Abstract
In this article, a general type of two-dimensional time-fractional telegraph equation explained by the Caputo derivative sense for (1 < α ≤ 2) is considered and analyzed by a method based on the Galerkin weak form and local radial point interpolant (LRPI) approximation subject to given appropriate initial and Dirichlet boundary conditions. In the proposed method, so-called meshless local radial point interpolation (MLRPI) method, a meshless Galerkin weak form is applied to the interior nodes while the meshless collocation method is used for the nodes on the boundary, so the Dirichlet boundary condition is imposed directly. The point interpolation method is proposed to construct shape functions using the radial basis functions. In the MLRPI method, it does not require any background integration cells so that all integrations are carried out locally over small quadrature domains of regular shapes, such as circles or squares. Two numerical examples are presented and satisfactory agreements are achieved.
Similar content being viewed by others
References
K. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (John Wiley & Sons Inc, New York, 1993).
S. Samko, A. Kilbas, O. Maxitchev, Integrals and Derivatives of the Fractional Order and Some of Their Applications, in Nauka i Tekhnika (Minsk, 1987) in Russian.
Z. Jiao, Y. Chen, I. Podlubny, Distributed-order Dunamic Systems: Stability, Simulation, Applications and Perspectives (Springer, 2012).
I. Podlubny, Fract. Calc. Appl. Anal. 3, 359 (2000).
I. Podlubny, A. Chechkin, T. Skovranek, Y. Chen, B.M.V. Jara, J. Comput. Phys. 228, 3137 (2009).
C. Tadjeran, M.M. Meerschaert, H.-P. Scheffler, J. Comput. Phys. 213, 205 (2006).
L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers (Birkhäuser, Boston, 1997).
