FEM Analysis of Sezawa Mode SAW Sensor for VOC Based on CMOS Compatible AlN/SiO2/Si Multilayer Structure
<p>A 2D unit cell geometry used in Finite Element Method (FEM) simulation.</p> "> Figure 2
<p>Simulation results (<b>a</b>) Phase velocity of Rayleigh causes mass loading effect which is sensing phenomena of and Sezawa mode for AlN/Diamond structure; (<b>b</b>) Electromechanical coupling coefficient for Rayleigh and Sezawa wave mode.</p> "> Figure 3
<p>The mesh density profile. (<b>a</b>) Triangular elements = 228; (<b>b</b>) Triangular elements = 35,485; (<b>c</b>) Triangular elements = 49,067; (<b>d</b>) Triangular elements = 55,748; (<b>e</b>) Triangular elements = 120,503.</p> "> Figure 4
<p>The effect of mesh density on Surface Acoustic Wave (SAW) velocity.</p> "> Figure 5
<p>(<b>a</b>) Acoustic wave velocity versus normalized thickness of AlN; (<b>b</b>) Electromechanical coupling coefficient (<span class="html-italic">k</span><sup>2</sup>) versus normalized AlN thickness; (<b>c</b>) Acoustic wave velocity versus normalized thickness of SiO<sub>2</sub>; (<b>d</b>) Electromecanical coupling coefficient versus normalized SiO<sub>2</sub>.</p> "> Figure 5 Cont.
<p>(<b>a</b>) Acoustic wave velocity versus normalized thickness of AlN; (<b>b</b>) Electromechanical coupling coefficient (<span class="html-italic">k</span><sup>2</sup>) versus normalized AlN thickness; (<b>c</b>) Acoustic wave velocity versus normalized thickness of SiO<sub>2</sub>; (<b>d</b>) Electromecanical coupling coefficient versus normalized SiO<sub>2</sub>.</p> "> Figure 6
<p>The displacement profile and wave confinement in different layer (Zoom-in view). (<b>a</b>) When <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mrow> <mi>A</mi> <mi>l</mi> <mi>N</mi> </mrow> </msub> <mo>/</mo> <mi>λ</mi> <mtext> </mtext> </mrow> </semantics></math> = 0.01. (<b>b</b>) When <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mrow> <mi>A</mi> <mi>l</mi> <mi>N</mi> </mrow> </msub> <mo>/</mo> <mi>λ</mi> </mrow> </semantics></math> = 0.1 and (<b>c</b>) when <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mrow> <mi>A</mi> <mi>l</mi> <mi>N</mi> </mrow> </msub> <mo>/</mo> <mi>λ</mi> </mrow> </semantics></math> = 2.</p> "> Figure 7
<p>The acoustic wave modes shapes and their y-component of displacement. (<b>a</b>) Resonance of Rayleigh mode at 1.167 GHz; (<b>b</b>) Anti-resonance of Rayleigh mode at 1.172 GHz; (<b>c</b>) Resonance of Sezawa mode at 1.2 GHz. (<b>d</b>) Anti-resonance of Sezawa mode at 1.214 GHz.</p> "> Figure 8
<p>Mass Loading effect on SAW Propagation Velocity.</p> "> Figure 9
<p>Plot of resonance frequency shift versus gas concentration in ppm.</p> ">
Abstract
:1. Introduction
2. Problem Formulation
3. Results and Discussion
3.1. Saw Propagation Analysis
3.2. Analysis of Mass Loading Effect and Gas Sensitivity
3.2.1. Mass Loading Analysis
3.2.2. Gas Sensitivity Analysis
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Schütze, A.; Baur, T.; Leidinger, M.; Reimringer, W.; Jung, R.; Conrad, T.; Sauerwald, T. Highly Sensitive and Selective VOC Sensor Systems Based on Semiconductor Gas Sensors: How to? Environments 2017, 4, 20. [Google Scholar] [CrossRef]
