掺杂的二氧化钛材料在所述金属部件上生长。
16.如权利要求10所述的装置,其中在所述部件安装于所述装置之后,使所述经掺杂的二氧化钛材料在所述金属部件上生长。
17.如权利要求10所述的装置,其中所述装置为电解槽型电池并且所述金属部件为隔板或气体扩散层。
18.如权利要求10所述的装置,其中所述装置为铅酸液流电池并且所述部件为所述电池的电极。
19.如权利要求10所述的装置,其中所述装置为液流电池并且所述金属部件为所述电池的隔板或电极。
20.如权利要求10所述的装置,其中所述装置为质子交换膜燃料电池并且所述金属部件为所述电池的隔板。
21.用于燃料电池的板,所述板包括:
具有第一表面的金属基材;
在所述基材的第一表面上沉积的钛合金;以及
在所述钛合金上生长的经掺杂的二氧化钛材料。
22.如权利要求21所述的板,其中所述钛合金包括钽或铌中的至少一种。
23.如权利要求21所述的板,其中所述钛合金沉积于所述第一表面的整个区域。
24.如权利要求23所述的板,其中所述钛合金具有约0.1nm至100μm的厚度。
25.如权利要求23所述的板,其中所述钛合金具有约0.01μm至10μm的厚度。
26.如权利要求21所述的板,其中所述钛合金以颗粒形式沉积于所述第一表面的一部分上。
27.如权利要求26所述的板,其中所述钛合金具有约0.1nm至100μm的厚度。
28.如权利要求26所述的板,其中所述钛合金具有约0.5μm至5μm的厚度。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261602253P | 2012-02-23 | 2012-02-23 | |
US61/602,253 | 2012-02-23 | ||
US201361760767P | 2013-02-05 | 2013-02-05 | |
US61/760,767 | 2013-02-05 | ||
PCT/US2013/027630 WO2013126883A1 (en) | 2012-02-23 | 2013-02-25 | Corrosion resistant and electrically conductive surface of metal |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104220630A true CN104220630A (zh) | 2014-12-17 |
CN104220630B CN104220630B (zh) | 2017-03-08 |
Family
ID=49006299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201380009244.XA Active CN104220630B (zh) | 2012-02-23 | 2013-02-25 | 耐腐蚀且导电的金属表面 |
Country Status (8)
Country | Link |
---|---|
US (2) | US9062384B2 (zh) |
EP (1) | EP2823079B1 (zh) |
JP (1) | JP6206419B2 (zh) |
KR (1) | KR102061922B1 (zh) |
CN (1) | CN104220630B (zh) |
ES (1) | ES2944935T3 (zh) |
FI (1) | FI2823079T3 (zh) |
WO (1) | WO2013126883A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104900924A (zh) * | 2015-05-06 | 2015-09-09 | 胡俊 | 一种铅酸电解液线路控制器 |
CN109609993A (zh) * | 2018-12-27 | 2019-04-12 | 浙江工业大学 | 一种氮化钛铌纳米管阵列的制备方法 |
CN110970626A (zh) * | 2018-09-28 | 2020-04-07 | 武汉众宇动力系统科技有限公司 | 燃料电池双极板及其涂层 |
CN111029606A (zh) * | 2019-12-20 | 2020-04-17 | 佛山国防科技工业技术成果产业化应用推广中心 | 用于燃料电池双极板的金属硼化物基复合涂层及其制备方法 |
CN115244216A (zh) * | 2020-02-26 | 2022-10-25 | 踏石科技有限公司 | 具有改进的表面接触电阻和反应活性的部件及其制造方法 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102163726B1 (ko) * | 2013-11-22 | 2020-10-08 | 삼성전자주식회사 | 레독스 플로우 전지 |
WO2015156076A1 (ja) * | 2014-04-11 | 2015-10-15 | 昭和電工株式会社 | レドックスフロー電池 |
JP6628122B2 (ja) * | 2015-02-03 | 2020-01-08 | 日産自動車株式会社 | 導電部材、その製造方法、ならびにこれを用いた燃料電池用セパレータおよび固体高分子形燃料電池 |
US10003089B2 (en) | 2015-02-11 | 2018-06-19 | Ford Global Technologies, Llc | Multilayer coating for corrosion resistant metal bipolar plate for a PEMFC |
US10135077B2 (en) | 2015-02-12 | 2018-11-20 | Ford Global Technologies, Llc | Corrosion resistant metal bipolar plate for a PEMFC including a radical scavenger |
CN112575282B (zh) * | 2015-04-15 | 2023-12-19 | 踏石科技有限公司 | 一种用于处理金属部件表面以达到较低的接触电阻的方法 |
JP2017073218A (ja) * | 2015-10-05 | 2017-04-13 | 日産自動車株式会社 | 導電部材、その製造方法、ならびにこれを用いた燃料電池用セパレータおよび固体高分子形燃料電池 |
JP6607311B2 (ja) * | 2016-03-30 | 2019-11-20 | 日本製鉄株式会社 | チタン合金材、セパレータ、セル、および燃料電池 |
JP6686822B2 (ja) * | 2016-09-23 | 2020-04-22 | 日本製鉄株式会社 | 金属材、セパレータ、セル、および燃料電池 |
JP7064723B2 (ja) * | 2017-03-31 | 2022-05-11 | 株式会社Flosfia | 成膜方法 |
US20190288272A1 (en) * | 2018-03-17 | 2019-09-19 | Jingzeng Zhang | Method of making active electrode and ceramic separator in battery |
JP7163609B2 (ja) * | 2018-04-13 | 2022-11-01 | 株式会社豊田中央研究所 | バイポーラプレート |
