Optimum Feature and Classifier Selection for Accurate Urban Land Use/Cover Mapping from Very High Resolution Satellite Imagery
<p>Workflow of optimum textural features selection for urban land use/cover classification.</p> "> Figure 2
<p>The study areas included Tehran (<b>A</b>), Rio de Janeiro (<b>B</b>), Denver (<b>C</b>), Melbourne (<b>D</b>), and Hobart (<b>E</b>).</p> "> Figure 3
<p>The OOB classification error against the number of trees with 120 n-tree to estimate the proper trees for the RF process for three images.</p> "> Figure 4
<p>F1-measure values and classification time for classification of 137 feature datasets from images Tehran, Denver, and Hobart.</p> "> Figure 5
<p>Comparison of F1-measure values and process time (min.) for classification with features selected by PSO and GA for Tehran, Denver, and Hobart.</p> "> Figure 6
<p>Comparison of the classification accuracy and time (minutes) based on input dataset variation by the best output of each classifier in each image and feature set.</p> "> Figure 7
<p>The individual evaluation of each input feature in the classification performance.</p> "> Figure A1
<p>The images and their classification maps of (<b>A</b>) (Tehran/WorldView-2), (<b>B</b>) (Hobart/GeoEye-1), (<b>C</b>) (Melbourne/Pléiades), (<b>D</b>) (Rio/WorldView-3), and (<b>E</b>) (Denver/QuickBird), by SVM with PSO_NCA input dataset.</p> "> Figure A1 Cont.
<p>The images and their classification maps of (<b>A</b>) (Tehran/WorldView-2), (<b>B</b>) (Hobart/GeoEye-1), (<b>C</b>) (Melbourne/Pléiades), (<b>D</b>) (Rio/WorldView-3), and (<b>E</b>) (Denver/QuickBird), by SVM with PSO_NCA input dataset.</p> ">
Abstract
:1. Introduction
- To evaluate various texture feature selection algorithms and classification procedures;
- To provide a full-scale and optimum feature set and classifier for more efficient and accurate urban land use/cover mapping;
- To help users provide the optimum feature set, significantly reducing the time and effort required for feature selection in the classification process.
- Assessed VHR multispectral and panchromatic image data for extracting various urban land use/covers;
- Extracted and collected multiscale textural features from VHR image data;
- Implemented the wrapper-based and filter-based feature selection approaches;
- Evaluated each feature set with classification performance to obtain the most efficient one;
- Demonstrated the generalized characteristics of selected features for the efficient classification of new images.
- Investigated individual features’ role in the classification performance.
2. Proposed Methodology
2.1. Image Data
2.2. Class Separability Analysis
2.3. Feature Extraction
2.4. Feature Selection (FS)
2.4.1. Filter-Based Feature Selection
2.4.2. Wrapper-Based Feature Selection
2.5. Classification Algorithms
3. Results and Discussion
3.1. Multiscale Textural Feature Extraction
3.2. Classification of Extracted Features
3.3. Analysis of Generalization
3.4. Feature Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Image Information | ||||||
---|---|---|---|---|---|---|
Satellite | Dimension (Pixels) | Location (Based on Figure 2) | Spatial res. for Panchromatic | Spatial res. for Multispectral | Acquisition Date and Time | Center Point Coordinates |
Worldview-2 | 1040 × 695 | Tehran (Iran) (A) | 0.5 m | 2 m | 4 December 2010 7:15 | 35°44′46.85″N 51°15′38.92″E |
GeoEye-1 | 901 × 588 | Hobart (Australia) (E) | 0.5 m | 2 m | 5 March 2013 13:25 | 42°47′79″S 147°14′53.7″E |
QuickBird | 679 × 646 | Denver (USA) (C) | 0.6 m | 2.4 m | 4 July 2005 18:01 | 40°01′20.04″N 105°17′29.5″W |
Pléiades | 1119 × 634 | Melbourne (Australia) (D) | 0.5 m | 2 m | 25 February 2012 14:52 | 37°49′50.33″S 144°57′50.94″E |
WorldView-3 | 1290 × 664 | Rio de Janeiro (Brazil) (B) | 0.31 m | 1.24 m | 2 May 2016 13:12 | 22°57′22.89″S 43°10′42.20″W |
Appendix B
