How Many Pan-Arctic Lakes Are Observed by ICESat-2 in Space and Time?
"> Figure 1
<p>Global distribution of pan-Arctic lakes observed by the ICESat-2 in the HydroLAKES database. The right panel shows the number of observed lakes from different size groups in the Eastern and Western Hemispheres (NA and EURA).</p> "> Figure 2
<p>Spatial distribution of unobserved lakes by the ICESat-2 in the HydroLAKES database.</p> "> Figure 3
<p>Spatial patterns of observed lakes with annual number of observations.</p> "> Figure 4
<p>Spatial patterns of observed lakes with seasonal coverage patterns.</p> "> Figure 5
<p>Fishnet-based spatial patterns of seasonal water level variability within three years of observation by the ICESat-2. (<b>a</b>) shows the SWL change patterns. (<b>b</b>) shows the SWL range patterns. (<b>c</b>) shows the standard deviation (STD) patterns of the SWL.</p> "> Figure 6
<p>Boxplot of seasonal water level amplitudes for lakes of different sizes. The horizontal line in the box represents the median SWL variation over the three years. The upper and lower limits of the box represent the range of SWL variation. Scatters are outliers for each box, and the number of outliers accounts for 20%, 20%, 17%, 24%, 23%, and l4%, respectively (the total number of lakes in each group is shown in <a href="#remotesensing-14-05971-t002" class="html-table">Table 2</a>).</p> "> Figure 7
<p>SWL change in pan-Arctic lakes in the North American continent and Eurasian continent along the latitudinal.</p> "> Figure 8
<p>Comparison of water levels from the ICESat-2 and radar altimeters, and gauge stations for four selected lakes (Great Bear Lake and Great Slave Lake in NA, Ladoga Lake, and Onega Lake in EURA) with long-time series ICESat-2 observations.</p> "> Figure 9
<p>Seasonal amplitudes of accumulated precipitation of the grid-based clusters in different SWL change areas. Black rhombuses are outliers in each SWL change group.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. ICESat-2 ATLAS ATL13 Data
2.2. Auxiliary Data
2.3. SWL Calculation by ICESat-2 Temporal Coverage Patterns
2.4. Spatial Pattern Analysis of SWL
3. Results and Analyses
3.1. ICESat-2 Observation Coverage of Pan-Arctic Lakes
3.2. Temporal Coverage Patterns of Pan-Arctic Lakes
3.3. Spatial Pattern of SWL Changes
4. Discussion
4.1. Comparison of Altimetry and Gauged Water Level
4.2. Characteristics of SWL Change and Potential Causes
4.3. ICESat-2 ATL13 Product-Derived Water Levels
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Messager, M.L.; Lehner, B.; Grill, G.; Nedeva, I.; Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 2016, 7, 13603. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Peng, S.; Xi, Y.; Woolway, R.I.; Liu, G. Earlier ice loss accelerates lake warming in the Northern Hemisphere. Nat. Commun. 2022, 13, 5156. [Google Scholar] [CrossRef] [PubMed]
- Urbański, J.A. Monitoring and classification of high Arctic lakes in the Svalbard Islands using remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102911. [Google Scholar] [CrossRef]
- Lehnherr, I.; St Louis, V.L.; Sharp, M.; Gardner, A.S.; Smol, J.P.; Schiff, S.L.; Muir, D.C.; Mortimer, C.A.; Michelutti, N.; Tarnocai, C. The world’s largest High Arctic lake responds rapidly to climate warming. Nat. Commun. 2018, 9, 1290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drake, T.W.; Holmes, R.M.; Zhulidov, A.V.; Gurtovaya, T.; Raymond, P.A.; McClelland, J.W.; Spencer, R.G. Multidecadal climate-induced changes in Arctic tundra lake geochemistry and geomorphology. Limnol. Oceanogr. 2019, 64, S179–S191. [Google Scholar] [CrossRef] [Green Version]