A. Metaxas, R. Meredith, Industrial Microwave, Heating (Peter Peregrinus, London, 1983).
O. Agrawal, Nonlinear Dyn. 29, 145 (2002).
Z. Zhao, C. Li, Appl. Math. Comput. 219, 2975 (2012).
G. Liu, Y. Gu, An Introduction to Meshfree Methods and Their Programing (Springer, 2005).
T. Belytschko, Y.Y. Lu, L. Gu, Int. J. Numer. Methods Eng. 37, 229 (1994).
T. Belytschko, Y.Y. Lu, L. Gu, Int. J. Solids Struct. 32, 2547 (1995).
E. Shivanian, Eng. Anal. Bound. Elem. 37, 1693 (2013).
E. Kansa, Comput. Math. Appl. 19, 127 (1990).
M. Dehghan, A. Shokri, Math. Comput. Simulat. 79, 700 (2008).
K. Mramor, R. Vertnik, B. Sarler, Comput. Mater. Contin. 36, 1 (2013).
Y. Hon, L. Ling, K. Liew, Comput. Mater. Contin. 2, 39 (2005).
X. Xiong, M. Li, M.Q. Wang, J. Eng. Math. 80, 189 (2013).
B. Nayroles, G. Touzot, P. Villon, Comput. Mech. 10, 307 (1992).
A. Bratsos, Int. J. Numer. Methods Eng. 75, 787 (2008).
P. Clear, Appl. Math. Model. 22, 981 (1998).
W. Liu, S. Jun, Y. Zhang, Int. J. Numer. Methods Eng. 20, 1081 (1995).
Y. Mukherjee, S. Mukherjee, Int. J. Numer. Methods Eng. 40, 797 (1997).
J. Melenk, I. Babuska, Comput. Methods Appl. Mech. Eng. 139, 289 (1996).
S. De, K. Bathe, Comput. Mech. 25, 329 (2000).
Y. Gu, G. Liu, Comput. Mech. 28, 47 (2002).
Y. Gu, G. Liu, Struct. Eng. Mech. 15, 535 (2003).
S. Atluri, T. Zhu, Comput. Mech. 22, 117 (1998).
S. Atluri, T. Zhu, Comput. Model. Simulat. Eng. 3, 187 (1998).
S. Atluri, T. Zhu, Int. J. Numer. Methods Eng. 13, 537 (2000).
S. Atluri, T. Zhu, Comput. Mech. 25, 169 (2000).
M. Dehghan, D. Mirzaei, Eng. Anal. Bound. Elem. 32, 747 (2008).
M. Dehghan, D. Mirzaei, Appl. Numer. Math. 59, 1043 (2009).
Y. Gu, G. Liu, Comput. Mech. 27, 188 (2001).
S. Abbasbandy, A. Shirzadi, Eng. Anal. Bound. Elem. 34, 1031 (2010).
S. Abbasbandy, A. Shirzadi, Appl. Numer. Math. 61, 170 (2011).
A. Shirzadi, L. Ling, S. Abbasbandy, Eng. Anal. Bound. Elem. 36, 1522 (2012).
A. Shirzadi, V. Sladek, J. Sladek, Eng. Anal. Bound. Elem. 37, 8 (2013).
G. Liu, L. Yan, J. Wang, Y. Gu, Struct. Eng. Mech. 14, 713 (2002).
G. Liu, Y. Gu, J. Sound Vib. 246, 29 (2001).
M. Dehghan, A. Ghesmati, Comput. Phys. Commun. 181, 772 (2010).
E. Shivanian, Ocean Eng. 89, 173 (2014).
E. Shivanian, Eng. Anal. Bound. Elem. 50, 249 (2015).
E. Shivanian, H. Khodabandehlo, Eur. Phys. J. Plus 129, 241 (2014).
T. Kaufmann, Y. Yu, C. Engström, Z. Chen, C. Fumeaux, Int. J. Numer. Model. Electron. Netw. Dev. Fields 25, 1099 (2012).
J. Wang, G. Liu, Int. J. Numer. Methods Eng. 54, 1623 (2002).
J. Wang, G. Liu, Comput. Methods Appl. Math. 191, 2611 (2002).
C. Franke, R. Schaback, Appl. Math. Comput. 93, 73 (1997).
M. Sharan, E. Kansa, S. Gupta, Appl. Math. Comput. 84, 275 (1997).
M.J.D. Powell, Theory of radial basis function approximation in 1990, in Advances in Numerical Analysis, edited by W. Light, Vol. 2 (Clarendon Press, Oxford, 1992) pp. 105–210.
H. Wendland, J. Approx. Theory 93, 258 (1998).
D. Hu, S. Long, K. Liu, G. Li, Eng. Anal. Bound. Elem. 30, 399 (2006).
K. Liu, S. Long, G. Li, Eng. Anal. Bound. Elem. 30, 72 (2006).
R. Adams, Sobolev Spaces (Academic Press, New York, 1975).
Y.N. Zhang, Z.Z. Sun, H.W. Wu, SIAM J. Numer. Anal. 49, 2302 (2011).
Y.N. Zhang, Z.Z. Sun, X. Zhao, SIAM J. Numer. Anal. 50, 1535 (2012).
Z.Z. Sun, X.N. Wu, Appl. Numer. Math. 56, 193 (2006).
J. Chen, F. Lin, V. Anh, S. Shen, Q. Liu, C. Liao, Appl. Math. Comput. 219, 1737 (2012).
Z. Avazzadeh, V.R. Hosseini, W. Chen, Iran J. Sci. Technol. A 38, 205 (2014).
V.R. Hosseini, W. Chen, Z. Azazzadeh, Eng. Anal. Bound. Elem. 38, 31 (2014).
C. Li, Z. Zhao, Y. Chen, Comput. Math. Appl. 62, 855 (2011).
L. Wei, H. Dai, D. Zhang, Z. Si, Calcolo 51, 175 (2014).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hosseini, V.R., Shivanian, E. & Chen, W. Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation. Eur. Phys. J. Plus 130, 33 (2015). https://doi.org/10.1140/epjp/i2015-15033-5
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/i2015-15033-5