[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
Search: a074148 -id:a074148
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w^2 + x*y = 0.
+10
106
1, 9, 17, 25, 41, 49, 57, 65, 81, 105, 113, 121, 137, 145, 153, 161, 193, 201, 225, 233, 249, 257, 265, 273, 289, 329, 337, 361, 377, 385, 393, 401, 433, 441, 449, 457, 505, 513, 521, 529, 545, 553, 561, 569, 585, 609, 617, 625, 657, 713, 753, 761
OFFSET
0,2
COMMENTS
Suppose that S={-n,...,0,...,n} and that f(w,x,y,n) is a function, where w,x,y are in S. The number of ordered triples (w,x,y) satisfying f(w,x,y,n)=0, regarded as a function of n, is a sequence t of nonnegative integers. Sequences such as t/4 may also be integer sequences for all except certain initial values of n. In the following guide, such sequences are indicated in the related sequences column and may be included in the corresponding Mathematica programs.
...
sequence... f(w,x,y,n) ..... related sequences
A211415 ... w^2+x*y-1 ...... t+2, t/4, (t/4-1)/4
A211422 ... w^2+x*y ........ (t-1)/8, A120486
A211423 ... w^2+2x*y ....... (t-1)/4
A211424 ... w^2+3x*y ....... (t-1)/4
A211425 ... w^2+4x*y ....... (t-1)/4
A211426 ... 2w^2+x*y ....... (t-1)/4
A211427 ... 3w^2+x*y ....... (t-1)/4
A211428 ... 2w^2+3x*y ...... (t-1)/4
A211429 ... w^3+x*y ........ (t-1)/4
A211430 ... w^2+x+y ........ (t-1)/2
A211431 ... w^3+(x+y)^2 .... (t-1)/2
A211432 ... w^2-x^2-y^2 .... (t-1)/8
A003215 ... w+x+y .......... (t-1)/2, A045943
A202253 ... w+2x+3y ........ (t-1)/2, A143978
A211433 ... w+2x+4y ........ (t-1)/2
A211434 ... w+2x+5y ........ (t-1)/4
A211435 ... w+4x+5y ........ (t-1)/2
A211436 ... 2w+3x+4y ....... (t-1)/2
A211435 ... 2w+3x+5y ....... (t-1)/2
A211438 ... w+2x+2y ....... (t-1)/2, A118277
A001844 ... w+x+2y ......... (t-1)/4, A000217
A211439 ... w+3x+3y ........ (t-1)/2
A211440 ... 2w+3x+3y ....... (t-1)/2
A028896 ... w+x+y-1 ........ t/6, A000217
A211441 ... w+x+y-2 ........ t/3, A028387
A182074 ... w^2+x*y-n ...... t/4, A028387
A000384 ... w+x+y-n
A000217 ... w+x+y-2n
A211437 ... w*x*y-n ........ t/4, A007425
A211480 ... w+2x+3y-1
A211481 ... w+2x+3y-n
A211482 ... w*x+w*y+x*y-w*x*y
A211483 ... (n+w)^2-x-y
A182112 ... (n+w)^2-x-y-w
...
For the following sequences, S={1,...,n}, rather than
{-n,...,0,...n}. If f(w,x,y,n) is linear in w,x,y,n, then the sequence is a linear recurrence sequence.
A132188 ... w^2-x*y
A211506 ... w^2-x*y-n
A211507 ... w^2-x*y+n
A211508 ... w^2+x*y-n
A211509 ... w^2+x*y-2n
A211510 ... w^2-x*y+2n
A211511 ... w^2-2x*y ....... t/2
A211512 ... w^2-3x*y ....... t/2
A211513 ... 2w^2-x*y ....... t/2
A211514 ... 3w^2-x*y ....... t/2
A211515 ... w^3-x*y
A211516 ... w^2-x-y
A211517 ... w^3-(x+y)^2
A063468 ... w^2-x^2-y^2 .... t/2
A000217 ... w+x-y
A001399 ... w-2x-3y
A211519 ... w-2x+3y
A008810 ... w+2x-3y
A001399 ... w-2x-3y
A008642 ... w-2x-4y
A211520 ... w-2x+4y
A211521 ... w+2x-4y
A000115 ... w-2x-5y
A211522 ... w-2x+5y
A211523 ... w+2x-5y
A211524 ... w-3x-5y
A211533 ... w-3x+5y
A211523 ... w+3x-5y
A211535 ... w-4x-5y
A211536 ... w-4x+5y
A008812 ... w+4x-5y
A055998 ... w+x+y-2n
A074148 ... 2w+x+y-2n
A211538 ... 2w+2x+y-2n
A211539 ... 2w+2x-y-2n
A211540 ... 2w-3x-4y
A211541 ... 2w-3x+4y
A211542 ... 2w+3x-4y
A211543 ... 2w-3x-5y
A211544 ... 2w-3x+5y
A008812 ... 2w+3x-5y
A008805 ... w-2x-2y (repeated triangular numbers)
A001318 ... w-2x+2y
A000982 ... w+x-2y
A211534 ... w-3x-3y
A211546 ... w-3x+3y (triply repeated triangular numbers)
A211547 ... 2w-3x-3y (triply repeated squares)
A082667 ... 2w-3x+3y
A055998 ... w-x-y+2
A001399 ... w-2x-3y+1
A108579 ... w-2x-3y+n
...