- Birkett, C.J.E. Transactions American Geophysical Union. Radar altimetry: A new concept in monitoring lake level changes. Eos Trans. Am. Geophys. Union 1994, 75, 273–275. [Google Scholar] [CrossRef]
- Crétaux, J.-F.; Arsen, A.; Calmant, S.; Kouraev, A.; Vuglinski, V.; Bergé-Nguyen, M.; Gennero, M.-C.; Nino, F.; Del Rio, R.A.; Cazenave, A. SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Adv. Space Res. 2011, 47, 1497–1507. [Google Scholar] [CrossRef]
- Song, C.; Huang, B.; Ke, L. Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sens. Environ. 2013, 135, 25–35. [Google Scholar] [CrossRef]
- Crétaux, J.-F.; Birkett, C. Lake studies from satellite radar altimetry. C. R. Geosci. 2006, 338, 1098–1112. [Google Scholar] [CrossRef]
- Zhang, G.; Xie, H.; Kang, S.; Yi, D.; Ackley, S.F. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sens. Environ. 2011, 115, 1733–1742. [Google Scholar] [CrossRef]
- Busker, T.; de Roo, A.; Gelati, E.; Schwatke, C.; Adamovic, M.; Bisselink, B.; Pekel, J.-F.; Cottam, A. A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrol. Earth Syst. Sci. 2019, 23, 669–690. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, S.; Kolahchi, A.A.; Ablain, M.; Adusumilli, S.; Bhowmick, S.A.; Alou-Font, E.; Amarouche, L.; Andersen, O.B.; Antich, H.; Aouf, L. Altimetry for the future: Building on 25 years of progress. Adv. Space Res. 2021, 68, 319–363. [Google Scholar] [CrossRef]
- Da Silva, J.S.; Calmant, S.; Seyler, F.; Rotunno Filho, O.C.; Cochonneau, G.; Mansur, W.J. Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions. Remote Sens. Environ. 2010, 114, 2160–2181. [Google Scholar] [CrossRef]
- Alsdorf, D.; Birkett, C.; Dunne, T.; Melack, J.; Hess, L. Water level changes in a large Amazon lake measured with spaceborne radar interferometry and altimetry. Geophys. Res. Lett. 2001, 28, 2671–2674. [Google Scholar] [CrossRef]
- Zakharova, E.A.; Kouraev, A.V.; Rémy, F.; Zemtsov, V.A.; Kirpotin, S.N. Seasonal variability of the Western Siberia wetlands from satellite radar altimetry. J. Hydrol. 2014, 512, 366–378. [Google Scholar] [CrossRef]
- Yang, Y.; Moore, P.; Li, Z.; Li, F. Lake Level Change from Satellite Altimetry Over Seasonally Ice-Covered Lakes in the Mackenzie River Basin. IEEE Trans. Geosci. Remote Sens. 2020, 59, 8143–8152. [Google Scholar] [CrossRef]
- Chen, T.; Song, C.; Ke, L.; Wang, J.; Liu, K.; Wu, Q. Estimating seasonal water budgets in global lakes by using multi-source remote sensing measurements. J. Hydrol. 2021, 593, 125781. [Google Scholar] [CrossRef]
- Shu, S.; Liu, H.; Beck, R.A.; Frappart, F.; Korhonen, J.; Xu, M.; Yang, B.; Hinkel, K.M.; Huang, Y.; Yu, B. Analysis of Sentinel-3 SAR altimetry waveform retracking algorithms for deriving temporally consistent water levels over ice-covered lakes. Remote Sens. Environ. 2020, 239, 111643. [Google Scholar] [CrossRef]
- Lawrence, I.R.; Armitage, T.W.; Tsamados, M.C.; Stroeve, J.C.; Dinardo, S.; Ridout, A.L.; Muir, A.; Tilling, R.L.; Shepherd, A. Extending the Arctic sea ice freeboard and sea level record with the Sentinel-3 radar altimeters. Adv. Space Res. 2021, 68, 711–723. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, L.; Kittel, C.M.; Yao, Z.; Nielsen, K.; Liu, Z.; Wang, R.; Liu, J.; Andersen, O.B.; Bauer-Gottwein, P. On the performance of Sentinel-3 altimetry over new reservoirs: Approaches to determine onboard a priori elevation. Geophys. Res. Lett. 2020, 47, e2020GL088770. [Google Scholar] [CrossRef]
- Taburet, N.; Zawadzki, L.; Vayre, M.; Blumstein, D.; Le Gac, S.; Boy, F.; Raynal, M.; Labroue, S.; Crétaux, J.-F.; Femenias, P. S3MPC: Improvement on inland water tracking and water level monitoring from the OLTC onboard Sentinel-3 altimeters. Remote Sens. 2020, 12, 3055. [Google Scholar] [CrossRef]