DE102019116000A1 (de) * | 2019-06-12 | 2020-12-17 | Schaeffler Technologies AG & Co. KG | Schichtsystem zum Beschichten einer Bipolarplatte, sowie Bipolarplatte und Brennstoffzelle |
JP2020059282A (ja) * | 2019-11-27 | 2020-04-16 | 国立大学法人長岡技術科学大学 | 導電部材、その製造方法、ならびにこれを用いた燃料電池用セパレータおよび固体高分子形燃料電池 |
EP4352282A1 (en) * | 2021-06-09 | 2024-04-17 | Ohmium International, Inc. | Electrolyzer bipolar plates and porous gas diffusion layer having an electrically conductive coating and method of making |
CN119278522A (zh) * | 2022-08-03 | 2025-01-07 | 舍弗勒技术股份两合公司 | 电化学电池以及用途 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1300874A (zh) * | 1999-12-23 | 2001-06-27 | 西南交通大学 | 一种人工器官表面改性技术 |
CN101204649A (zh) * | 2006-12-20 | 2008-06-25 | 中国科学院金属研究所 | 一种制备阳离子掺杂氧化钛纳米管阵列的方法 |
CN101365537A (zh) * | 2005-08-12 | 2009-02-11 | 通用汽车环球科技运作公司 | 燃料电池的电催化剂载体 |
CN101478035A (zh) * | 2009-01-09 | 2009-07-08 | 中国科学院上海硅酸盐研究所 | 一种用于有机无机复合电池的电极材料及制作方法 |
CN101521281A (zh) * | 2008-02-27 | 2009-09-02 | 通用汽车环球科技运作公司 | 低成本燃料电池双极板及其制造方法 |
CN101519779A (zh) * | 2008-02-27 | 2009-09-02 | 株式会社神户制钢所 | 电极用钛材的表面处理方法 |
DE102010002734A1 (de) * | 2009-03-11 | 2010-09-16 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe-shi | Titanelektrodenmaterial und Oberflächenbehandlungsverfahren für Titanelektrodenmaterial |
JP2010238565A (ja) * | 2009-03-31 | 2010-10-21 | Nippon Mining & Metals Co Ltd | 燃料電池用セパレータ材料、それを用いた燃料電池スタック |
JP5175590B2 (ja) * | 2008-03-26 | 2013-04-03 | 株式会社神戸製鋼所 | 燃料電池用セパレータ及びその製造方法 |
Family Cites Families (147)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53102279A (en) | 1977-02-18 | 1978-09-06 | Asahi Glass Co Ltd | Electrode body |
US4223049A (en) | 1978-05-23 | 1980-09-16 | Research Triangle Institute | Superficially mixed metal oxide electrodes |
JPS54163739A (en) * | 1978-06-16 | 1979-12-26 | Ricoh Kk | Fabrication of oxidized film |
JPS5693883A (en) | 1979-12-27 | 1981-07-29 | Permelec Electrode Ltd | Electrolytic apparatus using solid polymer electrolyte diaphragm and preparation thereof |
JPS6021232B2 (ja) * | 1981-05-19 | 1985-05-25 | ペルメレツク電極株式会社 | 耐久性を有する電解用電極及びその製造方法 |
JPS5861286A (ja) | 1981-10-08 | 1983-04-12 | Tdk Corp | 電解用電極およびその製造方法 |
US4686017A (en) | 1981-11-05 | 1987-08-11 | Union Oil Co. Of California | Electrolytic bath and methods of use |
US4411762A (en) | 1981-11-09 | 1983-10-25 | Diamond Shamrock Corporation | Titanium clad copper electrode and method for making |
US4483720A (en) * | 1981-11-27 | 1984-11-20 | S R I International | Process for applying thermal barrier coatings to metals |
JPS60184691A (ja) | 1984-03-02 | 1985-09-20 | Permelec Electrode Ltd | 耐久性を有する電極及びその製造方法 |
DE3432652A1 (de) | 1984-09-05 | 1986-03-13 | Michael Dipl.-Chem. 8068 Pfaffenhofen Gnann | Elektrode, verfahren zu ihrer herstellung und ihre verwendung |
IT1208128B (it) | 1984-11-07 | 1989-06-06 | Alberto Pellegri | Elettrodo per uso in celle elettrochimiche, procedimento per la sua preparazione ed uso nell'elettrolisi del cloruro disodio. |
US5204140A (en) | 1986-03-24 | 1993-04-20 | Ensci, Inc. | Process for coating a substrate with tin oxide |
US5314601A (en) | 1989-06-30 | 1994-05-24 | Eltech Systems Corporation | Electrodes of improved service life |
US5294319A (en) | 1989-12-26 | 1994-03-15 | Olin Corporation | High surface area electrode structures for electrochemical processes |
JPH03229888A (ja) | 1990-02-05 | 1991-10-11 | Tokai Carbon Co Ltd | マグネタイト被覆電極の製造方法 |