Next, S={-n,...-1,1,...,n}, and the sequence counts the cases (w,x,y) satisfying the indicated inequality. If f(w,x,y,n) is linear in w,x,y,n, then the sequence is a linear recurrence sequence.
A211545 ... w+x+y>0; recurrence degree: 4
A211612 ... w+x+y>=0
A211613 ... w+x+y>1
A211614 ... w+x+y>2
A211615 ... |w+x+y|<=1
A211616 ... |w+x+y|<=2
A211617 ... 2w+x+y>0; recurrence degree: 5
A211618 ... 2w+x+y>1
A211619 ... 2w+x+y>2
A211620 ... |2w+x+y|<=1
A211621 ... w+2x+3y>0
A211622 ... w+2x+3y>1
A211623 ... |w+2x+3y|<=1
A211624 ... w+2x+2y>0; recurrence degree: 6
A211625 ... w+3x+3y>0; recurrence degree: 8
A211626 ... w+4x+4y>0; recurrence degree: 10
A211627 ... w+5x+5y>0; recurrence degree: 12
A211628 ... 3w+x+y>0; recurrence degree: 6
A211629 ... 4w+x+y>0; recurrence degree: 7
A211630 ... 5w+x+y>0; recurrence degree: 8
A211631 ... w^2>x^2+y^2; all terms divisible by 8
A211632 ... 2w^2>x^2+y^2; all terms divisible by 8
A211633 ... w^2>2x^2+2y^2; all terms divisible by 8
...
Next, S={1,...,n}, and the sequence counts the cases (w,x,y) satisfying the indicated relation.
A211634 ... w^2<=x^2+y^2
A211635 ... w^2<x^2+y^2; see Comments at A211790
A211636 ... w^2>=x^2+y^2
A211637 ... w^2>x^2+y^2
A211638 ... w^2+x^2+y^2<n
A211639 ... w^2+x^2+y^2<=n
A211640 ... w^2+x^2+y^2>n
A211641 ... w^2+x^2+y^2>=n
A211642 ... w^2+x^2+y^2<2n
A211643 ... w^2+x^2+y^2<=2n
A211644 ... w^2+x^2+y^2>2n
A211645 ... w^2+x^2+y^2>=2n
A211646 ... w^2+x^2+y^2<3n
A211647 ... w^2+x^2+y^2<=3n
A063691 ... w^2+x^2+y^2=n
A211649 ... w^2+x^2+y^2=2n
A211648 ... w^2+x^2+y^2=3n
A211650 ... w^3<x^3+y^3; see Comments at A211790
A211651 ... w^3>x^3+y^3; see Comments at A211790
A211652 ... w^4<x^4+y^4; see Comments at A211790
A211653 ... w^4>x^4+y^4; see Comments at A211790
EXAMPLE
a(1) counts these 9 triples: (-1,-1,1), (-1, 1,-1), (0, -1, 0), (0, 0, -1), (0,0,0), (0,0,1), (0,1,0), (1,-1,1), (1,1,-1).
MATHEMATICA
t[n_] := t[n] = Flatten[Table[w^2 + x*y, {w, -n, n}, {x, -n, n}, {y, -n, n}]]
c[n_] := Count[t[n], 0]
t = Table[c[n], {n, 0, 70}] (* A211422 *)
(t - 1)/8 (* A120486 *)
CROSSREFS
Cf. A120486.
KEYWORD
nonn
AUTHOR
Clark Kimberling, Apr 10 2012
STATUS
approved
Odd numbers repeated.
+10
83
1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15, 17, 17, 19, 19, 21, 21, 23, 23, 25, 25, 27, 27, 29, 29, 31, 31, 33, 33, 35, 35, 37, 37, 39, 39, 41, 41, 43, 43, 45, 45, 47, 47, 49, 49, 51, 51, 53, 53, 55, 55, 57, 57, 59, 59, 61, 61, 63, 63, 65, 65, 67, 67, 69, 69, 71, 71, 73
OFFSET
0,3
COMMENTS
The number of rounds in a round-robin tournament with n competitors. - A. Timothy Royappa, Aug 13 2011
Diagonal sums of number triangle A113126. - Paul Barry, Oct 14 2005
When partitioning a convex n-gon by all the diagonals, the maximum number of sides in resulting polygons is 2*floor(n/2)+1 = a(n-1) (from Moscow Olympiad problem 1950). - Tanya Khovanova, Apr 06 2008
The inverse values of the coefficients in the series expansion of f(x) = (1/2)*(1+x)*log((1+x)/(1-x)) lead to this sequence; cf. A098557. - Johannes W. Meijer, Nov 12 2009
From Reinhard Zumkeller, Dec 05 2009: (Start)
First differences: A010673; partial sums: A000982;
A059329(n) = Sum_{k = 0..n} a(k)*a(n-k);
A167875(n) = Sum_{k = 0..n} a(k)*A005408(n-k);
A171218(n) = Sum_{k = 0..n} a(k)*A005843(n-k);
A008794(n+2) = Sum_{k = 0..n} a(k)*A059841(n-k). (End)
Dimension of the space of weight 2n+4 cusp forms for Gamma_0(5). - Michael Somos, May 29 2013
For n > 4: a(n) = A230584(n) - A230584(n-2). - Reinhard Zumkeller, Feb 10 2015
The arithmetic function v+-(n,2) as defined in A290988. - Robert Price, Aug 22 2017
For n > 0, also the chromatic number of the (n+1)-triangular (Johnson) graph. - Eric W. Weisstein, Nov 17 2017