- Shu, S.; Liu, H.; Frappart, F.; Huang, Y.; Wang, S.; Hinkel, K.M.; Beck, R.A.; Yu, B.; Jones, B.M.; Arp, C.D. Estimation of snow accumulation over frozen Arctic lakes using repeat ICESat laser altimetry observations—A case study in northern Alaska. Remote Sens. Environ. 2018, 216, 529–543. [Google Scholar] [CrossRef]
- Song, C.; Sheng, Y.; Ke, L.; Nie, Y.; Wang, J. Glacial lake evolution in the southeastern Tibetan Plateau and the cause of rapid expansion of proglacial lakes linked to glacial-hydrogeomorphic processes. J. Hydrol. 2016, 540, 504–514. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Sheng, Y. Contrasting evolution patterns between glacier-fed and non-glacier-fed lakes in the Tanggula Mountains and climate cause analysis. Clim. Chang. 2016, 135, 493–507. [Google Scholar] [CrossRef]
- Yi, S.; Wang, Q.; Chang, L.; Sun, W.J.R.S. Changes in mountain glaciers, lake levels, and snow coverage in the Tianshan monitored by GRACE, ICESat, altimetry, and MODIS. Remote Sens. 2016, 8, 798. [Google Scholar] [CrossRef] [Green Version]
- Neumann, T.; Brenner, A.; Hancock, D.; Robbins, J.; Saba, J.; Harbeck, K.; Gibbons, A.; Lee, J.; Luthcke, S.; Rebold, T. ATLAS/ICESat-2 L2A Global Geolocated Photon Data, Version 3; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2020. [Google Scholar]
- Yuan, C.; Gong, P.; Bai, Y. Performance assessment of ICESat-2 laser altimeter data for water-level measurement over lakes and reservoirs in China. Remote Sens. 2020, 12, 770. [Google Scholar] [CrossRef] [Green Version]
- Madson, A.; Sheng, Y. Automated Water Level Monitoring at the Continental Scale from ICESat-2 Photons. Remote Sens. 2021, 13, 3631. [Google Scholar] [CrossRef]
- Ryan, J.C.; Smith, L.C.; Cooley, S.W.; Pitcher, L.H.; Pavelsky, T.M. Global characterization of inland water reservoirs using ICESat-2 altimetry and climate reanalysis. Geophys. Res. Lett. 2020, 47, e2020GL088543. [Google Scholar] [CrossRef]
- Cooley, S.W.; Ryan, J.C.; Smith, L.C. Human alteration of global surface water storage variability. Nature 2021, 591, 78–81. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, H.; Tao, S.; Ao, Z.; Song, C.; Chave, J.; Le Toan, T.; Xue, B.; Zhu, J.; Pan, J. Decadal Lake Volume Changes (2003–2020) and Driving Forces at a Global Scale. Remote Sens. 2022, 14, 1032. [Google Scholar] [CrossRef]
- Luo, S.; Song, C.; Ke, L.; Zhan, P.; Fan, C.; Liu, K.; Chen, T.; Wang, J.; Zhu, J. Satellite laser altimetry reveals a net water mass gain in global lakes with spatial heterogeneity in the early 21st century. Geophys. Res. Lett. 2022, 49, e2021GL096676. [Google Scholar] [CrossRef]
- Xu, N.; Ma, Y.; Wei, Z.; Huang, C.; Li, G.; Zheng, H.; Wang, X.H. Satellite observed recent rising water levels of global lakes and reservoirs. Environ. Res. Lett. 2022, 17, 074013. [Google Scholar] [CrossRef]
- Xu, N.; Zheng, H.; Ma, Y.; Yang, J.; Liu, X.; Wang, X. Global estimation and assessment of monthly lake/reservoir water level changes using ICESat-2 ATL13 Products. Remote Sens. 2021, 13, 2744. [Google Scholar] [CrossRef]
- Neumann, T.A.; Martino, A.J.; Markus, T.; Bae, S.; Bock, M.R.; Brenner, A.C.; Brunt, K.M.; Cavanaugh, J.; Fernandes, S.T.; Hancock, D.W. The Ice, Cloud, and Land Elevation Satellite–2 Mission: A global geolocated photon product derived from the advanced topographic laser altimeter system. Remote Sens. Environ. 2019, 233, 111325. [Google Scholar] [CrossRef] [PubMed]
- Jasinski, M.; Stoll, J.; Hancock, D.; Robbins, J.; Nattala, J.; Morison, J.; Jones, B.; Ondrusek, M.; Pavelsky, T.; Parrish, C. Algorithm Theoretical Basis Document (ATBD) for along Track Inland Surface Water Data, Release 004. 2021; Goddard Space Flight Center: Greenbelt, MD, USA, 2021.
