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Abstract: The paper presents a comparison of the efficacy of several texture analysis methods as
tools for improving land use/cover classification in satellite imagery. The tested methods were:
gray level co-occurrence matrix (GLCM) features, Laplace filters and granulometric analysis, based
on mathematical morphology. The performed tests included an assessment of the classification
accuracy performed based on spectro-textural datasets: spectral images with the addition of images
generated using different texture analysis methods. The class nomenclature was based on spectral
and textural differences and included the following classes: water, low vegetation, bare soil, urban,
and two (coniferous and deciduous) forest classes. The classification accuracy was assessed using
the overall accuracy and kappa index of agreement, based on the reference data generated using
visual interpretation of the images. The analysis was performed using very high-resolution imagery
(Pleiades, WorldView-2) and high-resolution imagery (Sentinel-2). The results show the efficacy
of selected GLCM features and granulometric analysis as tools for providing textural data, which
could be used in the process of land use/cover classification. It is also clear that texture analysis is
generally a more important and effective component of classification for images of higher resolution.
In addition, for classification using GLCM results, the Random Forest variable importance analysis
was performed.

Keywords: satellite imagery; classification; texture analysis; GLCM; mathematical morphology;
granulometric analysis; Laplace filter

1. Introduction

Texture is one of the most important spatial features of an image. Compared to other important
spatial features, such as shape and size, it is relatively simple to use because it does not require prior
image segmentation. At the same time, it is a distinctive feature of selected land use/cover classes,
compared to other classes exhibiting significant spectral similarities. For example, urban and bare soil
areas share similar spectral characteristics, as do forests and areas of low vegetation. As the research
shows, the use of textural information in classification, apart from spectral data, can significantly
increase the accuracy of classification [1–12]. The best results can be obtained by using a combination
of spectral and textural data [7,8,12].

Texture has no unambiguous definition, which is why in the practice of digital image processing
there are many different methods of texture analysis defined ad hoc. Some of these methods include gray
level co-occurrence matrix (GLCM) [1,2,13], fractal analysis [3], discrete wavelet transformation [14],
Laplace filters [15–17], Markov random fields [18,19] or granulometric analysis [20,21]. There are
also studies showing the high potential of artificial neural networks, including convolutional ones,
for spectral-spatial approaches to classification [5,6].
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The following paper presents a comparison of the effectiveness in providing textural information
of GLCM, Laplacian and granulometric analyses. The first two methods are relatively well researched,
also in terms of the effectiveness of textural analysis. However, granulometric analysis is a lesser-known
method. Although previous studies [4,7,8] show its significant potential, there are no studies comparing
it with other methods of textural analysis. The main motivation of this paper is therefore to present
such a comparative analysis.

Previous studies [7] show that spatial resolution is important when identifying textural signatures
which indicate a specific classification of coverage or land use. It was shown that the significance
of the texture decreases with the spatial resolution of the image and that it is not important in the
case of images with a pixel of approximately 30 m. Therefore, this study used images with different
resolutions: very high (GSD (ground sample distance) 2 m: Pleiades and WorldView-2) and high:
(GSD 10 m: Sentinel-2).

2. Brief Presentation of Tested Methods of Textural Analysis

Three methods of textural analysis were tested: GLCM, Laplace filters and granulometric analysis.
They are presented below.

2.1. Gray Level Co-Occurrence Matrix (GLCM)

This method, first presented by Julesz [13], is based on creating a matrix describing the frequency
of the appearance of individual pairs of values in a specific image fragment (gray level co-occurrence
matrix). Then certain features describing certain textura; aspects are calculated. A significant part of
these features was developed by Haralick et al. [1,2], thus the indicators are often referred to as Haralick
features. Various authors propose the use of various Haralick features [10–12]. The effectiveness of
this popular method has been demonstrated in a significant number of publications [22,23]. In this
paper, a set of eight different GLCM indicators is applied (formulas according to [24]):

Energy =
∑
i, j

g(i, j)2 (1)

Entropy =
∑
i, j

g(i, j)log2g(i, j), or 0 i f g(i, j) = 0, (2)

Correlation =
∑
i, j

(i− µ)( j− µ)g(i, j)
σ2 , (3)

Inverse Di f f erence Moment =
∑
i, j

1

1 + (i− j)2 g(i, j), (4)

Inertia =
∑
i, j

(i, j)2g(i, j), (5)

Cluster Shade =
∑
i, j

((i− µ) + ( j− µ))3g(i, j), (6)

Cluster Prominence =
∑
i, j

((i− µ) + ( j− µ))4g(i, j), (7)

Correlation =
∑
i, j

(i− µ)( j− µ)g(i, j)
σ2 , (8)

where (i, j) is the matrix cell index, g(i, j) is the frequency value of the pair having index (i, j),
µ =

∑
i, j i ∗ g(i, j) =

∑
i, j j ∗ g(i, j) (due to matrix symmetry) and means weighted pixel average, σ =∑

i, j(i− µ)
2
∗ g(i, j) =

∑
i, j( j− µ)2

∗ g(i, j) (due to matrix symmetry) and means weighted pixel variance,
and µt and σt are the mean and standard deviation of the row (or column, due to symmetry) sums.
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2.2. Laplace Filters

Laplacian filters are derivative filters used to find areas of rapid change in coincident imagery.
They have been presented in [25,26]. Laplace filters can be expressed using a convolution [26] e.g.,
using a mask as presented in the Figure 1.Remote Sens. 2019, 11, x FOR PEER REVIEW 3 of 23 
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Figure 1. Exemplary mask of Laplace filter, used in the presented research.

