Predicting the Forest Canopy Height from LiDAR and Multi-Sensor Data Using Machine Learning over India
"> Figure 1
<p>Study area. India land cover map (representing only the major forest covers).</p> "> Figure 2
<p>Methodological flow diagram for predicting the canopy height using the GEDI canopy height data by applying the decision tree-based machine learning (ML) algorithm.</p> "> Figure 3
<p>(<b>a</b>) GEDI predicted forest canopy height map, (<b>b</b>) the RF model predicted vs. the field-estimated height plot using the GEDI data and (<b>c</b>) histograms showing the canopy height distribution for the evergreen forests.</p> "> Figure 4
<p>(<b>a</b>) GEDI predicted forest canopy height map, (<b>b</b>) the RF model predicted vs. the field-estimated height plot using GEDI data and (<b>c</b>) histograms showing the canopy height distribution for the deciduous forests.</p> "> Figure 5
<p>(<b>a</b>) GEDI predicted forest canopy height map, (<b>b</b>) the RF model predicted vs. the field-estimated height plot using the GEDI data and (<b>c</b>) histograms showing the canopy height distribution for the mixed forest.</p> "> Figure 6
<p>(<b>a</b>) GEDI predicted forest canopy height map, (<b>b</b>) the RF model predicted vs. the field-estimated height plot using the GEDI data and (<b>c</b>) histograms showing the canopy height distribution for plantations.</p> "> Figure 7
<p>(<b>a</b>) GEDI predicted forest canopy height map, (<b>b</b>) the RF model predicted vs. the field-estimated height plot using the GEDI data and (<b>c</b>) histograms showing the canopy height distribution for the shrubland.</p> "> Figure 8
<p>Validation of the canopy height map, based on the field observations.</p> "> Figure 9
<p>Unified canopy height map of India’s forest cover (excluding grassland).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multi-Sensor Satellite Data and Pre-Processing
2.2. LiDAR GEDI L2A Raster Canopy Top Height (Version 2)
2.3. Satellite Data-Derived Proxies Used as Predictor Variables
2.4. Canopy Height Prediction Using GEDI and Machine Learning (ML)
Random Forest
3. Results
3.1. Canopy Height Modelling
3.2. Canopy Height Mapping
3.2.1. Canopy Height Mapping of the Evergreen Forest
3.2.2. Canopy Height Mapping of the Deciduous Forest
3.2.3. Canopy Height Mapping of the Mixed Forest
3.2.4. Canopy Height Mapping of the Plantation
3.2.5. Canopy Height Mapping of the Shrubland
3.3. Canopy Height Map Validation
4. Discussion
Canopy Height Modelling
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roy, S.; Mudi, S.; Das, P.; Ghosh, S.; Shit, P.K.; Bhunia, G.S.; Kim, J. Estimating Above Ground Biomass (AGB) and Tree Density Using Sentinel-1 Data. In Spatial Modeling in Forest Resources Management; Springer: Berlin/Heidelberg, Germany, 2021; pp. 259–280. [Google Scholar]
- Mensah, S.; Egeru, A.; Assogbadjo, A.E.; Kakaï, R.G. Vegetation structure, dominance patterns and height growth in an Afromontane forest, Southern Africa. J. For. Res. 2020, 31, 453–462. [Google Scholar] [CrossRef]
- Fahey, T.J.; Sherman, R.E.; Tanner, E.V. Tropical montane cloud forest: Environmental drivers of vegetation structure and ecosystem function. Trop. Ecol. 2016, 32, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Feldpausch, T.R.; Banin, L.; Phillips, O.L.; Baker, T.R.; Lewis, S.L.; Quesada, C.A.; Affum-Baffoe, K.; Arets, E.J.M.M.; Berry, N.J.; Bird, M.; et al. Height-diameter allometry of tropical forest trees. Biogeosciences 2011, 8, 1081–1106. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, J.; Fandiño, M.C.; Chazdon, R.L. Vegetation Structure, Composition, and Species Richness across a 56-year Chronosequence of Dry Tropical Forest on Providencia Island, Colombia. Biotrop. Biol. Conserv. 2005, 37, 520–530. [Google Scholar]
