The Time Lag Effect Improves Prediction of the Effects of Climate Change on Vegetation Growth in Southwest China
"> Figure 1
<p>Outline of (<b>a</b>) geography, (<b>b</b>) vegetation divisions, and (<b>c</b>) types of vegetation in the SW area.</p> "> Figure 2
<p>Time delay effects on vegetation of (<b>a</b>) temperature factors and (<b>b</b>) precipitation factors over the 15-year periods. The numbers 1–24 represent the corresponding months, in which 1–12 represent January to December of the previous year; 13–24 represent January to December of the current year; and T<sub>1</sub>, T<sub>2</sub>, …, T<sub>24</sub> and P<sub>1</sub>, P<sub>2</sub>, …, P<sub>24</sub> represent the corresponding months of temperature and precipitation factors, respectively. <span class="html-fig-inline" id="remotesensing-14-05580-i001"><img alt="Remotesensing 14 05580 i001" src="/remotesensing/remotesensing-14-05580/article_deploy/html/images/remotesensing-14-05580-i001.png"/></span> No Data represents the occurrence months that exceed the NDVI eigenvalue, <span class="html-fig-inline" id="remotesensing-14-05580-i002"><img alt="Remotesensing 14 05580 i002" src="/remotesensing/remotesensing-14-05580/article_deploy/html/images/remotesensing-14-05580-i002.png"/></span> annual represents the maximum <span class="html-italic">R</span><sup>2</sup> when considering the annual time delay, and <span class="html-fig-inline" id="remotesensing-14-05580-i003"><img alt="Remotesensing 14 05580 i003" src="/remotesensing/remotesensing-14-05580/article_deploy/html/images/remotesensing-14-05580-i003.png"/></span> interannual represents the maximum <span class="html-italic">R</span><sup>2</sup> when considering the interannual time delay. “*”, “**”, and “***” demonstrate the importance of <span class="html-italic">p</span> < 0.1, <span class="html-italic">p</span> < 0.05, and <span class="html-italic">p</span> < 0.01, respectively.</p> "> Figure 3
<p>Time delay effects of multiple combinations of climate factors over the 15-year periods on vegetation. The numbers 1–24 represent the corresponding months, in which 1–12 represent January to December of the previous year, and 13–24 represent January to December of the current year, where T<sub>1</sub>, T<sub>2</sub>, …, T<sub>24</sub> and P<sub>1</sub>, P<sub>2</sub>, …, P<sub>24</sub> represent the corresponding months of temperature and precipitation factors, respectively. (<b>a</b>–<b>f</b>) refer to Mean, P<sub>100</sub>, P<sub>75</sub>, P<sub>50</sub>, P<sub>25</sub>, and P<sub>5</sub>, respectively. The numbers 1~5 of the lower indices refer to SW, T<sup>+</sup>*-P<sup>+</sup>*, T<sup>+</sup>*-P<sup>−</sup>, T<sup>+</sup>*-P<sup>+</sup>, and NSC, respectively. <span class="html-fig-inline" id="remotesensing-14-05580-i001"><img alt="Remotesensing 14 05580 i001" src="/remotesensing/remotesensing-14-05580/article_deploy/html/images/remotesensing-14-05580-i001.png"/></span> No Data represents the occurrence months that exceed the NDVI eigenvalue, <span class="html-fig-inline" id="remotesensing-14-05580-i002"><img alt="Remotesensing 14 05580 i002" src="/remotesensing/remotesensing-14-05580/article_deploy/html/images/remotesensing-14-05580-i002.png"/></span> annual represents the maximum <span class="html-italic">R</span><sup>2</sup> when considering the annual time delay, and <span class="html-fig-inline" id="remotesensing-14-05580-i003"><img alt="Remotesensing 14 05580 i003" src="/remotesensing/remotesensing-14-05580/article_deploy/html/images/remotesensing-14-05580-i003.png"/></span> interannual represents the maximum <span class="html-italic">R</span><sup>2</sup> when considering the interannual time delay. “*”, “**”, and “***” demonstrate the importance of <span class="html-italic">p</span> < 0.1, <span class="html-italic">p</span> < 0.05, and <span class="html-italic">p</span> < 0.01, respectively.</p> "> Figure 3 Cont.