Worldview-2 Classes | Training Samples (Pixel) | Test Samples (Pixel) |
---|---|---|
Bare soil | 1128 | 12,974 |
Lawn | 3431 | 39,459 |
Highway | 5900 | 67,851 |
Parking | 3246 | 37,539 |
Low-rise building | 3241 | 37,271 |
Road | 5966 | 68,604 |
Sports facility | 1648 | 18,949 |
High-rise building | 2673 | 30,737 |
Tree | 3759 | 43,225 |
Sidewalk | 1361 | 15,648 |
Shrub | 4910 | 56,471 |
Total ROIs | 37,263 | 428,728 |
QuickBird Classes | Training Samples (Pixel) | Test Samples (Pixel) |
---|---|---|
Lawn | 3697 | 42,515 |
Highway | 1224 | 14,078 |
Parking | 3208 | 34,826 |
Low-rise building | 1907 | 22,661 |
Road | 2477 | 28,489 |
Commercial building | 2649 | 30,467 |
Tree | 7680 | 88,323 |
Total ROIs | 22,752 | 261,359 |
GeoEye-1 Classes | Training Samples (Pixel) | Test Samples (Pixel) |
---|---|---|
Bare soil | 6166 | 70,912 |
Lawn | 1553 | 17,863 |
Highway | 1671 | 19,219 |
Parking | 1016 | 11,681 |
Low-rise building | 2509 | 28,856 |
Road | 3115 | 35,820 |
Sports facility | 611 | 7023 |
Commercial building | 2590 | 29,788 |
Tree | 3117 | 35,846 |
Total ROIs | 22,348 | 257,008 |
Pléiades Classes | Training Samples (Pixel) | Test Samples (Pixel) |
---|---|---|
Lawn | 1949 | 22,409 |
Highway | 3176 | 36,527 |
Parking | 1623 | 18,670 |
Low-rise building | 11,319 | 130,164 |
Road | 8505 | 97,808 |
Sports facility | 303 | 3480 |
High-rise building | 5108 | 30,737 |
Tree | 3533 | 40,626 |
Railway | 1949 | 22,418 |
Total ROIs | 37,465 | 402,839 |
WorldView-3 Classes | Train Samples (Pixel) | Test Samples (Pixel) |
---|---|---|
Bare soil | 1418 | 16,306 |
Lawn | 511 | 5876 |
Highway | 1860 | 21,390 |
Parking | 1625 | 18,691 |
Low-rise building | 7680 | 88,321 |
Road | 3774 | 43,398 |
High-rise building | 4273 | 49,136 |
Tree | 4660 | 53,585 |
Shrub | 87 | 1000 |
Total ROIs | 25,888 | 297,703 |
Appendix C
Input Features | ||||||
---|---|---|---|---|---|---|
ASM5_3_0 | Cont5_3_0 | Cor5_3_0 | Dis5_3_0 | Ent5_3_0 | Homo5_3_0 | Mean5 |
ASM5_3_45 | Cont5_3_45 | Cor5_3_45 | Dis5_3_45 | Ent5_3_45 | Homo5_3_45 | Mean9 |
ASM5_3_90 | Cont5_3_90 | Cor5_3_90 | Dis5_3_90 | Ent5_3_90 | Homo5_3_90 | Mean17 |
ASM9_7_0 | Cont9_7_0 | Cor9_7_0 | Dis9_7_0 | Ent9_7_0 | Homo9_7_0 | Mean31 |
ASM9_7_45 | Cont9_7_45 | Cor9_7_45 | Dis9_7_45 | Ent9_7_45 | Homo9_7_45 | Mean51 |
ASM9_7_90 | Cont9_7_90 | Cor9_7_90 | Dis9_7_90 | Ent9_7_90 | Homo9_7_90 | Var5 |
ASM17_15_0 | Cont17_15_0 | Cor17_15_0 | Dis17_15_0 | Ent17_15_0 | Homo17_15_0 | Var9 |
ASM17_15_45 | Cont17_15_45 | Cor17_15_45 | Dis17_15_45 | Ent17_15_45 | Homo17_15_45 | Var17 |
ASM17_15_90 | Cont17_15_90 | Cor17_15_90 | Dis17_15_90 | Ent17_15_90 | Homo17_15_90 | Var31 |
ASM31_15_0 | Cont31_15_0 | Cor31_15_0 | Dis31_15_0 | Ent31_15_0 | Homo31_15_0 | Var51 |
ASM31_15_45 | Cont31_15_45 | Cor31_15_45 | Dis31_15_45 | Ent31_15_45 | Homo31_15_45 | Pan |
ASM31_15_90 | Cont31_15_90 | Cor31_15_90 | Dis31_15_90 | Ent31_15_90 | Homo31_15_90 | |
ASM31_30_0 | Cont31_30_0 | Cor31_30_0 | Dis31_30_0 | Ent31_30_0 | Homo31_30_0 | |
ASM31_30_45 | Cont31_30_45 | Cor31_30_45 | Dis31_30_45 | Ent31_30_45 | Homo31_30_45 | |
ASM31_30_90 | Cont31_30_90 | Cor31_30_90 | Dis31_30_90 | Ent31_30_90 | Homo31_30_90 | |
ASM51_15_0 | Cont51_15_0 | Cor51_15_0 | Dis51_15_0 | Ent51_15_0 | Homo51_15_0 | |
ASM51_15_45 | Cont51_15_45 | Cor51_15_45 | Dis51_15_45 | Ent51_15_45 | Homo51_15_45 | |
ASM51_15_90 | Cont51_15_90 | Cor51_15_90 | Dis51_15_90 | Ent51_15_90 | Homo51_15_90 | |
ASM51_30_0 | Cont51_30_0 | Cor51_30_0 | Dis51_30_0 | Ent51_30_0 | Homo51_30_0 | |
ASM51_30_45 | Cont51_30_45 | Cor51_30_45 | Dis51_30_45 | Ent51_30_45 | Homo51_30_45 | |
ASM51_30_90 | Cont51_30_90 | Cor51_30_90 | Dis51_30_90 | Ent51_30_90 | Homo51_30_90 |
Appendix D
GA Parameter | Value |
---|---|
Population size | 60 |
Elite count | 2 |
Fitness function | KNN-based classification accuracy |
Number of generations | 30 |
Mutation probability | 0.1 |