- Solberg, S.; Hansen, E.H.; Gobakken, T.; Naessset, E.; Zahabu, E. Biomass and InSAR height relationship in a dense tropical forest. Remote Sens. Environ. 2017, 192, 166–175. [Google Scholar] [CrossRef]
- Babcock, C.; Finley, A.O.; Bradford, J.B.; Kolka, R.; Birdsey, R.; Ryan, M.G. LiDAR based prediction of forest biomass using hierarchical models with spatially varying coefficients. Remote Sens. Environ. 2015, 169, 113–127. [Google Scholar] [CrossRef] [Green Version]
- Laurin, G.V.; Chen, Q.; Lindsell, J.A.; Coomes, D.A.; Del Frate, F.; Guerriero, L.; Pirotti, F.; Valentini, R. Above ground biomass estimation in an African tropical forest with LiDAR and hyperspectral data. ISPRS J. Photogramm. Remote Sens. 2014, 89, 49–58. [Google Scholar] [CrossRef]
- Takagi, K.; Yone, Y.; Takahashi, H.; Sakai, R.; Hojyo, H.; Kamiura, T.; Nomura, M.; Liang, N.; Fukazawa, T.; Miya, H.; et al. Forest biomass and volume estimation using airborne LiDAR in a cool-temperate forest of northern Hokkaido, Japan. Ecol. Inform. 2015, 26, 54–60. [Google Scholar] [CrossRef]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Behera, M.D.; Roy, P.S. Lidar Remote Sensing for Forestry Applications: The Indian Context. Curr. Sci. 2002, 83, 1320–1328. [Google Scholar]
- Zwally, H.J.; Schutz, B.; Abdalati, W.; Abshire, J.; Bentley, C.; Brenner, A.; Bufton, J.; Dezio, J.; Hancock, D.; Harding, D.; et al. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J. Geodyn. 2002, 34, 405–445. [Google Scholar] [CrossRef] [Green Version]
- Baccini, A.; Laporte, N.; Goetz, S.J.; Sun, M.; Dong, H. A first map of tropical Africa’s aboveground biomass derived from satellite imagery. Environ. Res. Lett. 2008, 3, 045011. [Google Scholar] [CrossRef]
- Baccini, A.G.S.J.; Goetz, S.J.; Walker, W.S.; Laporte, N.T.; Sun, M.; Sulla-Menashe, D.; Hackler, J.L.; Beck, P.S.A.; Dubayah, R.O.; Friedl, M.A.; et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2012, 2, 182–185. [Google Scholar] [CrossRef]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef] [Green Version]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Neuenschwander, A.; Pitts, K. Ice, Cloud, and Land Elevation Satellite 2 (ICESat-2) Algorithm Theoretical Basis Document (ATBD) for Land-Vegetation along-Track Products (ATL08). Applied Research Laboratory, University of Texas, Austin, TX. 2019. Available online: https://icesat-2.gsfc.nasa.gov/sites/default/files/page_files/ICESat2_ATL08_ATBD_r002_v2.pdf (accessed on 29 September 2022).
- Narine, L.L.; Popescu, S.; Neuenschwander, A.; Zhou, T.; Srinivasan, S.; Harbeck, K. Estimating aboveground biomass and forest canopy cover with simulated ICESat-2 data. Remote Sens. Environ. 2019, 224, 1–11. [Google Scholar] [CrossRef]
- Neuenschwander, A.L.; Magruder, L.A. Canopy and Terrain Height Retrievals with ICESat-2: A First Look. Remote Sens. 2019, 11, 1721. [Google Scholar] [CrossRef] [Green Version]
- Guerra-Hernández, J.; Narine, L.L.; Pascual, A.; Gonzalez-Ferreiro, E.; Botequim, B.; Malambo, L.; Neuenschwander, A.; Popescu, S.C.; Godinho, S. Aboveground Biomass Mapping by Integrating ICESat-2, SENTINEL-1, SENTINEL-2, ALOS2/PALSAR2, and Topographic Information in Mediterranean Forests. GISci. Remote Sens. 2022, 59, 1509–1533. [Google Scholar] [CrossRef]
- Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; et al. The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the earth’s forests and topography. Sci. Remote sens. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Joshi, N.; Mitchard, E.T.A.; Brolly, M.; Schumacher, J.; Fernández-Landa, A.; Johannsen, V.K.; Marchamalo, M.; Fensholt, R. Understanding “saturation” of Radar Signals over Forests. Sci. Rep. 2017, 7, 3505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behera, M.D.; Tripathi, P.; Mishra, B.; Kumar, S.; Chitale, V.S.; Behera, S.K. Above-Ground Biomass and Carbon Estimates of Shorea Robusta and Tectona Grandis Forests Using QuadPOL ALOS PALSAR Data. Adv. Space Res. 2016, 57, 552–561. [Google Scholar] [CrossRef]
- Sothe, C.; Gonsamo, A.; Lourenço, R.B.; Kurz, W.A.; Snider, J. Spatially Continuous Mapping of Forest Canopy Height in Canada by Combining GEDI and ICESat-2 with PALSAR and Sentinel. Remote Sens. 2022, 14, 5158. [Google Scholar] [CrossRef]
- Lang, N.; Kalischek, N.; Armston, J.; Schindler, K.; Dubayah, R.; Wegner, J.D. Global Canopy Height Regression and Uncertainty Estimation from GEDI LIDAR Waveforms with Deep Ensembles. Remote Sens. Environ. 2022, 268, 112760. [Google Scholar] [CrossRef]
- Liu, X.; Su, Y.; Hu, T.; Yang, Q.; Liu, B.; Deng, Y.; Tang, H.; Tang, Z.; Fang, J.; Guo, Q. Neural Network Guided Interpolation for Mapping Canopy Height of China’s Forests by Integrating GEDI and ICESat-2 Data. Remote Sens. Environ. 2022, 269, 112844. [Google Scholar] [CrossRef]
- Adam, M.; Urbazaev, M.; Dubois, C.; Schmullius, C. Accuracy Assessment of GEDI Terrain Elevation and Canopy Height Estimates in European Temperate Forests: Influence of Environmental and Acquisition Parameters. Remote Sens. 2020, 12, 3948. [Google Scholar] [CrossRef]
- Fayad, I.; Ienco, D.; Baghdadi, N.; Gaetano, R.; Alvares, C.A.; Stape, J.L.; Ferraço Scolforo, H.; Le Maire, G. A CNN-Based Approach for the Estimation of Canopy Heights and Wood Volume from GEDI Waveforms. Remote Sens. Environ. 2021, 265, 112652. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E.; et al. Mapping Global Forest Canopy Height through Integration of GEDI and Landsat Data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Dorado-Roda, I.; Pascual, A.; Godinho, S.; Silva, C.A.; Botequim, B.; Rodríguez-Gonzálvez, P.; González-Ferreiro, E.; Guerra-Hernández, J. Assessing the Accuracy of GEDI Data for Canopy Height and Aboveground Biomass Estimates in Mediterranean Forests. Remote Sens. 2021, 13, 2279. [Google Scholar] [CrossRef]
- Simard, M.; Pinto, N.; Fisher, J.B.; Baccini, A. Mapping forest canopy height globally with spaceborne LiDAR. J. Geophys. Res. Biogeosci. 2011, 116, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, G.; Ding, J.; Guo, Z.; Tang, S.; Wang, C.; Huang, Q.; Liu, R.; Chen, J.M. A combined GLAS and MODIS estimation of the global distribution of mean forest canopy height. Remote Sens. Environ. 2016, 174, 24–43. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, P.; Behera, M.D. Plant Height Profiling in Western India Using LiDAR Data. Curr. Sci. 2013, 105, 970–977. [Google Scholar]
- Ghosh, S.M.; Behera, M.D. Forest Canopy Height Estimation Using Satellite Laser Altimetry: A Case Study in the Western Ghats, India. Appl. Geomat. 2017, 9, 159–166. [Google Scholar] [CrossRef]
- Schlund, M.; Wenzel, A.; Camarretta, N.; Stiegler, C.; Erasmi, S. Vegetation Canopy Height Estimation in Dynamic Tropical Landscapes with TanDEM-X Supported by GEDI Data. Methods Ecol. Evol. 2022, 1–18. [Google Scholar] [CrossRef]
- Lin, X.; Xu, M.; Cao, C.; Dang, Y.; Bashir, B.; Xie, B.; Huang, Z. Estimates of Forest Canopy Height Using a Combination of ICESat-2/ATLAS Data and Stereo-Photogrammetry. Remote Sens. 2020, 12, 3649. [Google Scholar] [CrossRef]
- Gupta, R.; Sharma, L.K. Mixed Tropical Forests Canopy Height Mapping from Spaceborne LiDAR GEDI and Multisensor Imagery Using Machine Learning Models. Remote Sens. Appl. Soc. Environ. 2022, 27, 100817. [Google Scholar] [CrossRef]
