WiFi-Based Driver’s Activity Monitoring with Efficient Computation of Radio-Image Features
<p>System architecture.</p> "> Figure 2
<p>Discriminant components selection.</p> "> Figure 3
<p>Complete flow of semi-supervised framework.</p> "> Figure 4
<p>Basic structure of SAE.</p> "> Figure 5
<p>Structure of presented S-SAE model.</p> "> Figure 6
<p>Experimentation equipment.</p> "> Figure 7
<p>Experimentation settings.</p> "> Figure 8
<p>Activities performed.</p> "> Figure 9
<p>Confusion matrix of activity recognition using GC-S algorithm.</p> "> Figure 10
<p>Precision, recall and F-1 score for each activity using GC-S method.</p> "> Figure 11
<p>Comparison of accuracy for each activity with stand-alone features.</p> "> Figure 12
<p>Classification performance of GC-based features with conventional classifiers.</p> "> Figure 13
<p>Comparison of accuracy without adapting discriminant component selection method.</p> "> Figure 14
<p>Comparison of execution time.</p> "> Figure 15
<p>Accuracy test using LOPO-CV scheme.</p> "> Figure 16
<p>Varying layout.</p> ">
Abstract
:1. Introduction
- We proposed a computational efficient WiFi-based driver’s activity monitoring system exploiting the discriminant components for radio-image processing.
- To validate the scalability of results, we conduct extensive experiments in promising application scenarios and comparative evaluation is performed with state-of-the-art methods.
2. Related Work
3. System Overview
3.1. Efficient Computation of Radio-Image Features
3.2. CSI Overview
3.3. System Architecture
4. Methodology
4.1. CSI Pre-Processing Module
4.1.1. Phase Calibration
4.1.2. Amplitude Information Processing
4.2. Activity Profile Extraction Module
4.2.1. Activity Profile Extraction
4.2.2. Discriminant Components Selection
4.3. Feature Extraction Module
4.3.1. CSI to Image Transformation
4.3.2. Gabor Feature Extraction
4.3.3. Statistical Feature Extraction
- Entropy: It measures the randomness and disorder of the image. Non-uniform texture corresponds to a high value of entropy. Mathematically, entropy (R) is defined as:
- Inverse difference moment: It is defined as the measure of the smoothness of an image. Inverse difference moment (I) is mathematically represented as:
- Energy: It measures the occurrence of pixel pairs that are repeated in an image. Mathematically, energy (E) is defined as:
- Correlation: It is the similarity measure between a pixel of a specific region and its neighboring pixel in an image. Mathematically, correlation (C) can be represented as:
4.4. Classification Module
Stacked Sparse Auto-Encoder (S-SAE)
5. Experimentation and Evaluation
5.1. Experimentation Settings
- Scenario-I (Actual driving): In this scenario, attentive activities are performed with actual driving a vehicle. Due to safety purposes, inattentive activities are performed by parking the vehicle on a side of the road.
- Scenario-II (Vehicle standing in a garage): In this scenario, all prescribed activities are performed inside a vehicle while standing in a garage of size feet.