- Schwatke, C.; Dettmering, D.; Bosch, W.; Seitz, F. DAHITI—An innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrol. Earth Syst. Sci. 2015, 19, 4345–4364. [Google Scholar] [CrossRef] [Green Version]
- Setiawan, B. A simple method to determine patterns of wet and dry seasons. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; p. 12055. [Google Scholar]
- Schindler, D.W.; Smol, J.P. Cumulative effects of climate warming and other human activities on freshwaters of Arctic and subarctic North America. AMBIO J. Hum. Environ. 2006, 35, 160–168. [Google Scholar] [CrossRef]
- Mueller, D.R.; Van Hove, P.; Antoniades, D.; Jeffries, M.O.; Vincent, W.F. High Arctic lakes as sentinel ecosystems: Cascading regime shifts in climate, ice cover, and mixing. Limnol. Oceanogr. 2009, 54, 2371–2385. [Google Scholar] [CrossRef]
- Urabe, A.; Tateishi, M.; Inouchi, Y.; Matsuoka, H.; Inoue, T.; Dmytriev, A.; Khlystov, O.M. Lake-level changes during the past 100,000 years at Lake Baikal, southern Siberia. Quat. Res. 2004, 62, 214–222. [Google Scholar] [CrossRef]
- Juschus, O.; Pavlov, M.; Schwamborn, G.; Preusser, F.; Fedorov, G.; Melles, M. Late Quaternary lake-level changes of Lake El’gygytgyn, NE Siberia. Quat. Res. 2011, 76, 441–451. [Google Scholar] [CrossRef] [Green Version]
- Rémy, F.; Parouty, S. Antarctic ice sheet and radar altimetry: A review. Remote Sens. 2009, 1, 1212–1239. [Google Scholar] [CrossRef]
- Quartly, G.D.; Chen, G.; Nencioli, F.; Morrow, R.; Picot, N. An overview of requirements, procedures and current advances in the calibration/validation of radar altimeters. Remote Sens. 2021, 13, 125. [Google Scholar] [CrossRef]
- Birkett, C.M.; Beckley, B. Investigating the performance of the Jason-2/OSTM radar altimeter over lakes and reservoirs. Mar. Geod. 2010, 33, 204–238. [Google Scholar] [CrossRef]
- Adam, J.C.; Hamlet, A.F.; Lettenmaier, D.P. Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrol. Process. Int. J. 2009, 23, 962–972. [Google Scholar] [CrossRef]
- Laurent, L.; Buoncristiani, J.F.; Pohl, B.; Zekollari, H.; Farinotti, D.; Huss, M.; Mugnier, J.L.; Pergaud, J. The impact of climate change and glacier mass loss on the hydrology in the Mont-Blanc massif. Sci. Rep. 2020, 10, 10420. [Google Scholar] [CrossRef]
- Day, C.A. Modelling impacts of climate change on snowmelt runoff generation and streamflow across western US mountain basins: A review of techniques and applications for water resource management. Prog. Phys. Geog. 2009, 33, 614–633. [Google Scholar] [CrossRef]
- Pederson, G.T.; Gray, S.T.; Ault, T.; Marsh, W.; Fagre, D.B.; Bunn, A.G.; Graumlich, L.J. Climatic controls on the snowmelt hydrology of the northern Rocky Mountains. J. Clim. 2011, 24, 1666–1687. [Google Scholar] [CrossRef]
- Zona, D.; Lafleur, P.M.; Hufkens, K.; Bailey, B.; Gioli, B.; Burba, G.; Oechel, W.C. Earlier snowmelt may lead to late season declines in plant productivity and carbon sequestration in Arctic tundra ecosystems. Sci. Rep. 2022, 12, 3986. [Google Scholar]