JP3212327B2 (ja) | 1991-08-30 | 2001-09-25 | ペルメレック電極株式会社 | 電解用電極 |
US5202152A (en) | 1991-10-25 | 1993-04-13 | Cornell Research Foundation, Inc. | Synthesis of titanium nitride films |
US5298095A (en) | 1991-12-20 | 1994-03-29 | Rmi Titanium Company | Enhancement of hot workability of titanium base alloy by use of thermal spray coatings |
US5364513A (en) | 1992-06-12 | 1994-11-15 | Moltech Invent S.A. | Electrochemical cell component or other material having oxidation preventive coating |
US5419824A (en) | 1992-11-12 | 1995-05-30 | Weres; Oleh | Electrode, electrode manufacturing process and electrochemical cell |
JP3259869B2 (ja) | 1993-08-24 | 2002-02-25 | ペルメレック電極株式会社 | 電解用電極基体及びその製造方法 |
US5521029A (en) * | 1995-02-22 | 1996-05-28 | At&T Corp. | Current collecting elements |
AU5920596A (en) | 1995-05-17 | 1996-11-29 | H-Power Corporation | Plastic platelet fuel cells employing integrated fluid management |
US6158847A (en) * | 1995-07-14 | 2000-12-12 | Seiko Epson Corporation | Laminated ink-jet recording head, a process for production thereof and a printer equipped with the recording head |
GB9601236D0 (en) | 1996-01-22 | 1996-03-20 | Atraverda Ltd | Conductive coating |
JPH10151208A (ja) | 1996-11-21 | 1998-06-09 | Poritoronikusu:Kk | 経皮投薬素子 |
US5962904A (en) | 1997-09-16 | 1999-10-05 | Micron Technology, Inc. | Gate electrode stack with diffusion barrier |
CA2318266A1 (en) | 1998-01-19 | 1999-07-22 | Medquest Products, Inc. | Method and apparatus for providing a conductive, amorphous non-stick coating |
JP3980166B2 (ja) | 1998-03-24 | 2007-09-26 | 日新製鋼株式会社 | 低温型燃料電池用セパレータ |
US6121134A (en) | 1998-04-21 | 2000-09-19 | Micron Technology, Inc. | High aspect ratio metallization structures and processes for fabricating the same |
JP2931812B1 (ja) | 1998-04-24 | 1999-08-09 | ティーディーケイ株式会社 | 電解用電極およびその製造方法 |
US6270831B2 (en) | 1998-04-30 | 2001-08-07 | Medquest Products, Inc. | Method and apparatus for providing a conductive, amorphous non-stick coating |
US6060229A (en) | 1998-10-15 | 2000-05-09 | Eastman Kodak Company | Imaging element containing an electrically-conductive layer and a transparent magnetic recording layer |
US6761808B1 (en) | 1999-05-10 | 2004-07-13 | Ineos Chlor Limited | Electrode structure |
FR2797646B1 (fr) | 1999-08-20 | 2002-07-05 | Atofina | Cathode utilisable pour l'electrolyse de solutions aqueuses |
US6649031B1 (en) | 1999-10-08 | 2003-11-18 | Hybrid Power Generation Systems, Llc | Corrosion resistant coated fuel cell bipolar plate with filled-in fine scale porosities and method of making the same |
JP3667732B2 (ja) | 2000-08-17 | 2005-07-06 | 松下電器産業株式会社 | 高分子電解質型燃料電池 |
JP4117101B2 (ja) | 2000-08-30 | 2008-07-16 | 株式会社ルネサステクノロジ | 半導体装置とその製造方法 |
JP4083968B2 (ja) | 2000-11-02 | 2008-04-30 | 株式会社東芝 | 半導体装置の製造方法 |
KR100808322B1 (ko) | 2000-12-26 | 2008-02-27 | 미츠비시 마테리알 가부시키가이샤 | 금속 피복 섬유체와 그것으로 이루어지는 도전 조성물 및제조 방법과 용도 |
DE60217477T2 (de) | 2001-01-29 | 2007-10-11 | Jsr Corp. | Kompositteilchen für dielektrika, ultrafeine harzkompositteilchen, zusammensetzung zur herstellung von dielektrika und verwendung derselben |
JP3617466B2 (ja) | 2001-03-16 | 2005-02-02 | 三菱住友シリコン株式会社 | 単結晶引上げ装置 |
JP2002358974A (ja) | 2001-03-26 | 2002-12-13 | Hitachi Cable Ltd | 固体高分子型燃料電池のセパレータ及びその製造方法 |