a(n-1), for n >= 1, is also the upper bound a_{up}(b), where b = 2*n + 1, in the first (top) row of the complete coach system Sigma(b) of Hilton and Pedersen [H-P]. All odd numbers <= a_{up}(b) of the smallest positive restricted residue system of b appear once in the first rows of the c(2*n+1) = A135303(n) coaches. If b is an odd prime a_{up}(b) is the maximum. See a comment in the proof of the quasi-order theorem of H-P, on page 263 ["Furthermore, every possible a_i < b/2 ..."]. For an example see below. - Wolfdieter Lang, Feb 19 2020
Satisfies the nested recurrence a(n) = a(a(n-2)) + 2*a(n-a(n-1)) with a(0) = a(1) = 1. Cf. A004001. - Peter Bala, Aug 30 2022
The binomial transform is 1, 2, 6, 16, 40, 96, 224, 512, 1152, 2560,.. (see A057711). - R. J. Mathar, Feb 25 2023
REFERENCES
Peter Hilton and Jean Pedersen, A Mathematical Tapestry: Demonstrating the Beautiful Unity of Mathematics, Cambridge University Press, 2010, 3rd printing 2012, pp. (260-281).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
Eric Weisstein's World of Mathematics, Chromatic Number
Eric Weisstein's World of Mathematics, Johnson Graph
Eric Weisstein's World of Mathematics, Triangular Graph
FORMULA
a(n) = 2*floor(n/2) + 1.
a(n) = A052928(n) + 1 = 2*A004526(n) + 1.
a(n) = A028242(n) + A110654(n).
a(n) = A052938(n-2) + A084964(n-2) for n > 1. - Reinhard Zumkeller, Aug 27 2005
G.f.: (1 + x + x^2 + x^3)/(1 - x^2)^2. - Paul Barry, Oct 14 2005
a(n) = 2*a(n-2) - a(n-4), a(0) = 1, a(1) = 1, a(2) = 3, a(3) = 3. - Philippe Deléham, Nov 03 2008
a(n) = A001477(n) + A059841(n). - Philippe Deléham, Mar 31 2009
a(n) = 2*n - a(n-1), with a(0) = 1. - Vincenzo Librandi, Nov 13 2010
a(n) = R(n, -2), where R(n, x) is the n-th row polynomial of A211955. a(n) = (-1)^n + 2*Sum_{k = 1..n} (-1)^(n - k - 2)*4^(k-1)*binomial(n+k, 2*k). Cf. A084159. - Peter Bala, May 01 2012
a(n) = A182579(n+1, n). - Reinhard Zumkeller, May 06 2012
G.f.: ( 1 + x^2 ) / ( (1 + x)*(x - 1)^2 ). - R. J. Mathar, Jul 12 2016
E.g.f.: x*exp(x) + cosh(x). - Ilya Gutkovskiy, Jul 12 2016
From Guenther Schrack, Sep 10 2018: (Start)
a(-n) = -a(n-1).
a(n) = A047270(n+1) - (2*n + 2).
a(n) = A005408(A004526(n)). (End)
a(n) = A000217(n) / A004526(n+1), n > 0. - Torlach Rush, Nov 10 2023
EXAMPLE
G.f. = 1 + x + 3*x^2 + 3*x^3 + 5*x^4 + 5*x^5 + 7*x^6 + 7*x^7 + 9*x^8 + 9*x^9 + ...
Complete coach system for (a composite) b = 2*n + 1 = 33: Sigma(33) ={[1; 5], [5, 7, 13; 2, 1, 2]} (the first two rows are here 1 and 5, 7, 13), a_{up}(33) = a(15) = 15. But 15 is not in the reduced residue system modulo 33, so the maximal (odd) a number is 13. For the prime b = 31, a_{up}(31) = a(14) = 15 appears as maximum of the first rows. - Wolfdieter Lang, Feb 19 2020
MAPLE
A109613:=n->2*floor(n/2)+1; seq(A109613(k), k=0..100); # Wesley Ivan Hurt, Oct 22 2013
MATHEMATICA
Flatten@ Array[{2# - 1, 2# - 1} &, 37] (* Robert G. Wilson v, Jul 07 2012 *)
(# - Boole[EvenQ[#]] &) /@ Range[80] (* Alonso del Arte, Sep 11 2019 *)
With[{c=2*Range[0, 40]+1}, Riffle[c, c]] (* Harvey P. Dale, Jan 02 2020 *)
PROG
(Haskell)
a109613 = (+ 1) . (* 2) . (`div` 2)
a109613_list = 1 : 1 : map (+ 2) a109613_list
-- Reinhard Zumkeller, Oct 27 2012, Feb 21 2011
(PARI) A109613(n)=n>>1<<1+1 \\ Charles R Greathouse IV, Feb 24 2011
(Sage) def a(n) : return( len( CuspForms( Gamma0( 5), 2*n + 4, prec=1). basis())); # Michael Somos, May 29 2013
(Scala) ((1 to 49) by 2) flatMap { List.fill(2)(_) } // Alonso del Arte, Sep 11 2019
CROSSREFS
Complement of A052928 with respect to the universe A004526. - Guenther Schrack, Aug 21 2018
First differences of A000982, A061925, A074148, A105343, A116940, and A179207. - Guenther Schrack, Aug 21 2018
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Aug 01 2005
STATUS
approved
a(n) = floor(n^2/2) - 1.
