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Abstract: Monitoring forest height is crucial to determine the structure and biodiversity of forest
ecosystems. However, detailed spatial patterns of forest height from 30 m resolution remotely
sensed data are currently unavailable. In this study, we present a new method for mapping forest
height by combining spaceborne Light Detection and Ranging (LiDAR) with imagery from multiple
remote sensing sources, including the Landsat 5 Thematic Mapper (TM), the Phased Array L-band
Synthetic Aperture Radars (PALSAR), and topographic data. The nationwide forest heights agree well
with results obtained from 525 independent forest height field measurements, yielding correlation
coefficient, root mean square error (RMSE), and mean absolute error (MAE) values of 0.92, 4.31 m,
and 3.87 m, respectively. Forest heights derived from remotely sensed data range from 1.41 m to
38.94 m, with an average forest height of 16.08 ± 3.34 m. Mean forest heights differ only slightly
among different forest types. In natural forests, conifer forests have the greatest mean forest heights,
whereas in plantations, bamboo forests have the greatest mean forest heights. Important predictors
for modeling forest height using the random forest regression tree method include slope, surface
reflectance of red bands and HV backscatter. The uncertainty caused by the uneven distribution of
Geoscience Laser Altimeter System (GLAS) footprints is estimated to be 0.64 m. After integrating
PALSAR data into the model, the uncertainty associated with forest height estimation was reduced
by 4.58%. Our finer-resolution forest height could serve as a benchmark to estimate forest carbon
storage and would greatly contribute to better understanding the roles of ecological engineering
projects in China.
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1. Introduction

Height is a crucial component of forest ecological structure due to its ability to govern elemental
processing, competitive dynamics and habitat suitability for many plant and animal species [1,2].
Moreover, height is main feature for land cover classification, especially for separate forests and
shrubs [3]. However, measuring forest height on the ground is laborious and difficult to implement on
a national scale. China has the largest area of plantations in the world via some ecological engineering
projects [4]. An accurate account of China’s forest height spatial distribution is critical for assessing the
effect of ecological projects, such as the Natural Forest Conservation Program and the Grain for Green
Program [5]. However, a Chinese forest height map with finer resolution (30 m) is not available to the
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scientific community. Height variation within forest types and their differences, especially for natural
forests and plantations, also remain unknown. Therefore, it is important to quantify forest height and
its spatial pattern to reduce uncertainty in forest carbon and ecological value assessments, especially
for plantations in China.

Light Detection and Ranging (LiDAR) is commonly used to acquire accurate forest heights by
measuring the distance between the top of a tree canopy and the ground [6,7]. The Geoscience Laser
Altimeter System (GLAS), located aboard the Ice, Cloud and land Elevation Satellite (ICESat), can
measure global forest height from space. Although the height detection accuracy of GLAS has been
reported to be 10 cm in flat areas [8], it cannot map wall-to-wall forest height directly because it is
operated in a point sampling mode and there is a large distance between its tracks [9]. Specifically,
spots are spaced approximately 170 m apart along a given track, with the distance between two tracks
ranging from 2.5 km at a latitude of 80◦ to 15 km at the Equator [10,11]. Therefore, a significant
challenge in mapping wall-to-wall forest height is how to extrapolate the height of a given forest area
with no GLAS footprints coverage. Many studies use optical images, such as spectral data from the
Moderate Resolution Imaging Spectrometer (MODIS) and/or topographic data, to extrapolate heights
measured at GLAS footprints into global forest heights with low resolution (500 m or 1000 m) [12–15].
However, few similar studies have been conducted to map Chinese forest height, especially at 30 m
scale [16,17]. Additionally, some of these studies also incorporate climate data, such as temperature
and precipitation, in their modeling of forest height [13,15]. However, introducing multi-year climate
data into forest height modeling caused autocorrelation to analysis climatic determinants of global
patterns of forest canopy height [18].

To date, relatively few studies have combined Synthetic Aperture Radar (SAR) imagery with
GLAS data in estimating forest heights in China because high resolution (~30 m) SAR imagery has
not been available in the past at national scales [19]. The SAR backscatter is sensitive to biophysical
parameters; in forests, double bounces from the ground and tree trunks contribute to backscatter
energy, as does the volumetric scattering from the heterogeneous forest canopy and plant stems [20].
The total contribution of each component to this backscatter depends on the frequency used by the
SAR. For example, L-band (1–2 GHz) radar backscatter has been shown to be useful in identifying
forest areas and can be highly correlated to the presence of woody biomass [21,22]. However, it is still
unclear whether this L-band radar backscatter can improve Chinese forest height estimation accuracy
due to the variations in forest structure on this spatial scale [23].

