[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Soft wearable devices for deep-tissue sensing

Abstract

Wearable devices with skin-like mechanical properties enable continuous monitoring of the human body. However, wearable device design has mainly focused on recording superficial signals from the skin thus far, which can only reveal limited information about health and disease. Deep-tissue signals, for example, electrophysiologic, metabolic, circulatory, thermal and mechanical signals, often have stronger correlation with disease and can predict the onset of symptoms. In this Review, we discuss the engineering of soft wearable devices that can sense signals in deep tissues. We highlight electrical, electromagnetic, thermal and mechanical sensing approaches, investigating sensing mechanisms, device designs, fabrication processes and sensing performance, with a focus on penetration depth and temporal and spatial resolutions in the human body. Finally, we discuss remaining challenges in the field and highlight strategies to further improve penetration depth and specificity, accuracy and system-level integration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Deep-tissue signals that can be sensed by soft wearable devices.
Fig. 2: Electrical probes.
Fig. 3: Electromagnetic probes.
Fig. 4: Thermal probes.
Fig. 5: Vibration probes.
Fig. 6: Ultrasonic probes.

Similar content being viewed by others

References

  1. Ray, T. R. et al. Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119, 5461–5533 (2019).

    Article  CAS  Google Scholar 

  2. Lee, G.-H. et al. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 5, 149–165 (2020). This review discusses multifunctional materials and healthcare applications for wearable optical sensors.

    Article  Google Scholar 

  3. Someya, T. & Amagai, M. Toward a new generation of smart skins. Nat. Biotechnol. 37, 382–388 (2019).

    Article  CAS  Google Scholar 

  4. Kim, J., Campbell, A. S., de Ávila, B. E.-F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    Article  CAS  Google Scholar 

  5. Wang, C., Wang, C., Huang, Z. & Xu, S. Materials and structures toward soft electronics. Adv. Mater. 30, 1801368 (2018).

    Article  Google Scholar 

  6. Ates, H. C., Yetisen, A. K., Güder, F. & Dincer, C. Wearable devices for the detection of COVID-19. Nat. Electron. 4, 13–14 (2021).

    Article  CAS  Google Scholar 

  7. Quer, G. et al. Wearable sensor data and self-reported symptoms for COVID-19 detection. Nat. Med. 27, 73–77 (2021).

    Article  CAS  Google Scholar 

  8. Mishra, T. et al. Pre-symptomatic detection of COVID-19 from smartwatch data. Nat. Biomed. Eng. 4, 1208–1220 (2020).

    Article  CAS  Google Scholar 

  9. Kim, D. H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  CAS  Google Scholar 

  10. Lim, H. R. et al. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv. Mater. 32, 1901924 (2020).

    Article  CAS  Google Scholar 

  11. Gambhir, S. S., Ge, T. J., Vermesh, O., Spitler, R. & Gold, G. E. Continuous health monitoring: an opportunity for precision health. Sci. Transl Med. 13, eabe5383 (2021).

    Article  Google Scholar 

  12. Jung, J., Lee, J., Lee, J. & Kim, Y. T. A smartphone-based U-Healthcare system for real-time monitoring of acute myocardial infarction. Int. J. Commun. Syst. 28, 2311–2325 (2015).

    Article  Google Scholar 

  13. Pu, Z. et al. A thermal activated and differential self-calibrated flexible epidermal biomicrofluidic device for wearable accurate blood glucose monitoring. Sci. Adv. 7, eabd0199 (2021).

    Article  CAS  Google Scholar 

  14. Huang, X., Yeo, W.-H., Liu, Y. & Rogers, J. A. Epidermal differential impedance sensor for conformal skin hydration monitoring. Biointerphases 7, 52 (2012).

    Article  Google Scholar 

  15. Anastasova, S. et al. A wearable multisensing patch for continuous sweat monitoring. Biosens. Bioelectron. 93, 139–145 (2017).

    Article  CAS  Google Scholar 

  16. Inamori, G. et al. Neonatal wearable device for colorimetry-based real-time detection of jaundice with simultaneous sensing of vitals. Sci. Adv. 7, eabe3793 (2021).

    Article  CAS  Google Scholar 

  17. Kim, J. et al. Miniaturized battery-free wireless systems for wearable pulse oximetry. Adv. Funct. Mater. 27, 1604373 (2017).

    Article  Google Scholar 

  18. Gao, L. et al. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nat. Commun. 5, 4938 (2014).

    Article  CAS  Google Scholar 

  19. Nyein, H. Y. Y. et al. A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat. Commun. 12, 1823 (2021).

    Article  CAS  Google Scholar 

  20. Webb, R. C. et al. Epidermal devices for noninvasive, precise, and continuous mapping of macrovascular and microvascular blood flow. Sci. Adv. 1, e1500701 (2015).

    Article  Google Scholar 

  21. Dagdeviren, C. et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 5, 4496 (2014).

    Article  CAS  Google Scholar 

  22. Yang, S. et al. “Cut-and-paste” manufacture of multiparametric epidermal sensor systems. Adv. Mater. 27, 6423–6430 (2015).

    Article  CAS  Google Scholar 

  23. Wang, Y. et al. Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 24, 4666–4670 (2014).

    Article  CAS  Google Scholar 

  24. Zhao, Y. et al. Highly sensitive flexible strain sensor based on threadlike spandex substrate coating with conductive nanocomposites for wearable electronic skin. Smart Mater. Struct. 28, 035004 (2019).

    Article  CAS  Google Scholar 

  25. Landsberg, L., Young, J. B., Leonard, W. R., Linsenmeier, R. A. & Turek, F. W. Do the obese have lower body temperatures? A new look at a forgotten variable in energy balance. Trans. Am. Clin. Climatol. Assoc. 120, 287–295 (2009).

    Google Scholar 

  26. Leon, L. R. & Helwig, B. G. Heat stroke: role of the systemic inflammatory response. J. Appl. Physiol. 109, 1980–1988 (2010).

    Article  CAS  Google Scholar 

  27. Chaudhry, R., Miao, J. H. & Rehman, A. Physiology, Cardiovascular (StatPearls, 2020).

  28. Buchner, T. On the physical nature of biopotentials, their propagation and measurement. Physica A 525, 85–95 (2019).

    Article  Google Scholar 

  29. Mahmood, M. et al. Fully portable and wireless universal brain–machine interfaces enabled by flexible scalp electronics and deep learning algorithm. Nat. Mach. Intell. 1, 412–422 (2019).

