[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/201122.html
   My bibliography  Save this paper

Out-of-Sample Equity Premium Predictability in South Africa: Evidence from a Large Number of Predictors

Author

Listed:
  • Rangan Gupta

    (Department of Economics, University of Pretoria)

  • Mampho P. Modise

    (Department of Economics, University of Pretoria and South African Treasury, Pretoria, South Africa)

  • Josine Uwilingiye

    (Department of Economics and Econometrics, University of Johannesburg)

Abstract
This paper uses a predictive regression framework to examine the out-of-sample predictability of South Africa’s equity premium, using a host of financial and macroeconomic variables. Past studies tend to suggest that the predictors on their own fail to deliver consistent out-of-sample forecast gains relative to the historical average (random walk model). We therefore employ various methods of forecast combination, bootstrap aggregation (bagging), principal component and Bayesian regressions to allow for a simultaneous role of the variables under consideration. Our results show that forecast combination methods and principal component regressions improve the predictability of the equity premium relative to the benchmark random walk model. However, the Bayesian predictive regressions are found to be the standout performers with the models outperforming the individual regressions, forecast combination methods, bagging and principal component regressions.

Suggested Citation

  • Rangan Gupta & Mampho P. Modise & Josine Uwilingiye, 2011. "Out-of-Sample Equity Premium Predictability in South Africa: Evidence from a Large Number of Predictors," Working Papers 201122, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:201122
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Korobilis, Dimitris, 2013. "Hierarchical shrinkage priors for dynamic regressions with many predictors," International Journal of Forecasting, Elsevier, vol. 29(1), pages 43-59.
    3. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
    4. repec:bla:jfinan:v:53:y:1998:i:5:p:1563-1587 is not listed on IDEAS
    5. David Rapach & Jack Strauss, 2010. "Bagging or Combining (or Both)? An Analysis Based on Forecasting U.S. Employment Growth," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 511-533.
    6. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    7. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    8. Andrew Ang & Geert Bekaert, 2007. "Stock Return Predictability: Is it There?," The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 651-707.
    9. John Y. Campbell & Robert J. Shiller, 1988. "Stock Prices, Earnings and Expected Dividends," Cowles Foundation Discussion Papers 858, Cowles Foundation for Research in Economics, Yale University.
    10. Fama, Eugene F, 1981. "Stock Returns, Real Activity, Inflation, and Money," American Economic Review, American Economic Association, vol. 71(4), pages 545-565, September.
    11. Miguel A.G. Belmonte & Gary Koop & Dimitris Korobilis, 2014. "Hierarchical Shrinkage in Time‐Varying Parameter Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 80-94, January.
    12. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
    13. Kilian, Lutz & Inoue, Atsushi, 2005. "How Useful is Bagging in Forecasting Economic Time Series? A Case Study of US CPI Inflation," CEPR Discussion Papers 5304, C.E.P.R. Discussion Papers.
    14. Gert Peersman & Ine van Robays, 2009. "Oil and the Euro area economy [Labour market implications of EU product market integration]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 24(60), pages 603-651.
    15. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    16. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    17. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    18. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    19. Rangan Gupta & Faaiqa Hartley, 2013. "The Role of Asset Prices in Forecasting Inflation and Output in South Africa," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 12(3), pages 239-291, December.
    20. repec:bla:jfinan:v:43:y:1988:i:3:p:661-76 is not listed on IDEAS
    21. Sydney C. Ludvigson & Serena Ng, 2009. "Macro Factors in Bond Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5027-5067, December.
    22. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    23. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
    24. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    25. Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2010. "Improved penalization for determining the number of factors in approximate factor models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1806-1813, December.
    26. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    27. Davide Pettenuzzo & Allan G. Timmermann & Rossen I. Valkanov, 2008. "Return Predictability under Equilibrium Constraints on the Equity Premium," Working Papers 37, Brandeis University, Department of Economics and International Business School.
    28. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    29. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive Density Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 5, pages 197-284, Elsevier.
    30. Rapach, David E. & Wohar, Mark E. & Rangvid, Jesper, 2005. "Macro variables and international stock return predictability," International Journal of Forecasting, Elsevier, vol. 21(1), pages 137-166.
    31. Fama, Eugene F. & French, Kenneth R., 1989. "Business conditions and expected returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 25(1), pages 23-49, November.
    32. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
    33. K. J. Martijn Cremers, 2002. "Stock Return Predictability: A Bayesian Model Selection Perspective," The Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1223-1249.
    34. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lyu, Zhichong & Ma, Feng & Zhang, Jixiang, 2023. "Oil futures volatility prediction: Bagging or combination?," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 457-467.