This study builds on the previous study conducted by Huang et al. (2017). They employed
MODIS Nadir BRDF (Bidirectional Reflectance Distribution Function) Adjusted Reflectance (NBAR) in
the growing season, leaf area index (LAI), canopy cover and GLAS data to map Chinese vegetation
height at 500 m resolution. Here, we improve upon the model inputs, moving from a coarse resolution
MODIS growing season data set to a set of finer resolution Landsat growing season composite and
L-band SAR. We will answer the following three questions:

(1) What is the accuracy of the finer-resolution forest height map of China generated by the
combination of GLAS, Landsat imagery, L-band SAR, topographical data and tree cover?

(2) What is the difference between forest heights in natural forests and those in plantations?
(3) To what extent can the addition of L-band SAR data improve the accuracy of extrapolated forest

heights on a large scale?

2. Data and Methods

2.1. Height Extraction from Geoscience Laser Altimeter System (GLAS) Footprints

The ICESat/GLAS was launched on 12 January 2003. GLAS acquires data by transmitting a laser
pulse with a duration of 10 nanoseconds and subsequently recording the pulse that is returned after
being reflected from the footprint on the ground that is approximately 60 m in diameter [24]. GLAS data
was acquired from the National Snow and Ice Data Center (NSIDC, http://nsidc.org/data/icesat), Release
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33, focusing on the transmitted and received waveform data (GLA01), waveform parameterization data
(GLA05) and Land surface altimetry data (GLA14). All of them were obtained from May to June 2006.

A three-step procedure was used to identify high-quality footprints and to extract their heights [25].
First, the footprints with low signal-to-noise (SNR < 18) and saturation (i_satCorrFlg > 2) were removed
to reduce atmospheric attenuation, including could. Second, the GLAS footprints were classified to
three types (open space, single tree or single layer building, and complex tree or multi-layer building)
in terms of waveform indices derived from the GLAS original waveform [26]. Thirdly, for the first
type (open space), which might include bare land, water, road, and sparse grassland, heights were
derived from the GLA14 product. Due to the number restrictions in the returned waveform and the
lack of slope correction in GLA14 product, the other two types (single tree or single layer building, and
complex tree or multi-layer building) were processed with a Gaussian decomposition algorithm to
extract returned waveforms from GLA01 and with a topographic correction factor (Equation (1)) to
correct for the impact of topography on height extraction [27–29].

VHslope = gpCntRng(1) − SigBeg− 3×
(
σgp − σtransmit

)
(1)

where VHslope represents the vegetation height in the rugged area; in this study, a ‘rugged area’ is
defined as a region with a slope greater than 5◦, as determined by previous studies [13,27]. gpCntRng(1)
is the center position of the last peaks corresponding to the ground, SigBeg represents the start of the
earliest return peaks, corresponding to the presence of the forest canopy, σgp represents the standard
deviation of Gaussian decomposition from the ground peak, and σtransmit is defined as the standard
deviation of Gaussian decomposition from a transmitted waveform.

GLAS spots overlaying with areas without vegetation (including bare land, impervious terrains,
and water-rich regions) were identified and removed from the dataset with published land cover
maps [30,31]. The final GLAS dataset contains 651,265 measurements of heights obtained from across
China. The GLAS footprints were assigned to 50 ecozones of China for further modelling given that the
similar climatic, geographic, and environmental condition in given ecozone [32]. The corresponding
information of 50 ecozones is listed in the supporting Table S1.

2.2. The Greenest Compositions from Landsat 5 Thematic Mapper (TM)

Landsat 5 Thematic Mapper (TM) images were obtained from the Google Earth Engine (GEE),
and original images were obtained from the United States Geological Survey (USGS). We processed all
available Landsat 5 TM standard surface reflectance data from 2006, including six reflectance bands
B1-B5 and B7, as well as the cloud mask band. These surface reflectance data were processed using the
LEDAPS method (http://ledaps.nascom.nasa.gov/, accessed on 6 August 2016), and data with cloud
were processed using the Fmask algorithm [33]. We masked pixels from shadows and clouds in the
mask band. Then, we calculated the Normalized Difference Vegetation Index (NDVI) for all available
Landsat 5 TM data obtained in 2006. Pixels with maximum NDVI in 2006 were selected to represent
the greenest compositions recorded in 2006, which relate to data from the growing season. The final
‘greenest composition’ thus includes six reflectance bands from Landsat 5 TM and NDVI.

2.3. Landsat Vegetation Continuous Fields (VCF) Tree Cover and Topographic Data

Vegetation continuous fields (VCF) data represent the percentage of a pixel’s area covered by
woody vegetation greater than 5 m in height at a resolution of 30 m. These data are derived from all
seven bands of Landsat 5 TM and Landsat 7 ETM+; these datasets have been produced in 2000, 2005
and 2010 [34]. In this study, because our Landsat 5 TM images and GLAS data were obtained close to
2005, we use VCF data obtained in 2005.

Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) data, which also
have a spatial resolution of 30 m, were released in 2015. This dataset underwent a void-filling
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process [35,36] in which its elevations, slopes, and other aspects [37] were extracted as input variables
for subsequent modeling.