<p>Time delay effects of multiple combinations of climate factors over the 15-year periods on vegetation. The numbers 1–24 represent the corresponding months, in which 1–12 represent January to December of the previous year, and 13–24 represent January to December of the current year, where T<sub>1</sub>, T<sub>2</sub>, …, T<sub>24</sub> and P<sub>1</sub>, P<sub>2</sub>, …, P<sub>24</sub> represent the corresponding months of temperature and precipitation factors, respectively. (<b>a</b>–<b>f</b>) refer to Mean, P<sub>100</sub>, P<sub>75</sub>, P<sub>50</sub>, P<sub>25</sub>, and P<sub>5</sub>, respectively. The numbers 1~5 of the lower indices refer to SW, T<sup>+</sup>*-P<sup>+</sup>*, T<sup>+</sup>*-P<sup>−</sup>, T<sup>+</sup>*-P<sup>+</sup>, and NSC, respectively. <span class="html-fig-inline" id="remotesensing-14-05580-i001"><img alt="Remotesensing 14 05580 i001" src="/remotesensing/remotesensing-14-05580/article_deploy/html/images/remotesensing-14-05580-i001.png"/></span> No Data represents the occurrence months that exceed the NDVI eigenvalue, <span class="html-fig-inline" id="remotesensing-14-05580-i002"><img alt="Remotesensing 14 05580 i002" src="/remotesensing/remotesensing-14-05580/article_deploy/html/images/remotesensing-14-05580-i002.png"/></span> annual represents the maximum <span class="html-italic">R</span><sup>2</sup> when considering the annual time delay, and <span class="html-fig-inline" id="remotesensing-14-05580-i003"><img alt="Remotesensing 14 05580 i003" src="/remotesensing/remotesensing-14-05580/article_deploy/html/images/remotesensing-14-05580-i003.png"/></span> interannual represents the maximum <span class="html-italic">R</span><sup>2</sup> when considering the interannual time delay. “*”, “**”, and “***” demonstrate the importance of <span class="html-italic">p</span> < 0.1, <span class="html-italic">p</span> < 0.05, and <span class="html-italic">p</span> < 0.01, respectively.</p> "> Figure 4
<p>The strength of the time lag effect of (<b>a</b>) the temperature factor, (<b>b</b>) the precipitation factor, and (<b>c</b>) multiple combinations of climate factors. T, P, and PT represent temperature, precipitation, and precipitation and temperature, respectively. The numbers 0, 1, and 2 of the lower indices represent the same period, respectively, considering the annual and interannual time lag. “*”, “**”, and “***” demonstrate the importance of <span class="html-italic">p</span> < 0.1, <span class="html-italic">p</span> < 0.05, and <span class="html-italic">p</span> < 0.01, respectively.</p> "> Figure 5
<p>The variation tendency of the correlation coefficient between NDVI and temperature and precipitation in a 15-year period considering (<b>a</b>) the same period, (<b>b</b>) the annual, and (<b>c</b>) the interannual time lag. PR<sub>1</sub> and PR<sub>2</sub> represent the partial correlation coefficient between NDVI and temperature and precipitation, respectively, and FR represents the multiple correlation coefficient. “*”, “**”, and “***” demonstrate the importance of <span class="html-italic">p</span> < 0.1, <span class="html-italic">p</span> < 0.05, and <span class="html-italic">p</span> < 0.01, respectively.</p> "> Figure A1
<p>Changes in NDVI during each year of the 15-year windows. The horizontal axis is the upper limit year of the 15-year moving window, with 1996, 1997, …, 2015, representing the mobile windows of 1982–1996, 1983–1997, …, and 2001–2015, respectively. P<sub>100</sub>, P<sub>75</sub>, P<sub>50</sub>, P<sub>25</sub>, and P<sub>5</sub>, individually represent the filter month in which the occurrence occurs from the moving window, and the Mean refers to the month closest to the Mean. (<b>a</b>–<b>e</b>) separately refer to the SW, T<sup>+</sup>*-P<sup>+</sup>*, T<sup>+</sup>*-P<sup>−</sup>, T<sup>+</sup>*-P<sup>+</sup>, and NSC.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Research Area
2.2. Acquisition and Analysis of Research Data
2.2.1. Data Sources and Processing
2.2.2. Research Methods
3. Results
3.1. Time Delay Effect of Climatic Factors on Vegetation
3.2. The Intensity of the Delay Effect of Climate Factors on Vegetation
3.3. The Intensity Variation Trend of the Delayed Effect of Climate Factors on Vegetation
4. Discussion
4.1. Considering the Time Delay Effect Could Significantly Improve the Prediction Rate of the Effect of Climate on Vegetation Change
4.2. Considering the Time Delay Effect Could Significantly Improve the Response Intensity of Vegetation to Climate
4.3. The Phased Responses of Vegetation to Climate Change
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Screening Steps for the Occurrence Month of the Six Annual Characteristic Values
- (1)
- Preprocessing: using 15 years as a sliding window, the NDVI series of 1982–1996, 1983–1997, …, 2001–2015 were successively screened, resulting in 20 windows, after which a new NDVI matrix sequence was generated (Figure A1).
