Low Temperature Adhesive Bonding-Based Fabrication of an Air-Borne Flexible Piezoelectric Micromachined Ultrasonic Transducer
"> Figure 1
<p>The schematic cross-section of the PMUT.</p> "> Figure 2
<p>The images of square PVDF films (<b>a</b>), and the thickness measurements of uncoated PVDF film (<b>b</b>), and one-side Ag coated PVDF film (<b>c</b>).</p> "> Figure 3
<p>The FEA of the PMUT using COMSOL Multiphysics 5.3. (<b>a</b>) Simulation model; (<b>b</b>) vibration mode shape at the resonant frequency of 202.58 kHz; (<b>c</b>) the chart of the admittance.</p> "> Figure 4
<p>The simulation results of PVDF based monolayer structure. (<b>a</b>) Simulation model built in COMSOL Multiphysics 5.3; (<b>b</b>) vibration mode shape at the resonant frequency of 126.16 kHz.</p> "> Figure 5
<p>The optical image of commercial Kapton handled by laser precision machining system. (<b>a</b>) A 10 μm thick Kapton tape used for printing mask; (<b>b</b>) a 100 μm thick Kapton sheet served as a flexible substrate with a through-hole; (<b>c</b>) a flexible Kapton substrate.</p> "> Figure 6
<p>The schematic diagram (<b>a</b>) and the optical image (<b>b</b>) of the temporary carrier.</p> "> Figure 7
<p>The schematic illustration of the low temperature adhesive bonding fabrication process. (<b>a</b>) Pattern top Ag electrode, (<b>b</b>) Ag coated PVDF film, (<b>c</b>) Ag coated PVDF film pasted on the temporary carrier upside down, (<b>d</b>) spin coating a 4 μm thick PI, (<b>e</b>) device assembly, (<b>f</b>) solidify the PI and deactivate the TRT, (<b>g</b>) the final device.</p> "> Figure 8
<p>The additional images of some steps in fabrication process. (<b>a</b>) The printing mask pasted on one-side Ag coated PVDF film. (<b>b</b>) Transferring top electrode pattern from the printing mask to PVDF film. (<b>c</b>) Ag patterned PVDF film after peeling off the printing mask. (<b>d</b>) The PVDF film and the substrate prepared for adhesive bonding process. (<b>e</b>) The final PMUT through the low temperature adhesive bonding fabrication process. (<b>f</b>) A simple capacitance testing for fabricated device.</p> "> Figure 9
<p>The FEA simulation results of parametric sweeping. (<b>a</b>) Deflection displacement under conditions of various radii, (<b>b</b>) the absolute value of admittance.</p> "> Figure 10
<p>(<b>a</b>) Deflection displacement of the measuring point. (<b>b</b>) The chart of the admittance.</p> "> Figure 11
<p>(<b>a</b>) The sound pressure level (SPL) in air domain. (<b>b</b>) The frequency response curve. (<b>c</b>) Simulation of the sound pressure field.</p> "> Figure 12
<p>The optical image of PMUT mounted on a glass sheet.</p> "> Figure 13
<p>The frequency response analysis of proposed PMUT. (<b>a</b>) The flexural vibration mode shape; (<b>b</b>) the frequency response curve.</p> "> Figure 14
<p>(<b>a</b>) The chart of maximum strain solved by FEA. (<b>b</b>) Correlation of the bending radius versus maximum strain in a device membrane.</p> "> Figure 15
<p>The optical images of PMUT (<b>a</b>) bonded on flat (left), concave (middle), and convex (right) surfaces, (<b>b</b>) clamped on a custom-designed linear mobile platform in up-bending (left), flat (middle) and down-bending (right) configurations, and (<b>c</b>) contacted to the skins.</p> "> Figure 16
<p>Acoustic transmit-receive system.</p> "> Figure 17
<p>The PMUT served as a transmitter in flat state (<b>a</b>), up bending state (<b>b</b>), and down bending state (<b>c</b>). (<b>d</b>) The receiving signals and the FFT spectrum.</p> "> Figure 18