2.4. Phased Array L-Band Synthetic Aperture Radar (PALSAR-2/PALSAR) Mosaic Dataset

The Phased Array L-band Synthetic Aperture Radar (PALSAR) yearly mosaic dataset was collected
globally from 2007 to 2010. It has a resolution of 25 m and was aggregated from PALSAR located on the
Advanced Land Observing Satellite (ALOS) [38]. Original SAR data were obtained using the fine beam
dual polarization mode (FBD), which utilizes HH (horizontal-transmit, horizontal receive) and HV
(horizontal-transmit, vertical receive). Geometric distortion of these images and topographic effects
on the images’ intensities were reduced with an estimated geometric accuracy of 12 m [39]. Original
images recording a minimum response to surface moisture were selected and composited to the mosaic
dataset, which was then radiometrically calibrated and stored as digital numbers (DN). These DN
values can be converted to gamma naught values (representing the backscattering coefficient), which
are expressed in decibel units (dB), using the following equation [40]:

γ
◦

= 10log10
〈
DN2

〉
+ CF (2)

where CF represents a calibration factor equal to −83.0 dB, and < > represents the ensemble averaging.
We downloaded all PALSAR HH and HV data acquired in 2007 because it is the closest year to

the times our optical and GLAS data were collected. Then we converted these data into backscattering
coefficients (in decibels). We also selected PALSAR data from the growing season and from closer
years in cases of limited availability in 2007 (Figure 1). To achieve consistency between datasets, HH
and HV data were resampled to acquire a resolution of 30 m with a nearest neighbor interpolation.
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Figure 1. Date acquisition of Phased Array L-band Synthetic Aperture Radar (PALSAR) mosaic dataset
in China in 2007, including years (left) and months (right).

2.5. Sampling Selection for Natural Forests and Plantations

The State Forestry Bureau of China generates and examines the National Forestry Inventories
dataset (NFI), which compiles data concerning the areas, types, origins and distributions of forest
resources [4]. Survey samples are systematically allocated according to statistical principles, and
investigators periodically revisit survey sample sites. For example, the NFI has a 5-year cycle of survey
site visits, and approximately 20% of provinces conduct inventories each year. Therefore, national
statistics were thus obtained by summing all statistical data from all provinces acquired in a 5-year
cycle. Through this sampling, the overall accuracy of these results was assessed to be approximately
95% [41]. We interpreted the forest origins (natural forest or plantations) of these samples at the



Remote Sens. 2019, 11, 1740 5 of 17

province scale by using the current forest map of the eighth NFI (2009–2013). In total, 9772 samples
were interpreted from the Atlas of Forest Resources of China to have originated from natural forests,
and 5010 samples were deemed likely to have originated from plantations (Figure 2). Moreover, forest
types for natural forest and plantations were interpreted as natural conifer forests (NCF), natural
broadleaf forests (NBF), natural conifer and broadleaf mixed forests (NMF), natural bamboo forests
(NB), conifer plantations (CP), broadleaf plantations (BLP), conifer and broadleaf mixed plantations
(MP) and bamboo plantations (BP).
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2.6. Wall-to-Wall Forest Height Estimation

In order to model spatially continuous forest heights, GLAS height data were used as training
data and related to the data from seven Landsat 5 TM variables (B1–B5, B7 and NDVI), two PALSAR
mosaic data (HH and HV), three SRTM-derived metrics (elevation, slope and aspect) and VCF with the
random forest (RF) regression tree (Figure 3), given its ability to handle a great deal of input predictors
that are not independent and non-linearly separable [42–45].

Using an RF regression tree to produce spatial modeling involves two main steps: first, determining
the optimal parameters for the training of the RF regression tree, and second, producing gridded
forest heights using RF regression tree. These training and modeling processes were implemented one
ecozone at a time. Both the number of trees and the number of variables to split on each node were
determined iteratively [46]; the initial value for the number of trees was set at 100 and the initial value
for the number of nodes was set at 3. The iterative test was programmed to stop if the predicted height
showed a strong correlation with the height measured from its corresponding GLAS footprint in the
cross validation dataset, or if the values of trees and nodes reached 500 (using an interval of 100) and 7
(using an interval of 1), respectively. The importance of the 13 input predictors was estimated based on
an out-of-bag error estimate [46]. After an ensemble decision tree was built into the training procedure,
the rules of each decision tree, along with two optimal parameters, were used to predict height in areas
without GLAS footprints. Finally, heights from non-forested areas were masked with previous forest
classification data [47].
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2.7. Assessment of Accuracy and Prediction of Uncertainty

Since the NFI only provides general information, such as forest type, forest area and origins at
provincial level and does not provide forest height at plot scale [48], we collected 525 forest height
measurements to estimate the accuracy of the modeled wall-to-wall forest heights. The distribution of
these measurements is illustrated in Figure 4. This dataset includes the main tree species across China,
including locust, eucalyptus, polar, Korean pine, larch, birch, mason pine, Chinese fir, and spruce.
435 measurements were obtained from peer-reviewed Chinese journals and 90 measurements were
collected from national forest inventories [49]. Each plot was at least 0.05 ha in size, and the mean
height of dominant trees from the emergent layer and the canopy layer in each plot was recorded.
To reduce the difference between the mean tree height of our collected data and the modeled forest
canopy height from remote sensing data, the plots belongs to mature forest or relatively uniform
growing forests were selected in terms of the screening criteria in a previous study [27].