- (2)
- Calculating eigenvalue: according to the method described by Wang and An [32], the annual maximum (P100), upper quarter quantile (P75), median (P50), lower quarter quantile (P25), minimum (P5), and mean (Mean) of GIMMSNDVI in each time period were screened out, and then the NDVI eigenvalue sequence was regenerated.
- (3)
- Calculation relative frequency: the frequencies for each month were counted and then divided by the total number of 20 windows to obtain the relative frequency for each month.
- (4)
- The screening principles for the occurrence month: (1) the month with the most significant relative frequency was the month with the occurrence of an eigenvalue; and (2) if the frequency was the same, the month with the smaller number was defined as the occurrence month.
Appendix B
References
- Piao, S.L.; Wang, X.; Ciais, P.; Zhu, B.; Wang, T.; Liu, J.I.E. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob. Chang. Biol. 2011, 17, 3228–3239. [Google Scholar] [CrossRef]
- Shen, X.J.; Liu, B.H.; Zhou, D.W. Using GIMMS NDVI time series to estimate the impacts of grassland vegetation cover on surface air temperatures in the temperate grassland region of China. Remote Sens. Lett. 2016, 7, 229–238. [Google Scholar] [CrossRef]
- IPCC. Special Report on Global Warming of 1.5 °C; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- IPCC. Climate Change 2021, The physical science basis. In Contribution of Working Group, I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Gao, J.; Jiao, K.; Wu, S. Investigating the spatially heterogeneous relationships between climate factors and NDVI in China during 1982 to 2013. J. Geogr. Sci. 2019, 29, 1597–1609. [Google Scholar] [CrossRef] [Green Version]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Shi, J.; Xiao, F.; Fan, W. Variation trends in vegetation NDVI and its correlation with climatic factors in Eastern China. Res. Sci. 2010, 32, 124–131. [Google Scholar]
- Chen, Y.; Luo, Y.; Mo, W.; Mo, J.; Huang, Y.; Ding, M. Differences between MODIS NDVI and MODIS EVI in response to climatic factors. J. Nat. Res. 2014, 29, 1802–1812. [Google Scholar]
- He, B.; Chen, A.; Wang, H.; Wang, Q. Dynamic response of satellite-derived vegetation growth to climate change in the Three North Shelter Forest Region in China. Remote Sens. 2015, 7, 9998–10016. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Zhang, T.B.; Yi, G.H.; He, D.; Zhou, X.B.; Li, J.J.; Bie, X.J.; Miao, J.Q. Dynamic changes of NDVI in the growing season of the Tibetan Plateau during the past 17 years and its response to climate change. Int. J. Environ. Res. Public Health 2019, 16, 3452. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Zhao, X.; Liang, S.; Zhou, T.; Huang, K.; Tang, B.; Zhao, W. Time-lag effects of global vegetation responses to climate change. Glob. Chang. Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef]
- Zhao, W.; Zhao, X.; Zhou, T.; Wu, D.; Tang, B.; Wei, H. Climatic factors driving vegetation declines in the 2005 and 2010 Amazon droughts. PLoS ONE 2017, 12, e0175379. [Google Scholar]
- Daham, A.; Han, D.; Rico-Ramirez, M.; Marsh, A. Analysis of NVDI variability in response to precipitation and air temperature in different regions of Iraq, using MODIS vegetation indices. Environ. Earth Sci. 2018, 77, 389. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Li, Z.; Peng, S. Global analysis of time-lag and -accumulation effects of climate on vegetation growth. Int. J. Appl. Earth Obs. 2020, 92, 102179. [Google Scholar] [CrossRef]
- Jia, L.; Li, Z.; Xu, G.; Ren, Z.; Li, P.; Cheng, Y.; Zhang, Y.; Wang, B.; Zhang, J.; Yu, S. Dynamic change of vegetation and its response to climate and topographic factors in the Xijiang River basin, China. Environ. Sci. Pollut. R. 2020, 27, 11637–11648. [Google Scholar] [CrossRef]