- Rishmawi, K.; Huang, C.; Zhan, X. Monitoring Key Forest Structure Attributes across the Conterminous United States by Integrating GEDI LiDAR Measurements and VIIRS Data. Remote Sens. 2021, 13, 442. [Google Scholar] [CrossRef]
- Shimada, M.; Isoguchi, O.; Tadono, T.; Isono, K. PALSAR Radiometric and Geometric Calibration. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3915–3932. [Google Scholar] [CrossRef]
- Roy, P.S.; Roy, A.; Joshi, P.K.; Kale, M.P.; Srivastava, V.K.; Srivastava, S.K.; Dwevidi, R.S.; Joshi, C.; Behera, M.D.; Meiyappan, P. Development of Decadal (1985–1995–2005) Land Use and Land Cover Database for India. Remote Sens. 2015, 7, 2401–2430. [Google Scholar] [CrossRef] [Green Version]
- Cutler, D.R.; Edwards Jr, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random Forests for Classification in Ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Das, P.; Mudi, S.; Behera, M.D.; Barik, S.K.; Mishra, D.R.; Roy, P.S. Automated Mapping for Long-Term Analysis of Shifting Cultivation in Northeast India. Remote Sens. 2021, 13, 1066. [Google Scholar] [CrossRef]
- Li, W.; Niu, Z.; Shang, R.; Qin, Y.; Wang, L.; Chen, H. High-Resolution Mapping of Forest Canopy Height Using Machine Learning by Coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 Data. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102163. [Google Scholar] [CrossRef]
- Lang, N.; Jetz, W.; Schindler, K.; Wegner, J.D. A High-Resolution Canopy Height Model of the Earth. arXiv 2022, arXiv:2204.08322. [Google Scholar]
- Ghosh, S.M.; Behera, M.D.; Paramanik, S. Canopy Height Estimation Using Sentinel Series Images through Machine Learning Models in a Mangrove Forest. Remote Sens. 2020, 12, 1519. [Google Scholar] [CrossRef]
- Prakash, A.J.; Behera, M.D.; Ghosh, S.M.; Das, A.; Mishra, D.R. A New Synergistic Approach for Sentinel-1 and PALSAR-2 in a Machine Learning Framework to Predict Aboveground Biomass of a Dense Mangrove Forest. Ecol. Inform. 2022, 72, 101900. [Google Scholar] [CrossRef]
- Huang, H.; Liu, C.; Wang, X. Constructing a Finer-Resolution Forest Height in China Using ICESat/GLAS, Landsat and ALOS PALSAR Data and Height Patterns of Natural Forests and Plantations. Remote Sens. 2019, 11, 1740. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.; Zhao, F.; Ma, K.; Li, D.; Sun, H. Mapping the Forest Canopy Height in Northern China by Synergizing ICESat-2 with Sentinel-2 Using a Stacking Algorithm. Remote Sens. 2021, 13, 1535. [Google Scholar] [CrossRef]
- Ghosh, S.M.; Behera, M.D.; Jagadish, B.; Das, A.K.; Mishra, D.R. A Novel Approach for Estimation of Aboveground Biomass of a Carbon-Rich Mangrove Site in India. J. Environ. Manag. 2021, 292, 112816. [Google Scholar] [CrossRef]
- Dubayah, R.; Luthcke, S.; Sabaka, T.; Nicholas, J.; Preaux, S.; Hofton, M. GEDI L3 Gridded Land Surface Metrics, Version 1; ORNL DAAC: Oak Ridge, TN, USA, 2021. [Google Scholar] [CrossRef]
S. No | Study | Method | R2 | RMSE (m) | MAE (m) | Bias (m) | Reference |
---|---|---|---|---|---|---|---|
1 | Global | Convolutional Neural Network (CNN) Model | - | 3.60 | 2.1 | −1.0 to −0.1 | [25] |
2 | Regional | Neural Network Guided Interpolation (NNGI) | 0.58 | 4.93 | - | −1.42 | [26] |
3 | Regional | Comparison of GEDI-CHM and ALS-CHM | 0.27–0.34 | - | - | - | [27] |
4 | Regional | Convolutional Neural Network (CNN) Model | 0.86–0.91 | 1.54–1.94 | - | - | [28] |
5 | Global | Machine-Learning Algorithm (regression tree) | 0.62 | 6.60 | 4.45 | - | [29] |
6 | Regional | Non-Linear Regression | 0.49–0.71 | 1.95–3.96 | - | Dehesas (−0.50), Encinares (0.39), Alcornocales (−0.06), Pinaster (−0.97), and Pinea (0.27) | [30] |