- Chen, X.; Cao, M.; Li, Y.; Hu, W.; Wang, P.; Ying, K.; Pan, H. A study of an electronic nose for detection of lung cancer based on a virtual SAW gas sensors array and imaging recognition method. Meas. Sci. Technol. 2005, 16, 1535. [Google Scholar] [CrossRef]
- Beauchet, R.; Magnoux, P.; Mijoin, J. Catalytic oxidation of volatile organic compounds (VOCs) mixture (isopropanol/O-xylene) on zeolite catalysts. Catal. Today 2007, 124, 118–123. [Google Scholar] [CrossRef]
- Joo, B.-S.; Lee, J.-H.; Lee, E.-W.; Song, K.-D.; Lee, D.-S. Polymer Film SAW Sensors for Chemical Agent Detection. In Proceedings of the Conference on Sensing Technology, Palmerston North, New Zealand, 21–23 November 2005; pp. 307–310. [Google Scholar]
- Greve, D.; Chin, T.-L.; Zheng, P.; Ohodnicki, P.; Baltrus, J.; Oppenheim, I. Surface Acoustic Wave Devices for Harsh Environment Wireless Sensing. Sensors 2013, 13, 6910–6935. [Google Scholar] [CrossRef] [PubMed]
- Nicolay, P.; Lenzhofer, M. A Wireless and Passive Low-Pressure Sensor. Sensors 2014, 14, 3065–3076. [Google Scholar] [CrossRef] [PubMed]
- Mohanan, A.; Islam, M.; Ali, S.; Parthiban, R.; Ramakrishnan, N. Investigation into Mass Loading Sensitivity of Sezawa Wave Mode-Based Surface Acoustic Wave Sensors. Sensors 2013, 13, 2164. [Google Scholar] [CrossRef] [PubMed]
- Du, X.Y.; Fu, Y.Q.; Tan, S.C.; Luo, J.K.; Flewitt, A.J.; Milne, W.I.; Lee, D.S.; Park, N.M.; Park, J.; Choi, Y.J.; et al. ZnO film thickness effect on surface acoustic wave modes and acoustic streaming. Appl. Phys. Lett. 2008, 93, 094105. [Google Scholar] [CrossRef]
- Fu, Y.Q.; Cherng, J.; Luo, J.J.; Desmulliez, M.P.Y.; Li, Y.; Walton, A.J.; Placido, F. Aluminium Nitride Thin Film Acoustic Wave Device for Microfluidic and Biosensing Applications; Dissanayake, D.W., Ed.; Sciyo: Rijeka, Croatia, 2010; pp. 263–298. [Google Scholar]
- Ionescu, V. Design and Analysis of a Rayleigh SAW Resonator for Gas Detecting Applications. Rom. J. Phys. 2014, 60, 502–511. [Google Scholar]
- Wang, W.; Hu, H.; Liu, X.; He, S.; Pan, Y.; Zhang, C.; Dong, C. Development of a Room Temperature SAW Methane Gas Sensor Incorporating a Supramolecular Cryptophane A Coating. Sensors 2016, 16, 73. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Shanmuganantham, T. Design and Analysis of SAW Based MEMS Gas Sensor for the Detection of Volatile Organic Gases. Int. J. Eng. Res. Appl. 2014, 4, 254–258. [Google Scholar]
- Jakubik, W.P.; Urbańczyk, M.; Maciak, E.; Pustelny, T. Surface acoustic wave hydrogen gas sensor based on layered structure of palladium/metal-free phthalocyanine. Bull. Pol. Acad. Sci. Tech. Sci. 2008, 56, 133–138. [Google Scholar]
- Liu, B.; Chen, X.; Cai, H.; Mohammad Ali, M.; Tian, X.; Tao, L.; Yang, Y.; Ren, T. Surface acoustic wave devices for sensor applications. J. Semicond. 2016, 37, 021001. [Google Scholar] [CrossRef]
- Takagaki, Y.; Santos, P.V.; Wiebicke, E.; Brandt, O.; Schönherr, H.-P.; Ploogless, K.H. Superhigh-frequency surface-acoustic-wave transducers using AlN layers grown on SiC substrates. Appl. Phys. Lett. 2002, 81, 2538. [Google Scholar] [CrossRef]