5.2. Performance Evaluation
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gaspar, J.G.; Schwarz, C.W.; Brown, T.L.; Kang, J. Gaze position modulates the effectiveness of forward collision warnings for drowsy drivers. Accid. Anal. Prev. 2019, 126, 25–30. [Google Scholar] [CrossRef]
- Aksjonov, A.; Nedoma, P.; Vodovozov, V.; Petlenkov, E.; Herrmann, M. Detection and evaluation of driver distraction using machine learning and fuzzy logic. IEEE Trans. Intell. Transp. Syst. 2018, 20, 2048–2059. [Google Scholar] [CrossRef]
- Ortiz, C.; Ortiz-Peregrina, S.; Castro, J.; Casares-López, M.; Salas, C. Driver distraction by smartphone use (WhatsApp) in different age groups. Accid. Anal. Prev. 2018, 117, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Parnell, K.J.; Stanton, N.A.; Plant, K.L. Creating the environment for driver distraction: A thematic framework of sociotechnical factors. Appl. Ergon. 2018, 68, 213–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, L.; Li, Z.R.; Chen, Z.; Bill, M.A.; Noyce, D.A. Understanding driver distractions in fatal crashes: An exploratory empirical analysis. J. Saf. Res. 2019, 69, 23–31. [Google Scholar] [CrossRef]
- Flannagan, C.; Bärgman, J.; Bálint, A. Replacement of distractions with other distractions: A propensity-based approach to estimating realistic crash odds ratios for driver engagement in secondary tasks. Transp. Res. Part F Traffic Psychol. Behav. 2019, 63, 186–192. [Google Scholar] [CrossRef]
- Xing, Y.; Lv, C.; Wang, H.; Cao, D.; Velenis, E.; Wang, F.Y. Driver activity recognition for intelligent vehicles: A deep learning approach. IEEE Trans. Veh. Technol. 2019, 68, 5379–5390. [Google Scholar] [CrossRef] [Green Version]
- Knapik, M.; Cyganek, B. Driver’s fatigue recognition based on yawn detection in thermal images. Neurocomputing 2019, 338, 274–292. [Google Scholar] [CrossRef]
- Choi, M.; Koo, G.; Seo, M.; Kim, S.W. Wearable device-based system to monitor a driver’s stress, fatigue, and drowsiness. IEEE Trans. Instrum. Meas. 2017, 67, 634–645. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Balasubramanian, V. Viability of Cardiac Parameters Measured Unobtrusively Using Capacitive Coupled Electrocardiography (cECG) to Estimate Driver Performance. IEEE Sens. J. 2019, 19, 4321–4330. [Google Scholar] [CrossRef]
- Lv, S.; Lu, Y.; Dong, M.; Wang, X.; Dou, Y.; Zhuang, W. Qualitative action recognition by wireless radio signals in human–machine systems. IEEE Trans. Hum. Mach. Syst. 2017, 47, 789–800. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Al-qaness, M.; Zhang, Y.; Zhao, B.; Luan, X. A robust and device-free system for the recognition and classification of elderly activities. Sensors 2016, 16, 2043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lien, J.; Gillian, N.; Karagozler, M.E.; Amihood, P.; Schwesig, C.; Olson, E.; Raja, H.; Poupyrev, I. Soli: Ubiquitous gesture sensing with millimeter wave radar. ACM Trans. Graphics (TOG) 2016, 35, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Wang, Z.; Zheng, K.; Wang, X.; Wang, J. WiDrive: Adaptive WiFi-Based Recognition of Driver Activity for Real-Time and Safe Takeover. In Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, USA, 7–10 July 2019; pp. 901–911. [Google Scholar]
- Liu, M.; Zhang, L.; Yang, P.; Lu, L.; Gong, L. Wi-Run: Device-free step estimation system with commodity Wi-Fi. J. Network Comput. Appl. 2019, 143, 77–88. [Google Scholar] [CrossRef]
- Wang, W.; Liu, A.X.; Shahzad, M.; Ling, K.; Lu, S. Device-free human activity recognition using commercial WiFi devices. IEEE J. Sel. Areas Commun. 2017, 35, 1118–1131. [Google Scholar] [CrossRef]
- Dong, Z.; Li, F.; Ying, J.; Pahlavan, K. Indoor Motion Detection Using Wi-Fi Channel State Information in Flat Floor Environments Versus in Staircase Environments. Sensors 2018, 18, 2177. [Google Scholar] [CrossRef] [Green Version]