    Article  Google Scholar 

  30. Xu, S. et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 70–74 (2014).

    Article  CAS  Google Scholar 

  31. Huang, Z. et al. Three-dimensional integrated stretchable electronics. Nat. Electron. 1, 473–480 (2018).

    Article  Google Scholar 

  32. Gharibans, A. A. et al. Artifact rejection methodology enables continuous, noninvasive measurement of gastric myoelectric activity in ambulatory subjects. Sci. Rep. 8, 5019 (2018).

    Article  Google Scholar 

  33. Searle, A. & Kirkup, L. A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiol. Meas. 21, 271–283 (2000).

    Article  CAS  Google Scholar 

  34. Krieger, K. J. et al. Development and evaluation of 3D-printed dry microneedle electrodes for surface electromyography. Adv. Mat. Technol. 5, 2000518 (2020).

    Article  CAS  Google Scholar 

  35. Lee, S. & Kruse, J. Biopotential electrode sensors in ECG/EEG/EMG systems. Analog Devices https://www.analog.com/en/technical-articles/biopotential-electrode-sensors-ecg-eeg-emg.html (2008).

  36. Ha, S. et al. in Wearable Sensors 2nd edn (ed. Sazonov, E.) 163–199 (Elsevier, 2021).

  37. Chi, Y. M., Jung, T.-P. & Cauwenberghs, G. Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev. Biomed. Eng. 3, 106–119 (2010). This review introduces skin–electrode coupling mechanisms and highlights recent developments in dry and non-contact biopotential sensors.

    Article  Google Scholar 

  38. Yao, S. & Zhu, Y. Nanomaterial-enabled dry electrodes for electrophysiological sensing: a review. JOM 68, 1145–1155 (2016).

    Article  Google Scholar 

  39. Zhang, L. et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat. Commun. 11, 4683 (2020).

    Article  CAS  Google Scholar 

  40. Rivnay, J. et al. Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 7, 11287 (2016).

    Article  Google Scholar 

  41. Liu, J. et al. A novel dry-contact electrode for measuring electroencephalography signals. Sens. Actuators A 294, 73–80 (2019).

    Article  CAS  Google Scholar 

  42. Wang, Y. et al. Robust, self-adhesive, reinforced polymeric nanofilms enabling gas-permeable dry electrodes for long-term application. Proc. Natl Acad. Sci. USA 118, e2111904118 (2021).

    Article  CAS  Google Scholar 

  43. Shad, E. H. T., Molinas, M. & Ytterdal, T. Impedance and noise of passive and active dry eeg electrodes: a review. IEEE Sens. J. 20, 14565–14577 (2020).

    Article  CAS  Google Scholar 

  44. Lv, J. et al. Printable elastomeric electrodes with sweat-enhanced conductivity for wearables. Sci. Adv. 7, eabg8433 (2021).

    Article  CAS  Google Scholar 

  45. Ershad, F. et al. Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment. Nat. Commun. 11, 3823 (2020).

    Article  CAS  Google Scholar 

  46. Chen, X. et al. Fabric-substrated capacitive biopotential sensors enhanced by dielectric nanoparticles. Nano Res. 14, 3248–3252 (2021).

    Article  CAS  Google Scholar 

  47. Forvi, E. et al. Preliminary technological assessment of microneedles-based dry electrodes for biopotential monitoring in clinical examinations. Sens. Actuators A 180, 177–186 (2012).

    Article  CAS  Google Scholar 

  48. Srivastava, A. K., Bhartia, B., Mukhopadhyay, K. & Sharma, A. Long term biopotential recording by body conformable photolithography fabricated low cost polymeric microneedle arrays. Sens. Actuators A 236, 164–172 (2015).

    Article  CAS  Google Scholar 

  49. Dabbagh, S. R. et al. 3D-printed microneedles in biomedical applications. Iscience 24, 102012 (2020).

    Article  Google Scholar 

  50. Hedrich, T., Pellegrino, G., Kobayashi, E., Lina, J.-M. & Grova, C. Comparison of the spatial resolution of source imaging techniques in high-density EEG and MEG. Neuroimage 157, 531–544 (2017).

    Article  CAS  Google Scholar 

  51. Wang, K. et al. Stretchable dry electrodes with concentric ring geometry for enhancing spatial resolution in electrophysiology. Adv. Healthc. Mater. 6, 1700552 (2017).

    Article  Google Scholar 

  52. Makeyev, O. & Besio, W. G. Improving the accuracy of Laplacian estimation with novel variable inter-ring distances concentric ring electrodes. Sensors 16, 858 (2016).

    Article  Google Scholar 

  53. Victorino, J. A. et al. Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am. J. Respir. Crit. Care Med. 169, 791–800 (2004).

    Article  Google Scholar 

  54. Isaacson, D., Mueller, J. L., Newell, J. C. & Siltanen, S. Imaging cardiac activity by the D-bar method for electrical impedance tomography. Physiol. Meas. 27, S43–S50 (2006).

    Article  CAS  Google Scholar 

  55. Soni, N. K., Hartov, A., Kogel, C., Poplack, S. P. & Paulsen, K. D. Multi-frequency electrical impedance tomography of the breast: new clinical results. Physiol. Meas. 25, 301 (2004).

    Article  Google Scholar 

  56. Tidswell, T., Gibson, A., Bayford, R. H. & Holder, D. S. Three-dimensional electrical impedance tomography of human brain activity. Neuroimage 13, 283–294 (2001).

    Article  CAS  Google Scholar 

  57. Cheney, M., Isaacson, D. & Newell, J. C. Electrical impedance tomography. SIAM Rev. 41, 85–101 (1999).

    Article  Google Scholar 

  58. Khan, T. A. & Ling, S. H. Review on electrical impedance tomography: artificial intelligence methods and its applications. Algorithms 12, 88 (2019).

    Article  Google Scholar 

  59. Barth, A., Harrach, B., Hyvönen, N. & Mustonen, L. Detecting stochastic inclusions in electrical impedance tomography. Inverse Probl. 33, 115012 (2017).

