Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region
<p>The study area is located in the southwest of Jiangsu Province, China and an overview of the SAR data (R: 2015-11-12 VH polarization, G: 2016-03-21 VV polarization, B: 2016-05-08 VH polarization).</p> "> Figure 2
<p>Average backscatter values for each land cover class on six image acquisition dates.</p> "> Figure 3
<p>Average coherence values for each land cover class. Note: the meaning of the notations 1, 2, 3, 4, and 5 can be found in <a href="#sec3dot2dot2-sensors-17-01210" class="html-sec">Section 3.2.2</a>.</p> "> Figure 4
<p>Average SR and NDVI values for each land cover class on four image acquisition dates.</p> "> Figure 5
<p>Comparison of processing time of different combinations classification by RF and SVM algorithms.</p> "> Figure 6
<p>Accuracy of winter wheat using each optical image alone for RF (<b>a</b>) and SVM (<b>b</b>).</p> "> Figure 7
<p>Incremental classification accuracy of winter wheat with backscatter intensity, coherence, and texture images by adding every new image acquisition to all previously available images.</p> "> Figure 8
<p>Classification results using the RF classifier. (Top) Using the four SAR datasets (22 November 2015, 9 January 2016, 26 February 2016 and 21 March 2016). (Bottom) Using the combination of S + O.</p> ">
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. SAR Satellite Data
2.3. Optical Satellite Data
2.4. Field Survey
3. Methods
3.1. Satellite Data Pre-Processing
3.2. Feature Sets
3.2.1. Texture Features
3.2.2. Coherence Features
3.3.3. Feature Combination
3.3. Classifiers
4. Results and Discussion
4.1. Analysis of Temporal Variables Used for Classification
4.1.1. Temporal Variables Extracted from SAR Data
4.1.2. Temporal Variables Extracted from Optical Data
4.2. Winter Wheat Mapping
4.2.1. SAR Image Classification and Accuracy Assessment
4.2.2. Optical Image Classification and Accuracy Assessment
4.2.3. Classification Results Using SAR and Optical Images
4.2.4. Incremental Classification Results Using SAR Data
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Xu, J.; Li, Z.; Tian, B.; Huang, L.; Chen, Q.; Fu, S. Polarimetric analysis of multi-temporal RADARSAT-2 SAR images for wheat monitoring and mapping. Int. J. Remote Sens. 2014, 35, 3840–3858. [Google Scholar] [CrossRef]
- Hao, P.; Zhan, Y.; Wang, L.; Niu, Z.; Shakir, M. Feature Selection of Time Series MODIS Data for Early Crop Classification Using Random Forest: A Case Study in Kansas, USA. Remote Sens. 2015, 7, 5347–5369. [Google Scholar] [CrossRef]
- Navarro, A.; Rolim, J.; Miguel, I.; Catalao, J.; Silva, J.; Painho, M.; Vekerdy, Z. Crop Monitoring Based on SPOT-5 Take-5 and Sentinel-1A Data for the Estimation of Crop Water Requirements. Remote Sens. 2016, 8, 525. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Wu, J.; Qi, J.; Salas, W.A. Mapping paddy rice with multitemporal ALOS/PALSAR imagery in southeast China. Int. J. Remote Sens. 2009, 30, 6301–6315. [Google Scholar] [CrossRef]
- Xie, L.; Zhang, H.; Li, H.; Wang, C. A unified framework for crop classification in southern China using fully polarimetric, dual polarimetric, and compact polarimetric SAR data. Int. J. Remote Sens. 2015, 36, 3798–3818. [Google Scholar] [CrossRef]