<p>(<b>a</b>) PMUT mounted on a cylinder with 30 mm curvature radius. (<b>b</b>) Time of flight (TOF) measurement using PMUT on curved surface.</p> ">
Abstract
:1. Introduction
2. Design and Modeling
3. Fabrication Process
4. Results and Discussion
4.1. Optimization of the PMUT
4.2. Simulation of the Sound Field
4.3. Frequency Response Analysis
4.4. Mechanical Characterizations
4.5. Acoustic Characterizations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Drinkwater, B.W.; Wilcox, P.D. Ultrasonic arrays for non-destructive evaluation: A review. NDT E Int. 2006, 39, 525–541. [Google Scholar] [CrossRef]
- Jiang, X.; Kim, K.; Zhang, S.; Johnson, J.; Salazar, G. High-temperature piezoelectric sensing. Sensors 2014, 14, 144–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donald, I.; Macvicar, J.; Brown, T.G. Investigation of abdominal masses by pulsed ultrasound. Lancet 1958, 271, 1188–1195. [Google Scholar] [CrossRef]
- Fenster, A.; Downey, D.B. 3-D ultrasound imaging: A review. IEEE Eng. Med. Biol. Mag. 1996, 15, 41–51. [Google Scholar] [CrossRef]
- Ter Haar, G.R. High intensity focused ultrasound for the treatment of tumors. Echocardiography 2001, 18, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Przybyla, R.J.; Shelton, S.E.; Guedes, A.; Izyumin, I.I.; Kline, M.H.; Horsley, D.A.; Boser, B.E. In-air rangefinding with an AlN piezoelectric micromachined ultrasound transducer. IEEE Sens. J. 2011, 11, 2690–2697. [Google Scholar] [CrossRef]
- Tang, H.Y.; Lu, Y.; Jiang, X.; Ng, E.J.; Tsai, J.M.; Horsley, D.A. 3-D ultrasonic fingerprint sensor-on-a-chip. IEEE J. Solid State Circuits 2016, 51, 2522–2533. [Google Scholar] [CrossRef]
- Jiang, X.; Tang, H.Y.; Lu, Y.; Ng, E.J.; Tsai, J.M.; Boser, B.E.; Horsley, D.A. Ultrasonic fingerprint sensor with transmit beamforming based on a PMUT array bonded to CMOS circuitry. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2017, 64, 1401–1408. [Google Scholar] [CrossRef]
- Rogers, J.A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607. [Google Scholar] [CrossRef] [Green Version]
- Ramadan, K.S.; Sameoto, D.; Evoy, S. A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater. Struct. 2014, 23, 033001. [Google Scholar] [CrossRef]
- Xu, M.; Obodo, D.; Yadavalli, V.K. The design, fabrication, and applications of flexible biosensing devices. Biosens. Bioelectron. 2019, 124, 96–114. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Jen, C.K.; Levesque, D. Flexible ultrasonic transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2006, 53, 1478–1486. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Wu, K.T.; Song, L.; Jen, C.K.; Ad, N. Structural health monitoring of composites using integrated and flexible piezoelectric ultrasonic transducers. J. Intell. Mater. Syst. Struct. 2009, 20, 969–977. [Google Scholar] [CrossRef] [Green Version]
- Mastronardi, V.M.; Guido, F.; Amato, M.; De Vittorio, M.; Petroni, S. Piezoelectric ultrasonic transducer based on flexible AlN. Microelectron. Eng. 2014, 121, 59–63. [Google Scholar] [CrossRef]
- Bowen, C.R.; Bradley, L.R.; Almond, D.P.; Wilcox, P.D. Flexible piezoelectric transducer for ultrasonic inspection of non-planar components. Ultrasonics 2008, 48, 367–375. [Google Scholar] [CrossRef]
- Chen, X.; Chen, R.; Chen, Z.; Chen, J.; Shung, K.K.; Zhou, Q. Transparent lead lanthanum zirconate titanate (PLZT) ceramic fibers for high-frequency ultrasonic transducer applications. Ceram. Int. 2016, 42, 18554–18559. [Google Scholar] [CrossRef]