- Zhao, W.J. Extreme weather and climate events in China under changing climate. Natl. Sci. Rev. 2020, 7, 938–943. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Alimohammadi, N. Responses of annual runoff, evaporation, and storage change to climate variability at the watershed scale. Water Resour. Res. 2012, 48, 5546. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.H.; Piao, S.L.; Delpierre, N.; Hao, F.; Hänninen, H.; Liu, Y.; Sun, W.; Janssens, I.A.; Campioli, M. Larger temperature response of autumn leaf senescence than spring leaf–out phenology. Glob. Chang. Biol. 2017, 24, 2159–2168. [Google Scholar] [CrossRef]
- Kong, D.; Miao, C.; Borthwick, A.G.L.; Lei, X.; Li, H. Spatiotemporal variations in vegetation cover on the Loess Plateau, China, between 1982 and 2013, possible causes and potential impacts. Environ. Sci. Pollut. R. 2018, 25, 13633–13644. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Fu, Y.H.; Zhu, Z.; Liu, Y.; Liu, Z.; Huang, M.; Janssens, I.A.; Piao, S. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Glob. Chang. Biol. 2016, 22, 3702–3711. [Google Scholar] [CrossRef]
- Seddon, A.W.R.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 2016, 531, 229. [Google Scholar] [CrossRef] [Green Version]
- Workie, T.G.; Debella, H.J. Climate change and its effects on vegetation phenology across ecoregions of Ethiopia. Glob. Ecol. Conserv. 2017, 13, e00366. [Google Scholar] [CrossRef]
- Tei, S.; Sugimoto, A. Time lag and negative responses of forest greenness and tree growth to warming over circumboreal forests. Glob. Chang. Biol. 2018, 24, 4225–4237. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Wu, C.Y.; Zhang, X.Y.; Wang, X.Y.; Gonsamo, A. Satellite detection of cumulative and lagged effects of drought on autumn leaf senescence over the Northern Hemisphere. Glob. Chang. Biol. 2019, 25, 2174–2188. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.L.; Mohammat, A.; Fang, J.; Cai, Q.; Feng, J. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Glob. Environ. Chang. 2006, 16, 340–348. [Google Scholar] [CrossRef]
- Chen, X.; An, S.; Inouye, D.; Schwartz, M.D. Temperature and snowfall trigger alpine vegetation green-up on the world’s roof. Glob. Chang. Biol. 2015, 21, 3635–3646. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Duan, X.; Shi, Y.; Li, Y.; Pan, X. Spatiotemporal variation in vegetation coverage and its response to climatic factors in the Red River Basin, China. Ecol. Indic. 2018, 93, 54–64. [Google Scholar] [CrossRef]
- Ye, Z.; Cheng, W.; Zhao, Z.; Guo, J.; Ding, H.; Nan, W. Interannual and Seasonal Vegetation Changes and Influencing Factors in the Extra-High Mountainous Areas of Southern Tibet. Remote Sens. 2019, 11, 1392. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Goldberg, M.; Tarpley, D.; Friedl, M.A.; Morisette, J.; Kogan, F.; Yu, Y. Drought induced vegetation stress in southwestern North America. Environ. Res. Lett. 2010, 5, 024008. [Google Scholar] [CrossRef]
- Qiu, B.W.; Li, W.J.; Zhong, M.; Tang, Z.H.; Chen, C.C. Spatiotemporal analysis of vegetation variability and its relationship with climate change in China. Geo-Spat. Inf. Sci. 2014, 17, 170–180. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Zuo, L.; Gao, J.; Jiang, Y.; Zhang, Y.; Ma, S.; Zou, Y.; Wu, S. Revealing the Fingerprint of Climate Change in Interannual NDVI Variability among Biomes in Inner Mongolia, China. Remote Sens. 2020, 12, 1332. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; An, Z. Regional and Phased Vegetation Responses to Climate Change Are Different in Southwest China. Land 2022, 11, 1179. [Google Scholar] [CrossRef]
- Li, X.C. Historical Geography, Geopolitics, Regional Economy and Culture; Peking University Press: Beijing, China, 2004; pp. 79–93. (In Chinese) [Google Scholar]
- Wang, M.; Jiang, C.; Sun, O.J. Spatially differentiated changes in regional climate and underlying drivers in southwestern China. J. For. Res. 2022, 33, 755–765. [Google Scholar] [CrossRef]