+10
22
1, 3, 7, 11, 17, 23, 31, 39, 49, 59, 71, 83, 97, 111, 127, 143, 161, 179, 199, 219, 241, 263, 287, 311, 337, 363, 391, 419, 449, 479, 511, 543, 577, 611, 647, 683, 721, 759, 799, 839, 881, 923, 967, 1011, 1057, 1103, 1151, 1199, 1249, 1299, 1351, 1403
OFFSET
2,2
COMMENTS
Define the organization number of a permutation pi_1, pi_2, ..., pi_n to be the following. Start at 1, count the steps to reach 2, then the steps to reach 3, etc. Add them up. Then the maximal value of the organization number of any permutation of [1..n] for n = 0, 1, 2, 3, ... is given by 0, 1, 3, 7, 11, 17, 23, ... (this sequence). This was established by Graham Cormode (graham(AT)research.att.com), Aug 17 2006, see link below, answering a question raised by Tom Young (mcgreg265(AT)msn.com) and Barry Cipra, Aug 15 2006
From Dmitry Kamenetsky, Nov 29 2006: (Start)
This is the length of the longest non-self-intersecting spiral drawn on an n X n grid. E.g., for n=5 the spiral has length 17:
1 0 1 1 1
1 0 1 0 1
1 0 1 0 1
1 0 0 0 1
1 1 1 1 1 (End)
It appears that a(n+1) is the maximum number of consecutive integers (beginning with 1) that can be placed, one after another, on an n-peg Towers of Hanoi, such that the sum of any two consecutive integers on any peg is a square. See the problem: http://online-judge.uva.es/p/v102/10276.html. - Ashutosh Mehra, Dec 06 2008
a(n) = number of (w,x,y) with all terms in {0,...,n} and w = |x+y-w|. - Clark Kimberling, Jun 11 2012
The same sequence also represents the solution to the "pigeons problem": maximal value of the sum of the lengths of n-1 line segments (connected at their end-points) required to pass through n trail dots, with unit distance between adjacent points, visiting all of them without overlaping two or more segments. In this case, a(0)=0, a(1)=1, a(2)=3, and so on. - Marco Ripà, Jan 28 2014
Also the longest path length in the n X n white bishop graph. - Eric W. Weisstein, Mar 27 2018
a(n) is the number of right triangles with sides n*(h-floor(h)), floor(h) and h, where h is the hypotenuse. - Andrzej Kukla, Apr 14 2021
LINKS
Laurent Bulteau, Samuele Giraudo and Stéphane Vialette, Disorders and permutations , 32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021). Article No. 18; pp. 18:1-18:14.
Eric Weisstein's World of Mathematics, Longest Path Problem.
Eric Weisstein's World of Mathematics, White Bishop Graph.
FORMULA
a(2)=1; for n > 2, a(n) = a(n-1) + n - 1 + (n-1 mod 2). - Benoit Cloitre, Jan 12 2003
a(n) = T(n-1) + floor(n/2) - 1 = T(n) - floor((n+3)/2), where T(n) is the n-th triangular number (A000217). - Robert G. Wilson v, Aug 31 2006
Equals (n-1)-th row sums of triangles A134151 and A135152. Also, = binomial transform of [1, 2, 2, -2, 4, -8, 16, -32, ...]. - Gary W. Adamson, Nov 21 2007
G.f.: x^2*(1+x+x^2-x^3)/((1-x)^3*(1+x)). - R. J. Mathar, Sep 09 2008
a(n) = floor((n^2 + 4*n + 2)/2). - Gary Detlefs, Feb 10 2010
a(n) = abs(A188653(n)). - Reinhard Zumkeller, Apr 13 2011
a(n) = (2*n^2 + (-1)^n - 5)/4. - Bruno Berselli, Sep 14 2011
a(n) = a(-n) = A007590(n) - 1.
a(n) = A080827(n) - 2. - Kevin Ryde, Aug 24 2013
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4), n > 4. - Wesley Ivan Hurt, Aug 06 2015
a(n) = A000217(n-1) + A004526(n-2), for n > 1. - J. Stauduhar, Oct 20 2017
From Guenther Schrack, May 12 2018: (Start)
Set a(0) = a(1) = -1, a(n) = a(n-2) + 2*n - 2 for n > 1.
a(n) = A000982(n-1) + n - 2 for n > 1.
a(n) = 2*A033683(n) - 3 for n > 1.
a(n) = A061925(n-1) + n - 3 for n > 1.
a(n) = A074148(n) - n - 1 for n > 1.
a(n) = A105343(n-1) + n - 4 for n > 1.
a(n) = A116940(n-1) - n for n > 1.
a(n) = A179207(n) - n + 1 for n > 1.
a(n) = A183575(n-2) + 1 for n > 2.
a(n) = A265284(n-1) - 2*n + 1 for n > 1.
a(n) = 2*A290743(n) - 5 for n > 1. (End)
E.g.f.: 1 + x + ((x^2 + x - 2)*cosh(x) + (x^2 + x - 3)*sinh(x))/2. - Stefano Spezia, May 06 2021
Sum_{n>=2} 1/a(n) = 3/2 + tan(sqrt(3)*Pi/2)*Pi/(2*sqrt(3)) - cot(Pi/sqrt(2))*Pi/(2*sqrt(2)). - Amiram Eldar, Sep 15 2022
EXAMPLE
x^2 + 3*x^3 + 7*x^4 + 11*x^5 + 17*x^6 + 23*x^7 + 31*x^8 + 39*x^9 + 49*x^10 + ...