    Article  Google Scholar 

  60. Kelley, C. T. Solving Nonlinear Equations with Newton’s Method (SIAM, 2003).

  61. Adler, A. & Holder, D. S. Electrical Impedance Tomography: Methods, History and Applications (CRC, 2004). This book describes the background science, reconstruction principles and clinical applications of electrical impedance tomography.

  62. Yan, W., Hong, S. & Chaoshi, R. Optimum design of electrode structure and parameters in electrical impedance tomography. Physiol. Meas. 27, 291–306 (2006).

    Article  Google Scholar 

  63. Rezanejad Gatabi, Z., Mohammadpour, R., Rezanejad Gatabi, J., Mirhoseini, M. & Sasanpour, P. A novel composite gold/gold nanoparticles/carbon nanotube electrode for frequency-stable micro-electrical impedance tomography. J. Mater. Sci. Mater. Electron. 31, 10803–10810 (2020).

    Article  CAS  Google Scholar 

  64. Oh, T. I. et al. Flexible electrode belt for EIT using nanofiber web dry electrodes. Physiol. Meas. 33, 1603–1616 (2012).

    Article  Google Scholar 

  65. Zhang, X. & Zhong, Y. A silver/silver chloride woven electrode with convex based on electrical impedance tomography. J. Text. Inst. 112, 1067–1079 (2021).

    Article  CAS  Google Scholar 

  66. de Castro Martins, T. et al. A review of electrical impedance tomography in lung applications: theory and algorithms for absolute images. Annu. Rev. Control 48, 442–471 (2019).

    Article  Google Scholar 

  67. Sola, J. et al. Non-invasive monitoring of central blood pressure by electrical impedance tomography: first experimental evidence. Med. Biol. Eng. Comput. 49, 409–415 (2011).

    Article  Google Scholar 

  68. Romsauerova, A. et al. Multi-frequency electrical impedance tomography (EIT) of the adult human head: initial findings in brain tumours, arteriovenous malformations and chronic stroke, development of an analysis method and calibration. Physiol. Meas. 27, S147 (2006).

    Article  CAS  Google Scholar 

  69. Wang, Q. et al. Exploring respiratory motion tracking through electrical impedance tomography. IEEE Trans. Instrum. Meas. 70, 1–12 (2021).

    Article  Google Scholar 

  70. Metherall, P., Barber, D. C., Smallwood, R. H. & Brown, B. H. Three-dimensional electrical impedance tomography. Nature 380, 509–512 (1996).

    Article  CAS  Google Scholar 

  71. Graham, B. & Adler, A. Electrode placement configurations for 3D EIT. Physiol. Meas. 28, S29–S44 (2007).

    Article  CAS  Google Scholar 

  72. Lipani, L. et al. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat. Nanotechnol. 13, 504–511 (2018). This article describes an electrode array with millimetre-sized elements for glucose monitoring, which significantly improves the spatial resolution of reverse iontophoresis.

    Article  CAS  Google Scholar 

  73. Jain, S. M., Pandey, K., Lahoti, A. & Rao, P. K. Evaluation of skin and subcutaneous tissue thickness at insulin injection sites in Indian, insulin naïve, type-2 diabetic adult population. Indian J. Endocrinol. Metab. 17, 864–870 (2013).

    Article  Google Scholar 

  74. Yang, Y. & Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48, 1465–1491 (2019).

    Article  CAS  Google Scholar 

  75. Bandodkar, A. J. et al. Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal. Chem. 87, 394–398 (2015).

    Article  CAS  Google Scholar 

  76. Sieg, A., Guy, R. H. & Delgado-Charro, M. B. Electroosmosis in transdermal iontophoresis: implications for noninvasive and calibration-free glucose monitoring. Biophys. J. 87, 3344–3350 (2004).

    Article  CAS  Google Scholar 

  77. Chen, Y. et al. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci. Adv. 3, e1701629 (2017).

    Article  Google Scholar 

  78. Gowers, S. A. et al. Development of a minimally invasive microneedle-based sensor for continuous monitoring of β-lactam antibiotic concentrations in vivo. ACS Sens. 4, 1072–1080 (2019).

    Article  CAS  Google Scholar 

  79. Yang, B., Fang, X. & Kong, J. Engineered microneedles for interstitial fluid cell-free DNA capture and sensing using iontophoretic dual-extraction wearable patch. Adv. Funct. Mater. 30, 2000591 (2020).

    Article  CAS  Google Scholar 

  80. Wang, Z. et al. Microneedle patch for the ultrasensitive quantification of protein biomarkers in interstitial fluid. Nat. Biomed. Eng. 5, 64–76 (2021).

    Article  CAS  Google Scholar 

  81. Lee, C.-K. et al. Non-invasive and transdermal measurement of blood uric acid level in human by electroporation and reverse iontophoresis. Int. J. Nanomed. 5, 991–997 (2010).

    Article  CAS  Google Scholar 

  82. Cengiz, E. & Tamborlane, W. V. A tale of two compartments: interstitial versus blood glucose monitoring. Diabetes Technol. Ther. 11, S-11–S-16 (2009).

    Article  Google Scholar 

  83. Giri, T. K., Chakrabarty, S. & Ghosh, B. Transdermal reverse iontophoresis: a novel technique for therapeutic drug monitoring. J. Control. Release 246, 30–38 (2017).

    Article  CAS  Google Scholar 

  84. Gade, R. & Moeslund, T. B. Thermal cameras and applications: a survey. Mach. Vis. Appl. 25, 245–262 (2014).

    Article  Google Scholar 

  85. Carpes, F. P. et al. Insights on the use of thermography in human physiology practical classes. Adv. Physiol. Educ. 42, 521–525 (2018).

    Article  Google Scholar 

  86. Best, S. R. in 2011 International Workshop on Antenna Technology 90–93 (IEEE, 2011).

  87. Rossmann, C. & Haemmerich, D. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures. Crit. Rev. Biomed. Eng. 42, 467–492 (2014).

    Article  Google Scholar 

  88. Chen, L. Y. et al. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 5, 5028 (2014).

    Article  CAS  Google Scholar 

  89. Roshni, S. B., Jayakrishnan, M., Mohanan, P. & Surendran, K. P. Design and fabrication of an E-shaped wearable textile antenna on PVB-coated hydrophobic polyester fabric. Smart Mater. Struct. 26, 105011 (2017).