US7077937B2 (en) | 2001-05-14 | 2006-07-18 | Oleh Weres | Large surface area electrode and method to produce same |
EP1420082A1 (en) | 2001-07-24 | 2004-05-19 | Creatic Japan, Inc. | Electroconductive structure and electroplating method using the structure |
KR100964131B1 (ko) * | 2001-09-18 | 2010-06-16 | 가부시키가이샤 후루야긴조쿠 | 연료 전지용 바이폴라 판 및 그 제조 방법 |
JP4154466B2 (ja) | 2001-10-30 | 2008-09-24 | 関西ペイント株式会社 | 酸化チタン膜形成用塗布剤、酸化チタン膜形成方法及び酸化チタン膜で被覆された金属基材 |
JP2003226985A (ja) * | 2002-02-05 | 2003-08-15 | Nisshin Steel Co Ltd | 高耐食性めっきステンレス鋼板及び製造方法 |
AU2003217336A1 (en) | 2002-02-06 | 2003-09-02 | Celltech Power, Inc. | Current collectors |
US7736772B2 (en) | 2002-02-14 | 2010-06-15 | Alberta Research Council, Inc. | Tubular solid oxide fuel cell stack |
US6759100B2 (en) | 2002-06-10 | 2004-07-06 | Konica Corporation | Layer formation method, and substrate with a layer formed by the method |
WO2004005193A2 (en) | 2002-07-03 | 2004-01-15 | Xintek, Inc. | Fabrication and activation processes for nanostructure composite field emission cathodes |
JP4238532B2 (ja) | 2002-07-15 | 2009-03-18 | トヨタ自動車株式会社 | 燃料電池 |
US20040058205A1 (en) * | 2002-08-21 | 2004-03-25 | Mantese Joseph V. | Metal alloys forming passivating conductive oxides for durable electrical contact surfaces |
US7037617B2 (en) | 2002-08-21 | 2006-05-02 | Delphi Technologies, Inc. | Conductive coatings for PEM fuel cell electrodes |
US6887613B2 (en) | 2002-12-04 | 2005-05-03 | General Motors Corporation | Corrosion resistant PEM fuel cell |
US6793544B2 (en) | 2003-02-05 | 2004-09-21 | General Motors Corporation | Corrosion resistant fuel cell terminal plates |
CA2459431A1 (en) | 2003-03-03 | 2004-09-03 | Greatbatch-Hittman, Inc. | Low polarization coatings for implantable electrodes |
US7258778B2 (en) | 2003-03-24 | 2007-08-21 | Eltech Systems Corporation | Electrocatalytic coating with lower platinum group metals and electrode made therefrom |
AU2004225545B2 (en) | 2003-03-28 | 2008-08-14 | Ppg Industries Ohio, Inc. | Substrates coated with mixtures of titanium and aluminum materials, methods for making the substrates, and cathode targets of titanium and aluminum metal |
JP5074025B2 (ja) | 2003-05-09 | 2012-11-14 | ビーエーエスエフ ソシエタス・ヨーロピア | 半導体工業に使用するための三成分系材料を無電解メッキする組成物 |
MY136763A (en) | 2003-05-15 | 2008-11-28 | Permelec Electrode Ltd | Electrolytic electrode and process of producing the same |
JP4073828B2 (ja) | 2003-06-12 | 2008-04-09 | 株式会社日立製作所 | 固体高分子形燃料電池及び燃料電池用セパレータ |
US7332065B2 (en) * | 2003-06-19 | 2008-02-19 | Akzo Nobel N.V. | Electrode |
DE102004032128B4 (de) | 2003-10-17 | 2010-10-14 | W.C. Heraeus Gmbh | Metallischer Werkstoff, Herstellverfahren und Verwendung |
JP4554911B2 (ja) | 2003-11-07 | 2010-09-29 | パナソニック株式会社 | 非水電解質二次電池 |
JP2005166313A (ja) | 2003-11-28 | 2005-06-23 | Ngk Spark Plug Co Ltd | 色素増感型太陽電池 |
JP4585760B2 (ja) | 2003-12-08 | 2010-11-24 | 本田技研工業株式会社 | 固体高分子型燃料電池セパレータの貴金属薄膜形成方法 |
US7524791B2 (en) | 2003-12-09 | 2009-04-28 | Central Research Institute Of Electric Power Industry | Method for producing substrate having carbon-doped titanium oxide layer |
US7150918B2 (en) | 2004-02-27 | 2006-12-19 | General Motors Corporation | Bilayer coating system for an electrically conductive element in a fuel cell |
JP2005293862A (ja) | 2004-03-31 | 2005-10-20 | Sekisui Jushi Co Ltd | 太陽電池 |