Crossover probability | 0.8 |
Crossover type | Unique |
PSO Parameter | Value |
---|---|
Population size | 60 |
Fitness function | KNN-based classification accuracy |
Maximum iteration | 30 |
C1 | 2 |
C2 | 2 |
Appendix E
Name of Selection Methods | Content of Optimal Features |
---|---|
GA_Relief-F | Mean31, Mean51, Mean9, Cor51_30_0, Cor51_15_90, Cor51_30_90, Cor31_15_45, Cor31_30_90, Dis51_30_45, Dis51_15_90, Cont51_15_90, Ent51_15_0, Ent31_15_45, Homo51_15_90, |
PSO_Relief-F | Mean51, Mean31, Mean5, Mean9, Cor51_15_90, Cor51_30_0, Cor51_15_0, Cor31_15_45, Cor51_30_90, Cor31_15_0, Cont51_15_90, Cont51_15_0, Dis51_15_90, Dis51_30_45 |
GA_NCA | Mean51, Mean31, Mean5, Cor51_30_0, Cor51_15_90, Cor51_15_0, Cor31_15_45, Homo51_15_45, Homo31_15_90, Dis51_30_45, Dis31_15_45, Dis51_15_45, Var31, Ent31_15_45 |
PSO_NCA | Mean51, Mean31, Cor51_15_90, Cor51_15_0, Cor51_30_0, Cor51_30_90, Cor31_15_0, Cor31_15_45, Var31, Dis51_30_45, Cont51_15_0, Cont51_15_45, Homo51_15_90, Pan |
GA_MRMR | Mean9, Mean31, Mean5, Cor51_30_0, Cor51_15_45, Asm9_7_0, Asm51_15_45, Asm17_15_90, Cont31_30_0, Cont9_7_90, Dis51_15_90, Dis51_30_90, Var31, Var9 |
PSO_MRMR | Mean9, Mean5, Mean31, Mean17, Cor31_15_0, Cor51_15_90, Cor5_3_0, Cor31_15_45, Asm9_7_0, Cont51_15_90, Var31, Ent51_30_45, Var31, Pan |
Appendix F
References
- Gong, P.; Marceau, D.J.; Howarth, P.J. A comparison of spatial feature extraction algorithms for land-use classification with SPOT HRV data. Remote Sens. Environ. 1992, 40, 137–151. [Google Scholar] [CrossRef]
- Pacifici, F.; Chini, M.; Emery, W. A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote Sens. Environ. 2009, 113, 1276–1292. [Google Scholar] [CrossRef]
- Clausi, D.; Yue, B. Comparing Cooccurrence Probabilities and Markov Random Fields for Texture Analysis of SAR Sea Ice Imagery. IEEE Trans. Geosci. Remote Sens. 2004, 42, 215–228. [Google Scholar] [CrossRef]
- Kupidura, P. The Comparison of Different Methods of Texture Analysis for Their Efficacy for Land Use Classification in Satellite Imagery. Remote Sens. 2019, 11, 1233. [Google Scholar] [CrossRef] [Green Version]
- Tuceryan, M.; Jain, A.K. Texture analysis. In Handbook of Pattern Recognition and Computer Vision; World Scientific: Singapore, 1993; pp. 235–276. [Google Scholar]
- Anys, H.; He, D.-C. Evaluation of textural and multipolarization radar features for crop classification. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1170–1181. [Google Scholar] [CrossRef]
- Soares, J.V.; Rennó, C.D.; Formaggio, A.R.; Yanasse, C.D.C.F.; Frery, A.C. An investigation of the selection of texture features for crop discrimination using SAR imagery. Remote Sens. Environ. 1997, 59, 234–247. [Google Scholar] [CrossRef]
- Kim, M.; Madden, M.; Warner, T.A. Forest Type Mapping using Object-specific Texture Measures from Multispectral Ikonos Imagery. Photogramm. Eng. Remote Sens. 2009, 75, 819–829. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Liu, X.; Chen, Y.; Liang, X. Land-cover mapping using Random Forest classification and incorporating NDVI time-series and texture: A case study of central Shandong. Int. J. Remote Sens. 2018, 39, 8703–8723. [Google Scholar] [CrossRef]
- Ferreira, M.P.; Wagner, F.H.; Aragão, L.E.O.C.; Shimabukuro, Y.E.; de Souza Filho, C.R. Tree species classification in tropical forests using visible to shortwave infrared WorldView-3 images and texture analysis. ISPRS J. Photogramm. Remote Sens. 2019, 149, 119–131. [Google Scholar] [CrossRef]
- Ruiz Hernandez, I.E.; Shi, W. A Random Forests classification method for urban land-use mapping integrating spatial metrics and texture analysis. Int. J. Remote Sens. 2018, 39, 1175–1198. [Google Scholar] [CrossRef]
- Mishra, V.N.; Prasad, R.; Rai, P.K.; Vishwakarma, A.K.; Arora, A. Performance evaluation of textural features in improving land use/land cover classification accuracy of heterogeneous landscape using multi-sensor remote sensing data. Earth Sci. Inform. 2018, 12, 71–86. [Google Scholar] [CrossRef]