    Article  Google Scholar 

  90. Wang, Y. et al. Flexible RFID tag metal antenna on paper-based substrate by inkjet printing technology. Adv. Funct. Mater. 29, 1902579 (2019).

    Article  Google Scholar 

  91. Tsolis, A., Whittow, W. G., Alexandridis, A. A. & Vardaxoglou, J. Embroidery and related manufacturing techniques for wearable antennas: challenges and opportunities. Electronics 3, 314–338 (2014).

    Article  Google Scholar 

  92. Cluff, K. et al. Passive wearable skin patch sensor measures limb hemodynamics based on electromagnetic resonance. IEEE Trans. Biomed. Eng. 65, 847–856 (2017).

    Article  Google Scholar 

  93. Stauffer, P. R. et al. Stable microwave radiometry system for long term monitoring of deep tissue temperature. Proc. SPIE Int. Soc. Opt. Eng. 8584, 227–237 (2013).

    Google Scholar 

  94. Costanzo, S. & Cioffi, V. in Information Technology and Systems. ICITS 2020 (eds Rocha, Á. et al.) 607–612 (Springer, 2020).

  95. El Gharbi, M., Fernández-García, R., Ahyoud, S. & Gil, I. A review of flexible wearable antenna sensors: design, fabrication methods, and applications. Materials 13, 3781 (2020).

    Article  CAS  Google Scholar 

  96. Lee, J. et al. Neural recording and stimulation using wireless networks of microimplants. Nat. Electron. 4, 604–614 (2021).

    Article  Google Scholar 

  97. Dong, Z., Li, Z., Yang, F., Qiu, C.-W. & Ho, J. S. Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point. Nat. Electron. 2, 335–342 (2019).

    Article  Google Scholar 

  98. Boutry, C. M. et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57 (2019).

    Article  CAS  Google Scholar 

  99. Yoo, S. et al. Wireless power transfer and telemetry for implantable bioelectronics. Adv. Healthc. Mater. 10, 2100614 (2021). This review introduces approaches to retrieve deep-tissue signals and deliver power using wearable antennas and electromagnetic transmission.

    Article  CAS  Google Scholar 

  100. Karimi, M. J., Schmid, A. & Dehollain, C. Wireless power and data transmission for implanted devices via inductive links: a systematic review. IEEE Sens. J. 21, 7145–7161 (2021).

    Article  Google Scholar 

  101. Gutruf, P. et al. Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research. Nat. Electron. 1, 652–660 (2018).

    Article  Google Scholar 

  102. Laqua, D., Just, T. & Husar, P. in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 1437–1440 (IEEE, 2010).

  103. Burton, A. et al. Wireless, battery-free, and fully implantable electrical neurostimulation in freely moving rodents. Microsyst. Nanoeng. 7, 62 (2021).

    Article  Google Scholar 

  104. Ausra, J. et al. Wireless, battery-free, subdermally implantable platforms for transcranial and long-range optogenetics in freely moving animals. Proc. Natl Acad. Sci. USA 118, e2025775118 (2021).

    Article  CAS  Google Scholar 

  105. Agrawal, D. R. et al. Conformal phased surfaces for wireless powering of bioelectronic microdevices. Nat. Biomed. Eng. 1, 0043 (2017).

    Article  CAS  Google Scholar 

  106. Lee, J. et al. in 2018 IEEE Biomedical Circuits and Systems Conference (IEEE, 2018).

  107. Bahramiabarghouei, H. et al. Flexible 16 antenna array for microwave breast cancer detection. IEEE Trans. Biomed. Eng. 62, 2516–2525 (2015).

    Article  Google Scholar 

  108. Zhang, H. et al. Wireless, battery-free optoelectronic systems as subdermal implants for local tissue oximetry. Sci. Adv. 5, eaaw0873 (2019).

    Article  CAS  Google Scholar 

  109. Tremper, K. K. Pulse oximetry. Chest 95, 713–715 (1989).

    Article  CAS  Google Scholar 

  110. Weissleder, R. & Ntziachristos, V. Shedding light onto live molecular targets. Nat. Med. 9, 123–128 (2003).

    Article  CAS  Google Scholar 

  111. Cohen, L., Salzberg, B. & Grinvald, A. Optical methods for monitoring neuron activity. Annu. Rev. Neurosci. 1, 171–182 (1978).

    Article  CAS  Google Scholar 

  112. Anderson, R. R. & Parrish, J. A. The optics of human skin. J. Invest. Dermatol. 77, 13–19 (1981).

    Article  CAS  Google Scholar 

  113. Zonios, G. et al. Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection. J. Biomed. Opt. 13, 014017 (2008).

    Article  Google Scholar 

  114. Lister, T., Wright, P. A. & Chappell, P. H. Optical properties of human skin. J. Biomed. Opt. 17, 90901 (2012).

    Article  Google Scholar 

  115. Maeda, Y., Sekine, M. & Tamura, T. The advantages of wearable green reflected photoplethysmography. J. Med. Syst. 35, 829–834 (2011).

    Article  Google Scholar 

  116. Maruo, K., Tsurugi, M., Tamura, M. & Ozaki, Y. In vivo noninvasive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy. Appl. Spectrosc. 57, 1236–1244 (2003).

    Article  CAS  Google Scholar 

  117. Higurashi, E., Sawada, R. & Ito, T. An integrated laser blood flowmeter. J. Light. Technol. 21, 591–595 (2003).

    Article  CAS  Google Scholar 

  118. Zhang, H. et al. Biocompatible light guide-assisted wearable devices for enhanced UV light delivery in deep skin. Adv. Funct. Mater. 31, 2100576 (2021).

    Article  CAS  Google Scholar 

  119. Temko, A. Accurate heart rate monitoring during physical exercises using PPG. IEEE Trans. Biomed. Eng. 64, 2016–2024 (2017).

    Article  Google Scholar 

  120. Kim, J. et al. Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Sci. Adv. 2, e1600418 (2016).

    Article  Google Scholar 

  121. Lázaro, J., Gil, E., Bailón, R., Mincholé, A. & Laguna, P. Deriving respiration from photoplethysmographic pulse width. Med. Biol. Eng. Comput. 51, 233–242 (2013).