- Casson, D.R.; Werner, M.; Weerts, A.; Solomatine, D. Global re-analysis datasets to improve hydrological assessment and snow water equivalent estimation in a sub-Arctic watershed. Hydrol. Earth Syst. Sci. 2018, 22, 4685–4697. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.; Song, C.; Zhan, P.; Liu, K.; Chen, T.; Li, W.; Ke, L. Refined estimation of lake water level and storage changes on the Tibetan Plateau from ICESat/ICESat-2. Catena 2021, 200, 105177. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, W.; Xie, H. Tibetan Plateau’s lake level and volume changes from NASA’s ICESat/ICESat-2 and Landsat Missions. Geophys. Res. Lett. 2019, 46, 13107–13118. [Google Scholar] [CrossRef]
- Dandabathula, G.; Verma, M.; Satyanarayana, P.; Rao, S.S. Evaluation of ICESat-2 ATL08 data product: Performance assessment in inland water. EJ-GEO 2020, 1. [Google Scholar] [CrossRef]
- Dandabathula, G.; Rao, S.S. Validation of ICESat-2 surface water level product ATL13 with near real time gauge data. Hydrology 2020, 8, 19–25. [Google Scholar] [CrossRef]
- Narin, O.G.; Abdikan, S. Multi-temporal analysis of inland water level change using ICESat-2 ATL-13 data in lakes and dams. Environ. Sci. Pollut. R 2022, 1–13. [Google Scholar] [CrossRef]
- Fricker, H.A.; Arndt, P.; Brunt, K.M.; Datta, R.T.; Fair, Z.; Jasinski, M.F.; Wouters, B. ICESat-2 Meltwater Depth Estimates: Application to Surface Melt on Amery Ice Shelf, East Antarctica. Geophys. Res. Lett. 2021, 48, e2020GL090550. [Google Scholar] [CrossRef]
- Fan, Y.; Hao, W.; Zhang, B.; Ma, C.; Gao, S.; Shen, X.; Li, F. Monitoring the Hydrological Activities of Antarctic Subglacial Lakes Using CryoSat-2 and ICESat-2 Altimetry Data. Remote Sens. 2022, 14, 898. [Google Scholar] [CrossRef]
Categories | Day | Month | Year |
---|---|---|---|
Wet/dry season | Obs. months/year ≥2 (interval >4) | 3/3 | |
Monthly | Obs. months/year ≥11 | 3/3 | |
Ten-day | Obs.1 days/ten-day ≥1 | Obs. months/year ≥11 | 3/3 |
Area | Time Scale | Total | |||
---|---|---|---|---|---|
Non-Seasonal | Wet and Dry Seasons | Monthly | Ten-Day | ||
1–2 km2 | 27,925 | 15,454 | 6 | 43,385 | |
2–5 km2 | 10,632 | 14,094 | 27 | 24,753 | |
5–10 km2 | 1633 | 5477 | 29 | 7139 | |
10–100 km2 | 306 | 4624 | 109 | 5039 | |
100–1000 km2 | 196 | 145 | 9 | 350 | |
>1000 km2 | 10 | 12 | 22 | ||
Total | 40,496 | 39,845 | 326 | 21 | 80,688 |
Area Threshold | SWL Change (m) | |||
---|---|---|---|---|
Median | Mean | Range | STD | |
1–2 km2 | 0.313 | 0.323 | 0.250 | 0.058 |
2–5 km2 | 0.335 | 0.349 | 0.260 | 0.069 |
5–10 km2 | 0.361 | 0.383 | 0.339 | 0.091 |
10–100 km2 | 0.494 | 0.519 | 0.499 | 0.126 |
100–1000 km2 | 0.938 | 1.050 | 1.202 | 0.350 |
>1000 km2 | 0.907 | 0.985 | 0.451 | 0.156 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Song, C.; Zhan, P.; Ma, J. How Many Pan-Arctic Lakes Are Observed by ICESat-2 in Space and Time? Remote Sens. 2022, 14, 5971. https://doi.org/10.3390/rs14235971
Chen T, Song C, Zhan P, Ma J. How Many Pan-Arctic Lakes Are Observed by ICESat-2 in Space and Time? Remote Sensing. 2022; 14(23):5971. https://doi.org/10.3390/rs14235971
Chicago/Turabian StyleChen, Tan, Chunqiao Song, Pengfei Zhan, and Jinsong Ma. 2022. "How Many Pan-Arctic Lakes Are Observed by ICESat-2 in Space and Time?" Remote Sensing 14, no. 23: 5971. https://doi.org/10.3390/rs14235971
APA StyleChen, T., Song, C., Zhan, P., & Ma, J. (2022). How Many Pan-Arctic Lakes Are Observed by ICESat-2 in Space and Time? Remote Sensing, 14(23), 5971. https://doi.org/10.3390/rs14235971