- Saboori, M.; Torahi, A.A.; Bakhtyari, H.R.R. Combining multi-scale textural features from the panchromatic bands of high spatial resolution images with ANN and MLC classification algorithms to extract urban land uses. Int. J. Remote Sens. 2019, 40, 8608–8634. [Google Scholar] [CrossRef]
- Bramhe, V.S.; Ghosh, S.K.; Garg, P.K. Extraction of built-up areas from Landsat-8 OLI data based on spectral-textural information and feature selection using support vector machine method. Geocarto Int. 2019, 35, 1067–1087. [Google Scholar] [CrossRef]
- Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn. 2002, 46, 389–422. [Google Scholar] [CrossRef]
- Mundra, P.A.; Rajapakse, J.C. SVM-RFE with relevancy and redundancy criteria for gene selection. In Proceedings of the IAPR International Workshop on Pattern Recognition in Bioinformatics, Singapore, 1–2 October 2007; pp. 242–252. [Google Scholar]
- Jaffel, Z.; Farah, M. A symbiotic organisms search algorithm for feature selection in satellite image classification. In Proceedings of the 2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, Tunisia, 21–24 March 2018; pp. 1–5. [Google Scholar]
- Ranjbar, H.R.; Ardalan, A.A.; Dehghani, H.; Saradjian, M.R. Using high-resolution satellite imagery to provide a relief priority map after earthquake. Nat. Hazards 2017, 90, 1087–1113. [Google Scholar] [CrossRef]
- Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C. VSURF: An R Package for Variable Selection Using Random Forests. R J. 2015, 7, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Georganos, S.; Grippa, T.; VanHuysse, S.; Lennert, M.; Shimoni, M.; Kalogirou, S.; Wolff, E. Less is more: Optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application. GISci. Remote Sens. 2017, 55, 221–242. [Google Scholar] [CrossRef]
- Saeys, Y.; Inza, I.; Larrañaga, P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23, 2507–2517. [Google Scholar] [CrossRef] [Green Version]
- Scott, D.W. Multivariate Density Estimation: Theory, Practice, and Visualization; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Jindal, P.; Kumar, D. A review on dimensionality reduction techniques. Comput. Sci. Int. J. Comput. Appl. 2017, 173, 42–46. [Google Scholar] [CrossRef]
- Abd-Alsabour, N.J.J.C. On the Role of Dimensionality Reduction. J. Comput. 2018, 13, 571–579. [Google Scholar] [CrossRef]
- Zebari, R.; AbdulAzeez, A.; Zeebaree, D.; Zebari, D.; Saeed, J. A Comprehensive Review of Dimensionality Reduction Techniques for Feature Selection and Feature Extraction. J. Appl. Sci. Technol. Trends 2020, 1, 56–70. [Google Scholar] [CrossRef]
- Liu, H.; Yu, L. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 2005, 17, 491–502. [Google Scholar]
- Zhu, Z.; Ong, Y.-S.; Dash, M. Wrapper–filter feature selection algorithm using a memetic framework. IEEE Trans. Syst. ManCybern. Part B (Cybern.) 2007, 37, 70–76. [Google Scholar] [CrossRef]
- Mahrooghy, M.; Younan, N.H.; Anantharaj, V.G.; Aanstoos, J.; Yarahmadian, S. On the Use of the Genetic Algorithm Filter-Based Feature Selection Technique for Satellite Precipitation Estimation. IEEE Geosci. Remote Sens. Lett. 2012, 9, 963–967. [Google Scholar] [CrossRef]
- Tamimi, E.; Ebadi, H.; Kiani, A. Evaluation of different metaheuristic optimization algorithms in feature selection and parameter determination in SVM classification. Arab. J. Geosci. 2017, 10, 478. [Google Scholar] [CrossRef]
- Zhao, H.; Min, F.; Zhu, W. Cost-Sensitive Feature Selection of Numeric Data with Measurement Errors. J. Appl. Math. 2013, 2013, 1–13. [Google Scholar] [CrossRef]
- Jain, D.; Singh, V. Feature selection and classification systems for chronic disease prediction: A review. Egypt. Inform. J. 2018, 19, 179–189. [Google Scholar] [CrossRef]