    Article  Google Scholar 

  122. Avci, P. et al. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin. Cutan. Med. Surg. 32, 41–52 (2013).

    Google Scholar 

  123. Mickle, A. D. et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 565, 361–365 (2019).

    Article  CAS  Google Scholar 

  124. Choi, S. et al. Highly flexible and efficient fabric-based organic light-emitting devices for clothing-shaped wearable displays. Sci. Rep. 7, 6424 (2017).

    Article  Google Scholar 

  125. Kim, J.-H. & Park, J.-W. Intrinsically stretchable organic light-emitting diodes. Sci. Adv. 7, eabd9715 (2021).

    Article  CAS  Google Scholar 

  126. Ash, C., Dubec, M., Donne, K. & Bashford, T. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med. Sci. 32, 1909–1918 (2017).

    Article  Google Scholar 

  127. Okamoto, K. Fundamentals of Optical Waveguides (Academic, 2006).

  128. Shabahang, S., Kim, S. & Yun, S. H. Light-guiding biomaterials for biomedical applications. Adv. Funct. Mater. 28, 1706635 (2018).

    Article  Google Scholar 

  129. Choi, M. et al. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat. Photonics 7, 987–994 (2013).

    Article  CAS  Google Scholar 

  130. Chung, S. H., Mehta, R., Tromberg, B. J. & Yodh, A. G. Non-invasive measurement of deep tissue temperature changes caused by apoptosis during breast cancer neoadjuvant chemotherapy: a case study. J. Innov. Opt. Health Sci. 4, 361–372 (2011).

    Article  Google Scholar 

  131. Pesonen, E. et al. The focus of temperature monitoring with zero-heat-flux technology (3M Bair-Hugger): a clinical study with patients undergoing craniotomy. J. Clin. Monit. Comput. 33, 917–923 (2019).

    Article  Google Scholar 

  132. Gao, X. et al. A photoacoustic patch for three-dimensional imaging of hemoglobin and core temperature. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-558432/v1 (2021).

    Article  Google Scholar 

  133. Tian, L. et al. Flexible and stretchable 3ω sensors for thermal characterization of human skin. Adv. Funct. Mater. 27, 1701282 (2017). This article reports a stretchable device using thermal modulation to interrogate tissue conductivity.

    Article  Google Scholar 

  134. Qiu, L., Ouyang, Y., Feng, Y., Zhang, X. & Wang, X. In vivo skin thermophysical property testing technology using flexible thermosensor-based 3ω method. Int. J. Heat Mass Transf. 163, 120550 (2020).

    Article  Google Scholar 

  135. Hattori, Y. et al. Multifunctional skin-like electronics for quantitative, clinical monitoring of cutaneous wound healing. Adv. Healthc. Mater. 3, 1597–1607 (2014).

    Article  CAS  Google Scholar 

  136. Kurz, A. Physiology of thermoregulation. Best Pract. Res. Clin. Anaesthesiol. 22, 627–644 (2008).

    Article  Google Scholar 

  137. Lim, C. L., Byrne, C. & Lee, J. K. Human thermoregulation and measurement of body temperature in exercise and clinical settings. Ann. Acad. Med. Singap. 37, 347 (2008).

    Google Scholar 

  138. Yamakage, M. & Namiki, A. Deep temperature monitoring using a zero-heat-flow method. J. Anesthesia 17, 108–115 (2003).

    Article  Google Scholar 

  139. Huang, M., Tamura, T., Chen, W. & Kanaya, S. Evaluation of structural and thermophysical effects on the measurement accuracy of deep body thermometers based on dual-heat-flux method. J. Therm. Biol. 47, 26–31 (2015).

    Article  Google Scholar 

  140. Feng, J., Zhou, C., He, C., Li, Y. & Ye, X. Development of an improved wearable device for core body temperature monitoring based on the dual heat flux principle. Physiol. Meas. 38, 652 (2017).

    Article  Google Scholar 

  141. Huang, M., Tamura, T., Tang, Z., Chen, W. & Kanaya, S. Structural optimization of a wearable deep body thermometer: from theoretical simulation to experimental verification. J. Sensors 2016, 4828093 (2016).

    Article  Google Scholar 

  142. Zhang, Y. et al. Theoretical and experimental studies of epidermal heat flux sensors for measurements of core body temperature. Adv. Healthc. Mater. 5, 119–127 (2016).

    Article  CAS  Google Scholar 

  143. West, N., Cooke, E., Morse, D., Merchant, R. N. & Görges, M. Zero-heat-flux core temperature monitoring system: an observational secondary analysis to evaluate agreement with naso-/oropharyngeal probe during anesthesia. J. Clin. Monit. Comput. 34, 1121–1129 (2019).

    Article  Google Scholar 

  144. Brajkovic, D. & Ducharme, M. B. Confounding factors in the use of the zero-heat-flow method for non-invasive muscle temperature measurement. Eur. J. Appl. Physiol. 94, 386–391 (2005).

    Article  Google Scholar 

  145. Fang, J., Zhou, C. & Ye, X. in IOP Conference Series: Materials Science and Engineering Vol. 667 (IOP, 2019).

  146. Shi, Y. et al. Functional soft composites as thermal protecting substrates for wearable electronics. Adv. Funct. Mater. 29, 1905470 (2019).

    Article  CAS  Google Scholar 

  147. Dames, C. & Chen, G. 1ω, 2ω, and 3ω methods for measurements of thermal properties. Rev. Sci. Instrum. 76, 124902 (2005).

    Article  Google Scholar 

  148. Wang, H. & Sen, M. Analysis of the 3-omega method for thermal conductivity measurement. Int. J. Heat Mass Transf. 52, 2102–2109 (2009).

    Article  CAS  Google Scholar 

  149. Dagdeviren, C. et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl Acad. Sci. USA 111, 1927–1932 (2014).

    Article  CAS  Google Scholar 

  150. Cotur, Y. et al. Stretchable composite acoustic transducer for wearable monitoring of vital signs. Adv. Funct. Mater. 30, 1910288 (2020).

    Article  CAS  Google Scholar 

  151. Wang, F. et al. A flexible skin-mounted wireless acoustic device for bowel sounds monitoring and evaluation. Sci. China Inf. Sci. 62, 202402 (2019).

