[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

A second order CrankNicolson scheme for fractional Cattaneo equation based on new fractional derivative

Published: 15 October 2017 Publication History

Abstract

Recently Caputo and Fabrizio introduce a new derivative with fractional order which has the ability to describe the material heterogeneities and the fluctuations of different scales. In this article, a CrankNicolson finite difference scheme to solve fractional Cattaneo equation based on the new fractional derivative is introduced and analyzed. Some a priori estimates of discrete L(L2) errors with optimal order of convergence rate O(2+h2) are established on uniform partition. Moreover, the applicability and accuracy of the scheme are demonstrated by numerical experiments to support our theoretical analysis.

References

[1]
Y. Liu, Y. Du, H. Li, S. He, W. Gao, Finite difference/finite element method for a nonlinear time-fractional fourth-order reactiondiffusion problem, Comput. Math. Appl., 70 (2015) 573-591.
[2]
N. Zhang, W. Deng, Y. Wu, Finite difference/element method for a two-dimensional modified fractional diffusion equation, Adv. Appl. Math. Mech., 4 (2012) 496-518.
[3]
Y. Jiang, J. Ma, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math., 235 (2011) 3285-3290.
[4]
W. Li, X. Da, Finite central difference/finite element approximations for parabolic integro-differential equations, Computing, 90 (2010) 89-111.
[5]
F. Zeng, C. Li, F. Liu, I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput., 35 (2013) A2976-A3000.
[6]
H. Brunner, H. Han, D. Yin, Artificial boundary conditions and finite difference approximations for a time-fractional diffusion-wave equation on a two-dimensional unbounded spatial domain, J. Comput. Phys., 276 (2014) 541-562.
[7]
J. Huang, Y. Tang, L. Vzquez, J. Yang, Two finite difference schemes for time fractional diffusion-wave equation, Numer. Algorithms, 64 (2013) 707-720.
[8]
X. Zhao, Z.-Z. Sun, G.E. Karniadakis, Second-order approximations for variable order fractional derivatives: algorithms and applications, J. Comput. Phys., 293 (2015) 184-200.
[9]
A. Torokhti, P. Howlett, The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, Elsevier, 1974.
[10]
S.G. Samko, B. Ross, Integration and differentiation to a variable fractional order, Integral Transforms Spec. Funct., 1 (1993) 277-300.
[11]
C.F. Lorenzo, T.T. Hartley, Initialization, conceptualization, and application in the generalized (fractional) calculus, Crit. Rev. Biomed. Eng., 35 (2007) 277-300.
[12]
A. Atangana, On the stability and convergence of the time-fractional variable order telegraph equation, J. Comput. Phys., 293 (2015) 104-114.
[13]
S. Das, K. Vishal, P. Gupta, A. Yildirim, An approximate analytical solution of time-fractional telegraph equation, Appl. Math. Comput., 217 (2011) 7405-7411.
[14]
J. Chen, F. Liu, V. Anh, Analytical solution for the time-fractional telegraph equation by the method of separating variables, J. Math. Anal. Appl., 338 (2008) 1364-1377.
[15]
V.R. Hosseini, E. Shivanian, W. Chen, Local integration of 2-d fractional telegraph equation via local radial point interpolant approximation, Eur. Phys. J. Plus, 130 (2015) 1-21.
[16]
Y. Liu, Z. Fang, H. Li, S. He, A mixed finite element method for a time-fractional fourth-order partial differential equation, Appl. Math. Comput., 243 (2014) 703-717.
[17]
E. Sousa, A second order explicit finite difference method for the fractional advection diffusion equation, Comput. Math. Appl., 64 (2012) 3141-3152.
[18]
E. Sousa, An explicit high order method for fractional advection diffusion equations, J. Comput. Phys., 278 (2014) 257-274.
[19]
E. Sousa, Finite difference approximations for a fractional advection diffusion problem, J. Comput. Phys., 228 (2009) 4038-4054.
[20]
Z. Liu, X. Li, A parallel CGS block-centered finite difference method for a nonlinear time-fractional parabolic equation, Comput. Methods Appl. Mech. Eng., 308 (2016) 330-348.
[21]