- Jamali, A. Evaluation and comparison of eight machine learning models in land use/land cover mapping using Landsat 8 OLI: A case study of the northern region of Iran. SN Appl. Sci. 2019, 1, 1448. [Google Scholar] [CrossRef] [Green Version]
- Naeini, A.A.; Babadi, M.; Mirzadeh, S.M.J.; Amini, S. Particle Swarm Optimization for Object-Based Feature Selection of VHSR Satellite Images. IEEE Geosci. Remote Sens. Lett. 2018, 15, 379–383. [Google Scholar] [CrossRef]
- Hamedianfar, A.; Shafri, H.Z.M. Integrated approach using data mining-based decision tree and object-based image analysis for high-resolution urban mapping of WorldView-2 satellite sensor data. J. Appl. Remote Sens. 2016, 10, 025001. [Google Scholar] [CrossRef]
- Wu, B.; Chen, C.; Kechadi, T.M.; Sun, L. A comparative evaluation of filter-based feature selection methods for hyper-spectral band selection. Int. J. Remote Sens. 2013, 34, 7974–7990. [Google Scholar] [CrossRef]
- Malan, N.S.; Sharma, S.J. Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals. Comput. Biol. Med. 2019, 107, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Wang, R.; Liu, G.; Feng, R.; Wang, Y.; Wu, W. Partitioned Relief-F Method for Dimensionality Reduction of Hyperspectral Images. Remote Sens. 2020, 12, 1104. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, P.M.; Tatnall, A.R.L. Introduction Neural networks in remote sensing. Int. J. Remote Sens. 1997, 18, 699–709. [Google Scholar] [CrossRef]
- Xie, Z.; Chen, Y.; Lu, D.; Li, G.; Chen, E. Classification of Land Cover, Forest, and Tree Species Classes with ZiYuan-3 Multispectral and Stereo Data. Remote Sens. 2019, 11, 164. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Kumar, A.A.; Ramachandran, P.; Sensing, R. Development of new index-based methodology for extraction of built-up area from landsat7 imagery: Comparison of performance with svm, ann, and existing indices. IEEE Trans. Geosci. Remote Sens. 2020, 59, 1592–1603. [Google Scholar] [CrossRef]
- Civco, D.L. Artificial neural networks for land-cover classification and mapping. Geogr. Inf. Syst. 1993, 7, 173–186. [Google Scholar] [CrossRef]
- Zhang, C.; Sargent, I.M.J.; Pan, X.; Li, H.; Gardiner, A.; Hare, J.; Atkinson, P.M. Joint Deep Learning for land cover and land use classification. Remote Sens. Environ. 2018, 221, 173–187. [Google Scholar] [CrossRef] [Green Version]
- Talukdar, S.; Singha, P.; Mahato, S.; Praveen, B.; Rahman, A. Dynamics of ecosystem services (ESs) in response to land use land cover (LU/LC) changes in the lower Gangetic plain of India. Ecol. Indic. 2020, 112, 106121. [Google Scholar] [CrossRef]
- Rogan, J.; Franklin, J.; Stow, D.; Miller, J.; Woodcock, C.; Roberts, D. Mapping land-cover modifications over large areas: A comparison of machine learning algorithms. Remote Sens. Environ. 2008, 112, 2272–2283. [Google Scholar] [CrossRef]
- Camargo, F.F.; Sano, E.E.; Almeida, C.M.; Mura, J.C.; Almeida, T.J.R.S. A comparative assessment of machine-learning techniques for land use and land cover classification of the Brazilian tropical savanna using ALOS-2/PALSAR-2 polarimetric images. Remote Sens. 2019, 11, 1600. [Google Scholar] [CrossRef] [Green Version]
- Vohra, R.; Tiwari, K.C. Comparative Analysis of SVM and ANN Classifiers using Multilevel Fusion of Multi-Sensor Data in Urban Land Classification. Sens. Imaging 2020, 21, 1–21. [Google Scholar] [CrossRef]