They are often used to detect edges of objects in an image. They can also be used to detect the
parts of an image with high texture, characterized by a high spatial frequency [27–29]. It can give
good results compared to other similar methods, such as the Sobel filter, but also in comparison with
Haralick’s features [29].

2.3. Granulometric Analysis

The third method, granulometric analysis, is not well-known, although its effectiveness has also
been demonstrated in previous publications [4,7,8,30]. It resembles a morphological profile [31,32],
although at the same time it differs significantly from it in some respects [7,8].

Granulometric analysis is based on the sequence of morphological opening and closing operations
and the measurement of the differences between successive images. This permits the quantification
of particles of different sizes [7]. The method was first presented by Haas, Matheron and Serra [20].
However, methods of local analysis were introduced later [21], allowing the assignment of texture
values to individual pixels. Its accuracy, regarding use in the classification of satellite imagery, has
been demonstrated in previous studies [7,8]. Granulometric analysis can be based on classical (simple)
morphological operations of opening and closing, as well as on operations with a multiple structuring
element (MSE) [7]. As shown by the studies, both these versions of granulometric analysis show slightly
different properties. Depending on the image and distinguished land use/cover classes, differing
results may be obtained [7].

As this method is relatively unknown, the two basic advantages of this texture analysis method
are briefly described below.

The first is multiscality; due to the possibility of successive application of increasing size of
morphological opening and closing operations, the obtained information indicates the presence of
texture grains of various sizes.

The second advantage is resistance to the so-called edge effect [7,33]. The edge effect means that
the edges of objects, even those with a low texture, get high values as a result of texture analysis. This
applies to most textural analysis methods because they refer to the spatial frequency analysis of the
selected image area as a texture determinant. Imagery edges have a high spatial frequency, and thus
are exhibited with high texture. Granulometric analysis is not based on this principle, as it analyzes
the number and value of removed image elements. Because of this, edges are not display as areas of
high texture.

3. Material and Methods

The study consisted of processing selected satellite multispectral imagery of high and very high
resolution using the tested methods of texture analysis, then combining the results of individual
methods with original spectral images and finally classifying such datasets and assessing their accuracy.
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3.1. Source Spectral Data

In this study, images showing the areas the South-East of Warsaw (Poland) were used. This is an
area characterized by diversified land cover. There are, among others, agricultural land, coniferous
and deciduous forests, water reservoirs and various forms of buildings. This study used images with
different resolutions: GSD 2 m (Pleiades and WorldView-2) and 10 m (Sentinel-2). These were subsets
of satellite scenes. Details of the test images are shown in Table 1. The images are shown in Figure 2.

Table 1. Test images used in the study.

Test
Image Satellite Platform GSD Spectral Bands Date of

Acquisition

1 Pleiades 2 m blue, green, red, near infrared 22.05.2012

2 WorldView-2 2 m coastal, blue, green, yellow, red,
red edge, 2x near infrared 04.08.2011

3 Sentinel-2 10 m blue, green, red, near infrared 20.04.2018
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3.2. Textural Data

The research involved four methods of texture analysis: GLCM, Laplace filter and granulometric
analysis (based on simple operations and operations with multiple structuring elements, MSE). All
texture images were obtained based on the processing of the image of the first principal component.
The choice of the first principal component was based on previous studies showing that the use of this
image as the source date for texture analysis gives the best results when it comes to separability of
selected land use classes compared to other images such as second principal components or selected
spectral channels [34]. Each of the multispectral images has been subjected to principal component
analysis. Then, the images of the first components, which by definition represent the largest variance
within the analyzed multispectral data, were subjected to textural processing using the tested methods.
As a result, three basic data sets were prepared, presented in Table 2.

Table 2. The set of textural images.

Texture Analysis Method Images Number of
Images

GLCM

Results of GLCM (gray level co-occurrence matrix) features
presented in Section 2.1: Energy, Entropy, Correlation, Inverse

Difference Moment, Inertia, Cluster Shade, Cluster Prominence,
Haralick’s Correlation.

8

Laplace filters Results of Laplacian of size 1, 2 and 3 (3 × 3, 5 × 5, 7 × 7) 3

Granulometric analysis
Three granulometric maps based on simple morphological

opening and three granulometric maps based on simple
morphological closing (two for each in the case of test image 3)

6 (4 for test
image 3)

Granulometric analysis basing
on operations with multiple
structuring element (MSE)

Three granulometric maps based on morphological MSE
opening and three granulometric maps based on morphological

MSE closing (two for each in the case of test image 3)

6 (4 for test
image 3)
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In the case of granulometric analysis, a different number of subsequent granulometric maps (being
the result of openings and closures of successively larger sizes of the structuring element) were used,
depending on the spatial resolution of the image. In the case of higher resolution photos (GSD: 2 m),
i.e., test image 1 and test image 2, these were three consecutive granulometric maps for opening and
closing, while in the case of test image 3 (GSD: 10 m), these were two consecutive granulometric maps
for opening and closing.