- Mishra, N.B.; Crews, K.A. Mapping vegetation morphology types in a dry savanna ecosystem: Integrating hierarchical object-based image analysis with Random Forest. Int. J. Remote Sens. 2014, 35, 1175–1198. [Google Scholar] [CrossRef]
- Du, P.J.; Samat, A.; Waske, B.; Liu, S.C.; Li, Z.H. Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features. ISPRS J. Photogramm. Remote Sens. 2015, 105, 38–53. [Google Scholar] [CrossRef]
- Oyoshi, K.; Tomiyama, N.; Okumura, T.; Sobue, S.; Sato, J. Mapping rice-planted areas using time-series synthetic aperture radar data for the Asia-RiCE activity. Paddy Water Environ. 2016, 14, 463–472. [Google Scholar] [CrossRef]
- Forkuor, G.; Conrad, C.; Thiel, M.; Ullmann, T.; Zoungrana, E. Integration of Optical and Synthetic Aperture Radar Imagery for Improving Crop Mapping in Northwestern Benin, West Africa. Remote Sens. 2014, 6, 6472–6499. [Google Scholar] [CrossRef]
- Waske, B.; Braun, M. Classifier ensembles for land cover mapping using multitemporal SAR imagery. ISPRS J. Photogramm. Remote Sens. 2009, 64, 450–457. [Google Scholar] [CrossRef]
- Inglada, J.; Vincent, A.; Arias, M.; Marais-Sicre, C. Improved Early Crop Type Identification By Joint Use of High Temporal Resolution SAR And Optical Image Time Series. Remote Sens. 2016, 8, 362. [Google Scholar] [CrossRef]
- Kussul, N.; Lemoine, G.; Gallego, F.J.; Skakun, S.V.; Lavreniuk, M.; Shelestov, A.Y. Parcel-Based Crop Classification in Ukraine Using Landsat-8 Data and Sentinel-1A Data. IEEE J. Stars 2016, 9, 2500–2508. [Google Scholar] [CrossRef]
- Hoshikawa, K.; Nagano, T.; Kotera, A.; Watanabe, K.; Fujihara, Y.; Kozan, O. Classification of crop fields in northeast Thailand based on hydrological characteristics detected by L-band SAR backscatter data. Remote Sens. Lett. 2014, 5, 323–331. [Google Scholar] [CrossRef]
- Shao, Y.; Fan, X.; Liu, H.; Xiao, J.; Ross, S.; Brisco, B.; Brown, R.; Staples, G. Rice monitoring and production estimation using multitemporal RADARSAT. Remote Sens. Environ. 2001, 76, 310–325. [Google Scholar] [CrossRef]
- Silva, W.F.; Rudorff, B.F.T.; Formaggio, A.R.; Paradella, W.R.; Mura, J.C. Discrimination of agricultural crops in a tropical semi-arid region of Brazil based on L-band polarimetric airborne SAR data. ISPRS J. Photogramm. Remote Sens. 2009, 64, 458–463. [Google Scholar] [CrossRef]
- McNairn, H.; van der Sanden, J.J.; Brown, R.J.; Ellis, J. The potential of RADARSAT-2 for crop mapping and assessing crop condition. In Proceedings of the Second International Conference on Geospatial Information in Agriculture and Forestry, Lake Buena Vista, FL, USA, 10–12 January 2000; vol. II, pp. 81–88. [Google Scholar]
- Ferrazzoli, P.; Guerriero, L.; Schiavon, G. Experimental and model investigation on radar classification capability. IEEE Trans. Geosci. Remote Sens. 1999, 37, 960–968. [Google Scholar] [CrossRef]
- Shang, J.; Mcnairn, H.; Champagne, C.; Jiao, X. Application of Multi-Frequency Synthetic Aperture Radar (SAR) in Crop Classification; InTech: Rijeka, Croatia, 2009. [Google Scholar]
- McNairn, H.; Kross, A.; Lapen, D.; Caves, R.; Shang, J. Early season monitoring of corn and soybeans with TerraSAR-X and RADARSAT-2. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 252–259. [Google Scholar] [CrossRef]