US7011737B2 (en) * | 2004-04-02 | 2006-03-14 | The Penn State Research Foundation | Titania nanotube arrays for use as sensors and method of producing |
JP4627406B2 (ja) | 2004-04-02 | 2011-02-09 | 株式会社日立製作所 | セパレータおよび燃料電池 |
EP1735865B1 (en) | 2004-04-13 | 2012-06-20 | Nissan Motor Company Limited | Fuel cell separator, fuel cell stack, fuel cell vehicle, and method of manufacturing the fuel cell separator |
US20080057336A1 (en) | 2004-06-22 | 2008-03-06 | Toyo Seikan Kaisha, Ltd | Surface-Treated Metal Materials, Method of Treating the Surfaces Thereof, Resin-Coated Metal Materials, Cans and Can Lids |
WO2006002553A1 (de) | 2004-07-06 | 2006-01-12 | Synthes Gmbh | Interferenz-erzeugende, farbige beschichtung für chirurgische implantate und instrumente |
US7422671B2 (en) | 2004-08-09 | 2008-09-09 | United Technologies Corporation | Non-line-of-sight process for coating complexed shaped structures |
US8088536B2 (en) | 2004-09-10 | 2012-01-03 | Neomax Materials Co., Ltd. | Fuel cell separator and method for manufacturing the same |
GB0422608D0 (en) | 2004-10-12 | 2004-11-10 | Hardide Ltd | Alloyed tungsten produced by chemical vapour deposition |
US20060134501A1 (en) | 2004-11-25 | 2006-06-22 | Lee Jong-Ki | Separator for fuel cell, method for preparing the same, and fuel cell stack comprising the same |
DE102005003527A1 (de) | 2005-01-25 | 2006-07-27 | Uhdenora S.P.A. | Elektrolysezelle mit erweiterter aktiver Membranfläche |
DE602006011578D1 (de) * | 2005-02-01 | 2010-02-25 | Neomax Materials Co Ltd | Trennelement für eine brennstoffzelle und verfahren zu seiner herstellung |
CN101156265B (zh) | 2005-02-18 | 2012-03-21 | 通用汽车环球科技运作公司 | 用于燃料电池的抗氧化电极 |
US20060252252A1 (en) | 2005-03-18 | 2006-11-09 | Zhize Zhu | Electroless deposition processes and compositions for forming interconnects |
JP5070548B2 (ja) | 2005-06-17 | 2012-11-14 | 国立大学法人山梨大学 | 燃料電池用金属セパレータ及び製造方法 |
US20070003813A1 (en) | 2005-06-30 | 2007-01-04 | General Motors Corporation | Stable conductive and hydrophilic fuel cell contact element |
JP4673696B2 (ja) | 2005-08-01 | 2011-04-20 | ペルメレック電極株式会社 | 導電性ダイヤモンド電極及びその製造方法 |
JP2007046129A (ja) | 2005-08-11 | 2007-02-22 | Sanyo Electric Co Ltd | 電解用電極及び電解用電極の製造方法 |
CN1991364A (zh) | 2005-12-26 | 2007-07-04 | 中国科学院上海生命科学研究院 | 预防和治疗阿尔兹海默症的g蛋白偶联受体拮抗剂 |
US20090017318A1 (en) | 2006-02-23 | 2009-01-15 | Picodeon Ltd Oy | Coating on a metal substrate and a coated metal product |
WO2007100018A1 (ja) | 2006-03-01 | 2007-09-07 | Nippon Paint Co., Ltd. | 金属表面処理用組成物、金属表面処理方法、及び金属材料 |
KR100764739B1 (ko) | 2006-05-10 | 2007-10-08 | 삼성전자주식회사 | 반도체 소자의 형성 방법 |
JP5076360B2 (ja) | 2006-05-16 | 2012-11-21 | 日産自動車株式会社 | 燃料電池スタック並びにその製造方法 |
JP5076601B2 (ja) | 2006-06-02 | 2012-11-21 | 株式会社豊田中央研究所 | 導電性耐食材料の製造方法 |
JP4842025B2 (ja) | 2006-06-19 | 2011-12-21 | 日揮触媒化成株式会社 | 導電性基材上への金属酸化物微粒子層の形成方法 |
US8603703B2 (en) | 2006-07-26 | 2013-12-10 | GM Global Technology Operations LLC | Method for making super-hydrophilic and electrically conducting surfaces for fuel cell bipolar plates |
WO2008017156A1 (en) | 2006-08-07 | 2008-02-14 | Cardarelli Francois | Composite metallic materials, uses thereof and process for making same |
JP4125765B2 (ja) | 2006-09-28 | 2008-07-30 | 日本パーカライジング株式会社 | 金属のセラミックス皮膜コーティング方法およびそれに用いる電解液ならびにセラミックス皮膜および金属材料 |
ITMI20061974A1 (it) | 2006-10-16 | 2008-04-17 | Industrie De Nora Spa | Anodo per elettrolisi |