    Article  Google Scholar 

  152. Bosco, C. et al. Adaptive respsonses of human skeletal muscle to vibration exposure. Clin. Physiol. 19, 183–187 (1999).

    Article  CAS  Google Scholar 

  153. Tao, L. Q. et al. An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat. Commun. 8, 14579 (2017).

    Article  CAS  Google Scholar 

  154. Li, W. et al. Nanogenerator-based dual-functional and self-powered thin patch loudspeaker or microphone for flexible electronics. Nat. Commun. 8, 15310 (2017).

    Article  CAS  Google Scholar 

  155. Song, E. et al. Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue. Nat. Biomed. Eng. 5, 759–771 (2021).

    Article  CAS  Google Scholar 

  156. Dagdeviren, C. et al. Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nat. Mater. 14, 728–736 (2015).

    Article  CAS  Google Scholar 

  157. Fan, X. et al. Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano 9, 4236–4243 (2015).

    Article  CAS  Google Scholar 

  158. Lee, H. S. et al. Flexible inorganic piezoelectric acoustic nanosensors for biomimetic artificial hair cells. Adv. Funct. Mater. 24, 6914–6921 (2014).

    Article  CAS  Google Scholar 

  159. Nayeem, M. O. G. et al. All-nanofiber-based, ultrasensitive, gas-permeable mechanoacoustic sensors for continuous long-term heart monitoring. Proc. Natl Acad. Sci. USA 117, 7063–7070 (2020). This article describes an ultrasensitive, nanofibre-based, passive vibration sensor for continuous cardiac sensing.

    Article  Google Scholar 

  160. Gupta, P., Wen, H., Di Francesco, L. & Ayazi, F. Detection of pathological mechano-acoustic signatures using precision accelerometer contact microphones in patients with pulmonary disorders. Sci. Rep. 11, 13427 (2021).

    Article  CAS  Google Scholar 

  161. Hu, Y. & Xu, Y. in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 694–697 (IEEE, 2012).

  162. Lee, K. et al. Mechano-acoustic sensing of physiological processes and body motions via a soft wireless device placed at the suprasternal notch. Nat. Biomed. Eng. 4, 148–158 (2020).

    Article  Google Scholar 

  163. Liu, Y. et al. Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Sci. Adv. 2, e1601185 (2016).

    Article  Google Scholar 

  164. Gupta, P. et al. Precision wearable accelerometer contact microphones for longitudinal monitoring of mechano-acoustic cardiopulmonary signals. NPJ Digit. Med. 3, 19 (2020).

    Article  Google Scholar 

  165. Yang, C. & Tavassolian, N. An independent component analysis approach to motion noise cancelation of cardio-mechanical signals. IEEE Trans. Biomed. Eng. 66, 784–793 (2018).

    Article  Google Scholar 

  166. Yu, X. et al. Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing. Nat. Biomed. Eng. 2, 165–172 (2018).

    Article  CAS  Google Scholar 

  167. Yu, X. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575, 473–479 (2019).

    Article  CAS  Google Scholar 

  168. Maccabi, A. et al. Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues. PLoS ONE 13, e0191919 (2018).

    Article  Google Scholar 

  169. Shung, K. K. Diagnostic Ultrasound: Imaging and Blood Flow Measurements (CRC, 2005).

  170. Hu, H. et al. Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces. Sci. Adv. 4, eaar3979 (2018). This article reports a stretchable ultrasound array device that can conform to nondevelopable surfaces for reconstructing 3D structures located deep underneath the surface.

    Article  Google Scholar 

  171. Li, Z. et al. Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers. Sci. Rep. 7, 42863 (2017).

    Article  CAS  Google Scholar 

  172. Huang, H. & Paramo, D. Broadband electrical impedance matching for piezoelectric ultrasound transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 2699–2707 (2011).

    Article  Google Scholar 

  173. Wang, C. et al. Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays. Nat. Biomed. Eng. 5, 749–758 (2021). This article introduces the design of a skin-conformal ultrasonic phased array to sense haemodynamic signals in deep tissue.

    Article  CAS  Google Scholar 

  174. Roy, O., Mahaut, S. & Casula, O. in AIP Conference Proceedings 908–914 (American Institute of Physics, 2002).

  175. Frankle, R. S. & Rose, D. N. in Nondestructive Evaluation of Aging Maritime Applications 51–59 (SPIE, 1995).

  176. Wang, C. et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2, 687–695 (2018).

    Article  Google Scholar 

  177. Sempionatto, J. R. et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nat. Biomed. Eng. 5, 737–748 (2021).

    Article  CAS  Google Scholar 

  178. Peng, C., Chen, M., Sim, H. K., Zhu, Y. & Jiang, X. in 15th International Conference on Nano/Micro Engineered and Molecular System 143–146 (IEEE, 2020).

  179. AlMohimeed, I., Turkistani, H. & Ono, Y. In 2013 IEEE International Ultrasonics Symposium 1137–1140 (IEEE, 2013).

  180. Pang, D.-C. & Chang, C.-M. Development of a novel transparent flexible capacitive micromachined ultrasonic transducer. Sensors 17, 1443 (2017).

    Article  Google Scholar 

  181. Powell, D. & Hayward, G. Flexible ultrasonic transducer arrays for nondestructive evaluation applications. II. Performance assessment of different array configurations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 393–402 (1996).

    Article  Google Scholar 

  182. Li, Z., Chen, A. I., Wong, L. L., Na, S. & Yeow, J. T. in 2015 IEEE International Ultrasonics Symposium (IEEE, 2015).

  183. Qiu, Y. et al. Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging. Sensors 15, 8020–8041 (2015).

    Article  CAS  Google Scholar 

  184. Lee, J.-H. et al. Flexible piezoelectric micromachined ultrasonic transducer (pMUT) for application in brain stimulation. Microsyst. Technol. 23, 2321–2328 (2017).

    Article  CAS  Google Scholar 

  185. Duval, F. F., Dorey, R. A., Wright, R. W., Huang, Z. & Whatmore, R. W. Fabrication and modeling of high-frequency PZT composite thick film membrance resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1255–1261 (2004).