- Jia, K.; Li, Q.; Tian, Y.; Wu, B.; Zhang, F.; Meng, J. Crop classification using multi-configuration SAR data in the North China Plain. Int. J. Remote Sens. 2012, 33, 170–183. [Google Scholar] [CrossRef]
- Parihar, N.; Das, A.; Rathore, V.S.; Nathawat, M.S.; Mohan, S. Analysis of L-band SAR backscatter and coherence for delineation of land-use/land-cover. Int. J. Remote Sens. 2014, 35, 6781–6798. [Google Scholar] [CrossRef]
- Sonobe, R.; Tani, H.; Wang, X.; Kobayashi, N.; Shimamura, H. Discrimination of crop types with TerraSAR-X-derived information. Phys. Chem. Earth Parts A/B/C 2015, 83–84, 2–13. [Google Scholar] [CrossRef]
- Yayusman, L.F.; Nagasawa, R. ALOS-Sensor data integration for the detection of smallholders oil palm plantation in Southern Sumatra, Indonesia. J. Jpn. Agric. Syst. Soc. 2015, 31, 27–40. [Google Scholar]
- Liesenberg, V.; Gloaguen, R. Evaluating SAR polarization modes at L-band for forest classification purposes in Eastern Amazon, Brazil. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 122–135. [Google Scholar] [CrossRef]
- LI, W. Classification of SAR images using morphological texture features. Int. J. Remote Sens. 1998, 19, 3399–3410. [Google Scholar] [CrossRef]
- Skakun, S.; Kussul, N.; Shelestov, A.Y.; Lavreniuk, M.; Kussul, O. Efficiency Assessment of Multitemporal C-Band Radarsat-2 Intensity and Landsat-8 Surface Reflectance Satellite Imagery for Crop Classification in Ukraine. IEEE J. Stars 2015, 9, 1–8. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Chen, B.; Torbick, N.; Jin, C.; Zhang, G.; Biradar, C. Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery. Remote Sens. Environ. 2013, 134, 392–402. [Google Scholar] [CrossRef]
- Kussul, N.; Skakun, S.; Shelestov, A.; Kravchenko, O.; Kussul, O. Crop Classification in Ukraine Using Satellite Optical and Sar Images. Int. J. Inf. Models Anal. 2013, 2, 118–122. [Google Scholar]
- Vapnik, V.N.; Vapnik, V. Statistical Learning Theory; Wiley: New York, NY, USA, 1998; Volume 1. [Google Scholar]
- Breiman, L. Random forests. In Machine Learning; Springer: Berlin, Germany, 2001; Volume 45. [Google Scholar]
- Ban, Y. Synergy of multitemporal ERS-1 SAR and Landsat TM data for classification of agricultural crops. Can. J. Remote Sens. 2003, 29, 518–526. [Google Scholar] [CrossRef]
- Wang, X.Y.; Guo, Y.G.; He, J.; Du, L.T. Fusion of HJ1B and ALOS PALSAR data for land cover classification using machine learning methods. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 192–203. [Google Scholar] [CrossRef]
- Ban, Y.; Jacob, A. Object-Based Fusion of Multitemporal Multiangle ENVISAT ASAR and HJ-1B Multispectral Data for Urban Land-Cover Mapping. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1998–2006. [Google Scholar] [CrossRef]
- Villa, P.; Stroppiana, D.; Fontanelli, G.; Azar, R.; Brivio, P.A. In-Season Mapping of Crop Type with Optical and X-Band SAR Data: A Classification Tree Approach Using Synoptic Seasonal Features. Remote Sens. 2015, 7, 12859–12889. [Google Scholar] [CrossRef]
- Schoenfeldt, U.; Braubach, H. Electrical Architecture of the SENTINEL-1 SAR Antenna Subsystem. In Proceedings of the European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2–5 June 2008; pp. 1–4. [Google Scholar]