- You, Q.; Chen, D.; Wu, F.; Pepin, N.; Cai, Z.; Ahrens, B.; Jiang, Z.; Wu, Z.; Kang, S.; Amir, A.K. Elevation dependent warming over the Tibetan Plateau, Patterns, mechanisms and perspectives. Earth-Sci. Rev. 2020, 210, 103349. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Buermann, W.G.; Forkel, M.; O’Sullivan, M.; Sitch, S.; Friedlingstein, P.; Haverd, V. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 2018, 562, 110–115. [Google Scholar] [CrossRef] [Green Version]
- China Meteorological Administration. Blue Book on Climate Change in China 2020; Science Press: Beijing, China, 2020. [Google Scholar]
- Wang, H.; Liu, H.; Cao, G.; Sanders, N.J.; Classen, A.T.; He, J.S. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol. Lett. 2020, 23, 701–710. [Google Scholar] [CrossRef] [Green Version]
- Grosso, S.D.; Parton, W.J.; Derner, J.; Chen, M.; Compton, J.T. Simple models to predict grassland ecosystem C exchange and actual evapotranspiration using NDVI and environmental variables. Agric. For. Meteorol. 2018, 249, 1–10. [Google Scholar] [CrossRef]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar]
- Li, X.P.; Wang, L.; Guo, X.Y.; Chen, D.L. Does summer precipitation trend over and around the Tibetan Plateau depend on elevation? Int. J. Climatol. 2017, 37, 1278–1284. [Google Scholar] [CrossRef]
- Knott, G.D. Interpolating Cubic Splines; Springer Science & Business Media: Berlin, Germany, 2012; pp. 1–244. [Google Scholar]
- Yin, L.; Wang, X.; Feng, X.; Fu, B.; Chen, Y. A Comparison of SSEBop-Model-Based Evapotranspiration with Eight Evapotranspiration Products in the Yellow River Basin, China. Remote Sens. 2020, 12, 2528. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Zhou, Y. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- Yuan, J.J.; Guo, J.Y.; Niu, Y.P.; Zhu, C.C.; Li, Z. Mean Sea Surface Model over the Sea of Japan Determined from Multi-Satellite Altimeter Data and Tide Gauge Records. Remote Sens. 2020, 12, 4168. [Google Scholar] [CrossRef]
- Fu, Y.; Zhao, H.; Piao, S.L.; Peaucelle, M.; Peng, S.; Zhou, G.; Ciais, P.; Huang, M.T.; Menzel, A.; Penuelas, J.; et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 2015, 526, 104–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnone, J.A.; Verburg, P.S.; Johnson, D.W.; Wallace, L.L.; Luo, Y.Q.; Schimel, D.S. Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year. Nature 2008, 455, 383. [Google Scholar] [CrossRef] [PubMed]
- Gessner, U.; Naeimi, V.; Klein, I.; Kuenzer, C.; Klein, D.; Dech, S. The relationship between precipitation anomalies and satellite-derived vegetation activity in Central Asia. Glob. Planet. Chang. 2012, 110, 74–87. [Google Scholar] [CrossRef]
- Braswell, B.H.; Schimel, D.S.; Linder, E.; Moore, B., III. The response of global terrestrial ecosystems to interannual temperature variability. Science 1997, 278, 870–873. [Google Scholar] [CrossRef]
- Li, P.; Peng, C.; Wang, M.; Luo, Y.; Li, M.; Zhang, K.; Zhang, D.; Zhu, Q. Dynamics of vegetation autumn phenology and its response to multiple environmental factors from 1982 to 2012 on Qinghai-Tibetan Plateau in China. Sci. Total. Environ. 2018, 637–638, 855–864. [Google Scholar] [CrossRef]
- Nagol, J.R.; Vermote, E.F.; Prince, S.D. Effects of atmospheric variation on AVHRR NDVI data. Remote Sens. Environ. 2009, 113, 392–397. [Google Scholar] [CrossRef]
- Shi, C.; Sun, G.; Zhang, H.; Xiao, B.; Ze, B.; Zhang, N.; Wu, N. Effects of warming on chlorophyll degradation and carbohydrate accumulation of alpine herbaceous apecies during plant senescence on the Tibetan Plateau. PLoS ONE 2014, 9, e107874. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Revuelto, J.; Morán-Tejeda, E.; Sanchez-Lorenzo, A. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. USA 2013, 110, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Yu, Q.; Zhu, Z.C.; Myneni, R.B.; Yan, H.M.; Wang, S.Q.; Shugart, H.H. Diagnostic analysis of interannual variation of global land evapotranspiration over 1982–2011, assessing the impact of ENSO. J. Geophys. Res. Atmos. 2013, 118, 8969–8983. [Google Scholar] [CrossRef]