    Article  Google Scholar 

  186. Bowen, C., Bradley, L., Almond, D. & Wilcox, P. Flexible piezoelectric transducer for ultrasonic inspection of non-planar components. Ultrasonics 48, 367–375 (2008).

    Article  CAS  Google Scholar 

  187. Pashaei, V. et al. Flexible body-conformal ultrasound patches for image-guided neuromodulation. IEEE Trans. Biomed. Circuits Syst. 14, 305–318 (2019).

    Article  Google Scholar 

  188. Kato, Y. et al. Large-area flexible ultrasonic imaging system with an organic transistor active matrix. IEEE Trans. Electron. Devices 57, 995–1002 (2010).

    Article  CAS  Google Scholar 

  189. Chen, Z. et al. High-frequency ultrasonic imaging with lead-free (Na,K)(Nb,Ta)O3 single crystal. Ultrason. Imaging 39, 348–356 (2017).

    Article  Google Scholar 

  190. Hettiarachchi, N., Ju, Z. & Liu, H. in 2015 IEEE International Conference on Systems, Man, and Cybernetics 1415–1420 (IEEE, 2017).

  191. Yang, X., Yan, J. & Liu, H. Comparative analysis of wearable a-mode ultrasound and SEMG for muscle-computer interface. IEEE Trans. Biomed. Eng. 67, 2434–2442 (2019).

    Article  Google Scholar 

  192. Stadler, R. W., Taylor, J. A. & Lees, R. S. Comparison of B-mode, M-mode and echo-tracking methods for measurement of the arterial distension waveform. Ultrasound Med. Biol. 23, 879–887 (1997).

    Article  CAS  Google Scholar 

  193. Shung, K. K. Diagnostic Ultrasound: Imaging and Blood Flow Measurements (CRC, 2005).

  194. Ding, H. et al. A pulsed wave Doppler ultrasound blood flowmeter by PMUTs. J. Microelectromech. Syst. 30, 680–682 (2021).

    Article  CAS  Google Scholar 

  195. Jiang, J. & Hall, T. J. A coupled subsample displacement estimation method for ultrasound-based strain elastography. Phys. Med. Biol. 60, 8347 (2015).

    Article  Google Scholar 

  196. Kallel, F. & Ophir, J. A least-squares strain estimator for elastography. Ultrason. Imaging 19, 195–208 (1997).

    Article  CAS  Google Scholar 

  197. Francois Dord, J. et al. in Ultrasound Elastography for Biomedical Applications and Medicine (eds Nenadic, I. Z. et al.) 129–142 (Wiley, 2018).

  198. Papadacci, C., Bunting, E. A. & Konofagou, E. E. 3D quasi-static ultrasound elastography with plane wave in vivo. IEEE Trans. Med. Imaging 36, 357–365 (2016).

    Article  Google Scholar 

  199. Alam, S. K., Ophir, J. & Varghese, T. Elastographic axial resolution criteria: an experimental study. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 304–309 (2000).

    Article  CAS  Google Scholar 

  200. Ramalli, A., Basset, O., Cachard, C., Boni, E. & Tortoli, P. Frequency-domain-based strain estimation and high-frame-rate imaging for quasi-static elastography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 817–824 (2012).

    Article  Google Scholar 

  201. Chen, H., Varghese, T., Rahko, P. S. & Zagzebski, J. Ultrasound frame rate requirements for cardiac elastography: experimental and in vivo results. Ultrasonics 49, 98–111 (2009).

    Article  Google Scholar 

  202. Schrank, F. et al. Real-time MR elastography for viscoelasticity quantification in skeletal muscle during dynamic exercises. Magn. Reson. Med. 84, 103–114 (2020).

    Article  Google Scholar 

  203. Fink, M. Time reversal of ultrasonic fields. I. Basic principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 555–566 (1992).

    Article  CAS  Google Scholar 

  204. Turner, B. L. et al. Ultrasound-powered implants: a critical review of piezoelectric material selection and applications. Adv. Healthc. Mater. 10, 2100986 (2021).

    Article  CAS  Google Scholar 

  205. Sonmezoglu, S., Fineman, J. R., Maltepe, E. & Maharbiz, M. M. Monitoring deep-tissue oxygenation with a millimeter-scale ultrasonic implant. Nat. Biotechnol. 39, 855–864 (2021).

    Article  CAS  Google Scholar 

  206. Shi, C., Costa, T., Elloian, J., Zhang, Y. & Shepard, K. L. A 0.065-mm3 monolithically-integrated ultrasonic wireless sensing mote for real-time physiological temperature monitoring. IEEE Trans. Biomed. Circuits Syst. 14, 412–424 (2020).

    Article  Google Scholar 

  207. Weber, M. J. et al. A miniaturized single-transducer implantable pressure sensor with time-multiplexed ultrasonic data and power links. IEEE J. Solid-State Circuits 53, 1089–1101 (2018).

    Article  Google Scholar 

  208. Jin, P. et al. A flexible, stretchable system for simultaneous acoustic energy transfer and communication. Sci. Adv. 7, eabg2507 (2021).

    Article  CAS  Google Scholar 

  209. Lyu, W. et al. Flexible ultrasonic patch for accelerating chronic wound healing. Adv. Healthc. Mater. 10, 2100785 (2021).

    Article  CAS  Google Scholar 

  210. Zhou, H. et al. Wearable ultrasound improves motor function in an MPTP mouse model of Parkinson’s disease. IEEE Trans. Biomed. Eng. 66, 3006–3013 (2019).

    Article  Google Scholar 

  211. Xu, S. Closed-loop actuating and sensing epidermal systems. US Patent 16/093,820 (2017).

  212. Manohar, S. & Razansky, D. Photoacoustics: a historical review. Adv. Opt. Photonics 8, 586–617 (2016).

    Article  Google Scholar 

  213. & Lin, J. C. Microwave thermoacoustic tomographic (MTT) imaging. Phys. Med. Biol. 66, 10TR02 (2021).

    Article  Google Scholar 

  214. Hin, J. et al. A flexible optoacoustic blood stethoscope for non-invasive multiparametric cardiovascular monitoring. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-384531/v1 (2021).