Analyses with selected methods (GLCM and both versions of granulometric analysis) were carried
out in several variants, depending on the size of the analyzed neighborhood of individual pixels. These
were areas with 5, 7, 10 and 13 pixels.

3.3. Methodology

As part of the research, a series of classifications were performed on each of the test images. These
were classifications made on different sets of data consisting of spectral image-only data and on sets of
spectro-textural data, enriched with the results of textural analysis, obtained on the basis of selected
methods. The tested variants are listed and explained in Table 3.

Table 3. Classification variants.

Name of the Variant Spectral Data Textural Data

spectral Yes None
spectral + Laplacian Yes Laplace filters
spectral + GLCM5 Yes 8 GLCM features, neighborhood: size 5
spectral + GLCM7 Yes 8 GLCM features, neighborhood: size 7
spectral + GLCM10 Yes 8 GLCM features, neighborhood: size 10
spectral + GLCM13 Yes 8 GLCM features, neighborhood: size 13

spectral + gran5 Yes 6 (or 4) simple granulometric maps, neighborhood: size 5
spectral + gran7 Yes 6 (or 4) simple granulometric maps, neighborhood: size 7
spectral + gran10 Yes 6 (or 4) simple granulometric maps, neighborhood: size 10
spectral + gran13 Yes 6 (or 4) simple granulometric maps, neighborhood: size 13

spectral +MSEgran5 Yes 6 (or 4) MSE granulometric maps, neighborhood: size 5
spectral +MSEgran7 Yes 6 (or 4) MSE granulometric maps, neighborhood: size 7

spectral +MSEgran 10 Yes 6 (or 4) MSE granulometric maps, neighborhood: size 10
spectral +MSEgran13 Yes 6 (or 4) MSE granulometric maps, neighborhood: size 13

The classification was performed using the random forest [35] method based on training fields
developed on the basis of a multispectral image. The classifier contained 500 trees, the number of
features was equal to the square root of all features and the impurity function was based on the
Gini coefficient.

In all variants of the classification, exactly the same training fields were used. For each test image
a relatively large number of training fields (from 65 to 74, then aggregated to the final number of
classes) were prepared to ensure the highest possible classification accuracy, so that the differences
obtained for individual variants depended only on the type of input data. The six following classes
were distinguished during this process:

1. Water
2. Bare soil
3. Low vegetation
4. Coniferous forest
5. Deciduous forest
6. Built-up area

To perform the textural analysis using the selected methods, the image of the first principal
component, calculated on the basis of a set of multispectral data, was used. Accuracy assessment was
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performed by comparing the results of the classification with the reference image created on the basis
of the test sites. The test sites were developed as a result of the visual interpretation of the image.
They were to meet the requirements ensuring proper control of the classification: equal distribution
over the entire classified area and proportional representation of all classes [36]. The total number of
test pixels was large in order to ensure high reliability of the accuracy check (980,869 pixels for Test
Image 1, 489,573 pixels for Test Image 2 and 250,952 pixels for Test Image 3; other statistics concerning
individual classes may be found in corresponding matrices).

The error matrix was compiled for the result of each classification, and errors of omission (OE) and
commission (CE) [37] as well as overall accuracy (OA) and the kappa index of agreement (KIA) [38]
were calculated. The scheme of the methodology is shown in Figure 3.
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In addition, for the classification of the GLCM results, the random forest variables importance
analysis was performed. Variable importance is calculated based on out-of-bag accuracy and signifies
the importance of the respective variable; a high value means a high importance of the variable for
the entire random forest model and vice versa [35,39]. The GLCM data set is the only set of utilized
data (in the section on texture images) with images of a qualitatively different nature; different images
present different features, which in turn are referring to other aspects of the image’s texture. Hence,
this analysis was performed, permitting a significant assessment of particular Haralick features used
for satellite image classification.

4. Results

Individual analyses were carried out on three test images. This section contains a summary and
analysis of the results obtained.

4.1. Results of Classification

4.1.1. Test image 1—Pleiades (2 m)

The results of the analysis are summarized in Table 4.
The Pleiades multispectral image is characterized by a relatively high spatial resolution (GSD:

2 m). As can be seen in Table 4, the accuracy of the classification based only on spectral data is low
(OA: 0.78, KIA: 0.71). In all scenarios in which the results of textural analysis were additionally used,
the accuracy of the classification was significantly higher. The best results were obtained for the
classification using granulometric maps: spectral + gran10, i.e., obtained as a result of an analysis



Remote Sens. 2019, 11, 1233 7 of 20

using simple morphological operations inside a radius of 10 pixels (OA: 0.98, KIA: 0.97). However,
it should be noted that for all such operations, regardless of the radius of the analyzed neighborhood,
the results were similarly high—the lowest for spectral + gran5 (OA: 0.96, KIA: 0.94), but still very
high— higher than the GLCM or Laplacian results. The results obtained for the spectral + GLCM
classification are also relatively good (OA: 0.89–0.92, KIA: 0.86–0.90), but clearly worse than using
granulometric analysis.

Table 4. Summary of the results for test image 1—Pleiades (2 m).