- Ghasemi, M.; Karimzadeh, S.; Feizizadeh, B. Urban classification using preserved information of high dimensional textural features of Sentinel-1 images in Tabriz, Iran. Earth Sci. Inform. 2021, 14, 1745–1762. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Ghosh, A.; Joshi, P. A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery. Int. J. Appl. Earth Obs. Geoinformation 2014, 26, 298–311. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C.; Sensing, R. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Deng, J.S.; Wang, K.; Deng, Y.H.; Qi, G.J. PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data. Int. J. Remote Sens. 2008, 29, 4823–4838. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Grizonnet, M.; Michel, J.; Poughon, V.; Inglada, J.; Savinaud, M.; Cresson, R. Orfeo ToolBox: Open source processing of remote sensing images. Open Geospatial Data Softw. Stand. 2017, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Dash, M.; Liu, H. Feature selection for classification. Intell. Data Anal. 1997, 1, 131–156. [Google Scholar] [CrossRef]
- Huang, X.; Wu, L.; Ye, Y.; Intelligence, A. A review on dimensionality reduction techniques. Int. J. Pattern Recognit. Artif. Intell. 2019, 33, 1950017. [Google Scholar] [CrossRef]
- Khaire, U.M.; Dhanalakshmi, R. Stability of feature selection algorithm: A review. J. King Saud Univ.-Comput. Inf. Sci. 2019, 34, 1060–1073. [Google Scholar] [CrossRef]
- Kira, K.; Rendell, L.A. A practical approach to feature selection. In Machine Learning Proceedings; Elsevier: Amsterdam, The Netherlands, 1992; pp. 249–256. [Google Scholar]
- Yang, W.; Wang, K.; Zuo, W. Neighborhood Component Feature Selection for High-Dimensional Data. J. Comput. 2012, 7, 161–168. [Google Scholar] [CrossRef]
- Li, P.; Hong, Z.; Zuxun, Z.; Jianqing, Z. Genetic feature selection for texture classification. Geo-Spat. Inf. Sci. 2004, 7, 162–166. [Google Scholar] [CrossRef]
- Mather, P.; Tso, B. Classification Methods for Remotely Sensed Data; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Khodaverdizahraee, N.; Rastiveis, H.; Jouybari, A. Segment-by-segment comparison technique for earthquake-induced building damage map generation using satellite imagery. Int. J. Disaster Risk Reduct. 2020, 46, 101505. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Sammut, C.; Webb, G.I. Encyclopedia of Machine Learning; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Doma, M.I.; Sedeek, A.A. Comparison of PSO, GAs and analytical techniques in second-order design of deformation monitoring networks. J. Appl. Geod. 2014, 8, 21–30. [Google Scholar] [CrossRef]
- Jia, F.; Lichti, D. A comparison of simulated annealing, genetic algorithm and particle swarm optimization in optimal first-order design of indoor tls networks. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV-2/W4, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Liou, Y.-A.; Tzeng, Y.; Chen, K. A neural-network approach to radiometric sensing of land-surface parameters. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2718–2724. [Google Scholar] [CrossRef]
- Liu, X.; He, J.; Yao, Y.; Zhang, J.; Liang, H.; Wang, H.; Hong, Y. Classifying urban land use by integrating remote sensing and social media data. Int. J. Geogr. Inf. Sci. 2017, 31, 1675–1696. [Google Scholar] [CrossRef]
- Mao, W.; Lu, D.; Hou, L.; Liu, X.; Yue, W. Comparison of Machine-Learning Methods for Urban Land-Use Mapping in Hangzhou City, China. Remote Sens. 2020, 12, 2817. [Google Scholar] [CrossRef]
- Du, S.; Zhang, F.; Zhang, X. Semantic classification of urban buildings combining VHR image and GIS data: An improved random forest approach. ISPRS J. Photogramm. Remote Sens. 2015, 105, 107–119. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, J.; Gong, J. UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis. Remote Sens. 2015, 7, 1074–1094. [Google Scholar] [CrossRef] [Green Version]
- Shaban, M.A.; Dikshit, O. Improvement of classification in urban areas by the use of textural features: The case study of Lucknow city, Uttar Pradesh. Int. J. Remote Sens. 2001, 22, 565–593. [Google Scholar] [CrossRef]
