A Unique Time-Reversal Algorithm-Enabled Flexible Ultrasound Transducer with a Controllable Acoustic Field
<p>Steady-state emission acoustic field of the flexible transducer under different conditions. (<b>a</b>) A single-pixel transducer. The pixel possesses a square geometry with a side length of 2 mm. (<b>b</b>–<b>e</b>) The emission acoustic field of a single-pixel transducer at the frequencies of 1 MHz, 2 MHz, 4 MHz, and 6 MHz, respectively. (<b>f</b>) A dual-pixel transducer w/o bending. The distance between neighboring pixels is 0.5 mm. (<b>g</b>–<b>j</b>) The emission acoustic field of a dual-pixel transducer at the frequencies of 1 MHz, 2 MHz, 4 MHz, and 6 MHz, respectively. (<b>k</b>) A flexed dual-pixel transducer with the bending radius of 30 mm. (<b>i</b>–<b>o</b>) The emission acoustic field of a flexed dual-pixel transducer with the bending radius of 30 mm at the frequencies of 1 MHz, 2 MHz, 4 MHz, and 6 MHz, respectively.</p> "> Figure 2
<p>Different arrangement of 25 pixels in the phased-array transducers and their corresponding echo imaging. (<b>a</b>) A linear array. (<b>b</b>) A square array. Each pixel in the square array can work individually. (<b>c</b>) A multirow array. It consists of five individual lines and each line is made of five close-connected pixels. (<b>d</b>–<b>g</b>) Echo imaging is generated by a linear array, a square array, and a multirow array at three observed points.</p> "> Figure 3
<p>The evolution of acoustic field when the phased-array transducer is bent under different bending conditions. (<b>a</b>) Flat condition w/o bending. (<b>b</b>) Bending at a curvature of 16.7 mm<sup>−1</sup>. (<b>c</b>) Bending at a curvature of 20 mm<sup>−1</sup>. (<b>d</b>) Bending at a curvature of 25 mm<sup>−1</sup>.</p> "> Figure 4
<p>Schematic image of the designed flexible phased-array transducer. (<b>a</b>) Top electrodes. (<b>b</b>) Bottom electrodes.</p> "> Figure 5
<p>Fabrication of a phased-array transducer. (<b>a</b>) Deposition of polymethyl methacrylate (PMMA) and polyimide (PI) onto silicon substrates via spin coating. (<b>b</b>) Deposition of copper (Cu) thin films onto PI via evaporation. (<b>c</b>,<b>d</b>) Fabrication of patterned Cu electrodes via reactive ion etching (RIE) and the removal of excess PI. (<b>e</b>,<b>f</b>) Connection of each piezoelectric composite pixel to the bottom and top Cu electrode with silver paste. (<b>g</b>) Encapsulation of transducer with polydimethylsiloxane (PDMS).</p> "> Figure 6
<p>Image of the phased-array transducer.</p> "> Figure 7
<p>Setup used for testing the acoustic performance of phased-array transducer. (<b>a</b>) Image of the whole testing setup. (<b>b</b>) Zoomed-in image of phased-array transducer under test.</p> "> Figure 8
<p>Test of resonant frequency of each channel. (<b>a</b>) Channel 1. (<b>b</b>) Channel 2. (<b>c</b>) Channel 3. (<b>d</b>) Channel 4. (<b>e</b>) Channel 5.</p> "> Figure 9