MAPLE
seq(floor((n^2+4*n+2)/2), n=0..20) # Gary Detlefs, Feb 10 2010
MATHEMATICA
Table[Floor[n^2/2] - 1, {n, 2, 60}] (* Robert G. Wilson v, Aug 31 2006 *)
LinearRecurrence[{2, 0, -2, 1}, {1, 3, 7, 11}, 60] (* Harvey P. Dale, Jan 16 2015 *)
Floor[Range[2, 20]^2/2] - 1 (* Eric W. Weisstein, Mar 27 2018 *)
Table[((-1)^n + 2 n^2 - 5)/4, {n, 2, 20}] (* Eric W. Weisstein, Mar 27 2018 *)
CoefficientList[Series[(-1 - x - x^2 + x^3)/((-1 + x)^3 (1 + x)), {x, 0, 20}], x] (* Eric W. Weisstein, Mar 27 2018 *)
PROG
(PARI) a(n) = n^2\2 - 1
(Magma) [Floor(n^2/2)-1 : n in [2..100]]; // Wesley Ivan Hurt, Aug 06 2015
CROSSREFS
Complement of A047839. First difference is A052928.
Partial sums: A213759(n-1) for n > 1. - Guenther Schrack, May 12 2018
KEYWORD
nonn,easy
AUTHOR
Michael Somos, May 07 1999
EXTENSIONS
Edited by Charles R Greathouse IV, Apr 23 2010
STATUS
approved
a(n) = ceiling(n^2/2) + 1.
+10
18
1, 2, 3, 6, 9, 14, 19, 26, 33, 42, 51, 62, 73, 86, 99, 114, 129, 146, 163, 182, 201, 222, 243, 266, 289, 314, 339, 366, 393, 422, 451, 482, 513, 546, 579, 614, 649, 686, 723, 762, 801, 842, 883, 926, 969, 1014, 1059, 1106, 1153, 1202, 1251, 1302, 1353, 1406
OFFSET
0,2
COMMENTS
a(n+1) gives index of the first occurrence of n in A100795. - Amarnath Murthy, Dec 05 2004
First term in each group in A074148. - Amarnath Murthy, Aug 28 2002
From Christian Barrientos, Jan 01 2021: (Start)
For n >= 3, a(n) is the number of square polyominoes with at least 2n - 2 cells whose bounding box has size 2 X n.
For n = 3, there are 6 square polyominoes with a bounding box of size 2 X 3:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
|_|_|_| |_|_|_| |_|_|_| |_|_|_| |_|_|_| |_|_|_
|_|_|_| |_|_| |_| |_| |_| |_| |_|_|
(End)
LINKS
Kassie Archer, Ethan Borsh, Jensen Bridges, Christina Graves, and Millie Jeske, Cyclic permutations avoiding patterns in both one-line and cycle forms, arXiv:2312.05145 [math.CO], 2023. See p. 2.
FORMULA
a(n) = a(n-1) + 2*floor((n-1)/2) + 1 = A061926(3, k) = 2*A002620(n+1) - (n-1) = A000982(n) + 1.
a(2*n) = a(2*n-1) + 2*n - 1 = 2*n^2 + 1 = A058331(n).
a(2*n+1) = a(2*n) + 2*n + 1 = 2*(n^2 + n + 1) = A051890(n+1).
a(n) = floor((n^2+3)/2). - Gary Detlefs, Feb 13 2010
From R. J. Mathar, Feb 19 2010: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: (1-x^2+2*x^3)/((1+x) * (1-x)^3). (End)
a(n) = (2*n^2 - (-1)^n + 5)/4. - Bruno Berselli, Sep 29 2011
a(n) = A007590(n+1) - n + 1. - Wesley Ivan Hurt, Jul 15 2013
a(n) + a(n+1) = A027688(n). a(n+1) - a(n) = A109613(n). - R. J. Mathar, Jul 20 2013
E.g.f.: ((2 + x + x^2)*cosh(x) + (3 + x + x^2)*sinh(x))/2. - Stefano Spezia, May 07 2021
MAPLE
seq(floor((n^2+3)/2), n=0..25); # Gary Detlefs, Feb 13 2010
MATHEMATICA
Table[Ceiling[n^2/2]+1, {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Apr 02 2011 *)
LinearRecurrence[{2, 0, -2, 1}, {1, 2, 3, 6}, 60] (* Harvey P. Dale, Jan 03 2024 *)
PROG
(PARI) { for (n=0, 1000, write("b061925.txt", n, " ", ceil(n^2/2) + 1) ) } \\ Harry J. Smith, Jul 29 2009
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, May 17 2001
EXTENSIONS
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 09 2007
STATUS
approved
a(n) = floor((n^2 - 2*n + 3)/2).
+10
16
1, 1, 3, 5, 9, 13, 19, 25, 33, 41, 51, 61, 73, 85, 99, 113, 129, 145, 163, 181, 201, 221, 243, 265, 289, 313, 339, 365, 393, 421, 451, 481, 513, 545, 579, 613, 649, 685, 723, 761, 801, 841, 883, 925, 969, 1013, 1059, 1105, 1153, 1201, 1251, 1301, 1353, 1405
OFFSET
1,3
FORMULA
a(n) = ceiling(n^2/2)-n+1. - Paul Barry, Jul 16 2006; index shifted by R. J. Mathar, Jul 29 2007
a(n) = ceiling(A002522(n-1)/2). - Branko Curgus, Sep 02 2007
From R. J. Mathar, Feb 20 2011: (Start)
G.f.: x *( -1+x-x^2-x^3 ) / ( (1+x)*(x-1)^3 ).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
a(n+1) = (3 + 2*n^2 + (-1)^n)/4. (End)
a(n) = A007590(n-1) + 1 for n >= 2. - Richard R. Forberg, Aug 01 2013
a(n) = A000217(n) - A007494(n-1). - Bui Quang Tuan, Mar 27 2015
From Guenther Schrack, Apr 17 2018: (Start)
a(n) = (2*n^2 - 4*n + 5 -(-1)^n)/4.
a(n+2) = a(n) + 2*n for n > 0.
a(n) = 2*A033683(n-1) - 1 for n > 0.
a(n) = A047838(n-1) + 2 for n > 2.
a(n) = A074148(n-1) - n + 2 for n > 1.
a(n) = A183575(n-3) + 3 for n > 3.
a(n) = 2*A290743(n-1) - 3 for n > 0.
a(n) = 2*A290743(n-2) + A109613(n-5) for n > 4.
a(n) = A074148(n) - A014601(n-1) for n > 0. (End)
Sum_{n>=1} 1/a(n) = tanh(Pi/2)*Pi/2 + coth(Pi/sqrt(2))*Pi/(2*sqrt(2)) + 1/2. - Amiram Eldar, Sep 16 2022
E.g.f.: ((2 - x + x^2)*cosh(x) + (3 - x + x^2)*sinh(x) - 2)/2. - Stefano Spezia, Jan 28 2024
MATHEMATICA
Array[Floor[(#^2 - 2 # + 3)/2] &, 54] (* or *)
Rest@ CoefficientList[Series[x (-1 + x - x^2 - x^3)/((1 + x) (x - 1)^3), {x, 0, 54}], x] (* Michael De Vlieger, Apr 21 2018 *)
PROG
(PARI) a(n)=(n^2+3)\2-n \\ Charles R Greathouse IV, Aug 01 2013
CROSSREFS
Differs from A085913 at n = 61. Apart from leading term, identical to A080827.
Cf. A000217, A001844, A002522, A007494, A007590, A058331 (bisections).
From Guenther Schrack, Apr 17 2018: (Start)
First differences: A052928.
Partial sums: A212964(n) + n for n > 0.
Also A058331 and A001844 interleaved. (End)
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan following a suggestion from Luke Pebody, Oct 20 2004
STATUS
approved
(2n-1) odd numbers followed by 2n even numbers.
+10
15
1, 2, 4, 3, 5, 7, 6, 8, 10, 12, 9, 11, 13, 15, 17, 14, 16, 18, 20, 22, 24, 19, 21, 23, 25, 27, 29, 31, 26, 28, 30, 32, 34, 36, 38, 40, 33, 35, 37, 39, 41, 43, 45, 47, 49, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 62, 64, 66, 68, 70, 72
OFFSET
1,2
LINKS
FORMULA
T(n,k) = A061925(n-1)+2k, 0<=k<n. - R. J. Mathar, Jul 17 2007, corrected Nov 02 2023
a(n) = A116941(n-1)+1. - Robert G. Wilson v, Mar 09 2017
EXAMPLE
As a triangular array:
1,
2, 4,
3, 5, 7,
6, 8, 10, 12,
9, 11, 13, 15, 17,
14, 16, 18, 20, 22, 24,
...
MAPLE
A074147 := proc(n, k)
ceil((n-1)^2/2)+1+2*k ;
end proc:
seq(seq( A074147(n, k), k=0..n-1) , n=1..12) ; # R. J. Mathar, Nov 02 2023
MATHEMATICA
Flatten@Table[Ceiling[(n - 1)^2/2] + 2 k - 1, {n, 12}, {k, n}] (* Ivan Neretin, Dec 15 2016 *)
CROSSREFS
Cf. A074148, A074149 (row sums), A001614.
KEYWORD
nonn,easy,tabl
AUTHOR
Amarnath Murthy, Aug 28 2002
STATUS
approved
T(n,k)=Number of nondecreasing arrangements of n numbers in -(n+k-2)..(n+k-2) with sum zero and not more than two numbers equal
+10
15
1, 1, 2, 1, 3, 4, 1, 4, 7, 15, 1, 5, 12, 30, 58, 1, 6, 17, 52, 119, 245, 1, 7, 24, 81, 221, 527, 1082, 1, 8, 31, 121, 374, 1019, 2395, 5020, 1, 9, 40, 172, 598, 1818, 4818, 11376, 24040, 1, 10, 49, 234, 903, 3047, 8964, 23522, 55368, 118154, 1, 11, 60, 311, 1317, 4859
OFFSET
1,3
COMMENTS
Table starts
......1......1......1.......1.......1.......1.......1........1........1
......2......3......4.......5.......6.......7.......8........9.......10
......4......7.....12......17......24......31......40.......49.......60
.....15.....30.....52......81.....121.....172.....234......311......403
.....58....119....221.....374.....598.....903....1317.....1852.....2540
....245....527...1019....1818....3047....4859....7435....10994....15791
...1082...2395...4818....8964...15696...26123...41748....64370....96346
...5020..11376..23522...45225...81981..141519..234413...374820...581280
..24040..55368.117209..231596..432491..769915.1316060..2171675..3475284
.118154.275735.594789.1202495.2302608.4209720.7395049.12546170.20642874
LINKS
EXAMPLE
Some solutions for n=6 k=4
.-7...-8...-5...-8...-5...-7...-7...-3...-8...-8...-6...-6...-5...-7...-6...-5
.-4...-8...-3...-5...-5...-7...-4...-3...-4...-8...-6...-4...-4...-4...-2...-5
..0...-4...-2...-4...-1...-1....1....1....0....0....2...-4....1....0...-1....1
..2....6....0....3....1....0....2....1....3....2....2....2....1....1...-1....1
..3....7....4....7....3....7....2....2....4....7....3....4....3....3....3....4
..6....7....6....7....7....8....6....2....5....7....5....8....4....7....7....4
CROSSREFS
Row 3 is A074148(n+1)
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 24 2011
STATUS
approved
The clubs patterns appearing in n X n coins.
+10
15
0, 0, 1, 2, 4, 6, 9, 12, 17, 22, 27, 34, 41, 48, 57, 66, 75, 86, 97, 108, 121, 134, 147, 162, 177, 192, 209, 226, 243, 262, 281, 300, 321, 342, 363, 386, 409, 432, 457, 482, 507, 534, 561, 588, 617, 646, 675, 706, 737, 768, 801, 834, 867, 902, 937, 972, 1009, 1046
OFFSET
0,4
COMMENTS
On the Japanese TV show "Tsuki no Koibito", a girl told her boyfriend that she saw a heart in 4 coins. Actually there are a total of 6 distinct patterns appearing in 2 X 2 coins in which each pattern consists of a part of the perimeter of each coin and forms a continuous area.
a(n) is the number of clubs patterns appearing in n X n coins. It is also A008810(n-1), except for the third term. The inverse patterns (stars or voids between clubs) is A030511 (except the second term). See illustration in links.
FORMULA
a(n) = ceiling((n-1)^2/3), a(0) = 0, a(4) = 4.
G.f.: x^2*(x^7-2*x^6+x^5-x^4+x^3-x^2-1) / ((x-1)^3*(x^2+x+1)). - Colin Barker, Oct 07 2013
MATHEMATICA
CoefficientList[Series[(x^7 - 2 x^6 + x^5 - x^4 + x^3 - x^2 - 1)/((x - 1)^3 (x^2 + x + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 08 2013 *)
LinearRecurrence[{2, -1, 1, -2, 1}, {0, 0, 1, 2, 4, 6, 9, 12, 17, 22}, 70] (* Harvey P. Dale, Feb 05 2020 *)
PROG
(PARI) Vec(x^2*(x^7-2*x^6+x^5-x^4+x^3-x^2-1)/((x-1)^3*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Oct 08 2013
(PARI) a(n) = ceil((n-1)^2/3) \\ Charles R Greathouse IV, Jan 06 2016
CROSSREFS
Cf. A008810, A030511, A074148 (heart patterns), A227906, A229154.
KEYWORD
nonn,easy
AUTHOR
Kival Ngaokrajang, Sep 13 2013
EXTENSIONS
More terms from Colin Barker, Oct 08 2013
STATUS
approved
Transform of n^3 by the Riordan array (1/(1-x^2), x).
+10
13
0, 1, 8, 28, 72, 153, 288, 496, 800, 1225, 1800, 2556, 3528, 4753, 6272, 8128, 10368, 13041, 16200, 19900, 24200, 29161, 34848, 41328, 48672, 56953, 66248, 76636, 88200, 101025, 115200, 130816, 147968, 166753, 187272, 209628, 233928, 260281, 288800, 319600
OFFSET
0,3
COMMENTS
Recurrence a(n) = a(n-2) + n^3, starting with a(0)=0, a(1)=1. Also, in physics, a(n)/4 is the trace of the spin operator |S_z|^3 for a particle with spin S=n/2. For example, when S=3/2, the S_z eigenvalues are -3/2, -1/2, +1/2, +3/2 and therefore the sum of the absolute values of their 3rd powers is 2*28/8 = a(3)/4. - Stanislav Sykora, Nov 07 2013
Also the number of 3-cycles in the (n+1)-triangular honeycomb queen graph. - Eric W. Weisstein, Jul 14 2017
With zero prepended and offset 1, the sequence starts 0,0,1,8,28,... for n=1,2,3,... Call this b(n). Consider the partitions of n into two parts (p,q). Then b(n) is the total volume of the family of cubes with side length |q - p|. - Wesley Ivan Hurt, Apr 14 2018
LINKS
Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
Eric Weisstein's World of Mathematics, Graph Cycle.
FORMULA
G.f.: x*(1+4*x+x^2)/((1+x)*(1-x)^5).
a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6).
a(n) = (2*n^4 + 8*n^3 + 8*n^2 - 1 + (-1)^n)/16.
a(n) = Sum_{k=0..floor((n-1)/2)} (n-2*k)^3.
a(n+1) = Sum_{k=0..n} k^3*(1 - (-1)^(n+k-1))/2.
a(n) = ((((x^2 - (x mod 2) - 4)/4)^2 - (((x^2 - (x mod 2) - 4)/4) mod 2))/8) = floor(((floor(x^2/4) - 1)^2)/8) where x = 2*n + 2. Replace x with 2*n - 1 to obtain A050534(n) = 3*A000332(n+1). Note that a(2*n) = A060300(n)/2 and a(2*n + 1) = A002593(n+1). - Raphie Frank, Jan 30 2014
a(n) = floor(1/(exp(2/n^2) - 1)^2)/2. Also a(n) = A007590(n+1)*A074148(n-1)/2. - Richard R. Forberg, Oct 26 2014
Sum_{n>=1} 1/a(n) = -cot(Pi/sqrt(2))*Pi/sqrt(2) - 1/2. - Amiram Eldar, Aug 25 2022
MATHEMATICA
LinearRecurrence[{4, -5, 0, 5, -4, 1}, {0, 1, 8, 28, 72, 153}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
CoefficientList[Series[x (1 + 4 x + x^2)/((1 + x) (1 - x)^5), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 26 2012 *)
Table[((-1)^n + 2 n^2 (n + 2)^2 - 1)/16, {n, 0, 20}] (* Eric W. Weisstein, Jul 14 2017 *)
PROG
(Magma) [(2*n^4+8*n^3+8*n^2-1)/16+(-1)^n/16: n in [0..50]]; // Vincenzo Librandi, Oct 27 2014
(PARI) my(x='x+O('x^99)); concat(0, Vec(x*(1+4*x+x^2)/((1+x)*(1-x)^5))) \\ Altug Alkan, Apr 16 2018
(Sage) [(2*n^4 +8*n^3 +8*n^2 -1+(-1)^n)/16 for n in range(30)] # G. C. Greubel, Dec 16 2018
(GAP) List([0..30], n -> (2*n^4 +8*n^3 +8*n^2 -1+(-1)^n)/16); # G. C. Greubel, Dec 16 2018
CROSSREFS
Cf. A289705 (4-cycles), A289706 (5-cycles), A289707 (6-cycles).
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Apr 16 2005
STATUS
approved
T(n,k) is the number of n-bead necklaces labeled with numbers -k..k allowing reversal, with sum zero with no three beads in a row equal.
+10
13
1, 1, 2, 1, 3, 1, 1, 4, 4, 4, 1, 5, 7, 15, 5, 1, 6, 12, 35, 40, 14, 1, 7, 17, 72, 145, 146, 21, 1, 8, 24, 128, 400, 770, 514, 51, 1, 9, 31, 205, 883, 2698, 4029, 2032, 102, 1, 10, 40, 311, 1724, 7358, 18646, 22739, 8076, 249, 1, 11, 49, 448, 3045, 16968, 62853, 136000
OFFSET
1,3
COMMENTS
Table starts
..1....1.....1......1......1.......1.......1........1........1........1
..2....3.....4......5......6.......7.......8........9.......10.......11
..1....4.....7.....12.....17......24......31.......40.......49.......60
..4...15....35.....72....128.....205.....311......448......618......829
..5...40...145....400....883....1724....3045.....5026.....7827....11684
.14..146...770...2698...7358...16968...34720....64942...113288...186906
.21..514..4029..18646..62853..172610..409199...870122..1699831..3104474
.51.2032.22739.136000.563109.1830872.5016681.12099880.26438711.53392286
LINKS
FORMULA
Empirical for row n:
n=2: a(k) = 2*a(k-1) - a(k-2).
n=3: a(k) = 2*a(k-1) - 2*a(k-3) + a(k-4).
n=4: a(k) = 3*a(k-1) - 3*a(k-2) + 2*a(k-3) - 3*a(k-4) + 3*a(k-5) - a(k-6).
n=5: a(k) = 2*a(k-1) + a(k-2) - 3*a(k-3) - a(k-4) + a(k-5) + 3*a(k-6) - a(k-7) - 2*a(k-8) + a(k-9).
n=6: a(k) = 4*a(k-1) - 5*a(k-2) + a(k-3) + a(k-4) + a(k-5) + a(k-6) - 5*a(k-7) + 4*a(k-8) - a(k-9).
EXAMPLE
Some solutions for n=6, k=8:
.-4...-4...-4...-8...-7...-6...-6...-8...-7...-8...-7...-7...-8...-8...-8...-4
.-3...-3...-3...-3....0....1....1....0...-2....0....1...-2....3...-8...-4...-4
..5...-1...-4....4...-4...-1....1....1....8....3....0....8...-4...-4....0...-2
.-2....3...-3....1....2....8....6....4...-5....5...-6....1....0....6....7....5
.-1...-1....6....3....3...-5...-6....0....5...-4....8...-7....6....7....3....7
..5....6....8....3....6....3....4....3....1....4....4....7....3....7....2...-2
CROSSREFS
Row 3 is A074148.
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 06 2012
STATUS
approved

Search completed in 0.023 seconds