Scenario Overall Accuracy (OA) Kappa Index of Agreement (KIA)

spectral 0.78 0.71
spectral + Laplacian 0.83 0.77
spectral + GLCM5 0.90 0.87
spectral + GLCM7 0.92 0.90
spectral + GLCM10 0.92 0.89
spectral + GLCM13 0.89 0.86

spectral + gran5 0.96 0.94
spectral + gran7 0.97 0.96
spectral + gran10 0.98 0.97
spectral + gran13 0.96 0.95

spectral +MSEgran5 0.89 0.86
spectral +MSEgran7 0.93 0.91

spectral +MSEgran 10 0.96 0.94
spectral +MSEgran13 0.96 0.95

Tables 5–8 present the error matrices of the sample classification scenarios. Spectral classification
is shown in Table 3. The selected classification images obtained for individual scenarios are presented
in Figure 4.

Table 5. Error matrix for spectral classification of test image 1, Pleiades.

Reference Image

1. water 2. soil 3. low veg 4. con. forest 5. dec. forest 6. built-up Σ CE

cl
as

si
fic

at
io

n 1. water 91,346 1 1 43 2 1031 92,424 0.01
2. soil 0 248,368 796 0 0 2810 251,974 0.01

3. low veg 0 61 208,706 2 4101 307 213,177 0.02
4. con. forest 134 4 2 103,989 11,846 345 116,320 0.11
5. dec. forest 0 0 148,536 1119 92,983 483 243,121 0.62

6. built-up 0 42,047 55 56 1 21,694 63,853 0.66
Σ 91,480 290,481 358,096 105,209 108,933 26,670 980,869

OE 0.00 0.14 0.42 0.01 0.15 0.19 OA 0.782
KIA 0.709

Table 6. Error matrix for classification spectral + gran10 of test image 1—Pleiades.

Reference Image

1. water 2. soil 3. low veg 4. con. forest 5. dec. forest 6. built-up Σ CE

cl
as

si
fic

at
io

n 1. water 91,353 151 2 47 0 111 91,664 0.00
2. soil 0 285,996 233 0 0 1524 287,753 0.01

3. low veg 3 3669 351,592 10 1020 535 356,829 0.01
4. con. forest 124 120 135 104,781 6026 915 112,101 0.07
5. dec. forest 0 0 5811 352 101,879 768 108,810 0.06

6. built-up 0 545 323 19 8 22,817 23,712 0.04
Σ 91,480 290,481 358,096 105,209 108,933 26,670 980,869

OE 0.00 0.02 0.02 0.00 0.06 0.14 OA 0.977
KIA 0.969
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Table 7. Error matrix for classification spectral + GLCM7 of test image 1, Pleiades.

Reference Image

1. water 2. soil 3. low veg 4. con. forest 5. dec. forest 6. built-up Σ CE

cl
as

si
fic

at
io

n 1. water 91,417 118 1820 52 10 391 93,808 0.03
2. soil 0 273,962 4741 0 1 2437 281,141 0.03

3. low veg 0 6499 307,073 1 5098 158 318,829 0.04
4. con. forest 5 158 39 104,910 476 211 105,799 0.01
5. dec. forest 54 7 44231 222 103,303 325 148,142 0.30

6. built-up 4 9737 192 24 45 23,148 33,150 0.30
Σ 91,480 290,481 358,096 105,209 108,933 26,670 980,869

OE 0.00 0.06 0.14 0.00 0.05 0.13 OA 0.921
KIA 0.897

Table 8. Error matrix for classification spectral + Laplacian of test image 1, Pleiades.

Reference Image

1. water 2. soil 3. low veg 4. con. forest 5. dec. forest 6. built-up Σ CE

cl
as

si
fic

at
io

n 1. water 91,025 1 1 65 3 741 91,836 0.01
2. soil 0 249,230 553 0 0 2894 252,677 0.01

3. low veg 0 101 249,377 2 3768 358 253,606 0.02
4. con. forest 452 3 0 104,689 8816 332 114,292 0.08
5. dec. forest 3 0 108,090 416 96,345 445 205,299 0,53

6. built-up 0 41,146 75 37 1 21,900 63,159 0.65
Σ 91,480 290,481 358,096 105,209 108,933 26,670 980,869

OE 0.00 0.14 0.30 0.00 0.12 0.18 OA 0.828
KIA 0.770

Spectral classification has moderate accuracy (OA: 0.78, KIA: 0.71; Table 5; Figure 4a). As expected,
large classification errors can be noticed in classes where a high texture is an important distinction.
A large commission error (CE) is noticeable for Class 6: Built-up area (0.66), which is largely due
to the allocation of bare soil pixels (Class 2) to this class. The obvious reason for this is the spectral
similarity between these two classes. A similar situation can be observed in the case of a pair of classes:
deciduous forest (Class 5) and low vegetation (Class 3). In the case of these two classes, there is also at
least partial spectral similarity, especially in the case of illuminated parts of tree crowns. This results
in a large CE in Class 5: deciduous forest (0.62) and, at the same time, a large OE in Class 3: low
vegetation (0.42). When analyzing the classification error matrix in the spectral scenario, it can be
noticed that for the relatively low accuracy of this classification, the responsible classes are the two
cases discussed above: built-up areas versus bare soil and deciduous forest versus low vegetation.
Therefore, it should be expected that classifications based on data sets that also contain the results of
the textural analysis should improve accuracy in this area.
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Table 6 (also Figure 4b) presents the results obtained for the classification using, in addition to
spectral data, the results of the granulometric analysis, spectral + gran10. This is the classification with
the best result of those analyzed for test image 1, Pleiades (OA: 0.98, KIA: 0.97). As expected, this
classification significantly improved the separation of the two class pairs (2–6 and 3–5) as compared to
the spectral classification, where a large decrease in accuracy was observed. The biggest errors were
noted for Class 6, built-up area (OE: 0.14, CE: 0.04). As in the previously analyzed case, they are mainly
caused by the incorrect distinction between Class 6 and 2 (bare soil). However, they are much smaller
than in the case of spectral classification (OE: 0.19, CE: 0.66). The distinction between classes 2 and
5 also improved considerably due to the granulometric processing; in all other classes, OE and CE
values do not exceed 0.07.

