Experimental and Theoretical Study of Multifrequency Surface Acoustic Wave Devices in a Single Si/SiO2/ZnO Piezoelectric Structure
<p>The scattering parameter S<sub>21</sub> vs. frequency curves of (<b>a</b>) R<sub>m</sub>, (<b>b</b>) S<sub>m</sub>, (<b>c</b>) the R<sub>m</sub> third harmonic, (<b>d</b>) the S<sub>m</sub> third harmonic.</p> "> Figure 2
<p>(<b>a</b>) The atomic force microscopy (AFM) and (<b>b</b>) the scanning electron microscopy (SEM) photo of the ZnO film.</p> "> Figure 3
<p>The phase velocity dispersion curves of R<sub>m</sub>, S<sub>m</sub>, R3, and R4 modes for SiO<sub>2</sub> thickness-to-wavelength ratio ranging (<b>a</b>) from 0.01 to 0.05 and (<b>b</b>) from 0.001 to 0.01.</p> "> Figure 4
<p>The K<sup>2</sup> dispersion curves of the first four modes for SiO<sub>2</sub> h = 0.033·λ.</p> "> Figure 5
<p>The three-dimensional (3D) primitive cell.</p> "> Figure 6
<p>The solid displacement of R<sub>m</sub> and S<sub>m</sub>, for λ = 30 μm (<b>a</b>,<b>b</b>); for λ = 10 μm (<b>c</b>,<b>d</b>); and for λ = 6 μm (<b>e</b>,<b>f</b>).</p> "> Figure 7
<p>The real and imaginary part of the admittance Y vs. frequency curves showing the resonance peaks of the (<b>a</b>) R<sub>m</sub> and (<b>b</b>) S<sub>m</sub> calculated for λ = 30 μm; (<b>c</b>) R<sub>m</sub> and (<b>d</b>) S<sub>m</sub> calculated at 10 μm wavelength; (<b>e</b>) R<sub>m</sub> and (<b>f</b>) S<sub>m</sub> calculated at 6 µm wavelength.</p> "> Figure 8
<p>The schematic of the delay line model adopted for the time domain study.</p> "> Figure 9
<p>The input and output voltage vs. time curves for the Rayleigh mode.</p> "> Figure 10
<p>The S<sub>21</sub> of the fundamental (<b>a</b>) Rayleigh; (<b>b</b>) Sezawa; and third harmonic of the (<b>c</b>) Rayleigh; and (<b>d</b>) Sezawa mode vs. frequency.</p> "> Figure 11
<p>The frequency shift vs. gas concentration curves of the (<b>a</b>) Rayleigh and (<b>b</b>) Sezawa; the third harmonic of (<b>c</b>) R<sub>m</sub> and (<b>d</b>) S<sub>m</sub>.</p> ">
Abstract
:1. Introduction
2. Experimental Results
3. Theoretical Study
3.1. Numerical Calculations
3.2. 3D FEM Analysis: Eigenfrequency Study
3.3. 2D FEM Analysis: Frequency Domain Study
3.4. 3D FEM Analysis: Time Domain Study
4. Gas Sensing Simulation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ruppel, C.C.; Fjeldly, T.A. Selected Topics in Electronics and Systems: Volume 20; World Scientific: Singapore, 2001. [Google Scholar]
- Mason, W.P. Physical Acoustics: Principles and Methods; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Emanetoglu, N.W.; Patounakis, G.; Muthukumar, S.; Lu, Y. Analysis of Temperature Compensated SAW Modes in ZnO/SiO2/Si Multilayer Structures. In Proceedings of the IEEE Ultrasonics, San Juan, Puerto Rico, USA, 22–25 October 2000. [Google Scholar] [CrossRef]
- Martin, S.J.; Schwartz, S.S.; Gunshor, R.L.; Pierret, R.F. Surface Acoustic Wave Resonators on A Zno-On-Si Layered Medium. J. Appl. Phys. 1983, 54, 561–569. [Google Scholar] [CrossRef]
- Kumar, S.; Kim, G.H.; Sreenivas, K.; Tandon, R.P. Tandon, Zno Based Surface Acoustic Wave Ultraviolet Photo Sensor. J. Electroceram. 2009, 22, 198–202. [Google Scholar] [CrossRef]