Z. Liu, X. Li, A CrankNicolson difference scheme for the time variable fractional mobileimmobile advectiondispersion equation, J. Appl. Math. Comput. (2017) 1-20.
[22]
Z. Liu, X. Li, A novel second order finite difference discrete scheme for fractal mobile/immobile transport model based on equivalent transformative Caputo formulation, arXiv:1701.01283 (2017).
[23]
Z. Liu, A. Cheng, X. Li, A second-order finite difference scheme for quasilinear time fractional parabolic equation based on new fractional derivative, Int. J. Comput. Math. (2017) 1-16.
[24]
A. Cheng, H. Wang, K. Wang, A EulerianLagrangian control volume method for solute transport with anomalous diffusion, Numer. Methods Partial Differ. Equ., 31 (2015) 253-267.
[25]
F. Liu, P. Zhuang, I. Turner, K. Burrage, V. Anh, A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Modell., 38 (2014) 3871-3878.
[26]
L. Wei, Y. He, Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems, Appl. Math. Modell., 38 (2014) 1511-1522.
[27]
Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007) 1533-1552.
[28]
Y. Lin, X. Li, C. Xu, Finite difference/spectral approximations for the fractional cable equation, Math. Comput., 80 (2011) 1369-1396.
[29]
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015) 1-13.
[30]
J. Gmez-Aguilar, M. Lpez-Lpez, V. Alvarado-Martnez, J. Reyes-Reyes, M. Adam-Medina, Modeling diffusive transport with a fractional derivative without singular kernel, Physica A, 447 (2016) 467-481.
[31]
A. Atangana, On the new fractional derivative and application to nonlinear fishers reactiondiffusion equation, Appl. Math. Comput., 273 (2016) 948-956.
[32]
A. Atangana, B.S.T. Alkahtani, Extension of the resistance, inductance, capacitance electrical circuit to fractional derivative without singular kernel, Adv. Mech. Eng., 7 (2015).
[33]
A. Atangana, J.J. Nieto, Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel, Adv. Mech. Eng., 7 (2015).
[34]
S.-W. Vong, H.-K. Pang, X.-Q. Jin, A high-order difference scheme for the generalized Cattaneo equation, East Asian J. Appl. Math., 2 (2012) 170-184.
[35]
A. Compte, R. Metzler, The generalized Cattaneo equation for the description of anomalous transport processes, J. Phys. A: Math. Gen., 30 (1997) 72-77.
[36]
K.D. Lewandowska, T. Kosztolowicz, Application of generalized Cattaneo equation to model subdiffusion impedance, Acta Phys. Pol. B, 39 (2008) 1211.
[37]
T. Kosztoowicz, K.D. Lewandowska, Hyperbolic subdiffusive impedance, J. Phys. A: Math. Theor., 42 (2009).
[38]
H. Qi, X. Jiang, Solutions of the space-time fractional Cattaneo diffusion equation, Physica A, 390 (2011) 1876-1883.
[39]
X. Zhao, Z.-Z. Sun, Compact CrankNicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium, J. Sci. Comput., 62 (2014) 747-771.
[40]
X. Li, H. Rui, Characteristic block-centred finite difference methods for nonlinear convection-dominated diffusion equation, Int. J. Comput. Math., 94 (2017) 386-404.
[41]
W. Liu, Z. Kang, H. Rui, Finite volume element approximation of the coupled continuum pipe-flow/Darcy model for flows in karst aquifers, Numer. Methods Partial Differ. Equ., 30 (2013) 376-392.
  1. A second order CrankNicolson scheme for fractional Cattaneo equation based on new fractional derivative

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Applied Mathematics and Computation
        Applied Mathematics and Computation  Volume 311, Issue C
        October 2017
        332 pages

        Publisher

        Elsevier Science Inc.

        United States

        Publication History

        Published: 15 October 2017

        Author Tags

        1. 26A33
        2. 65M06
        3. 65M12
        4. 65M15
        5. Cattaneo equation
        6. CrankNicolson
        7. Finite difference
        8. New fractional derivative
        9. Second order

        Qualifiers

        • Research-article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 24 Dec 2024

        Other Metrics

        Citations

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media