- Abdikan, S.; Sanli, F.B.; Ustuner, M.; Calò, F. Land Cover Mapping Using SENTINEL-1 SAR Data. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B7, 757–761. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Turbid wakes associated with offshore wind turbines observed with Landsat 8. Remote Sens. Environ. 2014, 145, 105–115. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, X.; Jin, M.; Ding, C.; Jiang, J.; Wu, L. Deriving the Characteristic Scale for Effectively Monitoring Heavy Metal Stress in Rice by Assimilation of GF-1 Data with the WOFOST Model. Sensors 2016, 16, 340. [Google Scholar] [CrossRef] [PubMed]
- Jia, K.; Liang, S.; Gu, X.; Baret, F.; Wei, X.; Wang, X.; Yao, Y.; Yang, L.; Li, Y. Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data. Remote Sens. Environ. 2016, 177, 184–191. [Google Scholar] [CrossRef]
- Schuster, C.; Schmidt, T.; Conrad, C.; Kleinschmit, B.; Forster, M. Grassland habitat mapping by intra-annual time series analysis—Comparison of RapidEye and TerraSAR-X satellite data. Int. J. Appl. Earth Obs. Geoinforma. 2015, 34, 25–34. [Google Scholar] [CrossRef]
- Clevers, J.; Russell, G. Congalton and Kass Green, Assessing the Accuracy of Remotely Sensed Data—Principles and Practices, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Baumann, M.; Ozdogan, M.; Kuemmerle, T.; Wendland, K.J.; Esipova, E.; Radeloff, V.C. Using the Landsat record to detect forest-cover changes during and after the collapse of the Soviet Union in the temperate zone of European Russia. Remote Sens. Environ. 2012, 124, 174–184. [Google Scholar] [CrossRef]
- Schuster, C.; Förster, M.; Kleinschmit, B. Testing the red edge channel for improving land-use classifications based on high-resolution multi-spectral satellite data. Int. J. Remote Sens. 2012, 33, 5583–5599. [Google Scholar] [CrossRef]
- Dusseux, P.; Corpetti, T.; Hubert-Moy, L.; Corgne, S. Combined Use of Multi-Temporal Optical and Radar Satellite Images for Grassland Monitoring. Remote Sens. 2014, 6, 6163–6182. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.; Schell, J.; Deering, D. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA: Washington, DC, USA, 1974.
- Birth, G.S.; McVey, G.R. Measuring the color of growing turf with a reflectance spectrophotometer. Agron. J. 1968, 60, 640–643. [Google Scholar] [CrossRef]
- Karale, Y.; Mohite, J.; Jagyasi, B. Crop Classification Based on Multi-Temporal Satellite Remote Sensing Data for Agro-Advisory Services. SPIE Asia-Pac. Remote Sens. 2014, 9260, 926004. [Google Scholar] [CrossRef]
- Arsenault, H.H. Speckle Suppression and Analysis for Synthetic Aperture Radar Images. Opt. Eng. 1986, 25, 636–643. [Google Scholar]
- Balzter, H.; Cole, B.; Thiel, C.; Schmullius, C. Mapping CORINE Land Cover from Sentinel-1A SAR and SRTM Digital Elevation Model Data using Random Forests. Remote Sens. 2015, 7, 14876–14898. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural Features for Image Classification. Syst. Man Cybern. IEEE Trans. 1973, smc-3, 610–621. [Google Scholar] [CrossRef]
- Cherkassky, V. The Nature of Statistical Learning Theory; Springer: Berlin, Germany, 1997; p. 1564. [Google Scholar]