    Article  Google Scholar 

  215. Borcea, L. Electrical impedance tomography. Inverse Probl. 18, R99–R126 (2002).

    Article  Google Scholar 

  216. Jibiki, T. Coded excitation medical ultrasound imaging. Igaku Butsuri 21, 136–141 (2001).

    Google Scholar 

  217. Isla, J. & Cegla, F. Coded excitation for pulse-echo systems. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64, 736–748 (2017).

    Article  Google Scholar 

  218. Beniczky, S., Karoly, P., Nurse, E., Ryvlin, P. & Cook, M. Machine learning and wearable devices of the future. Epilepsia 62, S116–S124 (2021).

    Article  Google Scholar 

  219. Jaber, M. S. H. & Kazemi, A. Noise reduction of signals received from wearable sensors along with integrating their information with machine learning. EurAsian J. Biosci. 14, 5253–5259 (2020).

    Google Scholar 

  220. Zhang, B., Sodickson, D. K. & Cloos, M. A. A high-impedance detector-array glove for magnetic resonance imaging of the hand. Nat. Biomed. Eng. 2, 570–577 (2018).

    Article  CAS  Google Scholar 

  221. Wang, J. et al. in 2020 IEEE Symposium on VLSI Circuits (IEEE, 2020).

  222. Chen, K., Lee, H.-S. & Sodini, C. G. in 2014 Symposium on VLSI Circuits Digest of Technical Papers (IEEE, 2014).

  223. Biggs, J. et al. A natively flexible 32-bit Arm microprocessor. Nature 595, 532–536 (2021).

    Article  CAS  Google Scholar 

  224. Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).

    Article  CAS  Google Scholar 

  225. Lee, Y., Cha, S. H., Kim, Y.-W., Choi, D. & Sun, J.-Y. Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators. Nat. Commun. 9, 1804 (2018).

    Article  Google Scholar 

  226. Niu, S. et al. A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2, 361–368 (2019).

    Article  Google Scholar 

  227. Lin, M., Gutierrez, N.-G. & Xu, S. Soft sensors form a network. Nat. Electron. 2, 327–328 (2019).

    Article  Google Scholar 

  228. Li, Z., Tian, X., Qiu, C.-W. & Ho, J. S. Metasurfaces for bioelectronics and healthcare. Nat. Electron. 4, 382–391 (2021).

    Article  CAS  Google Scholar 

  229. Tian, X. et al. Wireless body sensor networks based on metamaterial textiles. Nat. Electron. 2, 243–251 (2019).

    Article  Google Scholar 

  230. Lim, C. et al. Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Sci. Adv. 7, eabd3716 (2021).

    Article  CAS  Google Scholar 

  231. Huang, D., Wang, H., Li, J., Chen, Y. & Li, Z. in 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors 298–301 (IEEE, 2019).

  232. Liu, J., Jiang, L., Liu, H. & Cai, X. A bifunctional biosensor for subcutaneous glucose monitoring by reverse iontophoresis. J. Electroanal. Chem. 660, 8–13 (2011).

    Article  CAS  Google Scholar 

  233. Alberto, J. et al. Fully untethered battery-free biomonitoring electronic tattoo with wireless energy harvesting. Sci. Rep. 10, 5539 (2020).

    Article  Google Scholar 

  234. Choi, Y. S. et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat. Biotechnol. 39, 1228–1238 (2021).

    Article  CAS  Google Scholar 

  235. Choi, M., Humar, M., Kim, S. & Yun, S. H. Step-index optical fiber made of biocompatible hydrogels. Adv. Mater. 27, 4081–4086 (2015).

    Article  CAS  Google Scholar 

  236. Schröder, H. et al. in Optoelectronic Integrated Circuits VIII 612407 (SPIE, 2006).

  237. Manocchi, A. K., Domachuk, P., Omenetto, F. G. & Yi, H. Facile fabrication of gelatin-based biopolymeric optical waveguides. Biotechnol. Bioeng. 103, 725–732 (2009).

    Article  CAS  Google Scholar 

  238. Hanada, Y., Sugioka, K. & Midorikawa, K. UV waveguides light fabricated in fluoropolymer CYTOP by femtosecond laser direct writing. Opt. Express 18, 446–450 (2010).

    Article  CAS  Google Scholar 

  239. Liu, C.-H. & Kenny, T. W. A high-precision, wide-bandwidth micromachined tunneling accelerometer. J. Microelectromech. Syst. 10, 425–433 (2001).

    Article  Google Scholar 

  240. Zhu, H.-T., Chen, Y., Xiong, Y.-F., Xu, F. & Lu, Y.-Q. A flexible wireless dielectric sensor for noninvasive fluid monitoring. Sensors 20, 174 (2020).

    Article  Google Scholar 

  241. Choi, A. & Shin, H. Photoplethysmography sampling frequency: pilot assessment of how low can we go to analyze pulse rate variability with reliability? Physiol. Meas. 38, 586 (2017).

    Article  CAS  Google Scholar 

  242. Guschlbauer, M. et al. Zero-heat-flux thermometry for non-invasive measurement of core body temperature in pigs. PLoS ONE 11, e0150759 (2016).

    Article  Google Scholar 

  243. Sharma, S., Huang, Z., Rogers, M., Boutelle, M. & Cass, A. E. Evaluation of a minimally invasive glucose biosensor for continuous tissue monitoring. Anal. Bioanal. Chem. 408, 8427–8435 (2016).

    Article  CAS  Google Scholar 

  244. Ren, L. et al. Fabrication of flexible microneedle array electrodes for wearable bio-signal recording. Sensors 18, 1191 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Institutes of Health grants 1R21EB025521-01, 1R21EB027303-01A1 and 3R21EB027303-02S1. The authors thank S. Xiang for valuable discussions and constructive feedback on manuscript preparation, and all authors whose work is reviewed in this article.

Author information

Authors and Affiliations

Authors

Contributions

M.L., H.H. and S.Z. contributed equally to the literature review, figure design, manuscript writing and discussion of content. S.X. conceived the article. All authors contributed to reviewing and editing the manuscript.

Corresponding author

Correspondence to Sheng Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review statement

Nature Reviews Materials thanks Sei Kwang Hahn and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, M., Hu, H., Zhou, S. et al. Soft wearable devices for deep-tissue sensing. Nat Rev Mater 7, 850–869 (2022). https://doi.org/10.1038/s41578-022-00427-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-022-00427-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research