A regression through the origin (RTO) analysis was used to calculate the degree of correlation
between the height data measured in the field and the predicted forest heights [50]. The coefficient
of determination (R2) and root mean square error (RMSE) are used to quantify the accuracy of this
correlation. MAE also calculated to check the bias between the field measured heights and the modeled
forest heights, considering the regression analysis is sensitive to data region.
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The uneven spatial distribution and gaps among GLAS footprints would affect wall-to-wall forest
height mapping accuracy in the course of extrapolating forest heights in areas without corresponding
GLAS footprints. To quantify this uncertainty or variance (εGLAS), we randomly picked up 10 subsets
of GLAS footprints which comprising from 55% to 100% of the whole GLAS footprints (with a 5%
interval, e.g., 55%, 60%, 65%, . . . , 95%, 100%). Ten forest heights were then modeled with the 10
GLAS footprints subsets by running the RF regression tree. The deviation (within ten forest heights)
was then calculated to indicate the uncertainty associated with the uneven spatial distribution of
GLAS footprints:

εGLAS =

√∑10
i=1

(
Ĥi −H

)2

10
(3)

where Ĥi is the predicted forest height at the ith iteration and H is the average of all predicted
forest heights.

To quantify the performance of PALSAR data on large scale forest heights estimation, we calculate
the accuracy (RMSE and R2) and uncertainty (εGLAS) after and before integrating PALSAR data.

3. Results and Discussion

3.1. Accuracy and Spatial Patterns of Forest Height in China

The modeled wall-to-wall forest heights, as shown in Figure 5, have a linear correlation with the
525 in situ measured forest heights, yielding an R2 value of 0.92 and an RMSE value of 4.31 m with
regression through the origin, and with an overall MAE for height estimation of 3.87 m. Compared
with field measurement, low (<5 m) and high (>20 m) forest heights show over and under estimations,
respectively (Figure 6). The modeled forest heights in China range from 1.41–38.94 m, with an
average forest height of 16.08 m, a median forest height of 15.78 m and a standard deviation of 3.34 m.
In general, regions of maximum forest height in China (mean heights > 20 m) include the regions of
southeast Tibet which are occupied by tropical rainforests and monsoon forests, the conifer forests
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of the Sichuan, and the tropical forests, rainforests, and evergreen broadleaf forests of Taiwan. The
region with the minimum forest height (mean height < 3 m) is located in western Inner Mongolia.
Forest height in northeast China, considered to be a major forest resource base, is 14.42 ± 2.37 m.
Additionally, forest heights vary among 50 different ecozones (Figure 7). For example, the mean forest
height in forest-dominated ecozones is 16.25 ± 2.77 m, which is larger than the mean forest height of
13.05 ± 2.91 m recorded in other ecozones. The statistical information about minimum, maximum,
10th and 90th percentiles, median mean, standard deviation (SD) of forest height in 50 ecozones, is
listed in supplement Table S2.
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Figure 7. Distribution of forest heights from remote-sensing data in 50 ecozones. Colors indicate
different ecozones: dark yellow areas are desert, red are agricultural areas, light green areas are
grassland, olive areas are forests, and blue areas represent a special ecozone in the Three Gorges
Reservoir. Numbers in circle represent different ecozones, and the bar represents the standard deviation.
The statistical information of forest height in 50 ecozones is listed in supplement Table S2.

3.2. Height Differences between Natural Forests and Plantations

Analysis of these samples indicates that natural forests have a mean height of 16.17 ± 2.94 m
(N = 9772), whereas plantations have a mean height of 15.60 ± 2.82 m (N = 5010). Therefore, these
samples suggest that natural forests and plantations have similar mean heights. These mean heights
vary only slightly between different forest types (Figure 8): the greatest mean heights are seen in
natural conifer forests (NCF: 16.72 ± 3.10 m), followed by natural bamboo forests (NB: 16.37 ± 2.40 m),
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natural broadleaf forests (NBF: 15.83 ± 2.89 m), and natural conifer and broadleaf mixed forests
(NMF: 15.75 ± 2.51 m). Within plantations, the greatest mean heights are seen in bamboo plantations
(17.13 ± 3.43 m), followed by conifer and broadleaf mixed plantations (MP: 16.54 ± 2.13 m), conifer
plantations (CP: 15.64 ± 2.70 m), and broadleaf plantations (BP: 15.53 ± 2.89 m).
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3.3. Improvement after Integrating PALSAR Data