<p>Simulation study for the acoustic field at the interface between the skull and the phased-array transducer in single and two virtual points. (<b>a</b>,<b>b</b>) Geometric model and snapshots of the acoustic field at different times in a single virtual point. (<b>c</b>,<b>d</b>) Geometric model and snapshots of the acoustic field at different times in two virtual points.</p> ">
Abstract
:1. Introduction
2. Design and Simulation
3. Fabrication Process and Performance Testing
4. Transcranial Focused Ultrasound Simulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Wang, C.; Zheng, T.; Wu, H.; Wu, Q.; Wang, Y. Wearable Optical Fiber Sensors in Medical Monitoring Applications: A Review. Sensors 2023, 23, 6671. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Wan, C.; Wang, T.; Li, Q.; Chen, G.; Wang, J.; Liu, Z.; Yang, H.; Liu, X.; Chen, X. Water-Resistant Conformal Hybrid Electrodes for Aquatic Endurable Electrocardiographic Monitoring. Adv. Mater. 2020, 32, e2001496. [Google Scholar] [CrossRef]
- Javaid, A.; Zulfiqar, M.H.; Saleem, M.S.; Khan, M.A.; Zubair, M.; Massoud, Y.; Mehmood, M.Q. Skin-Mount Textile-Based Flexible Strain Sensors for Physiotherapy. Adv. Eng. Mater. 2024, 2301138, 2301138. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, H.; Chang, J.; Huang, Q.; Zhuang, Q.; Li, P.; Zheng, Z. Realizing High-Energy and Stable Wire-Type Batteries with Flexible Lithium—Metal Composite Yarns. Adv. Energy Mater. 2021, 11, 2101809. [Google Scholar] [CrossRef]
- Wang, S.; Gao, Y.; Huang, Q.; Guo, X.; Yang, A.; Zhang, Y.; Zhuang, Q.; Chen, D.; Chen, L.; Ju, X.; et al. Inkjet-Printed Xerogel Scaffolds Enabled Room-Temperature Fabrication of High-Quality Metal Electrodes for Flexible Electronics. Adv. Funct. Mater. 2022, 32, 2203730. [Google Scholar] [CrossRef]
- Zhao, Y.; Jin, K.Q.; Li, J.D.; Sheng, K.K.; Huang, W.H.; Liu, Y.L. Flexible and Stretchable Electrochemical Sensors for Biological Monitoring. Adv. Mater. 2023, 2305917, 2305917. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Guo, Q.; Zhang, Q.; Cui, Y.; Zheng, Z. Fibrous Materials for Flexible Li—S Battery. Adv. Energy Mater. 2020, 11, 2002580. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, C.; Sun, J.; Peng, X.; Tian, H.; Li, X.; Chen, X.; Chen, X.; Shao, J. Electric-Driven Flexible-Roller Nanoimprint Lithography on the Stress-Sensitive Warped Wafer. Int. J. Extrem. Manuf. 2023, 5, 035101. [Google Scholar] [CrossRef]
- Gao, Y.; Xie, C.; Zheng, Z. Textile Composite Electrodes for Flexible Batteries and Supercapacitors: Opportunities and Challenges. Adv. Energy Mater. 2021, 11, 2002838. [Google Scholar] [CrossRef]
- Carpentier, A.; Canney, M.; Vignot, A.; Reina, V.; Beccaria, K.; Horodyckid, C.; Karachi, C.; Leclercq, D.; Lafon, C.; Chapelon, J.Y.; et al. Clinical Trial of Blood-Brain Barrier Disruption by Pulsed Ultrasound. Sci. Transl. Med. 2016, 8, 343re2. [Google Scholar] [CrossRef]
