[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
IDEAS home Printed from https://ideas.repec.org/p/esy/uefcwp/27775.html
   My bibliography  Save this paper

Real-Time Detection of Regimes of Predictability in the U.S. Equity Premium

Author

Listed:
  • Harvey, David I
  • Leybourne, Stephen J
  • Sollis, Robert
  • Taylor, AM Robert
Abstract
We propose new real-time monitoring procedures for the emergence of end-of-sample predictive regimes using sequential implementations of standard (heteroskedasticity-robust) regression t-statistics for predictability applied over relatively short time periods. The procedures we develop can also be used for detecting historical regimes of temporary predictability. Our proposed methods are robust to both the degree of persistence and endogeneity of the regressors in the predictive regression and to certain forms of heteroskedasticity in the shocks. We discuss how the monitoring procedures can be designed such that their false positive rate can be set by the practitioner at the start of the monitoring period using detection rules based on information obtained from the data in a training period. We use these new monitoring procedures to investigate the presence of regime changes in the predictability of the U.S. equity premium at the one-month horizon by traditional macroeconomic and financial variables, and by binary technical analysis indicators. Our results suggest that the one-month ahead equity premium has temporarily been predictable, displaying so-called 'pockets of predictability', and that these episodes of predictability could have been detected in real-time by practitioners using our proposed methodology.

Suggested Citation

  • Harvey, David I & Leybourne, Stephen J & Sollis, Robert & Taylor, AM Robert, 2020. "Real-Time Detection of Regimes of Predictability in the U.S. Equity Premium," Essex Finance Centre Working Papers 27775, University of Essex, Essex Business School.
  • Handle: RePEc:esy:uefcwp:27775
    as