- Xiong, M.Q.; Sun, R.H.; Chen, L.D. A global comparison of soil erosion associated with land use and climate type. Geoderma 2019, 343, 31–39. [Google Scholar] [CrossRef]
- Chen, J.H.; Yan, F.; Luk, Q. Spatiotemporal Variation of Vegetation on the Qinghai-Tibet Plateau and the Influence of Climatic Factors and Human Activities on Vegetation Trend (2000–2019). Remote Sens. 2020, 12, 3150. [Google Scholar] [CrossRef]
- Piao, S.L.; Nan, H.; Huntingford, C.; Zeng, N.; Zeng, Z.; Chen, A. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 2014, 5, 5018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angert, A.; Biraud, S.; Bonfils, C.; Henning, C.C.; Buermann, W.; Pinzon, J.; Tucker, C.J.; Fung, I. Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proc. Natl. Acad. Sci. USA 2005, 102, 10823–10827. [Google Scholar] [CrossRef]
- Chen, Q.; Zhou, Q.; Zhang, H.; Liu, F. Spatial disparity of NDVI response in vegetation growing season to climate change in the Three-River Headwaters Region. Ecol. Environ. Sci. 2010, 19, 1284–1289. [Google Scholar]
- Beck, P.S.; Goetz, S.J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008, ecological variability and regional differences. Environ. Res. Lett. 2011, 6, 045501. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013, The Physical Science Basis, Summary for Policymakers; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Wu, Y.; Tang, G.; Gu, H.; Liu, Y.; Yang, M.; Sun, L. The variation of vegetation greenness and underlying mechanisms in Guangdong province of China during 2001–2013 based on MODIS data. Sci. Total. Environ. 2019, 653, 536–546. [Google Scholar] [CrossRef]
- Lu, H.P.; Dong, G.; Zhao, F.Y.; Qin, H. Impacts of Climatic Factors on Vegetation in the Loess Plateau. J. Shanxi U. Nat. Sci. Ed. 2018, 41, 626–635. (In Chinese) [Google Scholar]
- D’arrigo, R.D.; Kaufmann, R.K.; Davi, N.; Jacoby, G.C.; Laskowski, C.; Myneni, R.B.; Cherubini, P. Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada. Glob. Biogeochem. Cycles 2004, 18, GB3021. [Google Scholar] [CrossRef]
Name | Sources | Resolution | Web Site | Access Date | Format |
---|---|---|---|---|---|
GIMMS NDVI3g | GIMMS | 8 × 8 km | https://ecocast.arc.nasa.gov/data/pub/GIMMS/ | 18 November 2018 | .nc4 |
CRU_TS4.02 | Climate Research Unit | 0.5° × 0.5° | https://crudata.uea.ac.uk/cru/data/hrg/ | 28 June 2019 | .nc |
Global Artificial Impervious Area | Tsinghua University data | 30 × 30 m | http://data.ess.tsinghua.edu.cn | 31 December 2019 | .tif |
Digital elevation model | Resource and Environment Science and Data Center | 1 × 1 km | https://www.resdc.cn/data.aspx?DATAID=123 | 28 September 2019 | GRID |
1:1 million vegetation map of China | Resource and Environment Science and Data Center | — | https://www.resdc.cn/data.aspx?DATAID=122 | 1 December 2017 | .shp |
China’s vegetation zoning data | Resource and Environment Science and Data Center | — | http://www.resdc.cn/data.aspx?DATAID=133 | 1 December 2017 | .shp |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; An, Z.; Wang, S. The Time Lag Effect Improves Prediction of the Effects of Climate Change on Vegetation Growth in Southwest China. Remote Sens. 2022, 14, 5580. https://doi.org/10.3390/rs14215580
Wang M, An Z, Wang S. The Time Lag Effect Improves Prediction of the Effects of Climate Change on Vegetation Growth in Southwest China. Remote Sensing. 2022; 14(21):5580. https://doi.org/10.3390/rs14215580
Chicago/Turabian StyleWang, Meng, Zhengfeng An, and Shouyan Wang. 2022. "The Time Lag Effect Improves Prediction of the Effects of Climate Change on Vegetation Growth in Southwest China" Remote Sensing 14, no. 21: 5580. https://doi.org/10.3390/rs14215580
APA StyleWang, M., An, Z., & Wang, S. (2022). The Time Lag Effect Improves Prediction of the Effects of Climate Change on Vegetation Growth in Southwest China. Remote Sensing, 14(21), 5580. https://doi.org/10.3390/rs14215580