- Bu, G.; Ciplys, D.; Shur, M.; Schowalter, L.J.; Schujman, S.; Gaska, R. Surface acoustic wave velocity in single-crystal AlN substrates. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Kaletta, U.C.; Wenger, C. FEM simulation of Rayleigh waves for CMOS compatible SAW devices based on AlN/SiO2/Si(100). Ultrasonics 2014, 54, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Kaletta, U.C.; Santos, P.V.; Wolansky, D.; Scheit, A.; Fraschke, M.; Wipf, C.; Zaumseil, P.; Wenger, C. Monolithic integrated SAW filter based on AlN for high-frequency applications. Semiconduct. Sci. Technol. 2013, 28, 1–7. [Google Scholar] [CrossRef]
- Benetti, M.; Cannata, D.; Pietrantonio, F.D.; Verona, E. Growth of AlN Piezoelectric Film on Diamond for High-Frequency Surface Acoustic Wave Devices. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 1806–1811. [Google Scholar] [CrossRef] [PubMed]
- Chung, G.S.; Phan, D.T. Finite element modeling of surface acoustic waves in piezoelectric thin films. J. Korean Phys. Soc. 2010, 57, 446–450. [Google Scholar]
- Weber, A.H.; Weiss, G.; Hunklinger, S. Comparison of Rayleigh and Sezawa Wave Modes in ZnO-SiO2-Si Structures. In Proceedings of the Ultrasonics Symposium, Orlando, FL, USA, 8–11 December 1991; pp. 363–366. [Google Scholar]
- Talbi, A.; Sarry, F.; Brizoual, L.L.; Elmazria, O.; Alnot, P. Sezawa mode SAW pressure sensors based on ZnO/Si structure. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2004, 51, 1421–1426. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Giangu, I.; Stavrinidis, A.; Stefanescu, A.; Stavrinidis, G.; Dinescu, A.; Konstantinidis, G. Sezawa Propagation Mode in GaN on Si Surface Acoustic Wave Type Temperature Sensor Structures Operating at GHz Frequencies. IEEE Electron Device Lett. 2015, 36, 1299–1302. [Google Scholar] [CrossRef]
- Shu, L.; Peng, B.; Li, C.; Gong, D.; Yang, Z.; Liu, X.; Zhang, W. The Characterization of Surface Acoustic Wave Devices Based on AlN-Metal Structures. Sensors 2016, 16, 526. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wen, Z.; Wang, C. Investigation of surface acoustic waves propagating in ZnO-SiO2-Si multilayer structure. Ultrasonics 2013, 53, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lu, Y. Response Mechanism for Surface Acoustic Wave Gas Sensors Based on Surface-Adsorption. Sensors 2014, 14, 6844–6853. [Google Scholar] [CrossRef] [PubMed]
- Devkota, J.; Ohodnicki, P.; Greve, D. SAW Sensors for Chemical Vapors and Gases. Sensors 2017, 17, 801. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.F.; Jeoti, V.; Fawzy, M.; Iqbal, A.; Aslam, Z.; Pandian, M.S.; Marigo, E. Estimation of SAW velocity and coupling coefficient in multilayered piezo-substrates AlN/SiO2/Si. In Proceedings of the 2016 6th International Conference on Intelligent and Advanced Systems (ICIAS), Kuala Lumpur, Malaysia, 15–17 August 2016; pp. 1–5. [Google Scholar]
- Benedek, I. Manufacture of Pressure-Sensitive Products. In Technology of Pressure-Sensitive Adhesives and Products; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Toxic Gas Exposure Standards. Available online: http://inspectapedia.com/sickhouse/Gas_Exposure_Limits.php (accessed on 18 September 2017).