The integration of PALSAR data caused the RMSE to decrease from 4.57 m to 4.31 m and the R2 to
increase from 0.90 to 0.92 when compared with forest heights without PALSAR data, and the uncertainty
(εGLAS) decreased by an average of 4.58% at the ecozone level (Figure 9). Desert-dominated ecozones
recorded the greatest decrease in uncertainty (−45.53%). Meanwhile, uncertainties decreased in all
forest-dominated ecozones. Contrastingly, combining PALSAR data slightly increased the uncertainty
in six ecozones, with the greatest increase in uncertainty (12.58%) recorded in grassland-dominated
ecozones. Previous studies have demonstrated that SAR is useful for estimating forest biomass [51],
but few have suggested that PALSAR can be used to estimate forest height. The results of this study
demonstrate that PALSAR can improve the accuracy of forest height estimations. García et al., have
also reported that including PALSAR for estimating forest height improved the estimation accuracy,
and this improvement depends on the vegetation type and structure [52]. Although the improvement
of R2 and RMSE in our study is not obvious when considering all ecozones together, we also found
that the importance of PALSAR varies with forest types and structure among the sub zones.
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3.4. Importance of Predictors to Model Wall-to-Wall Forest Height

The importance of these 13 predictors varies between different sub zones, as is shown in Figure 10,
which emphasizes the importance of a given predictor by the darkness of the variable and the size
of its value. In general, the most important metric for modeling gridded forest height is the slope
derived from the SRTM, except in ecozones dominated by agricultural ecosystems. Aspect and HH
are the least important predictors, and the HV metric is more important in non-forest-dominated
ecozones than it is in forest-dominated ecozones. Predictors such as surface reflectance of the red
band, HV backscatter, and slope are more important than other Landsat- and PALSAR-related metrics
and SRTM-derived metrics. In particular, red band outperformed than other bands from Landsat,
which conformed to previous study that employed time series Landsat images to map forest height in
Sub-Saharan Africa [53]. Differences in variables’ importance between the sub zones could be explained
by forest types and their structural characters in different biomes, such as crown diameter, distance
between trees, tree positioning, stand age and LAI. Moreover, determining the relative importance of
these predictors can help improve future computational efficiency by allowing researchers to acquire
important data for nationwide or worldwide forest-height modeling.
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Figure 10. The importance of 13 variables for forest height modeling in each ecozone. The value is
the out-of-bag decreased error; the larger the number is or the darker the color is, the more important
the variable is. Colors of numbers indicate different ecozones, with dark yellow signifying desert,
red representing agriculture, light green representing grassland, olive indicating forest, and blue
representing a special ecozone in the Three Gorges Reservoir.

3.5. Quantifying Uncertainty Caused by Footprints Space in Modeled Forest Heights

The uncertainty (εGLAS) induced by the spatial gaps among GLAS footprints in predicting
wall-to-wall forest height varies from 0.026–4.43 m, with a mean uncertainty of 0.64 m (Figure 11). This
uncertainty can result in differences between in situ measured forest heights and their corresponding
modeled heights, and consideration of this uncertainty reduced the RMSE from 4.40 m to 4.31 m. Forests
in southeast Tibet and Taiwan, which have the greatest mean forest heights, contribute the most to this
uncertainty (>1 m), whereas forests in Northeast China contribute the least (<0.5 m). When comparing
the spatial patterns of forest heights and their uncertainties, it becomes apparent that uncertainty
increases with increasing mean forest height in these ecozones. At the pixel scale, the relative error
caused by this uncertainty (defined as the percentage of predicted average forest heights that are
encompassed by a given uncertainty) has been estimated to be 3.97 ± 1.44% (Figure 11). Additionally,
forest-dominated ecozones yield lower relative errors than non-forest-dominated ecozones (Figure 12).
According to the standards of China’s NFI, the uncertainty of a tree height measurement should not be
greater than 5% [4]. More than 80% (82.59%) of analyzed pixels yield a relative error of less than 5% in
this finer-resolution forest height map. To further improve the accuracy of forest height measurements
in China, future research should focus on regions with large uncertainties or relative errors, such as
southeast Tibet.
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3.6. Comparisons with Published Forest Heights

We compared the forest heights presented here with previous forest heights obtained by remote
sensing mapping and field measurements. Nationwide field datasets have a mean tree height of
~10 m [54], which is less than the mean forest height reported in our study (16.08 m). This difference
might be caused by the limited number of forest plots used in the field datasets. For example, the
above nationwide field datasets have included field measurement datasets of approximately 1500
plots, from which mean forest heights are generated by applying statistics through these random
samples. However, the modeled mean forest height is dominant canopy height at the pixel scale.
This inconsistency causes differences between field data and the forest height generated in this study.
Another study used 1 km remote sending data to calculate a mean height of 36.44 m [16], which is much
larger than both our results and the nationwide field datasets. The difference between these two forest
heights can be explained by the fact that this study was undertaken in the mountainous regions of
southeast and northeast Tibet, whereas we used a different slope-correction for GLAS height extraction.
This difference could also be caused by differences in the source and scale of the remote-sensing data.
Although the differences imply that forest height mapping is still a challenge, our modeled forest
heights show good agreement with independent field measurements. Future work should reduce the
uncertainty of forest height mapping with more field plots and new LiDAR data.
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4. Conclusions