    Download full text from publisher

    File URL: https://repository.essex.ac.uk/27775/
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    3. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    4. Paye, Bradley S. & Timmermann, Allan, 2006. "Instability of return prediction models," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 274-315, June.
    5. Hudson, Robert & Dempsey, Michael & Keasey, Kevin, 1996. "A note on the weak form efficiency of capital markets: The application of simple technical trading rules to UK stock prices - 1935 to 1994," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 1121-1132, July.
    6. Breitung, Jörg & Demetrescu, Matei, 2015. "Instrumental variable and variable addition based inference in predictive regressions," Journal of Econometrics, Elsevier, vol. 187(1), pages 358-375.
    7. repec:bla:jfinan:v:43:y:1988:i:3:p:661-76 is not listed on IDEAS
    8. Campbell, J.Y. & Shiller, R.J., 1988. "Stock Prices, Earnings And Expected Dividends," Papers 334, Princeton, Department of Economics - Econometric Research Program.
    9. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    10. Martin Lettau & Sydney Ludvigson, 2001. "Consumption, Aggregate Wealth, and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 815-849, June.
    11. Keim, Donald B. & Stambaugh, Robert F., 1986. "Predicting returns in the stock and bond markets," Journal of Financial Economics, Elsevier, vol. 17(2), pages 357-390, December.
    12. Andrew Ang & Geert Bekaert, 2007. "Stock Return Predictability: Is it There?," The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 651-707.
    13. Nelson, Charles R & Kim, Myung J, 1993. "Predictable Stock Returns: The Role of Small Sample Bias," Journal of Finance, American Finance Association, vol. 48(2), pages 641-661, June.
    14. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    15. Fama, Eugene F. & French, Kenneth R., 1989. "Business conditions and expected returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 25(1), pages 23-49, November.
    16. Jacob Boudoukh & Roni Michaely & Matthew Richardson & Michael R. Roberts, 2007. "On the Importance of Measuring Payout Yield: Implications for Empirical Asset Pricing," Journal of Finance, American Finance Association, vol. 62(2), pages 877-915, April.
    17. Andrews, Donald W.K. & Kim, Jae-Young, 2006. "Tests for Cointegration Breakdown Over a Short Time Period," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 379-394, October.
    18. Fama, Eugene F, 1990. "Stock Returns, Expected Returns, and Real Activity," Journal of Finance, American Finance Association, vol. 45(4), pages 1089-1108, September.
    19. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    20. Amit Goyal & Ivo Welch, 2003. "Predicting the Equity Premium with Dividend Ratios," Management Science, INFORMS, vol. 49(5), pages 639-654, May.
    21. Fama, Eugene F, 1981. "Stock Returns, Real Activity, Inflation, and Money," American Economic Review, American Economic Association, vol. 71(4), pages 545-565, September.
    22. John Y. Campbell, Robert J. Shiller, 1988. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," The Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
    23. Timmermann, Allan, 2008. "Reply to the discussion of Elusive Return Predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 29-30.
    24. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
    25. Alexandros Kostakis & Tassos Magdalinos & Michalis P. Stamatogiannis, 2015. "Robust Econometric Inference for Stock Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 28(5), pages 1506-1553.
    26. Ferreira, H. & Scotto, M., 2002. "On the asymptotic location of high values of a stationary sequence," Statistics & Probability Letters, Elsevier, vol. 60(4), pages 475-482, December.
    27. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    28. Henkel, Sam James & Martin, J. Spencer & Nardari, Federico, 2011. "Time-varying short-horizon predictability," Journal of Financial Economics, Elsevier, vol. 99(3), pages 560-580, March.
    29. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    30. Timmermann, Allan, 2008. "Elusive return predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 1-18.
    31. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
    32. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    33. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    34. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    35. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rossi, Barbara & Odendahl, Florens & Sekhposyan, Tatevik, 2020. "Comparing Forecast Performance with State Dependence," CEPR Discussion Papers 15217, C.E.P.R. Discussion Papers.
    2. Odendahl, Florens & Rossi, Barbara & Sekhposyan, Tatevik, 2023. "Evaluating forecast performance with state dependence," Journal of Econometrics, Elsevier, vol. 237(2).
    3. Stein, Tobias, 2024. "Forecasting the equity premium with frequency-decomposed technical indicators," International Journal of Forecasting, Elsevier, vol. 40(1), pages 6-28.
    4. Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023. "Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach," Journal of Econometrics, Elsevier, vol. 237(2).
    5. Fabrizio Iacone & Luca Rossini & Andrea Viselli, 2024. "Comparing predictive ability in presence of instability over a very short time," Papers 2405.11954, arXiv.org.
    6. Smith, Simon C., 2021. "International stock return predictability," International Review of Financial Analysis, Elsevier, vol. 78(C).
    7. Miriam Arden & Tiemen Woutersen, 2021. "A Balanced Portfolio Can Have a Higher Geometric Return Than the Risky Asset," JRFM, MDPI, vol. 14(9), pages 1-5, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2022. "Testing for episodic predictability in stock returns," Journal of Econometrics, Elsevier, vol. 227(1), pages 85-113.
    2. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    3. Daniel Mantilla-García & Vijay Vaidyanathan, 2017. "Predicting stock returns in the presence of uncertain structural changes and sample noise," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(3), pages 357-391, August.
    4. Baetje, Fabian & Menkhoff, Lukas, 2016. "Equity premium prediction: Are economic and technical indicators unstable?," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1193-1207.
    5. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    6. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    7. Wang, Yudong & Pan, Zhiyuan & Liu, Li & Wu, Chongfeng, 2019. "Oil price increases and the predictability of equity premium," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 43-58.
    8. Smith, Simon C., 2021. "International stock return predictability," International Review of Financial Analysis, Elsevier, vol. 78(C).
    9. Atanasov, Victoria, 2018. "World output gap and global stock returns," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 181-197.
    10. Hai Lin & Daniel Quill & Henk Berkman, 2016. "Information diffusion and the predictability of New Zealand stock market returns," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 56(3), pages 749-785, September.
    11. Schrimpf, Andreas, 2010. "International stock return predictability under model uncertainty," Journal of International Money and Finance, Elsevier, vol. 29(7), pages 1256-1282, November.
    12. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    13. Charles, Amelie & Darne, Olivier & Kim, Jae, 2016. "Stock Return Predictability: Evaluation based on Prediction Intervals," MPRA Paper 70143, University Library of Munich, Germany.
    14. Henkel, Sam James & Martin, J. Spencer & Nardari, Federico, 2011. "Time-varying short-horizon predictability," Journal of Financial Economics, Elsevier, vol. 99(3), pages 560-580, March.
    15. Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," CERGE-EI Working Papers wp677, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    16. Lawrenz, Jochen & Zorn, Josef, 2017. "Predicting international stock returns with conditional price-to-fundamental ratios," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 159-184.
    17. Chava, Sudheer & Gallmeyer, Michael & Park, Heungju, 2015. "Credit conditions and stock return predictability," Journal of Monetary Economics, Elsevier, vol. 74(C), pages 117-132.
    18. Stephan Jank, 2015. "Changes in the Composition of Publicly Traded Firms: Implications for the Dividend-Price Ratio and Return Predictability," Management Science, INFORMS, vol. 61(6), pages 1362-1377, June.
    19. John Y. Campbell, 2008. "Viewpoint: Estimating the equity premium," Canadian Journal of Economics, Canadian Economics Association, vol. 41(1), pages 1-21, February.
    20. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.

    More about this item

    Keywords

    Predictive regression; persistence; temporary predictability; subsampling; U.S. equity premium;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:esy:uefcwp:27775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nikolaos Vlastakis (email available below). General contact details of provider: https://edirc.repec.org/data/fcessuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.