- Bahreyni, B.; Shafai, C. Oscillator and frequency-shift measurement circuit topologies for micromachined resonant devices. Sens. Actuators A 2007, 137, 74–80. [Google Scholar] [CrossRef]
- Horrillo, M.C.; Fernández, M.J.; Fontecha, J.L.; Sayago, I.; García, M.; Aleixandre, M.; Gutiérrez, J.; Gràcia, I.; Cané, C. Optimization of SAW sensors with a structure ZnO-SiO2-Si to detect volatile organic compounds. Sens. Actuators B 2006, 118, 356–361. [Google Scholar] [CrossRef]
Structure Dimensions | Value/µm |
---|---|
Wave length | 4 () |
Pitch of electrode | 2 (/2) |
Interdigital Transducer (IDT) width | 1 (/4) |
Si substrate thickness | 40 (10) |
Mechanical Boundary Condition | Electrical Boundary Condition | |
---|---|---|
Γ1 | Free | Zero Charge/Symmetry |
Γ2 | Free | Continuity |
Γ3 | Free | Continuity |
Γ4 | Free | Continuity |
Γ5 | Fixed Constraint | Ground |
ΓL, ΓR | Periodic Boundary condition |
Symbol | AlN [24] | SiO2 [25] | Si [25] | |
---|---|---|---|---|
Density (kg/m3) | ρ | 3260 | 2200 | 2330 |
Elastic Constants (GPa) | C11 | 345 | 78.5 | 166 |
C12 | 125 | 16.1 | 64 | |
C13 | 120 | 16.1 | 64 | |
C33 | 395 | 78.5 | 166 | |
C44 | 118 | 31.2 | 80 | |
C66 | 110 | 31.2 | 80 | |
Piezoelectric Constants (C/m2) | e15 | −0.48 | - | - |
e31 | −0.45 | - | - | |
e33 | 1.55 | - | - | |
Dielectric Constant (10−11 F/m) | ε11 | 9 | 3.32 | 10.62 |
ε33 | 11 | 3.32 | 10.62 |
Rayleigh Sensitivity (KHz/nm) | Sezawa Sensitivity (KHz/nm) | |
---|---|---|
0.5 | 40.5 | 23 |
0.75 | 26.42 | 83.6 |
Gas | [12] | [12] | |
---|---|---|---|
Trichloromethane | 1.927 | 119.5 | 0.00041 |
Carbon Tetrachloride | 2.206 | 153.8 | 0.00101 |
Trichloroethylene | 2.399 | 131.4 | 0.00134 |
Tetrachloroethene | 2.979 | 165.8 | 0.00647 |
Analyte | Sensitivity in Rayleigh Mode (Hz/ppm) | Sensitivity in Sezawa Mode (Hz/ppm) |
---|---|---|
Trichloromethane | 0.75 | 1.57 |
Carbon Tetrachloride | 1.85 | 3.85 |
Trichloroethylene | 2.53 | 5.13 |
Tetrachloroethene | 12.1 | 24.61 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslam, M.Z.; Jeoti, V.; Karuppanan, S.; Malik, A.F.; Iqbal, A. FEM Analysis of Sezawa Mode SAW Sensor for VOC Based on CMOS Compatible AlN/SiO2/Si Multilayer Structure. Sensors 2018, 18, 1687. https://doi.org/10.3390/s18061687
Aslam MZ, Jeoti V, Karuppanan S, Malik AF, Iqbal A. FEM Analysis of Sezawa Mode SAW Sensor for VOC Based on CMOS Compatible AlN/SiO2/Si Multilayer Structure. Sensors. 2018; 18(6):1687. https://doi.org/10.3390/s18061687
Chicago/Turabian StyleAslam, Muhammad Zubair, Varun Jeoti, Saravanan Karuppanan, Aamir Farooq Malik, and Asif Iqbal. 2018. "FEM Analysis of Sezawa Mode SAW Sensor for VOC Based on CMOS Compatible AlN/SiO2/Si Multilayer Structure" Sensors 18, no. 6: 1687. https://doi.org/10.3390/s18061687
APA StyleAslam, M. Z., Jeoti, V., Karuppanan, S., Malik, A. F., & Iqbal, A. (2018). FEM Analysis of Sezawa Mode SAW Sensor for VOC Based on CMOS Compatible AlN/SiO2/Si Multilayer Structure. Sensors, 18(6), 1687. https://doi.org/10.3390/s18061687