JP4931127B2 (ja) | 2006-11-15 | 2012-05-16 | 日本カーリット株式会社 | 耐食導電被覆材料及びその製造方法 |
EP1923487B1 (en) | 2006-11-20 | 2010-12-22 | Permelec Electrode Ltd. | Method of reactivating electrode for electrolysis |
FR2911130B1 (fr) | 2007-01-05 | 2009-11-27 | Saint Gobain | Procede de depot de couche mince et produit obtenu |
US8815073B2 (en) | 2007-03-28 | 2014-08-26 | Toray Industries, Inc. | Web pressure welding method, pressure welding device, power supply method, power supply device, continuous electrolytic plating apparatus and method for manufacturing web with plated coating film |
KR100791274B1 (ko) | 2007-06-20 | 2008-01-04 | 현대하이스코 주식회사 | 금속층/금속질화물층과 금속산질화물층을 포함하는 연료전지용 스테인리스 |
JP5127330B2 (ja) | 2007-07-12 | 2013-01-23 | 日立造船株式会社 | 光電変換素子およびその製造方法 |
DE102007032728A1 (de) | 2007-07-13 | 2009-01-15 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Dämmanordnung |
EP2031675B1 (en) | 2007-08-31 | 2011-08-03 | Technical University of Denmark | Ceria and stainless steel based electrodes |
JP2009102676A (ja) | 2007-10-22 | 2009-05-14 | Japan Carlit Co Ltd:The | 耐食導電被覆材料及びその用途 |
JP4488059B2 (ja) | 2007-11-12 | 2010-06-23 | トヨタ自動車株式会社 | 燃料電池用セパレータの製造方法 |
FR2924274B1 (fr) | 2007-11-22 | 2012-11-30 | Saint Gobain | Substrat porteur d'une electrode, dispositif electroluminescent organique l'incorporant, et sa fabrication |
JP2009140789A (ja) | 2007-12-07 | 2009-06-25 | Toyota Motor Corp | 燃料電池用セパレータの製造方法及び燃料電池用セパレータ |
EP2229471B1 (en) | 2008-01-08 | 2015-03-11 | Treadstone Technologies, Inc. | Highly electrically conductive surfaces for electrochemical applications |
JP2009238497A (ja) | 2008-03-26 | 2009-10-15 | Nissan Motor Co Ltd | 燃料電池用セパレータ |
TWI453305B (zh) | 2008-03-31 | 2014-09-21 | Permelec Electrode Ltd | 電解用電極的製造方法 |
AU2009233974B2 (en) | 2008-04-07 | 2013-10-17 | Carnegie Mellon University | Sodium ion based aqueous electrolyte electrochemical secondary energy storage device |
US9070907B2 (en) | 2008-04-23 | 2015-06-30 | Hyundai Hysco | Stainless separator for fuel cell and method of manufacturing the same |
JP2009295343A (ja) | 2008-06-03 | 2009-12-17 | Hitachi Cable Ltd | 金属セパレータ用板材及びその製造方法、並びに燃料電池用金属セパレータ |
JP2010027262A (ja) * | 2008-07-16 | 2010-02-04 | Toyota Motor Corp | 燃料電池用セパレータ及び燃料電池 |
WO2010023860A1 (ja) | 2008-08-29 | 2010-03-04 | 新日鐵化学株式会社 | 色素増感太陽電池およびその製造方法 |
JP5308282B2 (ja) | 2008-10-06 | 2013-10-09 | クロリンエンジニアズ株式会社 | オゾン発生装置の運転方法及びオゾン発生装置 |
EP3206215B1 (en) | 2008-10-30 | 2019-01-02 | Fujikura Ltd. | Photoelectric conversion device |
US20110048525A1 (en) | 2008-11-26 | 2011-03-03 | Sony Corporation | Functional device and method for producing the same |
JP2010126801A (ja) | 2008-12-01 | 2010-06-10 | Hitachi Cable Ltd | 錫被覆アルミニウム材料 |
CN101748427A (zh) | 2008-12-02 | 2010-06-23 | 北京有色金属研究总院 | 一种镀覆厚金膜的钛板及其制备方法 |
FR2943050A1 (fr) | 2009-03-11 | 2010-09-17 | Saint Gobain | Procede de depot de couche mince. |
US8512908B2 (en) | 2009-05-14 | 2013-08-20 | GM Global Technology Operations LLC | Fabrication of catalyst coated diffusion media layers containing nanostructured thin catalytic layers |
FR2946335B1 (fr) | 2009-06-05 | 2011-09-02 | Saint Gobain | Procede de depot de couche mince et produit obtenu. |
US8216006B2 (en) | 2009-06-09 | 2012-07-10 | Tyco Electronics Corporation | Composite assembly for an electrical connector and method of manufacturing the composite assembly |