    2. Gupta, Rangan & Hammoudeh, Shawkat & Modise, Mampho P. & Nguyen, Duc Khuong, 2014. "Can economic uncertainty, financial stress and consumer sentiments predict U.S. equity premium?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 367-378.
    3. Apergis, Nicholas & Gupta, Rangan, 2017. "Can (unusual) weather conditions in New York predict South African stock returns?," Research in International Business and Finance, Elsevier, vol. 41(C), pages 377-386.
    4. Ruipeng Liu & Riza Demirer & Rangan Gupta & Mark Wohar, 2020. "Volatility forecasting with bivariate multifractal models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 155-167, March.
    5. repec:ipg:wpaper:2013-020 is not listed on IDEAS
    6. repec:ipg:wpaper:20 is not listed on IDEAS
    7. Goodness C. Aye & Rangan Gupta & Mampho P. Modise, 2012. "Structural Breaks and Predictive Regressions Models of South African Equity Premium," Working Papers 201209, University of Pretoria, Department of Economics.
    8. Ruipeng Liu & Riza Demirer & Rangan Gupta & Mark E. Wohar, 2017. "Do Bivariate Multifractal Models Improve Volatility Forecasting in Financial Time Series? An Application to Foreign Exchange and Stock Markets," Working Papers 201728, University of Pretoria, Department of Economics.
    9. Afees A. Salisu & Rangan Gupta, 2021. "Commodity Prices and Forecastability of South African Stock Returns Over a Century: Sentiments versus Fundamentals," Working Papers 202144, University of Pretoria, Department of Economics.
    10. Kutan, Ali M. & Shi, Yukun & Wei, Mingzhe & Zhao, Yang, 2018. "Does the introduction of index futures stabilize stock markets? Further evidence from emerging markets," International Review of Economics & Finance, Elsevier, vol. 57(C), pages 183-197.
    11. Qureshi, Fiza & Kutan, Ali M. & Ismail, Izlin & Gee, Chan Sok, 2017. "Mutual funds and stock market volatility: An empirical analysis of Asian emerging markets," Emerging Markets Review, Elsevier, vol. 31(C), pages 176-192.
    12. Nicholas Apergis & Rangan Gupta, 2016. "Can Weather Conditions in New York Predict South African Stock Returns?," Working Papers 201634, University of Pretoria, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    2. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    3. Phan, Dinh Hoang Bach & Sharma, Susan Sunila & Narayan, Paresh Kumar, 2015. "Stock return forecasting: Some new evidence," International Review of Financial Analysis, Elsevier, vol. 40(C), pages 38-51.
    4. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    5. Amélie Charles & Olivier Darné & Jae H. Kim, 2022. "Stock return predictability: Evaluation based on interval forecasts," Bulletin of Economic Research, Wiley Blackwell, vol. 74(2), pages 363-385, April.
    6. Thomadakis, Apostolos, 2016. "Do Combination Forecasts Outperform the Historical Average? Economic and Statistical Evidence," MPRA Paper 71589, University Library of Munich, Germany.
    7. Schrimpf, Andreas, 2010. "International stock return predictability under model uncertainty," Journal of International Money and Finance, Elsevier, vol. 29(7), pages 1256-1282, November.
    8. Wang, Yudong & Pan, Zhiyuan & Liu, Li & Wu, Chongfeng, 2019. "Oil price increases and the predictability of equity premium," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 43-58.
    9. Charles, Amelie & Darne, Olivier & Kim, Jae, 2016. "Stock Return Predictability: Evaluation based on Prediction Intervals," MPRA Paper 70143, University Library of Munich, Germany.
    10. Gonçalo Faria & Fabio Verona, 2016. "Forecasting the equity risk premium with frequency-decomposed predictors," Working Papers de Economia (Economics Working Papers) 06, Católica Porto Business School, Universidade Católica Portuguesa.
    11. Haase, Felix & Neuenkirch, Matthias, 2023. "Predictability of bull and bear markets: A new look at forecasting stock market regimes (and returns) in the US," International Journal of Forecasting, Elsevier, vol. 39(2), pages 587-605.
    12. David I. Harvey & Stephen J. Leybourne & Robert Sollis & A.M. Robert Taylor, 2021. "Real‐time detection of regimes of predictability in the US equity premium," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 45-70, January.
    13. Jordan, Steven J. & Vivian, Andrew & Wohar, Mark E., 2017. "Forecasting market returns: bagging or combining?," International Journal of Forecasting, Elsevier, vol. 33(1), pages 102-120.
    14. Xi Dong & Yan Li & David E. Rapach & Guofu Zhou, 2022. "Anomalies and the Expected Market Return," Journal of Finance, American Finance Association, vol. 77(1), pages 639-681, February.
    15. Li, Yan & Ng, David T. & Swaminathan, Bhaskaran, 2013. "Predicting market returns using aggregate implied cost of capital," Journal of Financial Economics, Elsevier, vol. 110(2), pages 419-436.
    16. Gupta, Rangan & Modise, Mampho P., 2013. "Macroeconomic Variables and South African Stock Return Predictability," Economic Modelling, Elsevier, vol. 30(C), pages 612-622.
    17. Gonçalo Faria & Fabio Verona, 2016. "Forecasting the equity risk premium with frequency-decomposed predictors," Working Papers de Economia (Economics Working Papers) 06, Católica Porto Business School, Universidade Católica Portuguesa.
    18. Jurdi, Doureige & Kim, Jae, 2019. "Predicting the U.S. Stock Market Return: Evidence from the Improved Augmented Regression Method," MPRA Paper 94028, University Library of Munich, Germany.
    19. Bakshi, Gurdip & Panayotov, George & Skoulakis, Georgios, 2011. "Improving the predictability of real economic activity and asset returns with forward variances inferred from option portfolios," Journal of Financial Economics, Elsevier, vol. 100(3), pages 475-495, June.
    20. Rapach, David E. & Wohar, Mark E., 2006. "In-sample vs. out-of-sample tests of stock return predictability in the context of data mining," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 231-247, March.

    More about this item

    Keywords

    Equity Premium; Predictive Regressions; Forecast Combinations; Bagging; Principal Component Regressions; Bayesian Predictive Regressions;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:201122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.