The classification based on the spectral data and GLCM (Table 7; Figure 4c) results is also
significantly better than spectral classifications, however the obtained accuracy is lower than in the
case of the granulometric analysis. For example, errors for class 6 (built-up area), caused mainly by
similarity to Class 2 (bare soil) were OE: 0.13 and CE: 0.30, so less than in the spectral classification, but
more than in the case of classification spectral + gran10. Although classes 2 and 5 continue to show
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misclassifications, there is an improvement in relation to the spectral classification. However, results
are still less accurate than those resulting from the spectral + gran10 classification.

The classification using the results of the Laplace transformations gave the worst results among
the spectro-textural classification variants (Table 8; Figure 4d). Interestingly, despite the fact that the
general classification results have improved in relation to the spectral classification, the results for
individual classes are even worse than in the case of the latter. An example may be Class 6, built-up
area (OE: 0.18, CE: 0.65). The reason for such a large CE is the assignment to Class 6, bare soil areas (in
fact Class 2). These types of misclassification also occurred within other classifications, but not on such
a scale. The analysis of the classification images shows clearly that the reason for such a large error
is, first and foremost, the erroneously classified pixels of the exposed soil located on the borders of
agricultural plots (Figure 4). Here, the edge effect mentioned above is visible.

4.1.2. Test Image 2: WorldView (2 m)

The results of the accuracy assessment for classifications of test image 2: WorldView-2 are
presented in Table 9.

Table 9. Summary of the results for test image 2—WorldView-2 (2 m).

Scenario Overall Accuracy (OA) Kappa Index of Agreement (KIA)

spectral 0.94 0.92
spectral + Laplacian 0.95 0.93
spectral + GLCM5 0.89 0.86
spectral + GLCM7 0.88 0.85
spectral + GLCM10 0.86 0.82
spectral + GLCM13 0.87 0.83

spectral + gran5 0.96 0.95
spectral + gran7 0.96 0.95
spectral + gran10 0.96 0.95
spectral + gran13 0.96 0.94

spectral +MSEgran5 0.95 0.94
spectral +MSEgran7 0.96 0.95

spectral +MSEgran 10 0.97 0.96
spectral +MSEgran13 0.96 0.96

Unlike in the previous case, the spectral image classification is characterized by relatively high
accuracy (OA: 0.94, KIA: 0.92). Also, unlike before, not all types of textural data improved the accuracy
of the classification; the use of data obtained on the basis of the GLCM analysis caused a deterioration
of the results. The best result for the GLCM operation was obtained for the spectral + GLCM5 variant
(OA: 0.89, KIA 0.86). The remaining operations allowed greater accuracy; this applies to both the
spectral + Laplacian variant (OA: 0.95, KIA: 0.93), and both versions of the granulometric operations
(simple and MSE). In the latter case, the best results were obtained for the spectral +MSEgran10 variant
(OA: 0.97, KIA: 0.96), however, for all variants based on granulometric data, very similar high results
were obtained (e.g., spectral + gran10: OA: 0, 96, KIA: 0.95). The differences between the individual
variants are therefore insignificant.

More detailed information is provided by the analysis of the error matrix of selected classification
variants. These matrices are presented in Tables 10–13. The subsets of selected classification images
obtained for individual scenarios are presented in Figure 5.
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Table 10. Error matrix for spectral classification of test image 2: WorldView-2.

Reference Image

1. water 2. soil 3. low veg 4. con. forest 5. dec. forest 6. built-up Σ CE

cl
as

si
fic

at
io

n 1. water 6849 1 0 20 3 367 7240 0.05
2. soil 208 47,391 153 373 86 11194 59,405 0.20

3. low veg 0 27 119,853 1089 781 78 121,828 0.02
4. con. forest 0 0 902 87,820 9391 65 98,178 0.11
5. dec. forest 0 0 1720 3406 127,290 2 132,418 0.04

6. built-up 113 767 122 7 1 69,494 70,504 0.01
Σ 7170 48,186 122,750 92,715 137,552 81,200 489,573

OE 0.04 0.02 0.02 0.05 0.07 0.14 OA 0.937
KIA 0.920

Table 11. Error matrix for classification spectral + gran10 of test image 2: WorldView-2.