- Pal, M.; Foody, G.M. Evaluation of SVM, RVM and SMLR for Accurate Image Classification with Limited Ground Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1344–1355. [Google Scholar] [CrossRef]
- Jia, K.; Wei, X.; Gu, X.; Yao, Y.; Xie, X.; Li, B. Land cover classification using Landsat 8 Operational Land Imager data in Beijing, China. Geocarto Int. 2014, 29, 941–951. [Google Scholar] [CrossRef]
- Hutt, C.; Koppe, W.; Miao, Y.X.; Bareth, G. Best Accuracy Land Use/Land Cover (LULC) Classification to Derive Crop Types Using Multitemporal, Multisensor, and Multi-Polarization SAR Satellite Images. Remote Sens. 2016, 8, 684. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Long, J.A.; Lawrence, R.L.; Greenwood, M.C.; Marshall, L.; Miller, P.R. Object-oriented crop classification using multitemporal ETM + SLC-off imagery and random forest. GiSci. Remote Sens. 2013, 50, 418–436. [Google Scholar]
- McNairn, H.; Champagne, C.; Shang, J.; Holmstrom, D.; Reichert, G. Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS J. Photogramm. Remote Sens. 2009, 64, 434–449. [Google Scholar] [CrossRef]
- Wang, C.Z.; Wu, J.P.; Zhang, Y.; Pan, G.D.; Qi, J.G.; Salas, W.A. Characterizing L-band scattering of paddy rice in Southeast China with radiative transfer model and multitemporal ALOS/PALSAR imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 988–998. [Google Scholar] [CrossRef]
- Jia, M.; Tong, L.; Zhang, Y.; Chen, Y. Multitemporal radar backscattering measurement of wheat fields using multifrequency (L, S, C, and X) and full-polarization. Radio Sci. 2013, 48, 471–481. [Google Scholar] [CrossRef]
- O’Grady, D.; Leblanc, M. Radar mapping of broad-scale inundation: challenges and opportunities in Australia. Stoch. Environ. Res. Risk Assess. 2014, 28, 29–38. [Google Scholar] [CrossRef]
- Jung, H.C.; Alsdorf, D. Repeat-pass multi-temporal interferometric SAR coherence variations with Amazon floodplain and lake habitats. Int. J. Remote Sens. 2010, 31, 881–901. [Google Scholar] [CrossRef]
- Blaes, X.; Defourny, P. Retrieving crop parameters based on tandem ERS 1/2 interferometric coherence images. Remote Sens. Environ. 2003, 88, 374–385. [Google Scholar] [CrossRef]
- De Wit, A.J.W.; Clevers, J.G.P.W. Efficiency and accuracy of per-field classification for operational crop mapping. Int. J. Remote Sens. 2004, 25, 4091–4112. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Blaes, X.; Vanhalle, L.; Defourny, P. Efficiency of crop identification based on optical and SAR image time series. Remote Sens. Environ. 2005, 96, 352–365. [Google Scholar] [CrossRef]
- Chen, J.; Lin, H.; Pei, Z. Application of ENVISAT ASAR Data in Mapping Rice Crop Growth in Southern China. IEEE Geosci. Remote Sens. Lett. 2007, 4, 431–435. [Google Scholar] [CrossRef]
Acquisition Date | Product | Imaging Mode | Polarization | Incidence Angle |
---|---|---|---|---|
22 November 2015 | SLC | IW | VV/VH | 33.8 |
9 January 2016 | SLC | IW | VV/VH | 33.9 |
26 February 2016 | SLC | IW | VV/VH | 39.0 |
21 March 2016 | SLC | IW | VV/VH | 33.8 |
14 April 2016 | SLC | IW | VV/VH | 33.8 |
8 May 2016 | SLC | IW | VV/VH | 33.9 |
Class | Number of Training Pixels | Number of Validation Pixels |
---|---|---|
Winter wheat | 816 | 928 |
Rapeseed | 807 | 930 |
Forest | 1186 | 1095 |
Water body | 1074 | 1192 |
Urban | 1253 | 1325 |