7 | Regional | Semi-Empirical Models | 0.42–0.62 | 6.89–10.25 | - | 0.7–−0.8 | [36] |
8 | Regional | Artificial Neural Network (ANN) Model | 0.51 | 3.34–3.47 | - | - | [37] |
9 | Regional | Bayesian Regularization for Feed-Forward Neural Networks (BRNNs) | 0.49 | 4.68 | 3.66 | - | [38] |
10 | Regional | Random Forest Regression | 0.80 | 3.35 | 2.09 | - | [39] |
S. No | Data | Date | Source | Spatial Resolution (m) | Product Details |
---|---|---|---|---|---|
1 | GEDI Level 2A Height Metric | 2021 | GEE | 25 | Relative Height Metrics at 98% (rh98) |
2 | Sentinel-1 (GRD) | 2021 | GEE | 10 | (Polarization: VH, VV) |
3 | Sentinel-2 MSI | 2021 | GEE | 30 | (Bands: Blue, Green, Red, Re, NIR, Edge 1, RedEdge 2, RedEdge 3, SWIR 1, SWIR 2) |
4 | SRTM DEM | - | GEE | 30 | (Slope, Elevation) |
5 | Global PALSAR-2/PALSAR Yearly Mosaic | 2021 | GEE | 25 | (Polarization: HH, HV) |
6 | Landsat data derived Vegetation Continuous Fields (VCF) tree cover | 2015 | GEE | 30 | Tree Canopy Cover (%) |
S. No | Data | Predictor Variables |
---|---|---|
1 | Sentinel-1 | VV, VH, VH∗VV, VH/VV, VV/VH, Average (VH, VV), Square root (VH, VV) |
2 | PALSAR-2/PALSAR | HH, HV, HH∗HV, HH/HV, HV/HH, Average (HH, HV), Square root (HH, HV) |
3 | Sentinel-2 | Blue, Green, Red, NIR, Red Edge-1, Red Edge-2, Red Edge-3, SWIR-1, SWIR-2, |
4 | Sentinel-2 Vegetation Indices | Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Green Normalized Difference Vegetation Index (GNDVI), Normalized Difference Green Index (NDGI), Chlorophyll Vegetation Index (CVI) |
5 | SRTM DEM | Elevation, Slope |
6 | Landsat Vegetation Tree Cover | Tree Canopy Cover |
Forest Type | Observation Footprints | Max (m) | Min (m) | Mean (m) |
---|---|---|---|---|
Evergreen Forest | 62,097 | 47.23 | 1.64 | 22.75 |
Deciduous Forest | 106,335 | 42.47 | 1.68 | 12.67 |
Mixed Forest | 40,084 | 42.29 | 1.87 | 13.22 |
Plantation | 16,340 | 39.89 | 0.03 | 12.75 |
Shrubland | 33,007 | 40.71 | 1.75 | 7.18 |
S. No | Forest Type | R2 | RMSE (m) | nRMSE (%) | Relative Bias |
---|---|---|---|---|---|
1 | Evergreen Forest | 0.55 | 6.34 | 13.60 | −0.029 |
2 | Deciduous Forest | 0.56 | 6.01 | 12.54 | −0.03 |
3 | Mixed Forest | 0.64 | 4.94 | 12.41 | −0.06 |
4 | Plantation | 0.50 | 5.01 | 14.32 | 0.086 |
5 | Shrubland | 0.60 | 3.73 | 9.70 | −0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, S.M.; Behera, M.D.; Kumar, S.; Das, P.; Prakash, A.J.; Bhaskaran, P.K.; Roy, P.S.; Barik, S.K.; Jeganathan, C.; Srivastava, P.K.; et al. Predicting the Forest Canopy Height from LiDAR and Multi-Sensor Data Using Machine Learning over India. Remote Sens. 2022, 14, 5968. https://doi.org/10.3390/rs14235968
Ghosh SM, Behera MD, Kumar S, Das P, Prakash AJ, Bhaskaran PK, Roy PS, Barik SK, Jeganathan C, Srivastava PK, et al. Predicting the Forest Canopy Height from LiDAR and Multi-Sensor Data Using Machine Learning over India. Remote Sensing. 2022; 14(23):5968. https://doi.org/10.3390/rs14235968
Chicago/Turabian StyleGhosh, Sujit M., Mukunda D. Behera, Subham Kumar, Pulakesh Das, Ambadipudi J. Prakash, Prasad K. Bhaskaran, Parth S. Roy, Saroj K. Barik, Chockalingam Jeganathan, Prashant K. Srivastava, and et al. 2022. "Predicting the Forest Canopy Height from LiDAR and Multi-Sensor Data Using Machine Learning over India" Remote Sensing 14, no. 23: 5968. https://doi.org/10.3390/rs14235968
APA StyleGhosh, S. M., Behera, M. D., Kumar, S., Das, P., Prakash, A. J., Bhaskaran, P. K., Roy, P. S., Barik, S. K., Jeganathan, C., Srivastava, P. K., & Behera, S. K. (2022). Predicting the Forest Canopy Height from LiDAR and Multi-Sensor Data Using Machine Learning over India. Remote Sensing, 14(23), 5968. https://doi.org/10.3390/rs14235968