- Lv, J.; Man, D.; Yang, W.; Gong, L.; Du, X.; Yu, M. Robust Device-Free Intrusion Detection Using Physical Layer Information of WiFi Signals. Appl. Sci. 2019, 9, 175. [Google Scholar] [CrossRef] [Green Version]
- Abdelnasser, H.; Harras, K.A.; Youssef, M. A ubiquitous WiFi-based fine-grained gesture recognition system. IEEE Trans. Mob. Comput. 2018, 18, 2474–2487. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, J.; Yang, X.; Zhou, M. WiCatch: A Wi-Fi based hand gesture recognition system. IEEE Access 2018, 6, 16911–16923. [Google Scholar] [CrossRef]
- Al-qaness, M.; Li, F. WiGeR: WiFi-based gesture recognition system. ISPRS Int. J. Geo Inf. 2016, 5, 92. [Google Scholar] [CrossRef] [Green Version]
- Tan, B.; Chen, Q.; Chetty, K.; Woodbridge, K.; Li, W.; Piechocki, R. Exploiting WiFi channel state information for residential healthcare informatics. IEEE Commun. Mag. 2018, 56, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Jia, W.; Peng, H.; Ruan, N.; Tang, Z.; Zhao, W. WiFind: Driver fatigue detection with fine-grained Wi-Fi signal features. IEEE Trans. Big Data 2018. [Google Scholar] [CrossRef]
- Duan, S.; Yu, T.; He, J. Widriver: Driver activity recognition system based on wifi csi. Int. J. Wireless Inf. Netw. 2018, 25, 146–156. [Google Scholar] [CrossRef]
- Arshad, S.; Feng, C.; Elujide, I.; Zhou, S.; Liu, Y. SafeDrive-Fi: A multimodal and device free dangerous driving recognition system using WiFi. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar]
- Akhtar, Z.U.A.; Wang, H. WiFi-Based Gesture Recognition for Vehicular Infotainment System-An Integrated Approach. Appl. Sci. 2019, 9, 5268. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Shin, K.G.; Yousefi, H.; He, S. Wireless CSI-based head tracking in the driver seat. In Proceedings of the 14th International Conference on emerging Networking EXperiments and Technologies, Heraklion, Greece, 4–7 December 2018; pp. 112–125. [Google Scholar]
- Gao, Q.; Wang, J.; Ma, X.; Feng, X.; Wang, H. CSI-based device-free wireless localization and activity recognition using radio image features. IEEE Trans. Veh. Technol. 2017, 66, 10346–10356. [Google Scholar] [CrossRef]
- Chang, J.Y.; Lee, K.Y.; Lin, K.C.J.; Hsu, W. WiFi action recognition via vision-based methods. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 2782–2786. [Google Scholar]
- Chang, J.Y.; Lee, K.Y.; Wei, Y.L.; Lin, K.C.J.; Hsu, W. Location-independent wifi action recognition via vision-based methods. In Proceedings of the 24th ACM International Conference on Multimedia; ACM: New York, NY, USA, 2016; pp. 162–166. [Google Scholar]
- Chang, J.Y.; Lee, K.Y.; Wei, Y.L.; Lin, K.C.J.; Hsu, W. We Can “See” You via Wi-Fi-WiFi Action Recognition via Vision-based Methods. arXiv 2016, arXiv:1608.05461. [Google Scholar]
- Inthiyaz, S.; Madhav, B.; Kishore, P. Flower image segmentation with PCA fused colored covariance and gabor texture features based level sets. Ain Shams Eng. J. 2018, 9, 3277–3291. [Google Scholar] [CrossRef]
- Li, L.; Ge, H.; Tong, Y.; Zhang, Y. Face recognition using gabor-based feature extraction and feature space transformation fusion method for single image per person problem. Neural Process. Lett. 2018, 47, 1197–1217. [Google Scholar] [CrossRef]
- Gao, M.; Chen, H.; Zheng, S.; Fang, B. Feature fusion and non-negative matrix factorization based active contours for texture segmentation. Signal Process. 2019, 159, 104–118. [Google Scholar] [CrossRef]
- Alaei, F.; Alaei, A.; Pal, U.; Blumenstein, M. A comparative study of different texture features for document image retrieval. Expert Syst. Appl. 2019, 121, 97–114. [Google Scholar] [CrossRef]
- Samiee, K.; Kiranyaz, S.; Gabbouj, M.; Saramäki, T. Long-term epileptic EEG classification via 2D mapping and textural features. Expert Syst. Appl. 2015, 42, 7175–7185. [Google Scholar] [CrossRef]