- Harvey, G.; Gachagan, A.; Mackersie, J.W.; Mccunnie, T.; Banks, R. Flexible ultrasonic transducers incorporating piezoelectric fibres. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2009, 56, 1999–2009. [Google Scholar] [CrossRef]
- Giorgio, I.; Della Corte, A.; Dell Isola, F.; Steigmann, D.J. Buckling modes in pantographic lattices. Comptes Rendus Mécanique 2016, 344, 487–501. [Google Scholar] [CrossRef]
- Eremeyev, V.A.; Ganghoffer, J.F.; Konopińska-Zmysłowska, V.; Uglov, N.S. Flexoelectricity and apparent piezoelectricity of a pantographic micro-bar. Int. J. Eng. Sci. 2020, 149, 103213. [Google Scholar] [CrossRef]
- Fuh, Y.K.; Lee, S.C.; Tsai, C.Y. Application of highly flexible self-powered sensors via sequentially deposited piezoelectric fibers on printed circuit board for wearable electronics devices. Sens. Actuators A Phys. 2017, 268, 148–154. [Google Scholar] [CrossRef]
- Fuh, Y.K.; Chen, S.; Jang, S.C. Direct-write, well-aligned chitosan-poly(ethylene oxide) nanofibers deposited via near-field electrospinning. J. Macromol. Sci. Part A 2012, 49, 845–850. [Google Scholar] [CrossRef]
- Fu, Y.; He, H.; Liu, Y.; Wang, Q.; Xing, L.; Xue, X. Self-powered, stretchable, fiber-based electronic-skin for actively detecting human motion and environmental atmosphere based on a triboelectrification/gas-sensing coupling effect. J. Mater. Chem. C 2017, 5, 1231–1239. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, Q.T.; Chen, Y.Q.; Shu, Y.; Tian, H.; Yang, Y.; Ren, T.L. A flexible ultrasound transducer array with micro-machined bulk PZT. Sensors 2015, 15, 2538–2547. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Tian, H.; Yan, B.; Sun, H.; Wu, C.; Shu, Y.; Ren, T.L. A flexible piezoelectric micromachined ultrasound transducer. Rsc Adv. 2013, 3, 24900–24905. [Google Scholar] [CrossRef]
- Liu, H.; Geng, J.; Zhu, Q.; Zhang, L.; Wang, F.; Chen, T.; Sun, L. Flexible Ultrasonic Transducer Array with Bulk PZT for Adjuvant Treatment of Bone Injury. Sensors 2020, 20, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, H.; Zhu, X.; Wang, C.; Zhang, L.; Li, X.; Lee, S.; Gu, Y. Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces. Sci. Adv. 2018, 4, 3979. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Li, X.; Hu, H.; Zhang, L.; Huang, Z.; Lin, M.; Bhaskaran, S. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2018, 2, 687. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, M.; Gao, C.; Liu, B.; Pang, W. Flexible Piezoelectric Micromachined Ultrasonic Transducers Towards New Applications. IEEE Int. Ultrason. Symp. (IUS) 2018. [Google Scholar] [CrossRef]
- Carlson, A.; Bowen, A.M.; Huang, Y.; Nuzzo, R.G.; Rogers, J.A. Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 2012, 24, 5284–5318. [Google Scholar] [CrossRef]
- Feng, X.; Meitl, M.A.; Bowen, A.M.; Huang, Y.; Nuzzo, R.G.; Rogers, J.A. Competing fracture in kinetically controlled transfer printing. Langmuir 2007, 23, 12555–12560. [Google Scholar] [CrossRef]
- Lee, J.H.; Cho, I.J.; Ko, K.; Yoon, E.S.; Park, H.H.; Kim, T.S. Flexible piezoelectric micromachined ultrasonic transducer (pMUT) for application in brain stimulation. Microsyst. Technol. 2017, 23, 2321–2328. [Google Scholar] [CrossRef]
- Sadeghpour, S.; Lips, B.; Kraft, M.; Puers, R. Flexible Soi-Based Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays. In Proceedings of the 20th International Conference on Solid-State Sensors, Actuators and Microsystems Eurosensors XXXIII (TRANSDUCERS EUROSENSORS XXXIII), Berlin, Germany, 23–27 June 2019; pp. 250–253. [Google Scholar]