- Lu, D.; Hetrick, S.; Moran, E. Land Cover Classification in a Complex Urban-Rural Landscape with QuickBird Imagery. Photogramm. Eng. Remote Sens. 2010, 76, 1159–1168. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, R.L.; Wood, S.D.; Sheley, R.L. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (randomForest). Remote Sens. Environ. 2006, 100, 356–362. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Cheng, X.; Wang, L. A Comparison of Machine Learning Algorithms for Mapping of Complex Surface-Mined and Agricultural Landscapes Using ZiYuan-3 Stereo Satellite Imagery. Remote Sens. 2016, 8, 514. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Pan, J.; Zhang, P.; Wei, S.; Han, T. Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region. Sensors 2017, 17, 1210. [Google Scholar] [CrossRef] [PubMed]
- Guirado, E.; Tabik, S.; Rivas, M.L.; Alcaraz-Segura, D.; Herrera, F.J.B. Automatic whale counting in satellite images with deep learning. Sci. Rep. 2018, 44367. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Li, Z.; Pan, J. Multi-Feature Classification of Multi-Sensor Satellite Imagery Based on Dual-Polarimetric Sentinel-1A, Landsat-8 OLI, and Hyperion Images for Urban Land-Cover Classification. Sensors 2018, 18, 373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sainos-Vizuett, M.; Lopez-Nava, I.H. Satellite Imagery Classification Using Shallow and Deep Learning Approaches. In Proceedings of the 13th Mexican Conference, MCPR 2021, Mexico City, Mexico, 23–26 June 2021; pp. 163–172. [Google Scholar] [CrossRef]
- Chen, W.; Li, X.; Wang, L. Fine Land Cover Classification in an Open Pit Mining Area Using Optimized Support Vector Machine and WorldView-3 Imagery. Remote Sens. 2019, 12, 82. [Google Scholar] [CrossRef] [Green Version]
- Daskalaki, S.; Kopanas, I.; Avouris, N. Evaluation of classifiers for an uneven class distribution problem. Appl. Artif. Intell. 2006, 20, 381–417. [Google Scholar] [CrossRef]
- Ding, S.; Chen, L. Intelligent Optimization Methods for High-Dimensional Data Classification for Support Vector Machines. Intell. Inf. Manag. 2010, 2, 354–364. [Google Scholar] [CrossRef] [Green Version]
- Yavari, S.; Zoej, M.J.V.; Mokhtarzade, M.; Mohammadzadeh, A. Comparison of particle swarm optimization and genetic algorithm in rational function model optimization. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXIX-B1, 281–284. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Datta, A.; Ghosh, S. Self-adaptive differential evolution for feature selection in hyperspectral image data. Appl. Soft Comput. 2013, 13, 1969–1977. [Google Scholar] [CrossRef]
- Venkateswaran, K.; Shree, T.S.; Kousika, N.; Kasthuri, N. Performance Analysis of GA and PSO based Feature Selection Techniques for Improving Classification Accuracy in Remote Sensing Images. Indian J. Sci. Technol. 2016, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Xiaohui, D.; Huapeng, L.; Yong, L.; Ji, Y.; Shuqing, Z. Comparison of swarm intelligence algorithms for optimized band selection of hyperspectral remote sensing image. Open Geosci. 2020, 12, 425–442. [Google Scholar] [CrossRef]
- Foody, G.M.; Mathur, A. A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1335–1343. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Adam, E.; Mutanga, O.; Odindi, J.; Abdel-Rahman, E.M. Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers. Int. J. Remote Sens. 2014, 35, 3440–3458. [Google Scholar] [CrossRef]
- Lawrence, R.L.; Moran, C.J. The AmericaView classification methods accuracy comparison project: A rigorous approach for model selection. Remote Sens. Environ. 2015, 170, 115–120. [Google Scholar] [CrossRef]
- Chung, L.C.H.; Xie, J.; Ren, C. Improved machine-learning mapping of local climate zones in metropolitan areas using composite Earth observation data in Google Earth Engine. Build. Environ. 2021, 199, 107879. [Google Scholar] [CrossRef]
- Maillard, P.J.P.E.; Sensing, R. Comparing texture analysis methods through classification. Photogramm. Eng. Remote Sens. 2003, 69, 357–367. [Google Scholar] [CrossRef] [Green Version]