In this study, we developed a new forest height map by integrating results from multiple sources
of remote-sensing data, including ICESat/GLAS, LandSat 5 TM, SRTM and PALSAR. Our modeled
forest heights vary from 1.41–38.94 m across China, with an average Chinese forest height of 16.08 m
and a standard deviation of 3.34 m. These results yield estimated R2 and RMSE values of 0.92 and
4.31 m, respectively, when compared with 525 field-measured forest heights. Mean forest heights differ
only slightly among different forest types, with natural forests recording mean heights of 16.17 ± 2.94 m
and plantations recording mean heights of 15.60 ± 2.82 m.

The uncertainty caused by the distribution of GLAS footprints was estimated to be 0.64 m.
Integrating this uncertainty into the model reduced the RMSE from 4.40 m to 4.31 m. Additionally,
more than 80% (82.59%) of pixels yielded a relative error of less than 5%. This low relative error implies
that the forest heights derived from GLAS footprints can potentially be used to detect changes in
forest height.

Integrating PALSAR data into this model increased the accuracy of forest height estimates,
especially in forest-dominated ecozones; the average uncertainty decreased by 4.58%. It also
demonstrated that, in forest-height modeling, HV backscatter is more important than HH backscatter.

Currently, forest-height measurements in China have the greatest uncertainties in southeast and
northeast Tibet. Therefore, future efforts should focus on integrating new LiDAR data, SAR/InSAR
data, and additional field plots to reduce the uncertainties in these areas.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/15/1740/s1:
Table S1: List of the 50 ecozones in China, Table S2: The statistical information of forest height in 50 ecozones,
Table S3: Abbreviations are used in this manuscript.

Author Contributions: Conceptualization, H.H.; methodology, H.H., C.L. and X.W.; validation, H.H.;
writing—original draft preparation, H.H.

Funding: This research was funded by the National Key R&D Program of China (2017YFA0604401), the Special
Fund for Meteorology Scientific Research in the Public Welfare (GYHY201506010), and the Youth Innovation
Promotion Association CAS.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gong, P. Remote sensing of environmental change over China: A review. Chin. Sci. Bull. 2012, 57, 2793–2801.
[CrossRef]

2. Pettorelli, N.; Wegmann, M.; Skidmore, A.; Mücher, S.; Dawson, T.P.; Fernandez, M.; Lucas, R.;
Schaepman, M.E.; Wang, T.; O’Connor, B.; et al. Framing the concept of satellite remote sensing essential
biodiversity variables: Challenges and future directions. Remote Sens. Ecol. Conserv. 2016, 2, 122–131.
[CrossRef]

3. Bontemps, S.D.P.; Van Bogaert, E.; Arino, O.; Kalogirou, V.; Ramos, P.; Jose, J. GLOBCOVER 2009 Products
Description and Validation Report; Université catholique de Louvain (UCL) & European Space Agency (esa):
Louvain-la-Neuve, Belgium, 2011.

4. Zeng, W.; Tomppo, E.; Healey, S.; Gadow, K. The national forest inventory in China:
History-results-international context. For. Ecosyst. 2015, 2, 23. [CrossRef]

5. Zhang, P.; Shao, G.; Zhao, G.; Le Master, D.C.; Parker, G.R.; Dunning, J.B.; Li, Q. China’s Forest Policy for the
21st Century. Science 2000, 288, 2135–2136. [CrossRef] [PubMed]

6. Lefsky, M.A.; Cohen, W.B.; Parker, G.G.; Harding, D.J. LiDAR Remote Sensing for Ecosystem Studies.
Bioscience 2002, 52, 19–30. [CrossRef]

7. Asner, G.P.; Knapp, D.E.; Kennedy-Bowdoin, T.; Jones, M.O.; Martin, R.E.; Boardman, J.; Field, C.B. Carnegie
Airborne Observatory: In-flight fusion of hyperspectral imaging and waveform light detection and ranging
(wLiDAR) for three-dimensional studies of ecosystems. J. Appl. Remote Sens. 2007, 1, 013536. [CrossRef]

http://www.mdpi.com/2072-4292/11/15/1740/s1
http://dx.doi.org/10.1007/s11434-012-5268-y
http://dx.doi.org/10.1002/rse2.15
http://dx.doi.org/10.1186/s40663-015-0047-2
http://dx.doi.org/10.1126/science.288.5474.2135
http://www.ncbi.nlm.nih.gov/pubmed/10896587
http://dx.doi.org/10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
http://dx.doi.org/10.1117/1.2794018


Remote Sens. 2019, 11, 1740 15 of 17

8. Zwally, H.J.; Schutz, B.; Abdalati, W.; Abshire, J.; Bentley, C.; Brenner, A.; Bufton, J.; Dezio, J.; Hancock, D.;
Harding, D.; et al. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J. Geodyn. 2002,
34, 405–445. [CrossRef]