Reference Image

1. water 2. soil 3. low veg 4. con. forest 5. dec. forest 6. built-up Σ CE

cl
as

si
fic

at
io

n 1. water 6770 8 0 0 0 679 7457 0.09
2. soil 369 48,000 295 5 48 6111 54,828 0.12

3. low veg 0 51 122,051 3 1048 47 123,200 0.01
4. con. forest 0 1 87 91,932 8790 276 101,086 0.09
5. dec. forest 0 0 317 748 127,662 4 128,731 0.01

6. built-up 31 126 0 27 4 74,083 74,271 0.00
Σ 7170 48,186 122,750 92,715 137,552 81,200 489,573

OE 0.06 0.00 0.01 0.01 0.07 0.09 OA 0.961
KIA 0.951

Table 12. Error matrix for classification spectral + GLCM7 of test image 2: WorldView-2.

Reference Image

1. water 2. soil 3. low veg 4. con. forest 5. dec. forest 6. built-up Σ CE

cl
as

si
fic

at
io

n 1. water 6050 0 1007 0 0 126 7183 0.16
2. soil 993 47,563 2291 0 28 12,939 63,814 0.25

3. low veg 0 30 118,113 5 1453 53 119,654 0.01
4. con. forest 0 3 10 90,369 35,470 189 126,041 0.28
5. dec. forest 0 6 1324 2336 100,598 34 104,298 0.04

6. built-up 127 584 5 5 3 67,859 68,583 0.01
Σ 7170 48,186 122,750 92,715 137,552 81,200 489,573

OE 0.16 0.01 0.04 0.03 0.27 0.16 OA 0.879
KIA 0.847

Table 13. Error matrix for classification spectral + Laplacian of test image 2: WorldView-2.

Reference Image

1. water 2. soil 3. low veg 4. con. forest 5. dec. forest 6. built-up Σ CE

cl
as

si
fic

at
io

n 1. water 6920 0 0 27 4 364 7315 0.05
2. soil 195 47,588 255 331 80 10,643 59,092 0.19

3. low veg 0 73 121,952 498 812 91 123,426 0.01
4. con. forest 1 0 110 88,345 8955 57 97,468 0.09
5. dec. forest 0 0 432 3514 127,700 2 131,648 0.03

6. built-up 54 525 1 0 1 70,043 70,624 0.01
Σ 7170 48,186 122,750 92,715 137,552 81,200 489,573

OE 0.03 0.01 0.01 0.05 0.07 0.14 OA 0.945
KIA 0.930
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The spectral classification of test image 2 (Table 10; Figure 5a) is characterized by a high degree of
accuracy (OA: 0.95, KIA: 0.92), much higher than in the case of test image 1. Because the pixel size
of both analyzed images is the same, the reasons for these differences should be sought primarily at
the time of acquisition of the image. It was taken in August, the period that falls, at least partly, after
harvesting, which means that the total area of completely bare soil is relatively small: in some cases,
there is the presence of post-harvest residues that change the soil’s spectral characteristics sufficiently
to significantly improve the distinction of bare soil from built-up areas. This is reflected in relatively
small errors for Class 2 (bare soil, OE: 0.02, CE: 0.20) and 6 (built-up area, OE: 0.14, CE: 0.01). The
accuracy of forest classification is also higher than in the previous case. This time, larger errors were
obtained for Class 4 (coniferous forest, OE: 0.05, CE: 0.11), mainly due to the erroneous allocation of
deciduous forest areas.

The accuracy of the classification obtained thanks to the additional use of granulometric data
(Table 11; Figure 5b) is the largest of all general types of variants, as in the case of test image 1. The
improvement in comparison to the spectral classification is smaller (as in the case of test image 1),
but it results from the already high accuracy of the spectral variant. Thus, it is possible to observe a
reduction in errors in all classes (the exception is the slight decrease in the accuracy of Class 1, water).
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The classification based on the results of the GLCM analysis (Table 12; Figure 5c) gave surprisingly
poor results, much worse than the spectral classification. Analysis of the error matrix shows that the
main reasons for this are due to Class 4 (coniferous forest, OE: 0.03, CE: 0.28) and 5 (deciduous forest,
OE: 0.27, CE: 0.04). These errors are mainly due to the allocation of a significant part of the pixels
representing deciduous forest to Class 4, coniferous forest. There is also a slight decrease (in relation to
the spectral classification) of the accuracy of Class 2 (bare soil) and 6 (built-up area). The accuracy
of Class 1 (water) is also noticeable (OE: 0.16, CE: 0.16), as shown in the analysis of classification
images, mainly at the edges of water areas. The case of this classification seems to suggest that if
the distinction between individual classes based on spectral data is fairly accurate (see the results of
spectral classification), additional data may hinder the classification and deteriorate its results.

The use of the Laplace filtering results slightly increased the accuracy of classification (Table 13;
Figure 5d). This is due to a slight improvement in the designation of all classes.

4.1.3. Test Image 3—Sentinel-2 (10 m)

The results of the accuracy assessment for classifications of test image 3, Sentinel-2 are presented
in Table 14.

Table 14. Summary of the results for test image 3: Sentinel-2 (10 m).