- Puissant, A.; Hirsch, J.; Weber, C. The utility of texture analysis to improve per-pixel classification for high to very high spatial resolution imagery. Int. J. Remote Sens. 2005, 26, 733–745. [Google Scholar] [CrossRef]
- Pratt, W. Digital Image Processing: Piks Scientific Inside; Wiley-Interscience; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Su, W.; Li, J.; Chen, Y.; Liu, Z.; Zhang, J.; Low, T.M.; Suppiah, I.; Hashim, S.A.M. Textural and local spatial statistics for the object-oriented classification of urban areas using high resolution imagery. Int. J. Remote Sens. 2008, 29, 3105–3117. [Google Scholar] [CrossRef]
- Warner, T. Kernel-Based Texture in Remote Sensing Image Classification. Geogr. Compass 2011, 5, 781–798. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Q.; Liu, J.; Shang, J.; Du, X.; McNairn, H.; Champagne, C.; Dong, T.; Liu, M. Image classification using rapideye data: Integration of spectral and textual features in a random forest classifier. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5334–5349. [Google Scholar] [CrossRef]
Tehran | Denver | Hobart | |
---|---|---|---|
GA | 46 | 51 | 53 |
PSO | 74 | 63 | 75 |
Input Dataset and Classifier | Tehran | Hobart | Denver | |||
---|---|---|---|---|---|---|
F1-Measure | Overall Time (min.) | F1-Measure | Overall Time (min.) | F1-Measure | Overall Time (min.) | |
GA_MRMR_ANN | 0.770 | 17.24 | 0.889 | 3.48 | 0.718 | 4.44 |
GA_MRMR_RF | 0.892 | 2.49 | 0.926 | 1.14 | 0.839 | 1.09 |
GA_MRMR_SVM | 0.874 | 30.31 | 0.953 | 6.32 | 0.761 | 11.18 |
GA_NCA_ANN | 0.788 | 29.80 | 0.934 | 13.83 | 0.852 | 16.94 |
GA_NCA_RF | 0.935 | 14.96 | 0.963 | 8.50 | 0.909 | 8.82 |
GA_NCA_SVM | 0.959 | 37.76 | 0.979 | 13.59 | 0.946 | 18.25 |
GA_ReliefF_ANN | 0.830 | 61.10 | 0.940 | 26.26 | 0.820 | 0.00 |
GA_ReliefF_RF | 0.930 | 44.27 | 0.960 | 20.54 | 0.900 | 16.80 |
GA_ReliefF_SVM | 0.934 | 70.71 | 0.968 | 25.41 | 0.920 | 26.60 |
PSO_MRMR_ANN | 0.715 | 15.29 | 0.874 | 7.09 | 0.747 | 9.53 |
PSO_MRMR_RF | 0.862 | 2.55 | 0.911 | 1.15 | 0.819 | 1.14 |
PSO_MRMR_SVM | 0.842 | 33.22 | 0.959 | 6.41 | 0.736 | 12.11 |
PSO_NCA_ANN | 0.810 | 29.73 | 0.939 | 16.86 | 0.861 | 15.45 |
PSO_NCA_RF | 0.941 | 16.98 | 0.964 | 12.28 | 0.921 | 11.47 |
PSO_NCA_SVM | 0.971 | 40.87 | 0.984 | 17.67 | 0.947 | 22.17 |
PSO_ReliefF_ANN | 0.754 | 77.26 | 0.925 | 30.38 | 0.807 | 34.58 |
PSO_ReliefF_RF | 0.931 | 65.03 | 0.957 | 26.12 | 0.900 | 23.24 |
PSO_ReliefF_SVM | 0.962 | 90.25 | 0.981 | 31.67 | 0.935 | 35.00 |
Classifiers | Melbourne | Rio | ||||
---|---|---|---|---|---|---|
F1-Measure | OA% | Time (min.) | F1-Measure | OA% | Time (min.) | |
SVM | 0.96 | 96.29 | 23.36 | 0.94 | 94.31 | 46 |
RF | 0.93 | 94.11 | 1.40 | 0.90 | 92.15 | 1.03 |
ANN | 0.82 | 86.94 | 12.94 | 0.76 | 86.6 | 32.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saboori, M.; Homayouni, S.; Shah-Hosseini, R.; Zhang, Y. Optimum Feature and Classifier Selection for Accurate Urban Land Use/Cover Mapping from Very High Resolution Satellite Imagery. Remote Sens. 2022, 14, 2097. https://doi.org/10.3390/rs14092097
Saboori M, Homayouni S, Shah-Hosseini R, Zhang Y. Optimum Feature and Classifier Selection for Accurate Urban Land Use/Cover Mapping from Very High Resolution Satellite Imagery. Remote Sensing. 2022; 14(9):2097. https://doi.org/10.3390/rs14092097
Chicago/Turabian StyleSaboori, Mojtaba, Saeid Homayouni, Reza Shah-Hosseini, and Ying Zhang. 2022. "Optimum Feature and Classifier Selection for Accurate Urban Land Use/Cover Mapping from Very High Resolution Satellite Imagery" Remote Sensing 14, no. 9: 2097. https://doi.org/10.3390/rs14092097
APA StyleSaboori, M., Homayouni, S., Shah-Hosseini, R., & Zhang, Y. (2022). Optimum Feature and Classifier Selection for Accurate Urban Land Use/Cover Mapping from Very High Resolution Satellite Imagery. Remote Sensing, 14(9), 2097. https://doi.org/10.3390/rs14092097