JP5556434B2 (ja) | 2009-06-26 | 2014-07-23 | 日産自動車株式会社 | ガス拡散電極およびその製造方法、ならびに膜電極接合体およびその製造方法 |
TWI490371B (zh) | 2009-07-28 | 2015-07-01 | Industrie De Nora Spa | 電解應用上的電極及其製法以及在電極表面上陽極釋氧之電解法和電冶法 |
KR101428341B1 (ko) | 2009-08-03 | 2014-08-07 | 신닛테츠스미킨 카부시키카이샤 | 고체 고분자형 연료 전지 세퍼레이터용 티탄재 및 그 제조 방법 |
CN101667647A (zh) | 2009-08-17 | 2010-03-10 | 新源动力股份有限公司 | 一种质子交换膜燃料电池用双极板 |
EP2498330A4 (en) | 2009-11-02 | 2014-08-20 | Sharp Kk | HUMIDITY SOLAR CELL AND WET SOLAR CELL MODULE |
EP2506350B1 (en) | 2009-11-27 | 2017-03-29 | University of Yamanashi | Oxide-based stable high-potential carrier for solid polymer fuel cell |
KR101218209B1 (ko) | 2009-12-04 | 2013-01-04 | 미쓰이 긴조꾸 고교 가부시키가이샤 | 다공질 금속박 및 그 제조 방법 |
US20110168253A1 (en) | 2009-12-25 | 2011-07-14 | Samsung Sdi Co., Ltd. | Electrode substrate and photoelectric transformation device |
US8551609B2 (en) | 2010-04-27 | 2013-10-08 | Ppg Industries Ohio, Inc. | Method of depositing niobium doped titania film on a substrate and the coated substrate made thereby |
CN101853945A (zh) | 2010-06-12 | 2010-10-06 | 江苏华富控股集团有限公司 | 一种铅酸液流电池的负极板 |
JP2012028302A (ja) | 2010-06-25 | 2012-02-09 | Sony Corp | 色素増感型太陽電池およびその製造方法 |
JP2012028113A (ja) | 2010-07-22 | 2012-02-09 | Nitto Denko Corp | 色素増感型太陽電池 |
US8802304B2 (en) | 2010-08-10 | 2014-08-12 | Eos Energy Storage, Llc | Bifunctional (rechargeable) air electrodes comprising a corrosion-resistant outer layer and conductive inner layer |
CN102443818B (zh) | 2010-10-08 | 2016-01-13 | 水之星公司 | 多层混合金属氧化物电极及其制造方法 |
JP5579014B2 (ja) | 2010-10-12 | 2014-08-27 | キヤノン株式会社 | 映像情報処理装置および方法 |
DE102010043085A1 (de) | 2010-10-28 | 2012-05-03 | Bayer Materialscience Aktiengesellschaft | Elektrode für die elektrolytische Chlorherstellung |
CN202094217U (zh) | 2011-07-06 | 2011-12-28 | 温州大学 | 具有氢气传感器的质子交换膜燃料电池堆 |
US8808522B2 (en) * | 2011-09-07 | 2014-08-19 | National Chung Hsing University | Method for forming oxide film by plasma electrolytic oxidation |
-
2013
- 2013-02-25 ES ES13751835T patent/ES2944935T3/es active Active
- 2013-02-25 EP EP13751835.3A patent/EP2823079B1/en active Active
- 2013-02-25 JP JP2014558925A patent/JP6206419B2/ja active Active
- 2013-02-25 US US13/776,042 patent/US9062384B2/en active Active
- 2013-02-25 KR KR1020147021885A patent/KR102061922B1/ko active IP Right Grant
- 2013-02-25 WO PCT/US2013/027630 patent/WO2013126883A1/en active Application Filing
- 2013-02-25 FI FIEP13751835.3T patent/FI2823079T3/fi active
- 2013-02-25 CN CN201380009244.XA patent/CN104220630B/zh active Active
-
2015
- 2015-05-15 US US14/713,348 patent/US9493883B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1300874A (zh) * | 1999-12-23 | 2001-06-27 | 西南交通大学 | 一种人工器官表面改性技术 |
CN101365537A (zh) * | 2005-08-12 | 2009-02-11 | 通用汽车环球科技运作公司 | 燃料电池的电催化剂载体 |
CN101204649A (zh) * | 2006-12-20 | 2008-06-25 | 中国科学院金属研究所 | 一种制备阳离子掺杂氧化钛纳米管阵列的方法 |
CN101521281A (zh) * | 2008-02-27 | 2009-09-02 | 通用汽车环球科技运作公司 | 低成本燃料电池双极板及其制造方法 |
CN101519779A (zh) * | 2008-02-27 | 2009-09-02 | 株式会社神户制钢所 | 电极用钛材的表面处理方法 |
JP5175590B2 (ja) * | 2008-03-26 | 2013-04-03 | 株式会社神戸製鋼所 | 燃料電池用セパレータ及びその製造方法 |
CN101478035A (zh) * | 2009-01-09 | 2009-07-08 | 中国科学院上海硅酸盐研究所 | 一种用于有机无机复合电池的电极材料及制作方法 |
