[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Compact finite difference method for the fractional diffusion equation

Published: 01 November 2009 Publication History

Abstract

High-order compact finite difference scheme for solving one-dimensional fractional diffusion equation is considered in this paper. After approximating the second-order derivative with respect to space by the compact finite difference, we use the Grunwald-Letnikov discretization of the Riemann-Liouville derivative to obtain a fully discrete implicit scheme. We analyze the local truncation error and discuss the stability using the Fourier method, then we prove that the compact finite difference scheme converges with the spatial accuracy of fourth order using matrix analysis. Numerical results are provided to verify the accuracy and efficiency of the proposed algorithm.

References

[1]
Metzler, R. and Klafter, J., The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. v339. 1-77.
[2]
Podlubny, I., Fractional Differential Equations. 1999. Academic Press, San Diego.
[3]
Lynch, V.E., Carreras, B.A., Del-Castillo-Negrete, D., Ferreira-Mejias, K.M. and Hicks, H.R., Numerical methods for the solution of partial differential equations of fractional order. J. Comput. Phys. v192. 406-421.
[4]
Meerschaert, M. and Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. v172. 65-77.
[5]
Langlands, T.A.M. and Henry, B.I., The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. v205. 719-736.
[6]
Yuste, S.B. and Acedo, L., An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. v42 i5. 1862-1874.
[7]
Chen, C.-M., Liu, F., Turner, I. and Anh, V., A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. v227. 886-897.
[8]
Zhuang, P., Liu, F., Anh, V. and Turner, I., New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. v46 i2. 1079-1095.
[9]
Chen, C.-M., Liu, F. and Burrage, K., Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation. Appl. Math. Comput. v198. 754-769.
[10]
Liu, F., Yang, C. and Burrage, K., Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. v231. 160-176.
[11]
Scherer, R., Kalla, S.L., Boyadjiev, L. and Al-Saqabi, B., Numerical treatment of fractional heat equations. Appl. Numer. Math. v58. 1212-1223.
[12]
Podlubny, I., Matrix approach to discrete fractional calculus. Fract. Calc. Appl. Anal. v3 i4. 359-386.
[13]
Podlubny, I., Chechkin, A., Skovranek, T., Chen, Y. and Vinagre Jara, B.M., Matrix approach to discrete fractional calculus II: partial fractional differential equations. J. Comput. Phys. v228. 3137-3153.
[14]
Xu, M.Y. and Tan, W.C., Theoretical analysis of the velocity field stress field and vortex sheet of generalized second order fluid with fractional anomalous diffusion. Sci. China Ser. A: Math. v44. 1387-1399.
[15]
Hirsch, R.S., Higher order accurate difference solutions of fluid mechanics problems by a compact difference technique. J. Comput. Phys. v24. 90-109.
[16]
Lele, S.K., Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. v103. 16-42.
[17]
Liao, W., Zhu, J. and Khaliq, A.Q.M., An efficient high-order algorithm for solving systems of reaction-diffusion equations. Numer. Meth. Partial Diff. Eq. v18. 340-354.
[18]
Cui, M.R., Fourth-order compact scheme for the one-dimensional sine-Gordon equation. Numer. Meth. Partial Diff. Eq. v25. 685-711.
[19]
Zhao, J.C., Zhang, T. and Corless, R.M., Convergence of the compact finite difference method for second-order elliptic equations. Appl. Math. Comput. v182. 1454-1469.
[20]
Ames, W.F., Numerical Methods for Partial Differential Equations. 1977. Academic Press, New York.
[21]
Lubich, C.H., Discretized fractional calculus. SIAM J. Math. Anal. v17 i3. 704-719.
[22]
Thomas, W., . 1995. Numerical Partial Differential Equations: Finite Difference Methods, Texts in Applied Mathematics, 1995.Springer, -Verlag.
[23]
A. Quarteroni, A. Valli, Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics 23, Springer-Verlag, 1994.
[24]
Horn, Roger A. and Johnson, Charles R., Matrix Analysis. 1986. Cambridge University Press.
[25]
Tadjeran, Charles and Meerschaert, Mark M., A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. v220. 813-823.
[26]
Lin, Y.M. and Xu, C.J., Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. v225. 1533-1552.