- Blesa, J.; Pineda-Pardo, J.A.; Inoue, K.I.; Gasca-Salas, C.; Balzano, T.; López-González Del Rey, N.; Reinares-Sebastián, A.; Esteban-García, N.; Rodríguez-Rojas, R.; Márquez, R.; et al. BBB Opening with Focused Ultrasound in Nonhuman Primates and Parkinson’s Disease Patients: Targeted AAV Vector Delivery and PET Imaging. Sci. Adv. 2023, 9, eadf4888. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Hu, H.; Zhou, S.; Xu, S. Soft Wearable Devices for Deep-Tissue Sensing. Nat. Rev. Mater. 2022, 7, 850–869. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.; Hu, H.; Zhang, L.; Huang, Z.; Lin, M.; Zhang, Z.; Yin, Z.; Huang, B.; Gong, H.; et al. Monitoring of the Central Blood Pressure Waveform via a Conformal Ultrasonic Device. Nat. Biomed. Eng. 2018, 2, 687–695. [Google Scholar] [CrossRef]
- Wang, C.; Chen, X.; Wang, L.; Makihata, M.; Liu, H.; Zhou, T.; Zhao, X. Imaging of Diverse Organs. Science 2022, 377, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Qi, B.; Lin, M.; Zhang, Z.; Makihata, M.; Liu, B.; Zhou, S.; Huang, Y.H.; Hu, H.; Gu, Y.; et al. Continuous Monitoring of Deep-Tissue Haemodynamics with Stretchable Ultrasonic Phased Arrays. Nat. Biomed. Eng. 2021, 5, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Cho, I.J.; Ko, K.; Yoon, E.S.; Park, H.H.; Kim, T.S. Flexible Piezoelectric Micromachined Ultrasonic Transducer (PMUT) for Application in Brain Stimulation. Microsyst. Technol. 2017, 23, 2321–2328. [Google Scholar] [CrossRef]
- Liu, W.; Chen, W.; Zhu, C.; Wu, D. Design and Micromachining of a Stretchable Two-Dimensional Ultrasonic Array. Micro Nano Eng. 2021, 13, 100096. [Google Scholar] [CrossRef]
- Zhou, H.; Niu, L.; Xia, X.; Lin, Z.; Liu, X.; Su, M.; Guo, R.; Meng, L.; Zheng, H. Wearable Ultrasound Improves Motor Function in an MPTP Mouse Model of Parkinson’s Disease. IEEE Trans. Biomed. Eng. 2019, 66, 3006–3013. [Google Scholar] [CrossRef]
- Zhou, H.; Meng, L.; Xia, X.; Lin, Z.; Zhou, W.; Pang, N.; Bian, T.; Yuan, T.; Niu, L.; Zheng, H. Transcranial Ultrasound Stimulation Suppresses Neuroinflammation in a Chronic Mouse Model of Parkinson’s Disease. IEEE Trans. Biomed. Eng. 2021, 68, 3375–3387. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Gao, X.; Park, G.; Yang, X.; Qi, B.; Lin, M.; Huang, H.; Bian, Y.; Hu, H.; Chen, X.; et al. Transcranial Volumetric Imaging Using a Conformal Ultrasound Patch. Nature 2024, 629, 810–818. [Google Scholar] [CrossRef]
- Liu, W.; Wu, D. Low Temperature Adhesive Bonding-Based Fabrication of an Air-Borne Flexible Piezoelectric Micromachined Ultrasonic Transducer. Sensors 2020, 20, 3333. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhu, C.; Wu, D. Flexible Piezoelectric Micro Ultrasonic Transducer Array Integrated on Various Flexible Substrates. Sens. Actuators A Phys. 2021, 317, 112476. [Google Scholar] [CrossRef]
- Yang, Y.; Tian, H.; Yan, B.; Sun, H.; Wu, C.; Shu, Y.; Wang, L.G.; Ren, T.L. A Flexible Piezoelectric Micromachined Ultrasound Transducer. RSC Adv. 2013, 3, 24900–24905. [Google Scholar] [CrossRef]
- Lyu, W.; Ma, Y.; Chen, S.; Li, H.; Wang, P.; Chen, Y.; Feng, X. Flexible Ultrasonic Patch for Accelerating Chronic Wound Healing. Adv. Healthc. Mater. 2021, 10, 2100785. [Google Scholar] [CrossRef]