Classification Variant Overal Accuracy (OA) Kappa Index of Agreement (KIA)

spectral 0.93 0.90
spectral + Laplacian 0.92 0.90
spectral + GLCM5 0.95 0.93
spectral + GLCM7 0.95 0.93
spectral + GLCM10 0.94 0.92
spectral + GLCM13 0.94 0.92

spectral + gran5 0.97 0.96
spectral + gran7 0.97 0.96
spectral + gran10 0.98 0.97
spectral + gran13 0.97 0.96

spectral +MSEgran5 0.98 0.97
spectral +MSEgran7 0.97 0.96

spectral +MSEgran 10 0.97 0.96
spectral +MSEgran13 0.97 0.96

The accuracy of the spectral classification is relatively high (OA: 0.93, KIA 0.90). Apart from the
spectral + Laplacian variant, all variants using textural analysis results are nonetheless more accurate.
The best overall result was obtained for the spectral + gran10 variant (OA: 0.98, KIA: 0.97), among the
GLCM variants it was the spectral + GLCM7 variant (OA: 0.95, 0.93). Therefore, these are the same
variants that gave the best results in the case of test image 1. More detailed information is provided by
the analysis of the error matrix of the selected classification variants. These matrices are presented
in Tables 15–18. The subsets of selected classification images obtained for individual scenarios are
presented in Figure 6.
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Table 15. Error matrix for spectral classification of test image 3: Sentinel-2.

Reference Image

1. water 2. soil 3. low veg 4. con. forest 5. dec. forest 6. built-up Σ CE

cl
as

si
fic

at
io

n 1. water 13,671 0 0 0 1 21 13,693 0.00
2. soil 0 70,477 265 0 2 2156 72,900 0.03

3. low veg 4 28 61,144 171 717 922 62,986 0.03
4. con. forest 25 0 0 59,225 337 28 59,615 0.01
5. dec. forest 0 0 1067 1197 16,568 31 18,863 0.12

6. built-up 1 11,489 182 2 2 11,219 22,895 0.51
Σ 13,701 81,994 62,658 60,595 17,627 14,377 250,952

OE 0.00 0.14 0.02 0.02 0.06 0.22 OA 0.926
KIA 0.902

Table 16. Error matrix for classification spectral + gran10 of test image 3: Sentinel-2.

Reference Image

1. water 2. soil 3. low veg 4. con. forest 5. dec. forest 6. built-up Σ CE

cl
as

si
fic

at
io

n 1. water 13,620 0 104 0 0 24 13,748 0.01
2. soil 0 81,178 243 0 3 725 82,149 0.01

3. low veg 4 263 61,449 166 712 292 62,886 0.02
4. con. forest 73 0 220 58,598 122 13 59,026 0.01
5. dec. forest 4 0 642 1831 16,789 281 19,547 0.14

6. built-up 0 553 0 0 1 13,042 13,596 0.04
Σ 13,701 81,994 62,658 60,595 17,627 14,377 250,952

OE 0.01 0.01 0.02 0.03 0.05 0.09 OA 0.975
KIA 0.967

Table 17. Error matrix for classification spectral + GLCM7 of test image 3: Sentinel-2.

Reference Image

1. water 2. soil 3. low veg 4. con. forest 5. dec. forest 6. built-up Σ CE

cl
as

si
fic

at
io

n 1. water 13,596 0 0 120 41 137 13,894 0.02
2. soil 0 77,496 295 0 4 1442 79,237 0.02

3. low veg 0 935 61,720 365 2305 547 65,872 0.06
4. con. forest 90 3 115 59,816 2290 2 62,316 0.04
5. dec. forest 15 4 520 294 12,986 274 14,093 0.08

6. built-up 0 3556 8 0 1 11,975 15,540 0.23
Σ 13,701 81,994 62,658 60,595 17,627 14,377 250,952

OE 0.01 0.05 0.01 0.01 0.26 0.17 OA 0.947
KIA 0.930

Table 18. Error matrix for classification spectral + Laplace of test image 3: Sentinel-2.

Reference Image

1. water 2. soil 3. low veg 4. con. forest 5. dec. forest 6. built-up Σ CE

cl
as

si
fic

at
io

n 1. water 13,662 0 0 7 52 10 13,731 0.01
2. soil 0 68,946 316 0 2 1859 71,123 0.03

3. low veg 6 44 61,273 141 652 1025 63,141 0.03
4. con. forest 32 0 0 59,687 150 20 59,889 0.00
5. dec. forest 1 0 1031 758 16,771 58 18,619 0.10

6. built-up 0 13,004 38 2 0 11,405 24,449 0.53
Σ 13,701 81,994 62,658 60,595 17,627 14,377 250,952

OE 0.00 0.16 0.02 0.01 0.05 0.21 OA 0.923
KIA 0.900
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As the analysis of the error matrix for spectral classification (Table 15; Figure 6a) shows, the biggest
errors are generated by a problem with the differentiation between Class 6 (built-up area, OE: 0.22:
CE: 0.51) and Class 2 (bare soil, OE: 0.14, CE: 0.03). This indicates a high spectral similarity between
both land use classes. Other classes are determined with high accuracy, and except for the example of
Class 5 (deciduous forest, OE: 0.06, CE: 0.12), which is mainly due to problems with distinguishing
pixels of this class from coniferous forest and low vegetation, errors do not exceed the value of 0.03.

The spectral+ gran10 variant is the best of the analyzed ones (Table 16; Figure 6b). The improvement
in accuracy is mainly due to an improvement in the classification of Class 6 (built-up area, OE: 0.09,
CE: 0.04). Improvements have also been observed in the other classes, e.g., in Class 5, deciduous forest
(OE: 0.06, CE: 0.12).