Cited By

View all
  • (2024)Numerical solution and sensitivity analysis of time–space fractional near-field acoustic levitation model using Caputo and Grünwald–Letnikov derivativesSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-024-09757-128:13-14(8457-8470)Online publication date: 1-Jul-2024
  • (2023)The numerical solution of fractional integral equations via orthogonal polynomials in fractional powersAdvances in Computational Mathematics10.1007/s10444-022-10009-949:1Online publication date: 4-Feb-2023
  • (2022)A high-order adaptive numerical algorithm for fractional diffusion wave equation on non-uniform meshesNumerical Algorithms10.1007/s11075-022-01372-192:3(1905-1950)Online publication date: 5-Aug-2022
  • Show More Cited By
  1. Compact finite difference method for the fractional diffusion equation

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Journal of Computational Physics
    Journal of Computational Physics  Volume 228, Issue 20
    November, 2009
    368 pages

    Publisher

    Academic Press Professional, Inc.

    United States

    Publication History

    Published: 01 November 2009

    Author Tags

    1. 35Q51
    2. 35Q53
    3. 65M06
    4. 65M12
    5. 65M15
    6. 78M20
    7. Compact scheme
    8. Convergence
    9. Finite difference
    10. Fourier analysis
    11. Fractional diffusion equation
    12. Padé approximant
    13. Stability

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 24 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Numerical solution and sensitivity analysis of time–space fractional near-field acoustic levitation model using Caputo and Grünwald–Letnikov derivativesSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-024-09757-128:13-14(8457-8470)Online publication date: 1-Jul-2024
    • (2023)The numerical solution of fractional integral equations via orthogonal polynomials in fractional powersAdvances in Computational Mathematics10.1007/s10444-022-10009-949:1Online publication date: 4-Feb-2023
    • (2022)A high-order adaptive numerical algorithm for fractional diffusion wave equation on non-uniform meshesNumerical Algorithms10.1007/s11075-022-01372-192:3(1905-1950)Online publication date: 5-Aug-2022
    • (2022)Simulation of 2D and 3D inverse source problems of nonlinear time-fractional wave equation by the meshless homogenization function methodEngineering with Computers10.1007/s00366-021-01489-238:Suppl 4(3599-3608)Online publication date: 1-Oct-2022
    • (2022)A novel meshless collocation solver for solving multi-term variable-order time fractional PDEsEngineering with Computers10.1007/s00366-021-01298-738:Suppl 2(1527-1538)Online publication date: 1-Jun-2022
    • (2021)Optimal Petrov–Galerkin Spectral Approximation Method for the Fractional Diffusion, Advection, Reaction Equation on a Bounded IntervalJournal of Scientific Computing10.1007/s10915-020-01366-y86:3Online publication date: 1-Mar-2021
    • (2021)Improved singular boundary method and dual reciprocity method for fractional derivative Rayleigh–Stokes problemEngineering with Computers10.1007/s00366-020-00991-337:4(3151-3166)Online publication date: 1-Oct-2021
    • (2020)On the Convergence of the Local Discontinuous Galerkin Method Applied to a Stationary One Dimensional Fractional Diffusion ProblemJournal of Scientific Computing10.1007/s10915-020-01335-585:2Online publication date: 22-Oct-2020
    • (2020)A compact Crank–Nicholson scheme for the numerical solution of fuzzy time fractional diffusion equationsNeural Computing and Applications10.1007/s00521-019-04148-232:10(6405-6412)Online publication date: 1-May-2020
    • (2018)A linearized second-order scheme for nonlinear time fractional Klein-Gordon type equationsNumerical Algorithms10.1007/s11075-017-0385-y78:2(485-511)Online publication date: 1-Jun-2018
    • Show More Cited By

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media