- Qiu, W.; Tang, Q.; Liu, J.; Teng, Z.; Yao, W. Power Quality Disturbances Recognition Using Modified S Transform and Parallel Stack Sparse Auto-encoder. Electr. Power Syst. Res. 2019, 174, 105876. [Google Scholar] [CrossRef]
- Yan, S.; Yan, X. Design teacher and supervised dual stacked auto-encoders for quality-relevant fault detection in industrial process. Appl. Soft Comput. 2019, 81, 105526. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, C.; Liu, Z.; Qiu, Z.; He, Y. Cost-sensitive stacked sparse auto-encoder models to detect striped stem borer infestation on rice based on hyperspectral imaging. Knowl. Based Syst. 2019, 168, 49–58. [Google Scholar] [CrossRef]
- Xiao, Y.; Wu, J.; Lin, Z.; Zhao, X. A semi-supervised deep learning method based on stacked sparse auto-encoder for cancer prediction using RNA-seq data. Comput. Methods Programs Biomed. 2018, 166, 99–105. [Google Scholar] [CrossRef]
- Halperin, D.; Hu, W.; Sheth, A.; Wetherall, D. Tool release: Gathering 802.11 n traces with channel state information. ACM SIGCOMM Comput. Commun. Rev. 2011, 41, 53. [Google Scholar] [CrossRef]
- Wang, T.; Yang, D.; Zhang, S.; Wu, Y.; Xu, S. Wi-Alarm: Low-Cost Passive Intrusion Detection Using WiFi. Sensors 2019, 19, 2335. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wu, K.; Ni, L.M. Wifall: Device-free fall detection by wireless networks. IEEE Trans. Mob. Comput. 2016, 16, 581–594. [Google Scholar] [CrossRef]
- Wang, W.; Liu, A.X.; Shahzad, M.; Ling, K.; Lu, S. Understanding and modeling of wifi signal based human activity recognition. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, Paris, France, 7–11 September 2015; pp. 65–76. [Google Scholar]
- Al-qaness, M.A. Device-free human micro-activity recognition method using WiFi signals. Geo-spatial Inf. Sci. 2019, 22, 128–137. [Google Scholar] [CrossRef]
- Ding, E.; Li, X.; Zhao, T.; Zhang, L.; Hu, Y. A Robust Passive Intrusion Detection System with Commodity WiFi Devices. J. Sensors 2018, 2018, 8243905. [Google Scholar] [CrossRef]
- Xiao, J.; Zhou, Z.; Yi, Y.; Ni, L.M. A survey on wireless indoor localization from the device perspective. ACM Comput. Surv. (CSUR) 2016, 49, 25. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, Q.; Ma, X.; Wang, J.; Yang, T.; Wang, H. DeFi: Robust training-free device-free wireless localization with WiFi. IEEE Trans. Veh. Technol. 2018, 67, 8822–8831. [Google Scholar] [CrossRef]
- Adib, F.; Katabi, D. See through walls with WiFi! In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM; Association for Computing Machinery: New York, NY, USA, 2013; pp. 75–86. [Google Scholar]
- Wu, X.; Chu, Z.; Yang, P.; Xiang, C.; Zheng, X.; Huang, W. TW-See: Human activity recognition through the wall with commodity Wi-Fi devices. IEEE Trans. Veh. Technol. 2018, 68, 306–319. [Google Scholar] [CrossRef]
- Wang, J.; Tong, J.; Gao, Q.; Wu, Z.; Bi, S.; Wang, H. Device-Free Vehicle Speed Estimation With WiFi. IEEE Trans. Veh. Technol. 2018, 67, 8205–8214. [Google Scholar] [CrossRef]
- Li, H.; Yang, W.; Xu, Y.; Wang, J.; Huang, L. WiCare: A Synthesized Healthcare Service System Based on WiFi Signals. In International Conference on Service-Oriented Computing; Springer: Berlin/Heidelberg, Germany, 2016; pp. 557–565. [Google Scholar]
- Sen, S.; Radunovic, B.; Choudhury, R.R.; Minka, T. You are facing the Mona Lisa: Spot localization using PHY layer information. In Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, Ambleside, UK, 25–29 June 2012; pp. 183–196. [Google Scholar]
- Nakano, M.; Takahashi, A.; Takahashi, S. Generalized exponential moving average (EMA) model with particle filtering and anomaly detection. Expert Syst. Appl. 2017, 73, 187–200. [Google Scholar] [CrossRef]