9. Sun, G.; Ranson, K.J.; Guo, Z.; Zhang, Z.; Montesano, P.; Kimes, D. Forest biomass mapping from lidar and
radar synergies. Remote Sens. Environ. 2011, 115, 2906–2916. [CrossRef]

10. Wang, X.; Cheng, X.; Gong, P.; Huang, H.; Li, Z.; Li, X. Earth science applications of ICESat/GLAS. Int. J.
Remote Sens. 2011, 32, 8837–8864. [CrossRef]

11. Schutz, B.E.; Zwally, H.J.; Shuman, C.A.; Hancock, D.; DiMarzio, J.P. Overview of the ICESat Mission. J.
Geophys. Res. 2005, 32, L21S01. [CrossRef]

12. Lefsky, M.A. A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer
and the Geoscience Laser Altimeter System. Geophys. Res. Lett. 2010, 37, L15401. [CrossRef]

13. Simard, M.; Pinto, N.; Fisher, J.B.; Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J.
Geophys. Res. Biogeosci. 2011, 116, G04021. [CrossRef]

14. Wang, Y.; Li, G.; Ding, J.; Guo, Z.; Tang, S.; Wang, C.; Huang, Q.; Liu, R.; Chen, J.M. A combined GLAS and
MODIS estimation of the global distribution of mean forest canopy height. Remote Sens. Environ. 2016, 174,
24–43. [CrossRef]

15. Los, S.O.; Rosette, J.A.B.; Kljun, N.; North, P.R.J.; Chasmer, L.; Suárez, J.C.; Hopkinson, C.; Hill, R.A.; van
Gorsel, E.; Mahoney, C.; et al. Vegetation height and cover fraction between 60◦ S and 60◦ N from ICESat
GLAS data. Geosci. Model Dev. 2012, 5, 413–432. [CrossRef]

16. Ni, X.; Zhou, Y.; Cao, C.; Wang, X.; Shi, Y.; Park, T.; Choi, S.; Myneni, R. Mapping Forest Canopy Height over
Continental China Using Multi-Source Remote Sensing Data. Remote Sens. 2015, 7, 8436–8452. [CrossRef]

17. Scarth, P.; Armston, J.; Lucas, R.; Bunting, P. A Structural Classification of Australian Vegetation Using
ICESat/GLAS, ALOS PALSAR, and Landsat Sensor Data. Remote Sens. 2019, 11, 147. [CrossRef]

18. Tao, S.; Guo, Q.; Li, C.; Wang, Z.; Fang, J. Global patterns and determinants of forest canopy height. Ecology
2016, 97, 3265–3270. [CrossRef]

19. Axelsson, S.R.J.; Eriksson, M.; Halldin, S. Tree-heights derived from radar profiles over boreal forests. Agric.
For. Meteorol. 1999, 98, 427–435. [CrossRef]

20. Hall, F.G.; Bergen, K.; Blair, J.B.; Dubayah, R.; Houghton, R.; Hurtt, G.; Kellndorfer, J.; Lefsky, M.; Ranson, J.;
Saatchi, S.; et al. Characterizing 3D vegetation structure from space: Mission requirements. Remote Sens.
Environ. 2011, 115, 2753–2775. [CrossRef]

21. Thiel, C.; Schmullius, C. The potential of ALOS PALSAR backscatter and InSAR coherence for forest growing
stock volume estimation in Central Siberia. Remote Sens. Environ. 2016, 173, 258–273. [CrossRef]

22. Mitchard, E.T.A.; Saatchi, S.S.; Woodhouse, I.H.; Nangendo, G.; Ribeiro, N.S.; Williams, M.; Ryan, C.M.;
Lewis, S.L.; Feldpausch, T.R.; Meir, P. Using satellite radar backscatter to predict above-ground woody
biomass: A consistent relationship across four different African landscapes. Geophys. Res. Lett. 2009, 36,
L23401. [CrossRef]

23. Joshi, N.; Mitchard, E.; Schumacher, J.; Johannsen, V.; Saatchi, S.; Fensholt, R. L-Band SAR Backscatter Related
to Forest Cover, Height and Aboveground Biomass at Multiple Spatial Scales across Denmark. Remote Sens.
2015, 7, 4442–4472. [CrossRef]

24. Harding, D.J.; Carabajal, C.C. ICESat waveform measurements of within-footprint topographic relief and
vegetation vertical structure. J. Geophys. Res. 2005, 32, L21S10. [CrossRef]

25. Huang, H.; Liu, C.; Wang, X.; Biging, G.S.; Chen, Y.; Yang, J.; Gong, P. Mapping vegetation heights in China
using slope correction ICESat data, SRTM, MODIS-derived and climate data. ISPRS J. Photogramm. Remote
Sens. 2017, 129, 189–199. [CrossRef]

