[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082667
a(n) = floor(2n/3) * ceiling(2n/3) / 2.
2
0, 1, 2, 3, 6, 8, 10, 15, 18, 21, 28, 32, 36, 45, 50, 55, 66, 72, 78, 91, 98, 105, 120, 128, 136, 153, 162, 171, 190, 200, 210, 231, 242, 253, 276, 288, 300, 325, 338, 351, 378, 392, 406, 435, 450, 465, 496, 512, 528, 561, 578, 595, 630, 648, 666, 703, 722, 741
OFFSET
1,3
COMMENTS
Prefixing A082667 by 0,0,0 gives the sequence c(n) defined as the number of (x,y,z) satisfying 2w = 3x-3y where w,x,y are all in {1,...,n}, for n>=0; see the Formula section.
For n >= 2, numbers k such that floor(sqrt(2k)+1/2) | 2k. - Wesley Ivan Hurt, Dec 01 2020
FORMULA
a(n) = a(n-1) + 2a(n-3) - 2a(n-4) - a(n-6) + a(n-7), (with 0,0,0 prefixed as in the Comments section). - Clark Kimberling, Apr 15 2012
a(n) = floor((n + 1)/3)*(n - floor((n + 1)/3)). - Wesley Ivan Hurt, Jun 06 2014
G.f.: -x^2*(1+x)*(1+x^2) / ( (1+x+x^2)^2*(x-1)^3 ). - R. J. Mathar, Jun 07 2014
MATHEMATICA
n2[n_]:=Module[{c=2*n/3}, (Floor[c]Ceiling[c])/2]; Array[n2, 60] (* Harvey P. Dale, Feb 03 2012 *)
LinearRecurrence[{1, 0, 2, -2, 0, -1, 1}, {0, 1, 2, 3, 6, 8, 10}, 60] (* Robert G. Wilson v, Jun 06 2014 *)
CROSSREFS
Cf. A008130, A151842 (first differences).
Sequence in context: A181486 A179785 A246445 * A098162 A076627 A020489
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, May 18 2003
STATUS
approved