[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080827
Rounded up staircase on natural numbers.
13
1, 3, 5, 9, 13, 19, 25, 33, 41, 51, 61, 73, 85, 99, 113, 129, 145, 163, 181, 201, 221, 243, 265, 289, 313, 339, 365, 393, 421, 451, 481, 513, 545, 579, 613, 649, 685, 723, 761, 801, 841, 883, 925, 969, 1013, 1059, 1105, 1153, 1201, 1251, 1301, 1353, 1405, 1459
OFFSET
1,2
COMMENTS
Represents the 'rounded up' staircase diagonal on A000027, arranged as a square array. A000982 is the 'rounded down' staircase.
a(1)= 1, a(2n) = a(2n-1) + 2n, a(2n+1) = a(2n) +2n. - Amarnath Murthy, May 07 2003
Partial sums of A131055. - Paul Barry, Jun 14 2008
The same sequence arises in the triangular array of integers >= 1 according to a simple "zig-zag" rule for selection of terms. a(n-1) lies in the (n-1)-th row of the array and the second row of that subarray (with apex a(n-1)) contains just two numbers, one odd one even. The one with the same (odd) parity as a(n-1) is a(n). - David James Sycamore, Jul 29 2018
LINKS
J. C. F. de Winter, Using the Student's t-test with extremely small sample sizes, Practical Assessment, Research & Evaluation, 18(10), 2013.
Girtrude Hamm, Classification of lattice triangles by their two smallest widths, arXiv:2304.03007 [math.CO], 2023.
David James Sycamore, Triangular array.
FORMULA
a(n) = ceiling((n^2+1)/2).
From Paul Barry, Apr 12 2008: (Start)
G.f.: x*(1+x-x^2+x^3)/((1+x)(1-x)^3).
a(n) = n*(n+1)/2-floor((n-1)/2). [corrected by R. J. Mathar, Jul 14 2013] (End)
From Wesley Ivan Hurt, Sep 08 2015: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4), n > 4.
a(n) = (n^2 + 2 - (1 - (-1)^n)/2)/2.
a(n) = floor(n^2/2) + 1 = A007590(n-1) + 1. (End)
Sum_{n>=1} 1/a(n) = tanh(Pi/2)*Pi/2 + coth(Pi/sqrt(2))*Pi/(2*sqrt(2)) - 1/2. - Amiram Eldar, Sep 15 2022
E.g.f.: ((2 + x + x^2)*cosh(x) + (1 + x + x^2)*sinh(x) - 2)/2. - Stefano Spezia, Jan 27 2024
MAPLE
A080827:=n->(n^2+2-(1-(-1)^n)/2)/2: seq(A080827(n), n=1..100); # Wesley Ivan Hurt, Sep 08 2015
MATHEMATICA
s1=0; lst={}; Do[s1+=n; If[EvenQ[s1], s1-=1]; AppendTo[lst, s1], {n, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jun 06 2009 *)
CoefficientList[Series[(1 + x - x^2 + x^3) / ((1 + x) (1 - x)^3), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 05 2013 *)
PROG
(Magma) [n*(n+1)/2-Floor((n-1)/2) : n in [1..60]]; // Vincenzo Librandi, Aug 05 2013
(GAP) List([1..10], n->Int(n^2/2)+1); # Muniru A Asiru, Aug 02 2018
CROSSREFS
Apart from leading term identical to A099392.
Sequence in context: A118028 A209974 A099392 * A200919 A213207 A102378
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Feb 28 2003
STATUS
approved