- Liu, W.; Li, X.; Wu, D.; Yu, T. Design and Fabrication of Flexible and Transparent Piezoelectric Micromachined Ultrasonic Transducer Based on Mica Substrates. IEEE Int. Ultrason. Symp. (IUS) 2019. [Google Scholar] [CrossRef]
- Kang, G.D.; Cao, Y.M. Application and modification of poly (vinylidene fluoride)(PVDF) membranes—A review. J. Membr. Sci. 2014, 463, 145–165. [Google Scholar] [CrossRef]
- Chen, X.; Han, X.; Shen, Q.D. PVDF-based ferroelectric polymers in modern flexible electronics. Adv. Electron. Mater. 2017. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.B.; Su, J. Design, modeling, fabrication, and performances of bridge-type high-performance electroactive polymer micromachined actuators. J. Microelectromech. Syst. 2005, 14, 539–547. [Google Scholar]
- Qiu, Y.; Gigliotti, J.; Wallace, M.; Griggio, F.; Demore, C.; Cochran, S. Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging. Sensors 2015, 15, 8020–8041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muralt, P.; Ledermann, N.; Paborowski, J.; Barzegar, A.; Gentil, S.; Belgacem, B.; Setter, N. Piezoelectric micromachined ultrasonic transducers based on PZT thin films. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2005, 52, 2276–2288. [Google Scholar] [CrossRef]
- Zhao, C. Ultrasonic Motors: Technologies and Applications; Springer Science & Business Media: Berlin, Germany, 2011. [Google Scholar]
- Liu, F.; Hashim, N.A.; Liu, Y.; Abed, M.M.; Li, K. Progress in the production and modification of PVDF membranes. J. Membr. Sci. 2011, 375, 1–27. [Google Scholar] [CrossRef]
- Yan, Z.; Pan, T.; Xue, M.; Chen, C.; Cui, Y.; Yao, G.; Gao, M. Thermal release transfer printing for stretchable conformal bioelectronics. Adv. Sci. 2017, 4, 1700251. [Google Scholar] [CrossRef]
- Guan, Y.; Li, H.; Wang, F. Discussion about calculation methods of the minimum relative bending radius for plate bending. Met. Form. Technol. 2003, 21, 52–53. [Google Scholar]
- Kim, J.; Lee, M.; Shim, H.J.; Ghaffari, R.; Cho, H.R.; Son, D.; Jung, Y.H.; Soh, M.; Choi, C.; Jung, S.; et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 2014, 5, 5747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Material | Mass Density (kg/m3) | Young’s Modulus (GPa) | Poisson’s Ratio |
---|---|---|---|
PI | 1300 | 3.1 | 0.37 |
Ag | 10,500 | 83 | 0.38 |
Material | Frequency (kHz) | Power (W) | Speed (mm/s) | Repetition |
---|---|---|---|---|
10 μm Kapton tape | 70 | 0.7 | 300 mm/s | 25 |
100 μm Kapton sheet | 70 | 1 | 300 mm/s | 35 |
Radius (μm) | 200 | 210 | 220 | 230 | 240 | 250 | 260 |
Resonance Frequency (kHz) | 179.61 | 186.82 | 194.67 | 202.58 | 211.06 | 219.67 | 228.13 |
Increasing Value (kHz) | 0 | 7.21 | 7.85 | 7.91 | 8.48 | 8.61 | 8.46 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Wu, D. Low Temperature Adhesive Bonding-Based Fabrication of an Air-Borne Flexible Piezoelectric Micromachined Ultrasonic Transducer. Sensors 2020, 20, 3333. https://doi.org/10.3390/s20113333
Liu W, Wu D. Low Temperature Adhesive Bonding-Based Fabrication of an Air-Borne Flexible Piezoelectric Micromachined Ultrasonic Transducer. Sensors. 2020; 20(11):3333. https://doi.org/10.3390/s20113333
Chicago/Turabian StyleLiu, Wei, and Dawei Wu. 2020. "Low Temperature Adhesive Bonding-Based Fabrication of an Air-Borne Flexible Piezoelectric Micromachined Ultrasonic Transducer" Sensors 20, no. 11: 3333. https://doi.org/10.3390/s20113333
APA StyleLiu, W., & Wu, D. (2020). Low Temperature Adhesive Bonding-Based Fabrication of an Air-Borne Flexible Piezoelectric Micromachined Ultrasonic Transducer. Sensors, 20(11), 3333. https://doi.org/10.3390/s20113333