DE102010002734A1 (de) * | 2009-03-11 | 2010-09-16 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe-shi | Titanelektrodenmaterial und Oberflächenbehandlungsverfahren für Titanelektrodenmaterial |
JP2010238565A (ja) * | 2009-03-31 | 2010-10-21 | Nippon Mining & Metals Co Ltd | 燃料電池用セパレータ材料、それを用いた燃料電池スタック |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104900924A (zh) * | 2015-05-06 | 2015-09-09 | 胡俊 | 一种铅酸电解液线路控制器 |
CN110970626A (zh) * | 2018-09-28 | 2020-04-07 | 武汉众宇动力系统科技有限公司 | 燃料电池双极板及其涂层 |
CN110970626B (zh) * | 2018-09-28 | 2021-05-25 | 武汉众宇动力系统科技有限公司 | 燃料电池双极板及其涂层 |
CN109609993A (zh) * | 2018-12-27 | 2019-04-12 | 浙江工业大学 | 一种氮化钛铌纳米管阵列的制备方法 |
CN111029606A (zh) * | 2019-12-20 | 2020-04-17 | 佛山国防科技工业技术成果产业化应用推广中心 | 用于燃料电池双极板的金属硼化物基复合涂层及其制备方法 |
CN115244216A (zh) * | 2020-02-26 | 2022-10-25 | 踏石科技有限公司 | 具有改进的表面接触电阻和反应活性的部件及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2823079A1 (en) | 2015-01-14 |
JP2015515538A (ja) | 2015-05-28 |
KR20140128992A (ko) | 2014-11-06 |
US9062384B2 (en) | 2015-06-23 |
WO2013126883A1 (en) | 2013-08-29 |
ES2944935T3 (es) | 2023-06-27 |
CN104220630B (zh) | 2017-03-08 |
US20150247247A1 (en) | 2015-09-03 |
US9493883B2 (en) | 2016-11-15 |
US20130230793A1 (en) | 2013-09-05 |
FI2823079T3 (fi) | 2023-05-04 |
EP2823079B1 (en) | 2023-02-22 |
EP2823079A4 (en) | 2015-11-11 |
KR102061922B1 (ko) | 2020-01-02 |
JP6206419B2 (ja) | 2017-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104220630B (zh) | 耐腐蚀且导电的金属表面 | |
CN108701841B (zh) | 层和层体系以及双极板、燃料电池和电解装置 | |
EP2124278B1 (en) | Fuel cell separator, fuel cell separator manufacturing method and fuel cell | |
EP2382336B1 (en) | Coated product for use in an electrochemical device and a method for producing such a product | |
CN100472864C (zh) | 燃料电池用隔板以及其制造方法 | |
US8221599B2 (en) | Corrosion-resistant anodes, devices including the anodes, and methods of using the anodes | |
CN103484910B (zh) | 在燃料电池双极板上沉积耐久性薄金涂层的方法 | |
JP5634604B2 (ja) | 燃料電池用分離板およびその製造方法 | |
AU2012234150A1 (en) | Anode for electrowinning and electrowinning method using same | |
Proch et al. | Coated stainless steel as bipolar plate material for anion exchange membrane fuel cells (AEMFCs) | |
US20240322192A1 (en) | Component for an electrochemical cell, redox flow cell, and electrolyser | |
CA2669526C (en) | Fuel cell separator and method for producing the same | |
JPH11162478A (ja) | 燃料電池用セパレータ | |
Kwak et al. | Electrically insulated catalyst–ionomer anode interfaces toward durable alkaline membrane electrolyzers | |
US20240352601A1 (en) | Electrolysis cell for polymer electrolyte membrane electrolysis and coating | |
CN103000971B (zh) | 锂空气电池及其制作方法 | |
JP7200787B2 (ja) | 電極板 | |
JP7600385B2 (ja) | 層及び層システム及び導電性プレート及び電気化学電池 | |
US20120021337A1 (en) | Fuel cell catalyst with metal oxide/phosphate support structure and method of manufacturing same | |
CN101694879B (zh) | 含Mo氮化物表面改性燃料电池不锈钢双极板及制造方法 | |
US11223052B2 (en) | Fuel-cell separator | |
US20030027035A1 (en) | PEM fuel cell and process for producing an anode for such a PEM fuel cell | |
EP4012073A1 (en) | Electrode structures for electrochemical reaction, and electrochemical reaction systems including same | |
Song et al. | Review on the State of Art in Coating Materials for Bipolar Plates for Hydrogen Production by Water Electrolysis with Proton Exchange Membrane | |
JP2021051970A (ja) | 防錆プレート |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |