OFFSET
0,3
COMMENTS
Row sum of superimposed binary filled triangle. - Craig Knecht, Aug 07 2015
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..10000
Craig Knecht, Row sums of superimposed binary triangles.
Index entries for linear recurrences with constant coefficients, signature (0,1,0,1,0,-1).
FORMULA
a(2*k) = 2*k, a(4*k+1) = a(4*k+3) = 2*k+1.
a(n) = n if n is even, else 2*floor(n/4)+1.
a(2*n-(2*k+1)) + a(2*n+2*k+1) = 2*n, 0 <= k < n.
a(n+2) = A109043(n) - a(n).
G.f.: x*(1+2*x+2*x^3+x^4) / ( (1+x^2)*(x-1)^2*(1+x)^2 ). - R. J. Mathar, Feb 23 2011
a(n) = n-(1-(-1)^n)*(n+i^(n(n+1)))/4, where i=sqrt(-1). - Bruno Berselli, Feb 23 2011
a(n) = a(n-2)+a(n-4)-a(n-6) for n>5. - Wesley Ivan Hurt, Aug 07 2015
E.g.f.: (x*cosh(x) + sin(x) + 2*x*sinh(x))/2. - Stefano Spezia, May 09 2021
EXAMPLE
MAPLE
A186421:=n->n-(1-(-1)^n)*(n+(-1)^(n*(n+1)/2))/4: seq(A186421(n), n=0..100); # Wesley Ivan Hurt, Aug 07 2015
MATHEMATICA
Table[n - (1 - (-1)^n)*(n + I^(n (n + 1)))/4, {n, 0, 87}] (* or *)
CoefficientList[Series[x (1 + 2 x + 2 x^3 + x^4)/((1 + x^2) (x - 1)^2 (1 + x)^2), {x, 0, 87}], x] (* or *)
n = 88; Riffle[Range[0, n, 2], Flatten@ Transpose[{Range[1, n, 2], Range[1, n, 2]}]] (* Michael De Vlieger, Jul 14 2015 *)
PROG
(Haskell)
a186421 n = a186421_list !! n
a186421_list = interleave [0, 2..] $ rep [1, 3..] where
interleave (x:xs) ys = x : interleave ys xs
rep (x:xs) = x : x : rep xs
(Maxima) makelist(n-(1-(-1)^n)*(n+%i^(n*(n+1)))/4, n, 0, 90); /* Bruno Berselli, Mar 04 2013 */
(Magma) [IsEven(n) select n else 2*Floor(n/4)+1: n in [0..100]]; // Vincenzo Librandi, Jul 13 2015
(Python)
def A186421(n): return (n>>1)|1 if n&1 else n # Chai Wah Wu, Jan 31 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Feb 21 2011
EXTENSIONS
Edited by Bruno Berselli, Mar 04 2013
STATUS
approved