- Wang, C.; Xiao, Z.; Wang, B.; Wu, J. Identification of Autism Based on SVM-RFE and Stacked Sparse Auto-Encoder. IEEE Access 2019, 7, 118030–118036. [Google Scholar] [CrossRef]
- Yu, Y.; Li, J.; Guan, H.; Wang, C.; Wen, C. Bag of contextual-visual words for road scene object detection from mobile laser scanning data. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3391–3406. [Google Scholar] [CrossRef]
- Salzberg, S.L. C4. 5: Programs for machine learning by j. ross quinlan. morgan kaufmann publishers, inc., 1993. Mach. Learn. 1994, 16, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.T.; Dillon, D.; Hsu, H.C.; Huang, S.; Barrick, E.; Liu, Y.H. Depression detection using relative EEG power induced by emotionally positive images and a conformal kernel support vector machine. Appl. Sci. 2018, 8, 1244. [Google Scholar] [CrossRef]
- Sigg, S.; Scholz, M.; Shi, S.; Ji, Y.; Beigl, M. RF-sensing of activities from non-cooperative subjects in device-free recognition systems using ambient and local signals. IEEE Trans. Mob. Comput. 2013, 13, 907–920. [Google Scholar] [CrossRef]
- Di Domenico, S.; De Sanctis, M.; Cianca, E.; Giuliano, F.; Bianchi, G. Exploring training options for RF sensing using CSI. IEEE Commun. Mag. 2018, 56, 116–123. [Google Scholar] [CrossRef]
Driver State | Activity Type | Activity Label | Activity Performed |
---|---|---|---|
Attentive | Driving maneuvers | TR | Turning Right |
TL | Turning Left | ||
DS | Driving Straight | ||
SC | Steering Corrections | ||
Primary tasks | GR | Operating Gear Stick | |
MR | Mirrors Checking | ||
Inattentive | Distraction | ET | Eating |
TP | Talking with Passenger | ||
MT | Talking or Listening on Mobile Phone | ||
MD | Dialing a Mobile Phone | ||
IS | Operating Infotainment System | ||
Fatigue | RY | Repeated Yawning | |
HI | Head Itching | ||
FS | Face Scratching | ||
HN | Head Nodding |
Experiment | Average Rate (%) | |||||
---|---|---|---|---|---|---|
Precision | Recall | -Score | ||||
Min. | Max. | Min. | Max. | Min. | Max. | |
Scenario-I | 86 | 92 | 82 | 93 | 83 | 91 |
Scenario-II | 89 | 97 | 89 | 96 | 89 | 95 |
Experiment | Average Recognition Accuracy (%) | ||
---|---|---|---|
G-S | C-S | GC-S | |
Scenario-I | 83.5 | 84.9 | 88.7 |
Scenario-II | 85.8 | 86.3 | 93.1 |
Experiment | Average Recognition Accuracy (%) | |||
---|---|---|---|---|
SVM | KNN | DT | S-SAE | |
Scenario-I | 85.2 | 86.1 | 85.7 | 88.7 |
Scenario-II | 89.7 | 87.3 | 87.9 | 93.1 |
Parts | CSI Pre-Processing | Activity Profile Extraction | Feature Extraction | Classification | Total |
---|---|---|---|---|---|
Time (ms) | 12.5 | 25.1 | 18.2 | 21.3 | 77.1 |
Experiment | Features Type | Time Domain | Frequency Domain | GC-S | |||
---|---|---|---|---|---|---|---|
Mean | Variance | Peak-to-Peak | Entropy | Enery | |||
Scenario-I | Accuracy (%) | 80.3 | 79.1 | 76.2 | 79.5 | 77.4 | 88.7 |
Scenario-II | Accuracy (%) | 87.5 | 80.6 | 78.4 | 87.1 | 86.3 | 93.1 |
Experiment | Average Recognition Accuracy (%) | ||
---|---|---|---|
L-1 | L-2 | L | |
Scenario-I | 88.2 | 86.5 | 88.7 |
Scenario-II | 90.8 | 89.6 | 93.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhtar, Z.U.A.; Wang, H. WiFi-Based Driver’s Activity Monitoring with Efficient Computation of Radio-Image Features. Sensors 2020, 20, 1381. https://doi.org/10.3390/s20051381
Akhtar ZUA, Wang H. WiFi-Based Driver’s Activity Monitoring with Efficient Computation of Radio-Image Features. Sensors. 2020; 20(5):1381. https://doi.org/10.3390/s20051381
Chicago/Turabian StyleAkhtar, Zain Ul Abiden, and Hongyu Wang. 2020. "WiFi-Based Driver’s Activity Monitoring with Efficient Computation of Radio-Image Features" Sensors 20, no. 5: 1381. https://doi.org/10.3390/s20051381
APA StyleAkhtar, Z. U. A., & Wang, H. (2020). WiFi-Based Driver’s Activity Monitoring with Efficient Computation of Radio-Image Features. Sensors, 20(5), 1381. https://doi.org/10.3390/s20051381