ID | Simple Code in This Study | Descriptions of Inputs |
---|---|---|
A | VH | All six Sentinel-1A images (VH) |
B | VV | All six Sentinel-1A images (VV) |
C | VV + VH | Dual polarization (VV + VH) of all six Sentinel-1A images |
D | T | Textures of all six Sentinel-1A images |
E | C | Coherence values of all six Sentinel-1A images |
F | VV + VH + T | Textures and dual polarization (VV + VH) of all six Sentinel-1A images |
G | VV + VH + C | Coherence values and dual polarization (VV + VH) of all six Sentinel-1A images |
H | C + T | Textures and coherence values of all six Sentinel-1A images |
I | VV + VH + C + T | Combination of dual polarization (VV + VH), textures, and coherence values of all six Sentinel-1A images |
J | S + O | Combination of all six Sentinel-1A images (dual polarization (VV + VH), textures, and coherence values) and Landsat-8 image on 28 March 2016 |
F1 Measure (%) | Overall Accuracy (%) | Kappa | ||||||
---|---|---|---|---|---|---|---|---|
Classifier | ID | Wheat | Rapeseed | Forest | Urban | Water | ||
RF | a | 50.00 | 61.80 | 69.80 | 80.42 | 95.58 | 82.26 | 0.7351 |
b | 74.48 | 64.47 | 87.25 | 88.70 | 96.99 | 90.10 | 0.8525 | |
c | 85.72 | 78.02 | 87.09 | 90.24 | 97.21 | 91.45 | 0.8729 | |
d | 15.62 | 20.26 | 54.59 | 82.62 | 72.62 | 72.27 | 0.5741 | |
e | 44.36 | 21.49 | 30.76 | 83.41 | 67.86 | 67.27 | 0.5086 | |
f | 90.34 | 66.34 | 87.75 | 92.42 | 97.21 | 92.38 | 0.8865 | |
g | 92.35 | 83.20 | 93.34 | 95.20 | 97.26 | 94.94 | 0.9263 | |
h | 20.95 | 26.87 | 52.67 | 86.37 | 74.58 | 73.82 | 0.6046 | |
i | 94.83 | 72.26 | 91.29 | 95.27 | 97.94 | 94.78 | 0.9224 | |
j | 98.06 | 98.85 | 99.44 | 99.53 | 99.25 | 99.35 | 0.9905 | |
SVM | a | 46.33 | 54.87 | 57.71 | 71.77 | 95.41 | 75.47 | 0.6350 |
b | 66.36 | 56.60 | 80.60 | 83.42 | 96.82 | 86.12 | 0.7957 | |
c | 83.51 | 74.20 | 82.10 | 88.16 | 98.09 | 89.82 | 0.8490 | |
d | 24.16 | 39.07 | 68.49 | 86.19 | 85.40 | 80.59 | 0.7057 | |
e | 44.14 | 20.46 | 41.40 | 85.10 | 71.24 | 69.55 | 0.5449 | |
f | 91.26 | 77.92 | 90.45 | 94.61 | 99.20 | 94.83 | 0.9231 | |
g | 93.10 | 84.78 | 95.51 | 96.41 | 97.93 | 96.19 | 0.9447 | |
h | 65.65 | 42.00 | 74.17 | 90.62 | 91.12 | 85.19 | 0.7833 | |
i | 93.61 | 82.08 | 94.48 | 96.05 | 98.06 | 95.95 | 0.9399 | |
j | 95.09 | 96.37 | 99.31 | 99.61 | 99.94 | 99.81 | 0.9939 |
Class | |||||
---|---|---|---|---|---|
Accuracy Measure | Winter Wheat | Rapeseed | Forest | Urban | Water |
F1 measure | 87.89 | 70.75 | 90.51 | 94.23 | 97.83 |
Overall accuracy/Kappa | 93.91/0.9093 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, T.; Pan, J.; Zhang, P.; Wei, S.; Han, T. Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region. Sensors 2017, 17, 1210. https://doi.org/10.3390/s17061210
Zhou T, Pan J, Zhang P, Wei S, Han T. Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region. Sensors. 2017; 17(6):1210. https://doi.org/10.3390/s17061210
Chicago/Turabian StyleZhou, Tao, Jianjun Pan, Peiyu Zhang, Shanbao Wei, and Tao Han. 2017. "Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region" Sensors 17, no. 6: 1210. https://doi.org/10.3390/s17061210
APA StyleZhou, T., Pan, J., Zhang, P., Wei, S., & Han, T. (2017). Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region. Sensors, 17(6), 1210. https://doi.org/10.3390/s17061210