The spectral + GLCM7 variant (Table 17; Figure 6c) also improved the results relative to the spectral
classification, although to a lesser extent than the spectral + gran10 classification. The increase in
accuracy results mainly from the improvement in the accuracy of Class 6, built-up area (OE: 0.17,
CE: 0.23), again, to a lesser extent than in the spectral + gran10 classification. However, a decrease in the
accuracy of Class 5 (deciduous forest, OE: 0.26, CE: 0.08), can be noted. A similar effect for this class
was noted during the analysis of the classification of test image 2, also based on GLCM data.
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Classification variant spectral + Laplace is the only one characterized by lower accuracy than the
spectral classification (Table 18; Figure 6d). The differences, however, are small. Similarly, the impact
of particular classes on the overall accuracy of the classification appear similar. Differences between
analogous errors in both variants do not exceed 0.02. It is therefore difficult to say that the use of this
data in the classification of the Sentinel-2 photo could have any significant impact on the accuracy of
the classification.

4.2. Analysis of Random Forest Variables Importance for the Dataset Consisting of GLCM Features

This section presents an analysis of the significance of individual images that make up the spectral
+ GLCM data sets for the random forest classification. This analysis was performed on these data sets
only, because they are the only ones among the analyzed variants (in the section on texture images)
with images of a qualitatively different nature: different images present different features, which in
turn refer to other aspects of the image texture. The analysis allowed the assessment of the significance
of particular Haralick features used for satellite image classification.

The diagrams showing the importance of different variables; spectral (marked with gray) and
GLCM (marked with black) are shown in Figures 7–9.

In the case of the classification of test image 1: Pleiades (2 m), Haralick’s correlation has the greatest
significance among the GLCM features. The importance of this layer is similar to the importance of
spectral images. The remaining GLCM features are of low importance, at a similar level.

Additionally, in the case of the classification of test image 2: WorldView-2 (2 m), Haralick’s
correlation shows the greatest importance among all texture images, and except for in one case, had
the greatest importance in general. The relatively small significance of individual spectral ranges may
in this case result from their greater number; this meaning is distributed among individual images.

Once again, for the classification of test image 3: Sentinel-2, Haralick’s Correlation is the most
important variable among the GLCM features. However, this significance is relatively less than the
other two test images. The explanation of this situation may be a smaller spatial resolution of the image.
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5. Discussion

The obtained results showed a high efficiency of spectro-textural classification based on the results
of granulometric analysis. In all cases, the spectral + gran classification variants showed the best
accuracy among all analyzed variants. Importantly, the individual spectral + gran variants, differing
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in the radius of analysis, gave quite similar results. This indicates the high stability of this method.
Although it can be stated that the best results were generally obtained with the spectral + gran10
variant, all variants based on granulometric analysis were significantly better than the other variants of
classification—spectral and spectro-textural—based on other texture analysis methods.

This may be at least partly due to the issue of the edge effect, not regarding granulometric
processing, but regarding the other two methods tested; GLCM and Laplace filters. This effect is
investigated in Figure 10a–c; the edge of the square on the right gets relatively large values in the image
as a result of GLCM analysis, similar to the value for a fragment of a high texture image (left side).
On the image obtained as a result of granulometric analysis, this effect is not visible. A similar set was
prepared for a subset of the actual satellite image of Pleiades (Figure 10d–f). In the GLCM image, the
edges of the objects (plots) get high values, falsely indicating a high texture, while on the granulometric
map this effect does not occur. This effect can be very important in image classification [7] because
it makes parts of objects (on the edges) with a low texture look like objects with a high texture, thus
reducing their separability, especially in cases of high spectral similarity.
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We can observe this effect in the example of Test Image 2, where the use of GLCM or Laplace
imagery did not improve the distinction between bare soil and built-up areas; it could even (as in
the case of GLCM) worsen it. It is worth recalling that due to the date when Test Image 2 was taken,
the separability of these classes based on spectral data was relatively large.

The results obtained for Test Image 3 confirm the results of previous studies that with a decrease
in spatial resolution, the importance of textural analysis for distinguishing land cover classes decreases.
Although, also in this case, the application of the results of the textural analysis increased the accuracy
of the classification (with the exception of Laplace’s operations, which had little effect on the result).

6. Conclusions

The presented studies showed the advantage of granulometric analysis over the other two methods
of textural analysis (GLCM and Laplace filters) in the examined aspect. All tested variants increased
the accuracy of classification in relation to the approach based only on spectral data. Also, almost all
tested variants (with one exception) of the granulometric analysis showed greater efficacy than all the
variants based on the other two methods of textural analysis.

The use of other tested methods of textural analysis, in the majority of analyzed cases, also
increased the accuracy of classification. However, this is not a rule; in the case of both GLCM analysis
and Laplace filtration, examples of deterioration in classification accuracy occurred. This suggests that,
in some cases, the results of the textural analysis are irrelevant in distinguishing individual classes,
which may partly be caused by the edge effect.
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An additionally performed analysis of the random forest variable importance of components of
the spectral + GLCM data set for random forest classification, showed the importance of Haralick’s
correlation. This type of analysis may be useful for the analysis of other GLCM statistics, but also
for other methods of textural analysis. This may establish and test an optimal set of complementary
textural data for the best possible increase in land use/cover classification accuracy.
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