- Emanetoglu, N.W.; Zhu, J.; Chen, Y.; Zhong, J.; Chen, Y.M.; Lu, Y. Surface Acoustic Wave Ultraviolet Photodetectors Using Epitaxial Zno Multilayers Grown on R-Plane Sapphire. Appl. Phys. Lett. 2004, 85, 3702–3704. [Google Scholar] [CrossRef]
- Rana, L.; Gupta, R.; Tomar, M.; Gupta, V. Zno/ST-Quartz SAW Resonator: An Efficient NO2 Gas Sensor. Sens. Actuators B Chem. 2017, 252, 840–845. [Google Scholar] [CrossRef]
- Tasaltin, C.; Ebeoglu, M.A.; Ozturk, Z.Z. Acoustoelectric Effect on the Responses of SAW Sensors Coated with Electrospun Zno Nanostructured Thin Film. Sensors 2012, 12, 12006–12015. [Google Scholar] [CrossRef] [Green Version]
- Raj, V.B.; Singh, H.; Nimal, A.T.; Sharma, M.U.; Tomar, M.; Gupta, V. Distinct Detection of Liquor Ammonia by Zno/SAW Sensor: Study of Complete Sensing Mechanism. Sens. Actuators B Chem. 2017, 238, 83–90. [Google Scholar] [CrossRef]
- Ballantine, D.S., Jr.; White, R.M.; Martin, S.J.; Ricco, A.J.; Zellers, E.T.; Frye, G.C.; Wohltjen, H. Acoustic Wave Sensors: Theory, Design, & Physico-Chemical Applications; Elsevier: San Diego, CA, USA, 1996. [Google Scholar]
- Slobodnik, A.J., Jr.; Conway, E.D.; Delmonico, R.T. Air Force Cambridge Research Laboratories; Report No. AFCRL-TR-73-0597; U.S. Department of Commerce: Washington, DC, USA, 1973.
- Hellwege, K.-H.; Hellwege, A.M. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Group III; Springer: Berlin/Heidelberg, Germany, 1979. [Google Scholar]
- Carlotti, G.; Socino, G.; Petri, A.; Verona, E. Elastic Constants of Sputtered Zno Films. In Proceedings of the IEEE 1987 Ultrasonics Symposium, Denver, Colorado, USA, 14–16 October 1987. [Google Scholar]
- Vyun, V.A.; Umashev, V.N.; Yakovkin, I.B. Yakovkin, Measurements of piezoelectric modulii of thin films. Sov. Phys. 1986, 6, 192. (In Russian) [Google Scholar]
- Caliendo, C.; Latino, P.M. Characterization of Pt/Aln/Pt-Based Structures for High Temperature, Microwave Electroacoustic Devices Applications. Thin Solid Films 2011, 519, 6326–6329. [Google Scholar] [CrossRef]
- Verardi, P.; Craciun, F. Acoustoelectric Probe for D33 Measurement on Piezoelectric Thin Films. Rev. Sci. Instrum. 2003, 74, 4453–4457. [Google Scholar] [CrossRef]
- Tzou, H.S.; Fukuda, T. (Eds.) Precision Sensors, Actuators and Systems; Kluwer Academic Publisher: Cambridge, MA, USA, 1992. [Google Scholar]
- Adler, E.L.; Slaboszewicz, J.K.; Farnell, G.W.; Jen, C.K. PC Software for SAW Propagation in Anisotropic Multilayers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1990, 37, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Colin, K. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications; Academic Press Inc.: Cambridge, MA, USA, 1998. [Google Scholar]
- Santosh, S.K. Surface Acoustic Wave Devices on Silicon Substrate Using Patterned and Thin Film Zno. Ph.D. Thesis, Indian Institute of Technology, Assam, India, 2016. [Google Scholar]
- Wu, P.; Emanetoglu, N.W.; Tong, X.; Lu, Y. Temperature Compensation of SAW in ZnO/SiO2 /Si Structure. In Proceedings of the IEEE Ultrasonic Symposium, Atlanta, GA, USA, 7–10 October 2001. [Google Scholar] [CrossRef]