26. Liu, C.; Huang, H.; Gong, P.; Wang, X.; Wang, J.; Li, W.; Li, C.; Li, Z. Joint Use of ICESat/GLAS and Landsat
Data in Land Cover Classification: A Case Study in Henan Province, China. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2015, 8, 511–522. [CrossRef]

27. Wang, X.; Huang, H.; Gong, P.; Liu, C.; Li, C.; Li, W. Forest Canopy Height Extraction in Rugged Areas With
ICESat/GLAS Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4650–4657. [CrossRef]

28. Gong, P.; Li, Z.; Huang, H.; Sun, G.; Wang, L. ICESat GLAS Data for Urban Environment Monitoring. IEEE
Trans. Geosci. Remote Sens. 2011, 49, 1158–1172. [CrossRef]

http://dx.doi.org/10.1016/S0264-3707(02)00042-X
http://dx.doi.org/10.1016/j.rse.2011.03.021
http://dx.doi.org/10.1080/01431161.2010.547533
http://dx.doi.org/10.1029/2005GL024009
http://dx.doi.org/10.1029/2010GL043622
http://dx.doi.org/10.1029/2011JG001708
http://dx.doi.org/10.1016/j.rse.2015.12.005
http://dx.doi.org/10.5194/gmd-5-413-2012
http://dx.doi.org/10.3390/rs70708436
http://dx.doi.org/10.3390/rs11020147
http://dx.doi.org/10.1002/ecy.1580
http://dx.doi.org/10.1016/S0168-1923(99)00113-6
http://dx.doi.org/10.1016/j.rse.2011.01.024
http://dx.doi.org/10.1016/j.rse.2015.10.030
http://dx.doi.org/10.1029/2009GL040692
http://dx.doi.org/10.3390/rs70404442
http://dx.doi.org/10.1029/2005GL023471
http://dx.doi.org/10.1016/j.isprsjprs.2017.04.020
http://dx.doi.org/10.1109/JSTARS.2014.2327032
http://dx.doi.org/10.1109/TGRS.2013.2283272
http://dx.doi.org/10.1109/TGRS.2010.2070514


Remote Sens. 2019, 11, 1740 16 of 17

29. Huang, H.; Liu, C.; Wang, X.; Zhou, X.; Gong, P. Integration of multi-resource remotely sensed data and
allometric models for forest aboveground biomass estimation in China. Remote Sens. Environ. 2019, 221,
225–234. [CrossRef]

30. Arino, O.; Ramos Perez, J.J.; Kalogirou, V.; Bontemps, S.; Defourny, P.; Van Bogaert, E. Global land cover map
for 2009 (GlobCover 2009). In Proceedings of the ESA Living Planet Symposium, Bergen, Norway, 28 June–2
July 2010.

31. Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer
resolution observation and monitoring of global land cover: First mapping results with Landsat TM and
ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [CrossRef]

32. Fu, B.J.; Liu, G.H.; Lü, Y.H.; Chen, L.D.; Ma, K.M. Ecoregions and ecosystem management in China. Int. J.
Sustain. Dev. World Ecol. 2004, 11, 397–409. [CrossRef]

33. Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud
shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159,
269–277. [CrossRef]

34. Sexton, J.O.; Song, X.-P.; Feng, M.; Noojipady, P.; Anand, A.; Huang, C.; Kim, D.-H.; Collins, K.M.; Channan, S.;
DiMiceli, C.; et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of
MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digit. Earth 2013, 6, 427–448.
[CrossRef]

35. Reuter, H.I.; Nelson, A.; Jarvis, A. An evaluation of void-filling interpolation methods for SRTM data. Int. J.
Geogr. Inf. Sci. 2007, 21, 983–1008. [CrossRef]

36. Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.;
Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [CrossRef]

37. Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital terrain modelling: A review of hydrological,
geomorphological, and biological applications. Hydrol. Process. 1991, 5, 3–30. [CrossRef]

38. Shimada, M.; Itoh, T.; Motooka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New global
forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31.
[CrossRef]

39. Qin, Y.; Xiao, X.; Dong, J.; Zhang, G.; Shimada, M.; Liu, J.; Li, C.; Kou, W.; Moore, B., III. Forest cover maps of
China in 2010 from multiple approaches and data sources: PALSAR, Landsat, MODIS, FRA, and NFI. ISPRS
J. Photogramm. Remote Sens. 2015, 109, 1–16. [CrossRef]

40. Shimada, M.; Isoguchi, O.; Tadono, T.; Isono, K. PALSAR Radiometric and Geometric Calibration. IEEE
Trans. Geosci. Remote Sens. 2009, 47, 3915–3932. [CrossRef]

41. Chinese Ministry of Forestry. Forest Resource Report of China for Periods 2009–2013; Department of Forest
Resource and Management, Chinese Ministry of Forestry: Beijing, China, 2014.

42. Van Beijma, S.; Comber, A.; Lamb, A. Random forest classification of salt marsh vegetation habitats using
quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sens. Environ. 2014, 149, 118–129.
[CrossRef]
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