- Powell, D.J.; Ward, G.H. A Performance Appraisal of Flexible Array Structures Using a Facet Ensemble Scattering Technique. Proc. IEEE Ultrason. Symp. 1991, 753–756. [Google Scholar] [CrossRef]
- Wang, Y.F.; Ren, T.L.; Yang, Y.; Chen, H.; Zhou, C.J.; Wang, L.G.; Liu, L.T. High-Density PMUT Array for 3-D Ultrasonic Imaging Based on Reverse-Bonding Structure. In Proceedings of the 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, Cancun, Mexico, 23–27 January 2011; pp. 1035–1038. [Google Scholar] [CrossRef]
- Wang, F.; Jin, P.; Feng, Y.; Fu, J.; Wang, P.; Liu, X.; Zhang, Y.; Ma, Y.; Yang, Y.; Yang, A.; et al. Flexible Doppler Ultrasound Device for the Monitoring of Blood Flow Velocity. Sci. Adv. 2021, 7, eabi9283. [Google Scholar] [CrossRef]
- Jin, P.; Fu, J.; Wang, F.; Zhang, Y.; Wang, P.; Liu, X.; Jiao, Y.; Li, H.; Chen, Y.; Ma, Y.; et al. A Flexible, Stretchable System for Simultaneous Acoustic Energy Transfer and Communication. Sci. Adv. 2021, 7, eabg2507. [Google Scholar] [CrossRef]
- Arif, W.M.; Elsinga, P.H.; Gasca-Salas, C.; Versluis, M.; Martínez-Fernández, R.; Dierckx, R.A.J.O.; Borra, R.J.H.; Luurtsema, G. Focused Ultrasound for Opening Blood-Brain Barrier and Drug Delivery Monitored with Positron Emission Tomography. J. Control. Release 2020, 324, 303–316. [Google Scholar] [CrossRef]
- Pinton, G.; Aubry, J.F.; Fink, M.; Tanter, M. Effects of Nonlinear Ultrasound Propagation on High Intensity Brain Therapy. Med. Phys. 2011, 38, 1207–1216. [Google Scholar] [CrossRef]
- Leduc, N.; Okita, K.; Sugiyama, K.; Takagi, S.; Matsumoto, Y. Focus Control in HIFU Therapy Assisted by Time-Reversal Simulation with an Iterative Procedure for Hot Spot Elimination. J. Biomech. Sci. Eng. 2012, 7, 43–56. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, Y.; Zhang, Q.; Jiang, D.; Tu, J.; Zhang, D.; Duan, H. Ultrasonic Methods for Brain Imaging: Techniques and Implications. IEEE Trans. Biomed. Eng. 2022, 69, 3526–3537. [Google Scholar] [CrossRef] [PubMed]
Channel | 1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|---|
Excitation Voltage | ||||||
10 V | 35.46 kPa | 36.76 kPa | 35.86 kPa | 37.23 kPa | 36.79 kPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, L.; Yan, Y.; Xu, J.; Gao, Y. A Unique Time-Reversal Algorithm-Enabled Flexible Ultrasound Transducer with a Controllable Acoustic Field. Sensors 2024, 24, 5635. https://doi.org/10.3390/s24175635
Jia L, Yan Y, Xu J, Gao Y. A Unique Time-Reversal Algorithm-Enabled Flexible Ultrasound Transducer with a Controllable Acoustic Field. Sensors. 2024; 24(17):5635. https://doi.org/10.3390/s24175635
Chicago/Turabian StyleJia, Lu, Yingzhan Yan, Jing Xu, and Yuan Gao. 2024. "A Unique Time-Reversal Algorithm-Enabled Flexible Ultrasound Transducer with a Controllable Acoustic Field" Sensors 24, no. 17: 5635. https://doi.org/10.3390/s24175635
APA StyleJia, L., Yan, Y., Xu, J., & Gao, Y. (2024). A Unique Time-Reversal Algorithm-Enabled Flexible Ultrasound Transducer with a Controllable Acoustic Field. Sensors, 24(17), 5635. https://doi.org/10.3390/s24175635