- Le Brizoual, L.; Sarry, F.; Elmazria, O.; Alnot, P.; Ballandras, S.; Pastureaud, T. GHz Frequency ZnO/Si SAW Device. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.Z.; Jeoti, V.; Karuppanan, S.; Malik, A.F.; Iqbal, A. Malik and Asif Iqbal, FEM Analysis of Sezawa Mode SAW Sensor for VOC Based on CMOS Compatible AlN/SiO2/Si Multilayer Structure. Sensors 2018, 18, 1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caliendo, C.; Hamidullah, M. Zero-Group-Velocity Acoustic Waveguides for High-Frequency Resonators. J. Phys. D Appl. Phys. 2017, 50, 474002–474014. [Google Scholar] [CrossRef]
- Ahmadi, M.T.; Ismail, R.; Anwar, S. Handbook of Research on Nanoelectronic Sensor Modeling and Applications; IGI Global Engineering Science Series: Hershey, PA, USA, 2017. [Google Scholar]
- Ho, C.K.; Lindgren, E.R.; Rawlinson, K.S.; McGrath, L.K.; Wright, J.L. Development of a Surface Acoustic Wave Sensor for In-Situ Monitoring of Volatile Organic Compounds. Sensors 2003, 3, 236–247. [Google Scholar] [CrossRef] [Green Version]
- Grate, J.W.; Abraham, M.A. Solubility Interaction and Design of Chemically Selective Sorbent Coatings for Chemical Sensor and Arrays. Sens. Actuators B Chem. 1991, 3, 85–111. [Google Scholar] [CrossRef]
- Ayela, C.; Heinrich, S.M.; Josse, F.; Dufour, I. Resonant Microcantilevers for the Determination of the Loss Modulus of Thin Polymer Films. J. Microelectromech. Syst. 2011, 20, 788–790. [Google Scholar] [CrossRef] [Green Version]
- Benedek, I.; Feldstein, M.M. Technology of Pressure-Sensitive Adhesives and Products, 1st ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Johnson, S.; Shanmuganantham, T. Design and Analysis of SAW Based MEMS Gas Sensor for the Detection of Volatile Organic Gases. Carbon 2014, 119, 0–041316. [Google Scholar]
gas | Δf/Δc0 (Hz/ppm) | SR (ppm) | ||||||
---|---|---|---|---|---|---|---|---|
λ = 30 µm | λ = 10 µm | λ = 30 µm | λ = 10 µm | |||||
Rm | Sm | Rm | Sm | Rm | Sm | Rm | Sm | |
CH2Cl2 | −0.25 | −0.21 | −1.57 | −3.52 | −11.86 | −14.48 | −1.91 | −0.85 |
CHCl3 | −1.01 | −0.83 | −6.27 | −14.07 | −2.96 | −3.61 | −0.48 | −0.21 |
CCl4 | −2.53 | −2.08 | −15.69 | −35.17 | −1.19 | −1.44 | −0.19 | −0.09 |
C2Cl4 | −3.28 | −2.70 | −20.37 | −45.63 | −0.91 | −1.11 | −0.15 | −0.07 |
C2HCl3 | −4.19 | −3.45 | −26.00 | −58.24 | −0.72 | −0.87 | −0.12 | −0.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caliendo, C.; Laidoudi, F. Experimental and Theoretical Study of Multifrequency Surface Acoustic Wave Devices in a Single Si/SiO2/ZnO Piezoelectric Structure. Sensors 2020, 20, 1380. https://doi.org/10.3390/s20051380
Caliendo C, Laidoudi F. Experimental and Theoretical Study of Multifrequency Surface Acoustic Wave Devices in a Single Si/SiO2/ZnO Piezoelectric Structure. Sensors. 2020; 20(5):1380. https://doi.org/10.3390/s20051380
Chicago/Turabian StyleCaliendo, Cinzia, and Farouk Laidoudi. 2020. "Experimental and Theoretical Study of Multifrequency Surface Acoustic Wave Devices in a Single Si/SiO2/ZnO Piezoelectric Structure" Sensors 20, no. 5: 1380. https://doi.org/10.3390/s20051380
APA StyleCaliendo, C., & Laidoudi, F. (2020). Experimental and Theoretical Study of Multifrequency Surface Acoustic Wave Devices in a Single Si/SiO2/ZnO Piezoelectric Structure. Sensors, 20(5), 1380. https://doi.org/10.3390/s20051380