editing
proposed
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
editing
proposed
(Magma)
A047999:= func< n, k | BitwiseAnd(n-k, k) eq 0 select 1 else 0 >;
[A047999(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Dec 03 2024
approved
editing
editing
proposed
Triangle read by rows, Sierpinski's gasket, T(n, k) = 2^k * A047999 * (1,2,4,8,...n, k) diagonalized.
Former name: Triangle read by rows, Sierpinski's gasket, A047999 * (1,2,4,8,...) diagonalized. - G. C. Greubel, Dec 02 2024
New name by G. C. Greubel, Dec 02 2024
proposed
editing
editing
proposed
CoefficientList[Series[(1+x)*(1-x^12)/(1 - 14*x + 104*x^12 - 91*x^13), {t, 0, 50}], t](* G. C. Greubel, May 17 2016 ; Dec 03 2024 *)
<a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, -91).
From G. C. Greubel, Dec 03 2024: (Start)
a(n) = 13*Sum_{j=1..11} a(n-j) - 91*a(n-12).
G.f.: (1+x)*(1-x^12)/(1 - 14*x + 104*x^12 - 91*x^13). (End)
CoefficientList[Series[(t1+x)*(1-x^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + )/(1)/(91 - 14*x + 104*tx^12 - 13*t^11 - 13*t^10 - 13*t^9 - 13*t^8 - 13*t^7 - 13*t^6 - 13*t^5 - 13*t^4 - 13*t^3 - 1391*tx^2 - 13*t + 1), {t, 0, 50}], t](* G. C. Greubel, May 17 2016 *)
coxG[{12, 91, -13}] (* The coxG program is at A169452 *) (* G. C. Greubel, Dec 03 2024 *)
(Magma)
R<x>:=PowerSeriesRing(Integers(), 40);
Coefficients(R!( (1+x)*(1-x^12)/(1-14*x+104*x^12-91*x^13) )); // G. C. Greubel, Dec 03 2024
(SageMath)
def A166583_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^12)/(1-14*x+104*x^12-91*x^13) ).list()
A166583_list(40) # G. C. Greubel, Dec 03 2024
approved
editing
editing
proposed
<a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, -78).
From G. C. Greubel, Dec 03 2024: (Start)
a(n) = 12*Sum_{j=1..11} a(n-j) - 78*a(n-12).
G.f.: (1+x)*(1-x^12)/(1 - 13*x + 90*x^12 - 78*x^13). (End)
CoefficientList[Series[(t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 1+ 2*t^2 + 2)*t + (1)/(78*t^12 - 12*t^11 - 12*t^10 - 12*t^9 - 12*t^8 - 12*t^7 - 12*t^6 )/(1- 1213*t^5 - 12+90*t^4 - 12*t^3 - 1278*t^2 - 12*t + 113), {t, 0, 50}], t] (* G. C. Greubel, May 17 2016 ; Dec 03 2024 *)
(Magma)
R<x>:=PowerSeriesRing(Integers(), 40);
Coefficients(R!( (1+x)*(1-x^12)/(1-13*x+90*x^12-78*x^13) )); // G. C. Greubel, Dec 03 2024
(SageMath)
def A166568_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^12)/(1-13*x+90*x^12-78*x^13) ).list()
A166568_list(40) # G. C. Greubel, Dec 03 2024
approved
editing
editing
proposed